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Abstract

Offline reinforcement learning (RL) focuses on learning a good policy from a fixed dataset.
The dataset is generated by an unknown behavior policy through interactions with the
environment and contains only a subset of the state-action spaces. Standard off-policy
algorithms often perform poorly in this setting, suffering from errorneously optimistic values
incurred by the out-of-distribution (OOD) actions not present in the dataset. The optimisim
cannot be corrected as no further interaction with the environment is possible. Imposing
divergence regularization and in-sample constraints are among the most popular methods to
overcoming the issue by ensuring that the learned policy stays close to the behavior policy to
minimize the occurrence of OOD actions. This paper proposes Tsallis regularization for offline
RL, which aligns the induced sparsemaz policies to the in-sample constraint. Sparsemax
interpolates existing methods utilizing hard-max and softmax policies, in that only a subset
of actions contributes non-zero action probability as compared to softmax (all actions) and
hard-max (single action). We leverage this property to model the behavior policy and show
that under several assumptions the learned sparsemax policies may have sparsity-conditional
KL divergence to the behavior policy, making Tsallis regularization especially suitable for
the Behavior Cloning methods. We propose two actor-critic algorithms, Tsallis In-sample
Actor-Critic (Tsallis InAC) and Tsallis Advantage Weighted Actor-Critic (Tsallis AWAC),
respectively generalizing InAC (Xiao et al., 2023) and AWAC (Nair et al., 2021) and analyze
their performance in standard Mujoco baselines.

1 Introduction

Reinforcement learning (RL) has achieved impressive successes in various domains through learning from
online interactions with the environment (Mnih et al., 2015; Silver et al., 2017; Andrychowicz et al., 2020).
However, online RL is often less suited to real-world domains, especially when acting unconstrained in an
environment can be expensive or dangerous. Offline RL instead addresses the problem of learning good
policies completely from a given dataset generated following unknown policies. The goal of offline RL is to
learn policies which outperform—or at least match—the policies used to generate the dataset.

However, many of the difficulties of offline RL stem from not using online interaction. Standard off-policy RL
algorithms tend to perform poorly, due to the well-known extrapolation error or out-of-distribution (OOD)
action problem: improving the learned policy beyond the level of behavior policy requires estimating values of
state-action pairs not present in the dataset. Optimistic estimates will bias the agent into favoring the absent
actions in the policy improvement stage, leading to a vicious loop (Fujimoto et al., 2019; Kostrikov et al.,
2022). Since the environment cannot be sampled, the bias can never be alleviated by visiting the region and
correcting the value estimate. It is worth noting the extrapolation problem does not occur in the tabular case
but rather is the result of smoothness of function approximators (Gulcehre et al., 2021; Dadashi et al., 2021).

A popular branch of offline RL is behavior cloning (BC) (Pomerleau, 1988), referred to as imitation-based
methods in (Xu et al., 2022). BC based methods enforce the learned policy to stay close to or reproduce
the behavior policy (Dadashi et al., 2021; Ghasemipour et al., 2021; Nair et al., 2021; Siegel et al., 2020;
Wang et al., 2020; Wu et al., 2022; 2020). This is often achieved in two ways: (1) by using divergence
regularization D(m:(:|s)||7p(:|s)) when updating policy to penalize large deviation from the learned policy
m¢ to the behavior policy mp (Brandfonbrener et al., 2021; Jaques et al., 2020; Kostrikov et al., 2021; Wu
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et al., 2020; Osa et al., 2023), usually D is chosen to be the KL divergence but other divergences such as
MMD (Kumar et al., 2019), Fisher’s divergence (Kostrikov et al., 2021) or Shannon entropy (Xiao et al.,
2023) have also been used; (2) imposing an in-sample constraint to the updates (Fujimoto et al., 2019;
Kostrikov et al., 2022; Xiao et al., 2023) where the target hard max operator max, Q(s, a) in Q-learning is
replaced to the in-sample maximum max,. ., (a|s)>0 @(S,a). This scheme has been recently extended to the

in-sample softmax > 0 €29 (Xiao et al., 2023).

a:mp(als)>
In this paper, we propose to use a general but less studied class of regularizers that interpolates softmax and
hard-max——the Tsallis regularizers, specifically, Tsallis entropy and Tsallis KL. divergence——as the choice
of D. While Tsallis entropy and Tsallis KL divergence have recently been investigated in online RL (Lee
et al., 2018; 2020; Pacchiano et al., 2021; Zhan et al., 2023; Zhu et al., 2023), they have never been utilized
in the offline RL context. Tsallis entropy (resp. Tsallis KL) is a strict generalization of Shannon entropy
(resp. KL). Different from the softmax policy induced by Shannon entropy and KL that has full support
(Azar et al., 2012; Kozuno et al., 2019; Vieillard et al., 2020), Tsallis regularization induces the sparsemax
policy that truncates actions with low values, i.e. setting their probability to zero. We link action truncation
to the in-sample constraint 7p(a|s) > 0, arriving at the assumption that the behavior policy is within the
sparsemax policy class and collects in the offline dataset a subset of actions with high values. Intuitively, this
assumption invites learning an improved sparsemax policy with support within the that of the behavior policy,
which renders Tsallis regularization especially suited to BC or imitation-based methods. We formalize this
intuition in Section 4 by showing that the KL divergence between mp and the learned policy 7y, all within
the sparsemax class, may be upper bounded depending on the Tsallis entropic index controlling the sparsity.

By combining in-sample constraint and Tsallis regularization, we propose two actor-critic algorithms: Tsallis
In-sample Actor-Critic (Tsallis InAC), based on Tsallis entropy; and Tsallis advantage weighted actor-critic
(Tsallis AWAC) based on Tsallis KL divergence. Tsallis InAC extends the In-sample Actor-Critic (InAC)
(Xiao et al., 2023) to the ¢ > 1 domain. Surprisingly, contrary to the stable behavior of InAC, Tsallis InAC
behaves like a BC method: it is among the best performers on the expert-level datatsets but degrades for
non-expert datasets. On the other hand, for non-expert datasets Tsallis AWAC is more competitive and
outperforms the original AWAC by a large margin, by simply changing the exponential advantage function in
AWAC (Nair et al., 2021) to the g-exponential.

