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ABSTRACT

Decentralized training of large language models offers the opportunity to pool
computational resources across geographically distributed participants but faces
significant network communication bottlenecks, particularly in pipeline-parallel
settings. While pipeline parallelism partitions model layers across devices to handle
large-scale models, it necessitates frequent communication of intermediate activa-
tions, creating challenges when network bandwidth is limited. Existing activation
compression methods, such as AQ-SGD, mitigate quantization-induced errors
through error compensation but impose prohibitive memory overhead by requiring
storage of previous activations. To address these issues, we introduce TAH-QUANT
(Tile-wise Adaptive Hadamard Quantization), a novel activation quantization
framework designed specifically for pipeline parallelism. Our approach integrates
fine-grained tile-wise quantization for precise control, entropy-guided token-level
adaptive bit allocation for optimal bit usage, and a Hadamard-based transform with
pivot element swapping to effectively suppress quantization outliers. We further
provide a theoretical analysis, proving that pipeline parallel training equipped
with TAH-QUANT maintains a convergence rate of O(1/

√
T ), matching that of

vanilla stochastic gradient descent. Extensive experiments on diverse LLM tasks
demonstrate that TAH-QUANT achieves aggressive activation quantization (3-4
bits) ratio, which provides up to 1.33× end-to-end speedup without compromising
training convergence, matches state-of-the-art methods, incurs no extra memory
overhead, and generalizes well across different training scenarios.

1 INTRODUCTION

Decentralized or open collaborative training of large language models (LLMs) has recently gained
significant attention as it enables pooling computational resources across multiple geo-distributed
participants, thus facilitating training of models that exceed the capacity of any single resource con-
tributor Ryabinin & Gusev (2020); Yuan et al. (2022); Gandhi et al. (2024). However, a major barrier
to these approaches is network communication: unlike specialized clusters equipped with high-speed
interconnects, decentralized settings typically rely on slower networks, severely constraining training
efficiency Wang et al. (2022; 2023b). On the other hand, scaling LLM training in state-of-the-art
scale necessitates distributed model parallel training — particularly pipeline parallelism Huang et al.
(2019); Narayanan et al. (2019; 2021), which partitions model layers across multiple stages to support
training LLMs with billions of parameters. Yet, pipeline parallelism inherently requires frequent
transmission of activations and their corresponding gradients between adjacent pipeline stages. In this
paper, we explore how to effectively compress the communication volume to accommodate pipeline
parallelism over slow network links.

Enabling efficient activation compression for pipeline parallelism over slow network connections
has significant implications for democratizing large-scale LLM training Yuan et al. (2022); Wang
et al. (2022). Currently, the capability to train state-of-the-art models remains concentrated among
institutions equipped with specialized high-performance computing resources. Effectively addressing
network communication bottlenecks would substantially reduce barriers to participation, allowing a
broader array of contributors, including universities, startups, and individuals, to collaboratively train
or fine-tune LLMs Douillard et al. (2025).

On the other hand, a significant obstacle arises from the fact that naive activation compression (e.g.,
quantization Han et al. (2016); Hubara et al. (2017)) methods can negatively affect training conver-
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gence. Unlike gradient compression in data parallelism — where quantization errors typically behave
as unbiased noise compatible with optimization procedures, compressing intermediate activations
directly influences the neural network’s forward computation, consequently introducing bias into
gradient estimates in the later backward propagation Evans & Aamodt (2021); Chakrabarti & Mose-
ley (2019). Specifically, in pipeline parallel training, compression errors incurred during activation
transmission propagate through nonlinear transformations and can distort gradient calculations during
the backward pass Wang et al. (2022). Thus, aggressively reducing activation precision without
careful management will result in performance degradation or even training divergence.

To restrict the error propagation introduced by activation quantization, prior efforts, such as AQ-
SGD Wang et al. (2022), have attempted to address this issue by compressing the changes in
activations between training epochs rather than the activations themselves, thereby providing theoreti-
cal convergence guarantees leveraging the help from the error compensation. Although effective in
preserving model accuracy, AQ-SGD requires storing previous activations for the whole dataset to
compute these changes, resulting in substantial memory overhead. Such an approach poses practical
limitations, especially in resource-constrained environments for the large-volumes of training data
where storage capacity and system complexity are critical considerations.

In this paper, we solve this problem with a new approach for effective activation quantization in
pipeline parallelism. In particular, we make the following key contributions:

Contribution 1. We propose TAH-QUANT (Tile-wise Adaptive Hadamard Quantization), an acti-
vation quantization approach to alleviate communication bottlenecks in pipeline-parallel training of
LLMs. Specifically, our method includes: (i) a fine-grained, tile-wise group quantization technique for
localized precision control, effectively limiting quantization error; (ii) an entropy-guided, token-level
adaptive bit allocation method that dynamically assigns precision based on activation distribution
characteristics, further optimizing the compression efficiency; and (iii) a Hadamard-based outlier
suppression transform enhanced by a pivot element swap, which effectively mitigates quantization
errors arising from extreme activation values. Collectively, these carefully designed techniques enable
efficient, accurate low-bit quantization of activations, substantially improving the practicality of
decentralized and collaborative LLM training.

Contribution 2. Given the advances of TAH-QUANT, we further conduct some case studies about
the quantization error in pipeline parallel training. Then we conduct some theoretical analysis under
standard stochastic optimization assumptions, along with an additional assumption that characterizes
the behavior of TAH-QUANT’s quantization error, which is empirically validated by our extensive
experimental results. Concretely, we theoretically prove that pipeline parallel training equipped with
TAH-QUANT converges at a rate of O(1/

√
T ), matching the convergence rate of vanilla SGD.

Contribution 3. We then conduct extensive experiments on various LLM training tasks (e.g., includ-
ing GPT2-XL, Qwen2.5-3B). We show that TAH-QUANT can aggressively quantize activations to
3-4 bits without sacrificing convergence performance similar to the state-of-the-art, i.e., AQ-SGD,
without introducing any storage overheads, and is generally applicable to different training tasks.

2 PRELIMINARY AND RELATED WORK

Decentralized training of LLM. Decentralized training of LLMs has garnered significant attention
as an interesting attempt to democratize access to large-scale LLM training development Ryabinin &
Gusev (2020); Borzunov et al. (2022; 2023); Gandhi et al. (2024); Blagoev et al. (2025). Early efforts
demonstrated the feasibility of collaborative training across geographically distributed participants
with constrained resources under the scope of data parallelism Diskin et al. (2021); Borzunov et al.
(2022), where various effective gradient compression methods have been explored Wang et al. (2023b).
To further scale out the training computation, more advanced moded parallel stragies have been
integrated Yuan et al. (2022); Ryabinin et al. (2023); Lu et al. (2024); Strati et al. (2024), for example,
Yuan et al. Yuan et al. (2022) addressed the challenges of training foundation models in heterogeneous
environments by introducing a scheduling algorithm that optimally allocates computational tasks
across decentralized GPUs; Ryabinin et al. Ryabinin et al. (2023) proposed SWARM Parallelism,
where temporary randomized pipelines between nodes are adaptively rebalanced to handle dynamic
efficient training of large Transformer models using preemptive instances with limited network
bandwidth. Douillard et al. Douillard et al. (2025) introduces enhancements to the DiLoCo framework
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by employing sequential parameter synchronization, overlapping communication with computation,
and quantized data exchange.

Activation compression in training. Activation compression techniques have been studied to
reduce memory and computational overhead in neural network training Liu et al. (2021); Bersatti
et al. (2020); Georgiadis (2019); Fu et al. (2020); Liu et al. (2022); Chen et al.; Bian et al. (2024).
Concretely, inherent sparsity in activation has been studied to minimize storage and computation in
neural networking. For example, Zhang et al. Zhang et al. (2024) investigate the natural occurrence
of sparse activations in pre-trained Transformers and dynamically alternate between sparse and dense
training phases to enhance pre-training efficiency Rhu et al. (2018); Jiang et al. (2022); Zhang et al.
(2024); Li et al.. On the other hand, quantization-based methods Evans et al. (2020); Liu et al.
(2021); Wang et al. (2023a) reduce the precision of activations to lower bit-widths, thereby decreasing
memory usage. For example, Han et al. Han et al. (2016) presented Deep Compression, combining
pruning, trained quantization, and Huffman coding. Hubara et al. Hubara et al. (2017) explore training
neural networks with low-precision weights and activations. Chakrabarti et al. Chakrabarti & Moseley
(2019) propose backpropagation with approximate activations for memory-efficient training. Chen et
al. Chen et al. (2021a) introduced ActNN, employing 2-bit activation compressed training.

Quantization for LLM. Quantization has emerged as a key technique for serving LLMs efficiently
by reducing the precision of weights Lin et al. (2024b); Frantar et al. (2022), activations Xiao et al.
(2023), and KV-cache Liu et al. (2024b) for the process of generative inference, parameter-efficient
fine-tuning Dettmers et al. (2023), and large-scale pretraining You et al. (2024); Liu et al. (2024a).
For example, AWQ Lin et al. (2024b) quantizes the LLM weights by identifying a small subset
of “salient” weight channels and scales them up before quantization, thereby preserving accuracy
even at 4-bit weight precision. KIVI Liu et al. (2024b) proposes a tuning-free 2-bit quantization of
the KV cache (with per-channel asymmetric scaling), dramatically reducing memory and enabling
longer context lengths with negligible impact on generation quality. QLoRA Dettmers et al. (2023)
demonstrated that a 4-bit quantized base model can be fine-tuned via low-rank adapters to reach the
same performance as full FP16 fine-tuning. LLM-QAT Liu et al. (2024a) introduces a data-free
QAT scheme that allows 4-bit quantization of weights, activations, and even the KV cache while
preserving performance for training. One essential problem in such quantization methods is how
to effectively resolve the issues of outliers in the quantization group Lin et al. (2024a); Hu et al.
(2025); You et al. (2024). An especially simple yet effective transformation for outlier suppression
is the Hadamard transform Theodoridis & Koutroumbas (2009). Formally, the N ×N Hadamard
matrix HN ∈ ±1N×N is defined such that HNHT

N = NIN (so 1√
n
HN is an orthonormal matrix).

Multiplying a vector with dimension N by HN will evenly redistribute the vector’s components
across N dimensions.