2 Background

We model our problem as a markov decision process (MDP) expressed by the tuple (S, A, P,r,v). S CR" is
the set of states, 4 C R™ is the set of actions. P(:|s,a) denotes transition probability over the state space given
state-action pair (s,a), and r(s,a) defines the reward associated with that transition. v € [0, 1) is the discount
factor. A policy 7(-|s) is a mapping from the state space to distributions over actions. The state-action value
function starting from (s, a) following policy 7 is defined as Qr(s,a) = Ex [Y ;2 v'r(st, ar)|so = s, a0 = al.
There exists a stationary optimal policy that maximizes the cumulative return with a fixed point Q. (s, a)
satisfying the Bellman optimality equation Q.(s,a) = r(s,a) + YEgp(.|s,a)[Mmaxa Q«(s",a’)]. The optimal
policy 7, can then be extracted by simply acting greedily with respect to the optimal action value function:
in this case, 7. (als) = argmax, E [Q.(s,a)], Vs is a deterministic policy.

Since deterministic policies are susceptible to errors and noises, stochastic policies are often employed
in the literature by augmenting the arg max problem above with a regularizer: E, [Q.(s,a) — Q(7(:]|s))],
where Q(7(-|s)) € RISl is the regularizer convex in . Popular choices for € include the negative Shannon
entropy —7H (7(:|s)) :== 7, m(a|s) Inm(als), which encourages the policy to be uniform with 7 weighting
the effect. The maximum of the problem max, ) m(als)Q(s,a) + 7H (7(-|s)) is attained at the well-
known log-partition function 7In )" exp (T_lQ(S, a)) when the policy is the Boltzmann softmax distribution
m(als) o exp (T_lQ(S, a)), where oc denotes proportional to up to a constant not depending on actions. KL
divergence Dgr (7 (-|s) || u(+|5)) := >, m(als) In ZEZE% is another popular choice where p is the reference policy
(Azar et al., 2012; Rawlik et al., 2013; Vieillard et al., 2020). Using KL divergence as ) penalizes large
deviation from p. By choosing u to be the uniform distribution, KL divergence recovers the negative Shannon
entropy case. The KL-regularized optimal policy takes the form 7(als) x p(als) exp (T_lQ(S, a)), where we
overloaded the coefficient 7 for Shannon entropy.
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Figure 1: (From left to right) g-logarithm, g-exponential, Tsallis entropy and Tsallis KL divergence of Gaussian
policies. Note that ¢ = 0 is shown here only for an illustration purpose. We consider ¢ > 0 in this paper for
theoretically sound regularizers. When ¢ = 1, the above functions recover their standard counterparts.

2.1 Tsallis Regularization and Sparsemax Policies

In this paper, we consider a broad class of less studied entropic regularizers as 2: Tsallis entropy and Tsallis

KL divergence. We can define these regularizers using g-logarithm in a similar manner to the standard
z77t 1
q—1

logarithm. For ¢ € R, we define g-logarithm as In,z = and its unique inverse function g-exponential

1
exp,r = [1+ (¢ — Dz]{
becomes more flat (second plot). Notice that exp, is only invertible when = > 7(1_%' On the other hand, In,

, where {-} = max{-,0}, see Figure 1 for an illustration. As g gets larger, exp, =

is more peaked than the standard logarithm for input > 1 and more flat otherwise (Ding & Vishwanathan,
2010). Therefore, for 0 < 7 < 1, the Tsallis entropy component — In, 7 is more flat than the Shannon
entropy (third plot). Note that when ¢ < 0, Tsallis entropy becomes a convex function and Tsallis KL
a concave function, therefore they are not valid regularizers (Geist et al., 2019). We consider exclusively
g > 0 in this paper, and ¢ = 0 is shown in Figure 1 only for an illustration purpose. We can define the
Tsallis entropy using g-logarithm (Tsallis, 2009): Sy(7(:-|s)) = —k >, 7(a|s)lngm(als),k € R. When ¢ — 1,
the g-logarithm (resp. g-exponential) recovers the standard logarithm (resp. exponential) and hence Tsallis
entropy degenerates to Shannon entropy. When ¢ = oo, the regularizer vanishes. When k = %, q =2, we
arrive at the most important non-trivial case: Tsallis sparse entropy Sa(7(-|s)) := >, 7m(als) (1 — w(als))
(Chow et al., 2018; Lee et al., 2018). The name sparse entropy comes from the fact that the regularizer leads
to sparse support of the resulting sparsemaz policy (Blondel et al., 2020; Martins & Astudillo, 2016). We
compare sparsemax against two other commonly used policies argmax and softmax in Figure 2.

For q # 1,2, 00, the resulting policy does not have closed-form solution. But we can resort to approximation
(Zhu et al., 2023) for these cases and unify the policy expression by the following:

o e (22 (30)), (8] B B0

We call the policy Eq.(1) sparsemaz for all ¢ € Ry \ {1}, since they truncate actions by the definition of
g-exponential. K(s) is the set of highest-value actions satisfying 1+iQ(S’fa“)) > Z;zl M, with a;)
denotes the action with j-th largest value. Intuitively, the policy first sorts actions a(y), ..., a(.4)) and then
compute the threshold . Suppose Q(s,a¢j11)) < ¥ < Q(s,a(j)), then aj41),...,a.4)) are truncated and
have zero probability of being selected. The actions ay),. .., a;) are called allowable actions and collected in
the set K(s). The degree of truncation can be controlled by either ¢ or 7. As g gets larger, by definition
of exp, the truncation becomes stronger, as all z < ,q% will be truncated; when 7 becomes larger, more

actions are collected in K (s). Note our definition of the normalization v is different from ¢ used by prior
work ~(Lee et al., 2018; Chow et al., 2018) which consider only ¢ = 2. However, we can link them by
=1+ ﬁ, see (Zhu et al., 2023) for more details. When ¢ = 2, max, >, m(a|s)Q(s, a)+7S2(m(-|s)) attains

2 2
its maximum at 7 ZaeK(s) (M) — (@) + 5. We write the optimal Tsallis entropy regularized

T

(22)

policy by m.(als) oc exp, to emphasize the similarity to the softmax policy.
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Figure 2: (Left) Comparison between argmax, softmax and sparsemax on the probability simplex. Argmax
produces a deterministic policy residing on the vertices, while a softmax policy lies inside the simplex. By
contrast, a sparsemax policy lives on the border. (Right) Sparsemax acting on a Gaussian policy by truncating
actions with value below the threshold . Actions with value larger than ¢ are collected in the set K(s).

Tsallis KL divergence D, (m(:|s) || u(-|s)) =>", 7(als) Ing ZEZI?; is a generalization of KL divergence into the
domain of g-logarithm (Furuichi et al., 2004). Its has been recently considered by Zhu et al. (2023) as Q(w)
in the online RL setting. Tsallis KL is more mode-seeking: the mismatch between 7 and p will be penalized
more with larger ¢, as can be seen from the rightmost subfigure in Figure 1. Note that the definition of Tsallis
KL in this paper is different from (Furuichi et al., 2004; Zhu et al., 2023). However, they are the same by the

2 — ¢ duality, see (Zhu et al., 2023, Appendix A). Zhu et al. (2023) also proved that the regularized optimal
policy takes a similar form to the optimal KL-regularized policy: m(als) = u(als) exp, (M — <%))

Note that the normalization function ¢’ may not be the same as 1, due to conditioning on the reference
Q(s,a)

T

policy . We write the optimal regularized policy as 7(als) o u(als) exp, ( ) This policy form can be
interpreted as truncating actions (with exp,) but additionally conditioning on the support of y, i.e., m(als)
has non-zero probability only when u(als) > 0. Le., Tsallis KL regularized policies are also a member of the

sparsemax policies.

2.2 Offline Reinforcement Learning

We consider the problem of offline RL, where the agent cannot interact with the environment and instead
learn from a fixed dataset D = {(s,a,r,s')1.n} collected by some unknown behavior policy mp. The dataset
D typically contains only a small subset of the S x A space. Standard off-policy algorithms are known to
suffer from extrapolation error referring to erroneously optimistic acation values for out-of-distribution actions
due to generalization capibility of function approximators. Unlike online RL, where the OOD actions can
lead to more sampling around the low sample region and eventually correction of the values, in offline RL the
correction is impossible since no further interaction with the environment is allowed.

We position this paper in the popular BC/imitation-based literature, where the goal of learning is to
reproduce the near-expert behavior policy mp (Dadashi et al., 2021; Fujimoto et al., 2019; Fujimoto &
Gu, 2021; Nair et al., 2021). In this conext, explicit or implicit constraints are usually used to enforce the
proximity between learned policies and mp to minimize the effect of OOD actions. Explicit constraints can be
implemented via density models (Ghasemipour et al., 2021; Wu et al., 2022) or in-sample constraints (Fujimoto
et al., 2019; Kostrikov et al., 2022; Xiao et al., 2023) to avoid querying OOD actions. Implicit constraints
are often achieved via a divergence regularizer D that is added to the objective of policy improvement:
maxy Esop [Equr(s) [Q(s,a)] — 7D(w(-|s)||7p(-]s)]), where D is typically chosen as KL divergence. The
regularization leads to the policy form 7(als) o 7p(als) exp (771 Q(s,a)) where the learned policy conditions
on the support of the behavior policy and weighted by exponential of action values (advantage) (Peng et al.,
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2020; Siegel et al., 2020; Nair et al., 2021). However, as shown by (Rudner et al., 2021), KL regularization can
lead to pathologies of the learned policies such as vanishing variances and exploding gradients. In this paper,
we propose to use the Tsallis KL regularization which generalizes KL divergence and offers more flexibility
over the standard KL choice (e.g., AWAC). However, investigation of pathologies is beyond the scope and we
leave it to future work.

Recently, there has seen a growing body of BC/imitation-based methods featuring a variety of divergences. Ke
et al. (2019) discussed imitation learning via the lens of f-divergence minimization and proposed variational
solutions. Xu et al. (2023) proposed a framework based on the a-divergence (Belousov & Peters, 2019)
and showed that standard KL can be recovered as a special case. In the same context, they showed that
Conservative Q-learning (Kumar et al., 2020) corresponds to the x? regularization. In this paper, we consider
regularization by Tsallis KL divergence and Tsallis entropy, inducing a general class of sparsemax policies.
Offline RL with sparsity has also been discussed very recently: Xu et al. (2022; 2023) showed that a-divergence
with o = —1 also leads to sparsity. By contrast, we consider general sparsemax policies induced by Tsallis
regularizers for all ¢ > 1. Li et al. (2023) proposed to use g-Gaussian distribution (Suyari & Tsukada, 2005)
which is a special case of the g-exponential policy. In this paper we do not specify the functional form of
policies, but investigating the benefits of specific g-exponential policy parametrizations is an interesting future
direction.

3 Matching In-sample constraint by Sparsemax Truncation

To alleviate the OOD error, Fujimoto et al. (2019) proposed the in-sample Bellman optimality equation that
modifies the Q-learning update target to only for the actions present in the dataset:

Qunp(s,0) =7(s,0) + YEy o p(s,a) max Qurp (s a)]. (2)
a’:mp(a’|s’)>0
Recently, Kostrikov et al. (2022) proposed Implicit Q-learning (IQL) that extended equation 2 to distributional
RL implemented via expectile regression and showed promising performance. However, as noted by Xiao
et al. (2023), IQL may be skewed towards suboptimal trajectories. Instead, they proposed in-sample softmax
which is more straightforward to perform support-constrained sampling. Their in-sample softmax Bellman
optimality equation is:

Q*,ﬂ'D (570') = r(s,a) +rY]Es’~P(»\s,a) 7ln Z exp (TﬁlQ*,ﬂ'D (5/70’/)) . (3)

a’:mp(a’|s’)>0

In-sample softmax policy takes the form w$%F%"* (als) o< wp(als) exp (Q"%(”) —Innmp (a|s)), the subtracted

term In7p is to make sure not tightly follow the behavior policy when it is not good.

On the other hand, the fact that the softmax policies always have full support indicates there is a persistent
gap to the optimal action and the maximum Eq. (2). Since the goal is to improve beyond the behavior
policy, we may desire that the action candidates gradually narrow down to a much smaller subset containing
the maximizer. Moreover, by design in-sample softmax does not enforce proximity to the behavior policy
by subtracting In 7p, suggesting that InAC does not require the learned policy to be close to the behavior
policy or narrow down the support set. While this may be desirable when the dataset is flooded with poor
trajectories, in-sample softmax may learn slower in the BC context.