3 ACTIVATION QUANTIZATION

In pipeline-parallel training Huang et al. (2019); Narayanan et al. (2019; 2021) of LLM, intermediate
activations must be communicated between devices. This communication can become a significant
bottleneck on slow interconnects. To alleviate this overhead by quantization-based compression,
we leverage three main carefully-designed mechanisms in order to reduce the quantization error,
including: (i) fine-grained tile-wise group quantization for localized precision control (Section 3.1);
(ii) an entropy-guided token-level adaptive bit-width allocation (Section 3.2); and (iii) a Hadamard-
transform-based outlier suppression with a pivot element swap (Section 3.3). We also discuss how
we integrate the proposed TAH-QUANT quantization method in pipeline parallel training in Section
3.4. We enumerate the details below.

3.1 FINE-GRAINED TILE-WISE GROUP QUANTIZATION

First, we introduce a fine-grained, tile-wise group quantization scheme for localized precision control.
Specifically, instead of quantizing the entire activation tensor with a single set of parameters, we
partition it into small tiles and quantize each tile independently. For example, consider an activation
tensor a of shape B×S ×C, i.e., a ∈ RB×S×C , where B, S, and C denote the batch size, sequence
length, and number of channels (i.e., model dimension), respectively. We partition this tensor along
the channel dimension into multiple tiles by grouping contiguous channels within each token. Each
such tile (i.e., quantization group) can be noted as ai,j,t ∈ RG, where G is the quantization group
size determined by G = C

Nt
, Nt is the number of partitions of all the channels, and i = 1, ..., B,
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j = 1, ..., S, t = 1, ..., Nt are the indices for each tile-wise quantization group. Note that each tile
will form a separate quantization group with its own scale and zero-point. This fine-grained approach
ensures that each group is quantized using an optimal dynamic range, greatly improving accuracy in
low-bit settings. By confining quantization error to these small groups, we preserve more information
compared to coarse, whole-tensor quantization, which can be dominated by a few extreme values.

3.2 TOKEN-LEVEL ADAPTIVE BIT ALLOCATION

The fine-grained grouping addresses local range variation; however, the value associated with different
tokens in the activation tensor may still have varying importance. Toward this end, we introduce
an entropy-based, token-level quantized precision allocation strategy that dynamically adjusts the
quantization bit width for the activation values associated with each token’s groups.

Concretely, for each token’s activation vector ai,j ∈ RC , we compute the entropy H (ai,j) of its
normalized magnitude distribution to quantify how the activation’s energy is spread across channels.
To obtain this distribution, we take the absolute value of each channel and normalize:

pk =
|ai,j,k|

∥ai,j∥1 + ϵ
k = 1, ..., C (1)

Where ∥ai,j∥1 is the L1 norm of the activation vector and ϵ is a small positive constant for numerical
stability. We formulate the entropy of this distribution associated with the activation vector ai,j as

H (ai,j) =

C∑
k=1

pk log (pk + ς) (2)

Where ς is another small positive constant to avoid zero values. Note that the entropy H (ai,j) will
be high when the magnitudes are evenly spread across all channels (i.e. ai,j has an approximately
uniform distribution with no dominant feature) and low when the activations are concentrated or
structured (e.g., dominated by a few channels or containing an outlier). We leverage this entropy
measurement to guide the bit-width allocation for quantization. Intuitively, if all the channels of a
token are similarly scaled (high entropy), compressing it too aggressively could compromise the
detailed information of the features at once. We therefore assign these high-entropy tokens a higher
bit width (i.e., 4 bits, INT4) to preserve precision. Conversely, if a token’s activation is dominated by
a few large components (low entropy), it contains a strong outlier structure that our transform (as we
will introduce in Section 3.3) can effectively resolve. Thus, we can quantize more aggressively (i.e.,
3 bits, INT3) without incurring significant loss. In practice, we determine each token’s bit allocation
by ranking H (ai,j), where top-p% of the tokens are quantized to INT4 while the rest are quantized
to INT3. Note that all of the tiles belonging to the same token share the same bit allocation results.
By tailoring the precision to each token’s content, we maximize overall compression efficiency under
a fixed bit budget.

3.3 HADAMARD-BASED OUTLIER SUPPRESSION TRANSFORM

Outliers in the activation values can severely degrade the accuracy of low-bit quantization even within
a small quantization group. To mitigate quantization error caused by extreme outliers in activation
groups, we propose an adaptive Hadamard transform strategy, which consists of three steps: (i) a
heuristic-based outlier detection to decide if transform is needed, (ii) a Hadamard transform with
pivot element swap to redistribute the outlier values in the quantization group, and (iii) an asymmetric
uniform quantization of the values in the quantization group.

Outlier detection heuristic: Given any quantization group ai,j,t = [ai,j,t1 , ai,j,t2 , . . . , ai,j,tG ] ∈ RG,
where G = C

Nt
is the quantization group size. For the rest parts in Section 3.3, we simplify the

notation as ai,j,t = α = [α1, α2, . . . , αG] ∈ RG to introduce the quantization method within each
quantization group. In order to detect whether an outlier is present, we define the following heuristic:

r =
|α(1)|

|α(2)|+ ϱ
(3)

Where α(1) and α(2) represent the elements in α with the largest and the second largest absolute
values, ϱ is a small positive constant. If r exceeds a threshold τ (empirically, we set τ = 2.0), we
will deem ai,j,t to contain an outlier and apply the Hadamard-based transform as we will introduce
below; otherwise, we skip this transform for that tile.