Let us consider replacing 7H (7 (:|s)) to 7.54(m(+|s)). The seemingly simple replacement, however, embodies a
fundamentally different assumption: we can link the fact that the dataset contains only a subset of actions to
sparsemax behavior policies. Indeed, if we assume the dataset was generated by the behavior policy in a
manner such that an action is sampled with probability proportional to its value (Kostrikov et al., 2021),
then we can model the behavior policy by a sparsemax policy. This assumption is mild since softmax policy
is a member of sparsemax when ¢ = 1. Sparsemax can be seen as interpolating hardmax and softmax, in the
sense that sparsemax policies have non-zero probabilities only for high-valued actions as opposed to hardmax
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(resp. softmax) that assigns probability to only one action (resp. every action). By properly specifying ¢
and/or 7, a sparsemax policy can either retain the same action support as softmax or narrow it down by
truncating actions.

To formalize the idea, let us assume the behavior policy is within the sparsemax policy class induced by

Tsallis entropy mp(als) o< exp, (Q«,iif;‘av s 2ackp(s) ™0(als) =1, where 7p is an unknown coefficient and

Kp(s) denotes the set of actions present in the dataset. Therefore, we can replace the in-sample constraint
a : wp(als) > 0 to the truncation criterion a € Kp(s). This replacement hints at two potential benefits
of applying in-sample Tsallis regularization: (i) suppose the action values are fixed (e.g., by training to
convergence), then a sparsemax policy could extract a new subset of allowable actions from Kp, and this
procedure could continue until there is only the highest-valued action in the set. Note that this process can
be stopped by properly setting 7 (or ¢ = 1) to maintain the current support. In this case, we may further
deduce the second benefit: (ii) every newly updated sparsemax policy has its support within or equal to the
last sparsemax policy (depending on ¢). Therefore, it may be possible to characterize the distance between
consecutive sparsemax policies, and eventually the distance to the behavior policy.

We discuss (i) here and leave (ii) to the next section. To begin with, we write down the updating rule for
sparsemax similar to Egs. (2), (3):

Qump(5,0) = 7(5,0) + 1Egnp(s,a) |Mmax > w(@]8) (Qurn (s 0') + 784 (w(-|s"))
a’€Kp(s)

Tit1,mp (a]s) o< exp, (QMD(S’G)) ) Z Tip1,7p(als) = 1. (4)

T
a€Kp(s)

Sparsemax interpolates softmax and hard-max. The max term inside the bracket is known as the
g-maximum (Lee et al., 2020). Similar to softmax operators (Asadi & Littman, 2017; Azar et al., 2012),
g-maximum is an approximation to the maximum but with the degree controlled by g. More importantly,
with Eq. (4), a new set of allowable actions K 4(s) is extracted from Kp(s) depending on ¢ and iteration ¢.
The set satisfies the condition K; , < Kp: i.e. |K; 4| < |Kp| and support constraint m, < 7p. Let us consider
q = 2 where the g-maximum has an analytic solution. From Section 2.1 it is clear that:

ro 2 ’ 2
Qurp(s,a) =7(s,a) + VEg o p(|s,a) % Z <w> J,(Q*“D(S’)) + (5)

-
a’ €Ky 2(s)

(G

The constraint change is because K; o =< Kp, i.e. my1(als) =0,Va € Kp(s) \ Kt 2(s). When K, 5 retains
all the actions from Kp, we have K;3 = Kp. However, it should be noted that we assumed the action
values were fixed. Therefore, the relationship Kp = K1 4 = K 4 = -+ = Ky 4 is generally not true since the
ordering of action values can change when they are updated.

The above scheme regularizes both policy improvement and policy evaluation. Another possibility is to
regularize only policy improvement by choosing Tsallis KL divergence as the regularizer, such that the
policy is updated by max, Eswp [Eqor(.|s) [Q(s, a)] — 7D, (7(:|s) || 7p(:|s))]. The regularized optimal policy
Qt,ﬂp (Sva)

> ) Therefore, the in-sample constraint a € Kp(s) can be

becomes ;11 5, (als) o< Tp(als) exp, (
dropped since the optimal policy conditions on mp(a|s). We introduce the implementation of both schemes
in Section 5.

4 In-sample Sparsemax Policies Have ¢g-bounded KL Divergence

A sparsemax policy can be expressed as a g-exponential policy. Therefore, existing theoretical results on
g-statistics (Yamano, 2002; Ding & Vishwanathan, 2010) may provide a clue to characterizing the similarity
between two sparsemax policies. We are especially interested in characterizing the distance between a learned
policy and the behavior policy, which is particularly important for BC/imitation-based methods (Fujimoto &
Gu, 2021; Fujimoto et al., 2019; Wu et al., 2022; 2020).
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However, bounding the potentially unbounded KL divergence is in general a difficult task, if not impossible
(McAllester & Stratos, 2020). Instead, we do not seek to provide a general upper bound but rather aim at
quantifying the dependency of the similarity on some intermediate variable. To this end, we introduce ¢ as
the intermediate variable and investigate the KL distance conditional on q. We can then decompose KL as:

Dgr(mi(|8) [| 7p(+]8)) = Eanr,(1s) [In e (als) — Inmp(als)]

(6)

=Eoun,(|s) |In7e(als) — Ing i (als) +Ing m(als) — Ing mp(als) +1ng mp(als) — Inmp(als)

(@) (i) (i)

Therefore, bounding respectively the three terms allows us to provide a g-conditional bound on the KL
divergence. To bound these log/g-log differences, we prove the following fact:

d
Inz—Ingz=(¢g—1) {dlnq:ﬂ—lnxlnqm} .
q

We can verify this is true by working on the right-hand side:

d 2?71 -1

d
(¢g—1) [dqlnqmlnxlnqx} =(¢g—-1) {dq 1

_ (@' =1)(¢=1) = @' = 1)(g -
~a-1] =17

B (g— D2 tlng — (2971 - 1)
_(q_l)[ (q—1)2
=27 ' Inz —Ingz — (¢g— )Inzlngz = ((¢—1)Ingz+1)Inz —In;z — (¢— 1) Inzln,z

=Inz—-Ingx

—Inzln, x]

1/
) —lnxlnqm}

—Inzln, x]
Now to bound the log/g-log differences, we assume that both the learned policy and the behavior policy are
sparsemax:

dq
= ﬂ'g_l(a|s) Inm(als) —Ing m(als) (1 + (¢ — 1) Inm(als))

() :Inm(als) — Ing me(als) = (¢ — 1) [d Ing i (a|s) — Ing m¢(als) Inm(als)

1
< 78 Yals) Inmy(als) + 1 + Inm¢(als)

_ -2
< (w(als) =i als)) + milals) ~ T,
where we leveraged the monotonicity of g-logarithm; and Inz < x — 1, In, equ(x) = x when z > 0.