4
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Algorithm 1 TAH-QUANT in a two-stage pipeline parallel training.

1: Initialize: sub-network a(−) weights x(a), sub-network b(−) weights x(b), optimizer ρ.
2: for t = 1, . . . , T do
3: Randomly sample training batch ξt.

// Forward propagation:
4: Machine a sends the quantized output activations QTAH-QUANT

(
a(ξt,x

(a)
t )

)
to Machine b.

5: Machine b dequantizes the received activation QTAH-QUANT

(
a(ξt,x

(a)
t )

)
.

// Backward propagation:
6: Machine b sends the quantized gradients w.r.t the activations QNAIVE (∇a(F ◦ b)|ξt) back to

Machine a.
7: Machine a dequantizes the received gradient w.r.t the activations QNAIVE (∇a(F ◦ b)|ξt).

// Parameter updates:
8: Machine a update its parameter by gradients ĝt

(
x(a)

)
using optimizer ρ.

9: Machine b update its parameter by gradients ĝt
(
x(b)

)
using optimizer ρ.

10: end for
11: Output: x = (x

(a)
T ,x

(b)
T )

Hadamard transform with pivot element swap: For a group identified to have an outlier, we
perform a pivot element swap to align the pivot value (the element with the largest absolute value)
with the Hadamard matrix structure. Let d = argmaxk |αk| be the index of the pivot element (i.e.,
αd = α(1)). We construct a permutation matrix Pd ∈ RG×G that swaps the first and d-th coordinates,
which yields a permuted vector by multiplying this permutation matrix:

[αd, α2, . . . , α1, ...., αG] = [α1, α2, . . . , αG]Pd = αPd

Next, we multiply this transformed vector by a Hadamard matrix HG ∈ ±1G×G to redistribute the
values and resolve the issue of outliers:

α̇ = αPd
1√
G
HG (4)

After applying this transform, the extreme value in the original α will be redistributed across all
components in the transformed vector α̇. This transform greatly reduces the dynamic range of the
group: the formerly pivot value is no longer isolated in a single position, yielding a more balanced
tile for the activation vector. As a result, the quantization error can be reduced, since a tighter
quantization scale can represent the values with higher precision. Notably, because HG is orthogonal
(i.e., HGH

T
G = GIG), we can later invert the transform by applying HT

G to the de-quantized values
when recovery of the original domain is required.

Asymmetric uniform quantization: After the above two steps, the activation values should be
uniformly distributed and centered if the outlier issue once existed. Thus, we can apply the a standard
asymmetric quantizer (i.e., You et al. (2024)) — if the computed heuristic r ≤ τ , we apply this
quantizer for the original vector α; otherwise, we apply this quantizer for the transformed vector α̇.

3.4 TAH-QUANT IN PIPELINE PARALLEL TRAINING

Given the carefully designed TAH-QUANT quantization method, it is straightforward to integrate
it into the standard pipeline parallel training. We illustrate this process in Algorithm 1. For clarity,
we present it using a two-stage pipeline, which can be easily extended to an arbitrary number of
stages. Note that after some empirical verification, we follow the design of AQ-SGD —- we apply
the naive quantization during the backward pass, where more bits can be allocated since more
computation load in backward propagation provides more slots during the system optimization of
computation-communication overlapping Yuan et al. (2022).

4 THEORETICAL ANALYSIS

In this section, we present convergence guarantees for the proposed TAH-QUANT algorithm, which
aims to solve the following stochastic optimization problem in a pipeline-parallel fashion:

min
x∈Rd

Eξ∈D[F (x; ξ)] (5)

5
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Figure 1: Empirical justification of Assumption 4

where x denotes the model weights distributed across different pipelines, and ξ represents random
data drawn from the distribution D. We denote ∇F (x; ξ) as the stochastic gradient and ∇f(x) as the
full-batch gradient. Without loss of generality, we consider using momentum SGD as the optimizer ρ
in Algorithm 1:

mt = (1− β1)m
t−1 + β1ĝ

t, xt+1 = xt − ηmt, (6)

where β1 ∈ (0, 1) is the momentum coefficient and η is the learning rate. The vector ĝt is a
quantized estimate of the stochastic gradient ∇F (xt; ξt), obtained through Lines 3–7 of Algorithm 1.
Specifically, it takes the form

(
ĝt(x(a1)), ĝt(x(a2)), . . . , ĝt(x(aN ))

)
, where a1, a2, . . . , aN index the

machines in the pipeline-parallel system. Our analysis can be extended to Adam optimizer with a few
more involved derivations.

4.1 ASSUMPTIONS

Assumption 1 (Lower Boundedness). The loss function f : Rd → R satisfies infx∈Rd f(x) > −∞.

Assumption 2 (L-Smoothness). The loss function f is L-smooth, i.e., it holds for any x,y ∈ Rd that

∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2.

Assumption 3 (Stochastic Gradient). We assume the stochastic gradient oracle satisfies

E[∇F (xt; ξt)] = ∇f(xt), E[∥∇F (xt; ξt)−∇f(xt)∥2] ≤ σ2, (7)

for some σ > 0.

Assumptions 1-3 are standard assumptions commonly used in stochastic optimization. The following
assumption states that gradient quantization through TAH-QUANT proposed in Algorithm 1 does not
introduce significant distortion to the true stochastic gradient.

Assumption 4 (Quantization Error). Let gt denote the original stochastic gradient ∇F (xt, ξt) , and
ĝt denote the quantized stochastic gradient obtained through TAH-QUANT. It holds that

∥ĝt − gt∥2 ≤ (1− δ)∥gt∥2, (8)

∥Eξt∼D[ĝt]−∇f(xt)∥2 ≤ (1− δ)∥∇f(xt)∥2, (9)

for some δ ∈ (0, 1].

The above assumption ensures that the quantized gradient ĝ remains close to the true gradient g, with
their closeness measured by the quantization coefficient δ. A larger δ (i.e., δ → 1) indicates a smaller
quantization error. When δ = 1, we have ĝ = g, implying no quantization error.

Empirical justification of Assumption 4. We now empirically verify that TAH-QUANT satisfies
Assumption 4. To validate inequality (8), we conduct fine-tuning experiments on the Gemma2-
2B model using the Math-7K dataset. At each training step, we compute the relative error ∥ĝt −
gt∥2/∥gt∥2, as shown in Figure 1a1b. The results indicate that the relative errors remain below
0.4 across all steps, confirming the validity of (8) with δ = 0.6. To validate inequality (9), we
conduct experiments on the same model and dataset. At each step, we compute both the expected
compressed gradient Eξt∼D[ĝ

t] and the full-batch gradient ∇f(xt), and then evaluate the relative
error ∥Eξt∼D[ĝ

t]−∇f(xt)∥2/∥∇f(xt)∥2, as shown in Figure 1c1d. All relative errors are below
0.1, confirming the validity of (9) with δ = 0.9. In both experiments, we use tile sizes of 64 and 32,
with 80% INT4 and 20% INT3 quantization. These experiments demonstrate the effectiveness of
TAH-QUANT, which quantizes variables to smaller sizes without incurring significant errors.
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4.2 CONVERGENCE GUARANTEES

Under the above assumptions, we are ready to provide convergence guarantees of our proposed
TAH-QUANT method.

Theorem 4.1. Under Assumptions 1 - 4, if β1 ∈
(
0, δ

24−12δ

)
, δ ∈ (0, 1) and η ≤

min

{
1
2L ,

β1

L ·
√

δ
8

}
,TAH-QUANT with momentum SGD converges as

1

T + 1

T∑
t=0

E[∥∇f(xt)∥22] ≤
8[f(x0)− infx f(x)]

δη(T + 1)
+

8∥m0 −∇f(x0)∥22
δβ1(T + 1)

+
24β1σ

2

δ
.

Corollary 4.1. Under Assumptions 1-4, if we choose β1 =

(
24
δ + σ

√
δ1/2(T+1)

L∆

)−1

, η =(
2L+ 23/2L

δ1/2β1

)−1

, TAH-QUANT with momentum SGD converges as (Proofs are in Appendix D)

1

T + 1

T∑
t=0

E[∥∇f(xt)∥22] = O

(
L∆

δ5/2(T + 1)
+

√
L∆σ2

δ5/2(T + 1)

)
,

where ∆ := f(x0)− infx f(x) + (δ/L) · ∥m0 −∇f(x0)∥22.

Remark. Corollary 4.1 yields three key implications. First, it guarantees that the proposed
TAH-QUANT algorithm converges to a stationary solution of problem (5). Second, it shows that
TAH-QUANT achieves a convergence rate of O(1/

√
T ), matching that of vanilla momentum SGD

without gradient quantization. This demonstrates that TAH-QUANT effectively preserves the valuable
gradient information during quantization. Third, the theorem indicates that the convergence rate
is affected by the quantization error, quantified by the coefficient δ. This is consistent with our
expectations. Since TAH-QUANT maintains a relatively large δ (i.e., close to 1), the quantization
error remains moderate and does not significantly slow convergence.

5 EVALUATION

We demonstrate that TAH-QUANT significantly accelerates LLM training over slow network connec-
tions. Specifically, we show that: (i) on seven representative benchmark tasks, TAH-QUANT enables
aggressive quantization of activations and backward gradients without compromising convergence
performance or incurring notable additional system overhead (Section 5.2); and (ii) the effectiveness
of our system design is validated through a series of carefully designed ablation studies (Section 5.3).

5.1 EXPERIMENTAL SETUP

Datasets and benchmarks. We evaluate the proposed method on five distinct training scenarios span-
ning language modeling (on both general and domain-specific text) and instruction-following tasks.
Specifically, we fine-tune GPT-2XL (1.5B parameters) on (i) WikiText-2, a standard Wikipedia-
based language modeling benchmark, and (ii) ArXiv21, a corpus of research paper abstracts from
arXiv. To assess performance on instruction data, we fine-tune Qwen2.5-3B (3B parameters) on (iii)
Magicoder-Evol-Instruct-110K, a dataset of 110k code-related instruction-response pairs,
and (iv) Open-Platyups, a composite open-source instruction tuning dataset covering multiple
domains. Finally, we launch the pretraining of Qwen2.5-3B on (v) C4 common crawl corpus
for 6, 000 iterations. These setups cover both general and specialized tasks, as well as supervised
instruction tuning and LLM pretaining.