Considering the policy is a g-exponential policy m;(als) = exp, (Q"‘l(S’a) — ) (Q"‘;(S"))) and exp,(z) =

q— 1 -
& Vishwanathan, 2010). If a ¢ K;_1,4(s), then In wt(a| ) = —oco and the KL term is unbounded.
The same fact is exploited to yield an upper bound — for (#4). Note that the same holds true for the

Tsallis KL policy m¢(als) = p(als) exp, (Qt 1(20) _y, Qt 1( . Since In, = is monotonically increasing, we

have that —ﬁ < Ing p(als) exp, (Qt L) _ g (Qt 1 )) < Ing exp, (Qt%(”) — (Qt%(s))) Same
by monotonicity, we can bound (ii7) depending on ¢ by:

1
[1+4 (¢ —1)x]5 ", we must have m(a|s) >0 & a € Ki_1,4(s) & — < Q= 1(5 ) (Q“;(S")) < 0 (Ding

\_/
\_/

(740) :Ing mp(als) —Inmp(als) = —(¢—1) [;; In, mp(als) — Ing mp(als) In ﬂ'p(a|s)]

1

<ﬂ%%mmmw@<ﬁ%WMQ‘mwm

) = als) — el
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Putting all terms together, we arrive at the following ¢g-dependent upper bound:

|Kig(s)| Upg, ifm mp, 1<g<oo
0, otherwise

Die (mi(-]s) [|wp(-|s)) < { (9)

where Tlp ; 4 := 7f (a|s) — 7{" ' (als) + m(als) — =2 + 7% *(als) — 75 ' (als), and the leading term |K; 4(s)|
came from upper bounding the expectation E,.,(.|s) With all allowable actions in the set Ky 4(s).

We may interpret the term 7, (als) as a baseline having a fixed power 77~ (a|s). When ¢ = 1, the upper
bound may be co. On the other hand, when ¢ — oo, the learned policy m; approaches the arg max (Lee et al.,
2020), and the upper bound approaches zero. Intuitively, when ¢ = oo, K, ,(s) has only one action, which
corresponds to assuming the behavior policy is an arg max and it is identified by m(a|s) = 1, therefore the
KL is zero when the their supports agree, or oo otherwise.

We can replace the reference policy mp in equation 9 to a learned policy m;—; if the assumption of fixed action
values holds, since m; < m;_1. Therefore, the bound provides a means to understanding the distance between
sparsemax policies. For ¢ = 1 (the in-sample softmax case) the bound is not useful and simply states the
KL divergence may be unbounded. On the other hand, choosing any g > 1 brings an upper bound of at
most 4|K; 4(s)|. When ¢ = 2, the in-sample sparsemax has KL divergence to the behavior policy bounded by
| Ky q(s)| (me(als) — mp(als) + 2). In general, there is a trade-off between the difference of power-policies 79
and the cardinality of Ky 4(s): Ky 4(s) tends to collect less actions when ¢ — co. On the down side, it should
be noted that the bound is only applicable to discrete action spaces. Moreover, staying close to the behavior
policy may not always be preferable, especially when the dataset contains too many poor trajectories.

5 In-sample Sparsemax Actor-Critic

We propose two actor-critic algorithms to implement Tsallis regularization: Tsallis In-Sample Actor-Critic
(Tsallis InAC) based on Tsallis entropy; and Tsallis Advantage Weighted Actor-Critic (Tsallis AWAC) based
on Tsallis KL divergence. To fulfill the in-sample constraint we leverage only those actions present in the
offline dataset but not sampled actions to learn the actor. The architecture is similar to soft actor-critic
(Haarnoja et al., 2018): let € denote the parametrization of the critic Qg, ¢ the actor w4 and { the state
value function V. Another network w is trained by maximum likelihood —E, 4)p [log 7, (a|s)] to imitate
the behavior policy m, ~ 7p.

Before deriving the Tsallis InAC/Tsallis AWAC loss functions, we recall the actor loss for AWAC:

£R,(6) =~y [exp LT Y ey ag)] (10)

which is a common actor loss function for advantage-weighted regression methods (Wang et al., 2020;
Siegel et al., 2020; Nair et al., 2021; Xu et al., 2023; Garg et al., 2023). Intuitively, minimizing LA (¢)
results in maximizing the log-likelihood of actions in the dataset a ~ D and implicitly minimizing the

likelihood for these not in the dataset, as the probabilities of all actions should sum to one. The degree of
Qo(s,0)—=Ve(s)

T

maximization is controlled by the exponential advantage of an action exp ( ): when an action

has high Qg (s, a) — V¢ (s), the policy gets updated to increase its probability more, which may be problematic
when the value estimates are poor. By contrast, in-sample softmax (Xiao et al., 2023) compensates for this
fact by subtracting a In 7p term inside the exponential. For the proposed Tsallis methods, a crucial difference
lies in how this exponential advantage function is modified.

Tsallis In-Sample Actor-Critic (Tsallis InAC). We follow in-sample softmax (Xiao et al., 2023) but
replaces the Shannon entropy to Tsallis entropy. In order to fulfill the in-sample constraint, a step similar to
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(Xiao et al., 2023) is made to extract mp from the Tsallis entropy regularized policy for the actor loss:

1
A als) x 1a m(als) > 0} -exp, (Qu(o.0))

= mp(als)mp(als)~ exp, <71_Q9(s,a)> = ap(als) exp, <lnq m(las)) exp, (ng(S,&)) )

1
q—1

1 1 21 1 "
= mp(als) (equ (TQQ(& a) + In, 7@((”5)) +(¢-1)"~Qe(s,a) Ing W) .

In the last step we made use of (equx equy) L exp, (v + y)‘k1 + (¢ — 1)%2xy (Yamano, 2002). Following
(Haarnoja et al., 2018), we update towards this policy by minimizing the KL dlvergence between WTQI;‘ACD and
Te. When used as the first argument of KL loss, the leading 7mp allows us to compute the loss using only

actions from the dataset:

Dyt (755, (19) | 7 (15)) = Bamge 1oy [I0AEA (a]s) — Inmg(als)]

T

1
— 1 -1
Qo(s,a) 1 ! Qo(s,a) Ing — ATIn
=Eqrp(|s) (equ < = +1In, o(als) +(q— 1)2 (als) (ln WTQIGﬁSD (als) — In 7r¢(a|s)) .