Distributed cluster. All experiments are conducted on UCloud ucl using a distributed cluster
of 8 instances, each equipped with an Nvidia RTX 3090 GPU. Each model is partitioned into 8
pipeline stages (one stage per GPU) to execute pipeline parallelism. The cluster’s default interconnect
bandwidth is 10 Gbps. To emulate slow-network conditions, we throttle inter-instance communication
using Linux traffic control (tc), artificially limiting the bandwidth during training.

Baselines. We compare our approach with two baseline communication strategies1.

• FP32/FP16, which uses full-precision 32-bit floating point (in Tasks (i) and (ii)) or 16-bit floating
point (in Tasks (iii), (iv), and (v)) communication with no compression.

1Each baseline is integrated into the same pipeline parallel training setup for fair comparison.
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Figure 2: The training convergence for each task (loss vs. steps). Task (i): GPT-2XL
on WikiText-2; Task (ii): GPT-2XL on ArXiv21; Task (iii): Qwen2.5-3B on
Magicoder-Evol-Instruct-110K; Task (iv): Qwen2.5-3B on Open-Platyups; Task
(v): Qwen2.5-3B on the C4.

• AQ-SGD, the error-compensated low-bit activation quantization method with theoretical conver-
gence guarantees Wang et al. (2022).
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Figure 3: End-to-end training performance over different networks

5.2 END-TO-END PERFORMANCE RESULTS

To systematically evaluate the performance of the proposed TAH-QUANT quantization method, we
conduct the experiment and report the corresponding results in terms of training convergence and
end-to-end training time.

Table 1: Training throughput (tokens per sec-
ond)) of GPT2-xl varying bandwidths.

Network
Bandwidth FP32

AQ-SGD
fw4 bw8

TAH-Q
fw~4 bw6

1Gbps 2600 4749 5650
500Mbps 2482 4311 5749
300Mbps 1761 4369 5120
100Mbps 751 3310 4045

Convergence. Figure 2 illustrates the convergence
comparisons across tasks, which clearly demonstrates
the efficacy and robustness of TAH-QUANT. Specif-
ically, on tasks (i) and (ii), where AQ-SGD is exe-
cutable due to manageable dataset sizes and multi-
epoch training paradigm, TAH-QUANT achieves
comparable or slightly superior convergence perfor-
mance compared to AQ-SGD, highlighting its effec-
tive quantization without loss in training quality. Im-
portantly, on larger-scale tasks (i.e., tasks (iii), (iv),
and (v)), where AQ-SGD becomes infeasible due to prohibitive storage requirements (i.e., Task
(iii)) or requiring a single epoch training (i.e., Tasks (iv) and (v)), TAH-QUANT still delivers
convergence results closely matching standard FP16 baseline. This underscores TAH-QUANT’s
significant advantage of achieving aggressive activation quantization without additional memory
overhead, making it broadly applicable and scalable in realistic training scenarios. Furthermore,
in Table 3, we also report the evaluation results for the SFTed Qwen2.5-3B model in Tasks (iii)
and (iv), which clearly indicates that models fine-tuned using TAH-QUANT achieve nearly identical
downstream task performance compared to the FP16 baseline across multiple benchmarks. This
demonstrates that TAH-QUANT effectively maintains model quality while significantly reducing
activation communication overhead.

End-to-end training time. We show the end-to-end runtime of different methods under slow
networks. As illustrated in Figure 3, TAH-QUANT achieves up to 4.3× end-to-end speed-up
compared with that of FP16 (in terms of time to the same loss), illustrating the importance of
communication compression in slow networks. We also witness a visible speedup when comparing
TAH-QUANT with AQ-SGD, where we speculate the speedup is due to the elimination of offloading
overhead in AQ-SGD to implement its error compensation mechanism. We summarize the training
throughput for the GPT-2XL in Table 1 over various slow network conditions, i.e., 1Gbps. 500Mbps,
300Mbps, 100Mbps.
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Table 3: Qwen2.5-3B SFT evaluation on question-answering and code benchmarks including
ARC Clark et al. (2018), TruthfulQA Lin et al. (2022), WinoGrande Sakaguchi et al. (2021), Hu-
manEval Chen et al. (2021b). All evaluations are conducted in zero-shot setting by default. We
employ the evaluation scripts from lm-evaluation-harness Gao et al. (2024) framework. For our
evaluation, we report: normalized accuracy for ARC-Challenge, accuracy for WinoGrande, mc2 for
Truthful QA, and pass@1 scores for Humaneval.

Model AVG Open-Platyups Magicoder-110K

ARC TruthfulQA WinoGrande HumanEval

Origin-Qwen2.5 51.13 47.35 48.85 68.67 39.63
SFT-FP16 59.08 50.00 50.49 69.38 66.46
SFT-TAH-QUANT 59.32 49.91 49.61 70.00 67.68

5.3 ABLATION STUDY

Table 2: Ablation study about
tile-wise quantization group
size in TAH-QUANT.

Tile-
size

MMLU ARC

8 64.60 50.34
32 64.88 49.91

128 64.34 49.66

To evaluate the specific contributions of each module in TAH-
QUANT to limit quantization error in pipeline parallel training, we
conduct a series of ablation experiments and enumerate the ablation
and experimental results we find below:

Firstly, to study how the tile-wise quantization group size influ-
ences the statistical efficiency, we vary the group size to 8, 32,
and 128 and compare SFTed Qwen2.5-3B models over the set of
benchmarks. Table 2 illustrates the results — we find that setting up
an effective quantization group size affects the final results, when
the size is large (i.e., 128), it could affect the quality of the trained
models.
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Figure 4: Ablation study for
adaptive bit allocation.
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Figure 5: Ablation study for
Hadamard transform.