Notice the term In7G™° (als) does not depend on 7, and hence can be removed from the actor loss. We

observed that for Tsallis entropy regularization, adding normalization tends to underperform, therefore we
propose to remove the normalization. We write out our losses for ¢ = 2 :

Q S,Cl hl ﬁ
cziﬁﬁmEs,awKexpg(Qe(s’“’ﬂnz ! ))+ 0 1 26T ) 1y (als)|
T S T

LHE(0) = By |(n+9Ve(s) = Qols,0))%]
Lhaseiine(€) = Esnd anmy (Is) [(Vg(«?) —(Qo(s,a) — 71ny 7T¢(a|8)))2} :

The term — (1a|s) in LI4¢(4) is likely to cause numerical issues. To avoid it, we clip the range of 7, by

(12)

max{e, m,(a|s)}, with € = 1078, However, since In, z is proportional to the g-th power, we are unable to
sweep over larger g due to numerical problems even with clipping. Therefore, in the experiments we sweep
different g for the Tsallis KL implementation only.

Remark. Let us focus on LII¢(¢) and define the term in the bracket before In, as C:

1 Qo(s,a)In s
C::exp2<Qa(s,a)+ln2 >+ (s @) In2 5o
T

7w (als) T

then LII4¢(¢) = —E, ,p [C'Inme(als)]. Notice that exp, (M + Iny m) can be written as

]l{lJrQe(s,a)an 1 >0}.<1+W+1n21),
T Tw(als) T mw(als)

Qo(s,a) Ing —- .
—‘”(') However, since

Qo(s,a) Iny ——L-—

w(als)

therefore, it must be non-negative and the sign of C' depends on

In, 5 > 0, the sign actually depends on Qg (s, a) only. If this term is negative and ‘ >

(a|s T

exps (Qe (Ts,a) +1ng - (als))’ then we will be minimizing the loss E; 4p [|C]In74(als)], which corresponds to
thinking an action a is bad (since Qg(s, a) is highly negative) and explicitly minimizing its log-likelihood;
otherwise, we will be maximizing its likelihood. By contrast, all exponential-based methods (exponential
advantage weighted regression algorithms like AWAC) do not minimize likelihood for actions in the dataset

explicitly, since exp is always positive. Moreover, this suggests that the behavior of Tsallis InAC may be

2 Qo(s,a)lng

1
more extreme with larger ¢, since by equation 11, (¢ — 1) — melel)) wil] have a large negative value

when ¢ is large even with slightly negative Qq(s, a).
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Tsallis AWAC (TAWAC). This scheme regularizes only the policy improvement step. Given Qs(s,a), we
write the policy as A5A¢ (als) o 7p(als) exp, (£Qg(s,a)). Repeating the KL loss step, we have:

Qo,TD
Dgr, (ﬁgﬁfp(.b) [l 7T¢(~‘s)) = anﬁgzﬁiv("s) [lnﬁ'leAXfD (als) — ln7r¢(a|s)]
s,a S, - .
=Egrp {equ (QG(T) — ) <Q95_)>) (lnwgglﬁfp (als) — ln7r¢(a|s))] .

The normalization function ¢ poses a challenge to continuous-action problems. Inspired by (Xiao et al., 2023),
we propose to replace it with the state value function V.. We write the loss functions as:

L300 (0) = —E(s 0y [eXPq (M) In 7r¢(as)} ,

.
LHE(0) = By 0. |7+ 7Vels') = Qols, )7 (13)
‘C'&\Lﬁgfine(C) = Es~D,a~w¢(~\s) [(‘/C(S) - QG(Sa a))2:| .

Remark. Comparing LT™C(¢) and LA (9), it is clear that even though Tsallis AWAC is only different to
AWAC in the g-exponential function, it brings sparsity to the policy. To see this, we can write out LIAVAC(¢)

as the following:

B [n { 14 g (L0 ZVE) 7 o} - ([1 +(g-1) (B 21O ) lnmcws)] .

Qo(s,a)=Ve(s) 1

Since the root does not affect the sign, it can be seen that actions with values < =5 will
be truncated: the actor loss for these actions becomes zero and TAWAC does not maximize its likelihood.
Another interesting observation is that by setting ¢ = 2, LI™¥%($) recovers the sparse Q-learning
objective in (Xu et al., 2023), which was derived from the a-divergence perspective. However, our loss is
more general since for all ¢ > 0 L™¥4¢(¢) has a truncation effect. As explained in the remark for Tsallis
InAC, all exponential advantage weighted methods maximize likelihood for action in the dataset, but with

(Qe(s,a)*Vc(S)

different degrees controlled by exp ) It is worth noting that InAC compensates for this fact

by subtracting a In 7mp term inside the exponential to behave more conservatively and achieves significantly
better results on non-expert datasets. The difference between Tsallis AWAC and Tsallis InAC lies in that:
Tsallis AWAC does not minimize action probability, but instead only sets the loss of bad actions to zero,
which suggests that Tsallis AWAC may be less drastic and more amenable to non-expert datasets.

6 Experiments

Below, we evaluate the Tsallis InAC and Tsallis AWAC agents against several offline reinforcement learning
baselines. The goal of the experiments is to find when are Tsallis InAC and Tsallis AWAC agents best applied
in offline RL, as well as gain insight into the effect of the 7 and ¢ parameters (especially as we enter regimes
where there aren’t closed form expressions for the policies). Finally, we evaluate if the upper bound holds in
the continuous action setting.

Domain Details. We evaluate Tsallis InAC and Tsallis AWAC against a number of baseline algorithms on
standard benchmark D4RL environments (Fu et al., 2020). Specifically, we use three datasets from the Mujoco
suite in D4RL. Trajectories in the offline datasets are collected by a SAC agent. The naming expert/medium
expert /medium replay reflects the level of the trained agent used to collect the transitions. The expert dataset
contains trajectories collected by a fully trained SAC agent; the medium dataset contains transitions of a
SAC agent trained halfway; medium-expert combines the trajectories of the expert and the medium.

The agents train from the specified datasets, and are evaluated every 10k steps on the corresponding Mujoco
environments. Normalized scores are calculated according to the min and max values provided as a part of
the benchmarks (Fu et al., 2020). Finally, results are over 5 runs unless otherwise specified.