Secondly, to examine the effectiveness of the entropy-guided adap-
tive bit allocation, we compare TAH-QUANT with adaptive bit allo-
cation enabled against a variant without adaptive allocation. Results
in Figure 4 demonstrate that adaptive allocation accelerates training
convergence — the training loss consistently decreases faster with
adaptive bit allocation, reflecting reduced quantization error during
compression. These observations validate our design choice of incor-
porating entropy-based token-level bit-width allocation.

Thirdly, We further evaluate the necessity of the Hadamard-based
outlier suppression component in TAH-QUANT. Comparing training
performance between setups with and without the Hadamard transform
reveals that including this transform notably improves training stability
and convergence speed — in Figure 5, the training loss is substan-
tially lower across the training phase when the Hadamard transform
is applied, underscoring its effectiveness in mitigating quantization-
induced errors from outlier activations. This finding confirms the
value of our pivot element swapping combined with the Hadamard
transform in enhancing quantization robustness.

6 CONCLUSION

In this paper, we present TAH-QUANT, a novel activation quantization method that alleviates
communication bottlenecks in decentralized pipeline-parallel training of LLMs. TAH-QUANT
integrates fine-grained tile-wise quantization for localized error control, entropy-guided token-level
bit allocation for efficient utilization, and a Hadamard-based transform with pivot swapping to
mitigate outliers. We theoretically show that pipeline-parallel training with TAH-QUANT preserves
the same convergence rate (O(1/

√
T )) as standard SGD. Empirical results further demonstrate that

TAH-QUANT compresses activations to 3–4 bits without degrading convergence, while matching or
surpassing state-of-the-art methods such as AQ-SGD, avoiding memory overhead, and maintaining
robust generalization across diverse training scenarios.
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A THE USE OF LLMS IN WRITING

We used LLM, namely OPENAI-GPT5, to polish the writing of this manuscript. No other generative
AI functionality is used in the writing of this submission.

B LIMITATIONS

Pretraining scale. Due to limited computational resources and time constraints, our evaluation of
the pretraining task is restricted to the early-stage convergence behavior of Qwen2.5-3B on the
C4 common crawl corpus. The full potential of TAH-QUANT under prolonged pretraining across
diverse datasets and larger model scales remains unexplored. We plan to explore if it is possible to
pre-train an LLM from scratch, and go through all of the pretraining corpus following the scaling law
in a decentralized environment equipped with TAH-QUANT as an interesting future work.

C EXPERIMENTAL DETAILS.

Fine-tuning. We fine-tune the GPT2-xl on WikiText-2 and ArXiv21 for 10 epochs. Specifi-
cally, we set the learning rate to 5.0e-6, the batch size to 32 and micro-batch size to 1, max sequence
length to 1024 for both datasets. The learning rate decays linearly after warm-up stage.

Instruction-tuning. We perform instruction tuning on Qwen2.5-3B using Open-Platyups and
Magicoder-110K for 1 and 2 epochs, respectively. The learning rate is set to 2.0e-5, with a batch
size of 32 for both datasets. We use a cosine learning rate scheduler for Open-Platyups, and a
cosine scheduler with a minimum learning rate of 2.0e-6 for Magicoder-110K.

Pre-training. We pretrain the Qwen2.5-3B on the C4 common crawl corpus for 6000 iterations,
with a batch size of 131072 tokens. The learning rate is set to 3.0e-4, and we use a cosine scheduler
with a minimum learning rate of 3.0e-5. The weight decay is set to 0.01.

D MISSING PROOFS

In this section, we provide detailed proofs for Theorem 4.1. We first prove the following lemma.

Lemma D.1 (Descent lemma). Under Assumption 2 and the update rule 6 , it holds that

f(xt+1) ≤f(xt)− η

2
∥∇f(xt)∥22 −

(
1

2η
− L

2

)
∥xt+1 − xt∥22 +

η

2
∥mt −∇f(xt)∥22. (10)

Proof. by Assumption 2 we have

f(xt+1) ≤f(xt) + η⟨∇f(xt),
1

η
(xt+1 − xt)⟩+ L

2
∥xt+1 − xt∥22

=f(xt)− η

2
∥∇f(xt)∥22 −

1

2η
∥xt+1 − xt∥22 +

η

2
∥∇f(xt)−mt∥22 +

L

2
∥xt+1 − xt∥22.