10
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Name Value
Number of steps 1000000
Logging interval 10000
H];}da(iiﬁ g;;lets ;gg Name ‘ Swetp Values
Learning Rate | [0.00003, 0.0001, 0.0003, 0.001]
Target Network Update Rate 1
Polyak Constant 0.995 T [0.01, 0.1, 0.33, 0.5, 1.0]
Discount (vy) 0.99
Learning Rate swept
Regularization coefficient (7) | swept

Figure 3: (Left) Shared hyperparameters. (Right) Swept hyperparameters.

Ant HalfCheetah Hopper Walker 2D
1.25
Expert os 1o i
1.00 .
06 0.8 s
< D0.75 o4 06 :
W & 0.50 '
égié\éo‘ 0.2 0.4 0.6
¥ o025 e
0.0 0.2 0.4
0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75
Medium 1.25 08 1.0 1.0
Expert | 0.6 0.8 0.8
Q&b 0.75 0.4 0.6 0.6
>
R 0.4
& X 050 0.4
R 0-2 0.2
0.25 0.0 0.2 oo
0 25 50 75 0 25 50 75 0 25 50 75 ) 25 50 75
Medium 1.0 — | 045 ; o8
Replay o5 0.40 0.8
0.6
> 0.35
W 06 0.6
o‘&‘} @‘Q 0.30 04
é L 0.4 0.25 0.4
0.2 0.20 02
“0 25 50 75 0 25 50 75 0 25 50 75 0 25 50 75
Steps (1e5) Steps (1e5) Steps (1e5) Steps (1e5)
AWACC =

Figure 4: Comparison between Tsallis AWAC and AWAC. Normalized policy evaluation scores on Mujoco
Medium Replay dataset over one million steps. Results are the average over 5 runs with ribbon denoting the
standard error. y-axis: scores; x-axis: number of iterations.

Baseline algorithms. We compare against a number of baseline algorithms: InAC: in-sample softmax
actor-critic (Xiao et al., 2023). It is worth noting InAC can be seen as the specical case ¢ = 1 of Tsallis
InAC. TD3 + BC (Fujimoto & Gu, 2021) augments the policy improvement step of TD3 with an additional
behavior cloning (BC) term (7(s) — a)? as indicated by (Xiao et al., 2023). This term can be seen as a KL
regularization under the Gaussian policy parametrization. IQL: implicit Q-learning (Kostrikov et al., 2022)
employed in-sample hard max Eq. (2). AWAC: advantage-weighted actor-critic (Nair et al., 2021), it can be
as a special case of Tsallis AWAC when ¢ = 1. For all the baseline algorithms except InAC, we followed the
published settings of the baseline agents. We fine-tune Tsallis InAC, Tsallis AWAC and InAC since they share
a same set of hyperparameters. All the algorithms used a shared set of hyperparameters found in Table 3.

A grid search was done for Tsallis InAC, Tsallis AWAC, InAC according to the same protocol as (Xiao et al.,
2023). In addition, we also added a larger learning rate (0.001), which seemed to improve InAC, Tsallis
AWAC, and Tsallis InAC slightly on some domains. Our other baselines use performance data shared by
(Xiao et al., 2023). A full list of the swept hyperparameters can be seen in the right hand side of Figure

11
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Figure 5: Comparison between Tsallis InAC and InAC. Normalized policy evaluation scores on Mujoco Expert
and Medium Expert datasets over one million steps. Results are the average over 5 runs with ribbon denoting
the standard error. y-axis: scores; x-axis: number of iterations.

3. In the grid search, we used the final 50% of evaluation tests of the normalized return to select the best
hyperparameter shown. All hyperparameter settings were evaluated across 5 independent runs.

6.1 Comparison Against the Baselines

Since Tsallis AWAC (resp. Tsallis InAC) generalizes AWAC (resp. InAC), we first compare the generalizations
in Figure 4 and Figure 5, and leave the comparison against all baselines to Figure 6.

Tsallis AWAC against AWAC. From Figure 4 it is visible Tsallis AWAC outperforms AWAC by a large
margin on Expert and Medium-Expert datasets and the performance remains stable across all datasets. The
poor performance of AWAC has been discussed a lot in the literature (Xiao et al., 2023; Xu et al., 2023):
the exponential term in £A"C can cause unstable gradients and is also more vulnerable to hyperparameter
choices. On the other hand, the favorable performance of Tsallis AWAC confirms the discussion given by
the remark after equation 10: the sparsity-inducing learning objective L™¥%A¢(4) is more robust against both
transition/suboptimality noises and numerical errors than the exponential function (Xu et al., 2023).

Tsallis InAC against InAC. From Figure 5 it is clear that Tsallis InAC competes favorably against
InAC only on the Expert dataset, and degrades significantly with the increase of non-expert trajectories in
the dataset. In fact, Tsallis InAC behaves like a behavior cloning method and learns very fast on Expert
HalfCheetah and Hopper. As analyzed in the remark after equation 12, the difference between InAC and

InkC(g)s) o mp(a|s) exp (M - lnﬂ'p(a|5)). This

AWAC policies lies in the term — In7p in the policy 7
term can correct the bias introduced by suboptimal data distributions: a poor action with high mp(a|s)
does not necessarily lead to high 7w14¢(a|s) since it is weighted down inside the exponential by —In7p(a|s).

While Tsallis InAC follows this design choice, in general In, % >In % In fact, since In, m is
TInAC

»(als)
proportional to the ¢-th power of m > 1, this term is likely to dominate the entire £ 157,

Tsallis InAC is very sensitive to the level of behavior policy like a BC method.

suggesting

12
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Figure 6: Additional comparison against TD3BC and Implicit Q-learning. Normalized policy evaluation
scores over one million steps and are the average over 5 runs, with ribbon denoting the standard error. y-axis:
scores; x-axis: number of iterations.

Against all baselines. From Figure 6 it is visible that Tsallis InAC and TD3BC are the best performers
on expert level datasets—in terms of convergence speed and the final score. By the analysis for Tsallis InAC,
the term In, 7% may dominate the actor and render Tsallis InAC behave like a BC method even without
an explicit BC term. This is especially apparent on HalfCheetah-expert and Hopper-expert where Tsallis
InAC learned even faster than TD3BC. Both TD3BC and Tsallis InAC drastically degrade for Medium
Expert and Medium Replay datasets. Tsallis AWAC outperforms IQL on almost all non-expert datasets,
which matches the observation of (Xiao et al., 2023): IQL may perform poorly when the data distribution is
skewed towards suboptimal actions in some states, pulling down the expectile regression targets.