(11)

where the second equality uses 2⟨a, b⟩ = ∥a∥22 + ∥b∥22 − ∥a− b∥22

Lemma D.2 (momentum contraction). Under Assumptions 1-4, if δ ∈ (0, 1), it holds that

E[∥mt −∇f(xt)∥22] ≤
(
1− β1

(
1− δ

2

))
E[∥mt−1 −∇f(xt−1)∥22] +

2L2

δβ1
E[∥xt − xt−1∥22]

+ (β1 + 6β2
1)(1− δ)E[∥∇f(xt)∥22] + 3(2− δ)β2

1σ
2. (12)

Proof. According to the update of momentum6, we have

mt −∇f(xt) =(1− β1)(m
t−1 −∇f(xt−1) +∇f(xt−1)−∇f(xt)) + β1(ĝ

t −∇f(xt)).
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Taking expectation we have

E[∥mt −∇f(xt)∥22] =E[∥(1− β1)(m
t−1 −∇f(xt−1) +∇f(xt−1)−∇f(xt)) + β1(E[ĝt]−∇f(xt))∥22]

+ β2
1E[∥ĝt − E[ĝt]∥22]. (13)

For the first term, applying Jensen’s inequality yields

E[∥(1− β1)(m
t−1 −∇f(xt−1) +∇f(xt−1)−∇f(xt) + β1(E[ĝt]−∇f(xt))∥22]

≤(1− β1)E[∥mt−1 −∇f(xt−1) +∇f(xt−1)−∇f(xt)∥22] + β1E[∥E[ĝt]−∇f(xt)∥22]. (14)

By Young’s inequality, we have

E[∥mt−1 −∇f(xt−1) +∇f(xt−1)−∇f(xt)∥22] ≤
(
1 +

δβ1

2

)
E[∥mt−1 −∇f(xt−1)∥22]

+

(
1 +

2

δβ1

)
E[∥∇f(xt)−∇f(xt−1)∥22].

(15)

For the second term, applying Cauchy’s inequality yields

E[∥ĝt − E[ĝt]∥22] ≤3E∥ĝt − gt∥22 + 3E[∥gt −∇f(xt)∥22] + 3E[∥∇f(xt)− E[ĝt]∥22]
≤3(1− δ)E[∥∇f(xt)∥22] + 3(1− δ)E[∥gt∥22] + 3σ2,

≤6(1− δ)E[∥∇f(xt)∥22] + 3(2− δ)σ2, (16)

where the inequality uses Assumption 3 and 4. Applying (14)(15)(16) to (13) and using Assumption
2 and 4, we obtainD.2

Remark. From this proof, it is evident that both inequalities in Assumption 4 are necessary. In
particular, the second inequality is essential for bounding the variance of ĝt,which plays a crucial
role in the overall convergence analysis

Now we are ready to prove Theorem 4.1. We first restate the theorem in Theorem D.3.
Theorem D.3. Under Assumptions 1-4, if β1 ∈ (0, δ/(24 − 12δ)),δ1 ∈ (0, 1) and η ≤
min{1/2L,

√
(δβ2

1)/(8L
2)}, TAH-QUANT with momentum SGD converges as

1

T + 1

T∑
t=0

E[∥∇f(xt)∥22] ≤
8[f(x0)− infx f(x)]

δη(T + 1)
+

8∥m0 −∇f(x0)∥22
δβ1(T + 1)

+
24β1σ

2

δ
. (17)

Proof. By Lemma D.1, we have

f(xt+1)− f(xt) ≤−
(

1

2η
− L

2

)
∥xt+1 − xt∥22 +

η

2
∥∇f(xt)−mt∥22 −

η

2
∥∇f(xt)∥22. (18)

Taking expectation and summing (18) for t = 0, 1, · · · , T yields

inf
x

f(x)− f(x0) ≤η

2

T∑
t=0

E[∥∇f(xt)−mt∥22]−
(

1

2η
− L

2

) T∑
t=0

E[∥xt+1 − xt∥22]

− η

2

T∑
t=0

E[∥∇f(xt)∥22]. (19)

summing the inequality in Lemma D.2 for t = 1, 2, · · · , T we have

β1

(
1− δ

2

) T∑
t=0

E[∥mt −∇f(xt)∥22] ≤∥m0 −∇f(x0)∥22 +
2L2

δβ1

T∑
t=1

∥xt − xt−1∥22

+ (1− δ) (β1 + 6β2
1)

T∑
t=1

E[∥∇f(xt)∥22] + 3T (2− δ)β2
1σ

2.

(20)
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noting that δ ∈ (0, 1) we obtain

T∑
t=0

E[∥mt −∇f(xt)∥22] ≤
2∥m0 −∇f(x0)∥22

β1
+

4L2

δβ2
1

T∑
t=1

∥xt − xt−1∥22

+

(
1− δ

2

)
(1 + 6β1)

T∑
t=1

E[∥∇f(xt)∥22] + 6Tβ1σ
2. (21)

Applying 21 to (19) and noting that β1 ∈ (0, δ/(24− 12δ)) implies (1− δ/2)(1 + 6β1) ≤ 1− δ/4,
we obtain

1

T + 1

T∑
t=0

E[∥∇f(xt)∥22] ≤
8[f(x0)− infx f(x)]

δη(T + 1)
+

8∥m0 −∇f(x0)∥22
δβ1(T + 1)

+
24β1σ

2

δ

− 8

δη

(
1

2η
− L

2
− 2ηL2

δβ2
1

) T∑
t=0

∥xt+1 − xt∥22. (22)

Since η ≤ min{1/2L,
√
(δβ2

1)/(8L
2)} implies 1/(4η) ≥ L/2 and 1/(4η) ≥ (2ηL2)/(δβ2

1), (17)
is a direct result of (22).

E THE USE OF LLMS IN WRITING

We used LLM, namely OPENAI-GPT5, to polish the writing of this manuscript. No other generative
AI functionality is used in the writing of this submission.
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