6.2 The Importance of ¢ and 7

Entropic index ¢ and regularization coefficient 7 determine the degree of sparsity. Therefore, they are related
to performance and the g-conditional distance to the behavior policy as shown by equation 9. We evaluate
different (¢, 7) combinations of Tsallis AWAC in Figure 7. Performance is evaluated after 5 x 10° steps of
training. It is visible that for both environments larger ¢ tend to learn quicker and are relatively insensitive to
7; while smaller ¢ such as ¢ = 2 prefers larger 7. Consider fixed 7, by deﬁnlition for larger ¢, the Tsallis AWAC
policy mp(als) exp, (M) = mp(als) [1 + (¢ — I)M}rl shrinks the gap Qg(s,a) — Vc¢(s)
(imagine softmax with a large 7) and the truncation threshold *ﬁ' Comparing to ¢ = 2 where exp,, is
linear in its argument, higher ¢ truncates more, especially for actions that Qg(s,a) — Vz(s) < 0. Let us in
turn consider fixed ¢. Larger 7 results in larger set of allowable actions K; ,. Similar to the softmax case
(Haarnoja et al., 2017), it is advocated that choosing a larger 7 at the beginning and gradually annealed
towards zero. Therefore, when the dataset contains sufficient (near) expert trajectories, choosing a large (g, 7)
may accelerate learning at the early stage. In Figure 9 it is visible that on the expert level environments all
Tsallis agents seem to be robust and converged to policies of similar level.

13
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Figure 7: (Upper) Heatmap of average Normalized score of Tsallis AWAC with different ¢, evaluated over
first 500K steps of training. z-axis: 7, y-axis: ¢q. (Lower) Normalized score learning curves of Tsallis AWAC
with different q.

Hopper - Expert Walker2d - Expert Hopper - Expert Walker2d - Expert
1.5 1.50
oo fporr——"""""""7 1.08 ! . QA\\\
z;:: ::: p‘é;b\-{i\%l,os 111 a—
Nl <&
o ool [ | 05 Loz 1.09
025 0 20 40 60 80 0.00 0 20 40 60 80 e 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
steps (1e5) steps (1e5) T T
T-InAC —— T-AWAC(q=2) — T-AWAC(q=3) — T-AWAC(q=10) —

Figure 8: Dgp(m,(-s)||ms(:|s)) throughout Figure 9: Sensitivity of Tsallis AWAC to 7. Re-

training for different ¢ with best 7. Averaged ported values are average normalized scores over
over 5 runs with ribbons denoting standard er- the final 500k steps of training. Averaged over 5
ror. runs with standard error bars.

6.3 KL divergence to the Behavior Policy

Though higher similarity to the behavior policy does not necessarily imply better performance, we quantita-
tively evaluate it in support of our theory equation 9. We plot in Figure 8 Dkp,(m(+|s) || m4(:|s)) for Tsallis
AWAC with different ¢ and Tsallis InAC throughout training. Since the KL divergence can be written as
Eqmr, (|s) In 7y (als) — Inmy(als)], and 7, is imitating 7p, we replace the sampling part to a ~ mp(-|s) to
allow for random sampling actions from the dataset to compute the log-policy difference. Though in the
continuous action setting K; , is uncountable and the upper bound on KL is no longer valid, we can empirically
investigate it. On Hopper-expert Tsallis AWAC for all g converged to 0, and Tsallis InAC remains stable
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around 1; different ¢ did not seem to affect the KL divergence. On the other hand, on Walker2d-expert

a clear stratification was displayed: larger ¢ resulted in lower divergence value. Theoretically, the RHS of

Eq. (9) approaches |K; 4(s)] (ﬂ't(a\s) - Z%:f) as ¢ gets larger, which is indeed tighter than ¢ = 2. Therefore,

the upperbound may still be in effect even in the continuous action setting.

7 Discussion and Conclusion

Tsallis regularizers have been less popular in RL due to the action truncation of its regularized optimal policy.
The truncation often leads to underperformance in online problems resulting from limited exploration. This
paper is the first work that introduces Tsallis regularizers to offline RL, where no exploration is required.
Tsallis regularizers bring close two popular offline RL methods avoiding producing erronesouly optimistic
out-of-distribution actions: divergence regularization and in-sample constraint. Tsallis regularization induces
sparsemax policies that truncate actions with low action values, which we exploited to link to the fact that
offline datasets contain only a subset of actions: we assumed the dataset was generated by a sparsemax
behavior policy. As such, the in-sample constraint can be replaced by the truncation criterion. We showed two
interesting facts given the assumption: (1) sparsemax policies interpolate hardmax and softmax, and when
action values are fixed, consecutive sparsemax policies are within or equal to the support of the last sparsemax
policy. (2) the KL divergence between a two sparsemax policies have a sparsity-conditional (g-conditional)
upper bound.

We proposed two actor-critic algorithms, Tsallis In-sample Actor-Critic (Tsallis InAC) based on Tsallis entropy
regularization, and Tsallis Advantage-Weighted Actor-Critic (Tsallis AWAC), that respectively generalize
InAC and AWAC, two important offline RL algorithms based on Shannon entropy and KL divergence to the
domain of g. This generalization is non-trivial since sparsity is introduced to the actor: unlike InAC and
AWAC that only consider maximizing log-likelihood of actions in the dataset, Tsallis InAC can minimize
likelihood for bad actions, while Tsallis AWAC can set the loss for bad actions to zero. Sparsity has been very
recently investigated to be crucial for superior performance. We evaluated Tsallis InAC and Tsallis AWAC
on the standard D4RL benchmark problem. We found that Tsallis InAC was sensitive to expert datasets
on which it was among the best performer but quickly degraded on non-expert datasets. We attributed the
Tsallis InAC behavior resemblant to TD3BC to the g-logarithm policy term. By contrast, Tsallis AWAC
was more stable and outperformed AWAC by a large margin on almost every dataset, thanks to the sparsity
introduced by the g-exponential policy.

Several interesting future directions concerning Tsallis regularization for offline RL exist. Theoretically, a
probabilistic upper bound for the KL divergence of sparsemax policies and guarantees of policy improvement
should be derived to deeply investigate the benefit of sparsity. Practically, it is important to improve
Tsallis InAC on non-expert datasets can be potentially achieved by referring to Tsallis statistics literature to
transform g-exponential. Moreover, examining the pattern of environment/dataset-specific optimal entropic
index is another interesting topic.
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