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Abstract

Understanding the performance of machine learn-
ing models across diverse data distributions is crit-
ically important for reliable applications. Recent
works empirically find that there is a strong linear
relationship between in-distribution (ID) and out-
of-distribution (OOD) performance, but we show
that this is not necessarily true if there are subpop-
ulation shifts. In this paper, we empirically show
that out-of-distribution performance often has
nonlinear correlation with in-distribution perfor-
mance under subpopulation shifts. To understand
this phenomenon, we decompose the model’s per-
formance into performance on each subpopula-
tion. We show that there is a ”moon shape” corre-
lation (parabolic uptrend curve) between the test
performance on the majority subpopulation and
the minority subpopulation. This nonlinear corre-
lations hold across model architectures, training
durations and hyperparameters, and the imbalance
between subpopulations. Moreover, we show that
the nonlinearity increases in the presence of spu-
rious correlations in the training data. We provide
complementary theoretical and experimental anal-
yses for this interesting phenomenon of nonlinear
performance correlation across subpopulations.
Finally, we discuss the implications of our find-
ings for ML reliability and fairness.

1. Introduction
Subpopulation shift is a major challenge in machine learn-
ing (ML) in real-world applications: the data seen in test
time often have different distribution across subgroups (e.g.
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Figure 1. Out-of-distribution accuracies vs. in-distribution ac-
curacies under subpopulation shifts. Each panel represents a
dataset. On each dataset, we trained 500 different models indepen-
dently, with different model architectures and hyperparameters.

different types of users or patients) compared to the train-
ing data (Daneshjou et al., 2021). Recent empirical works
find that find that there is a strong linear relationship be-
tween in-distribution (ID) and out-of-distribution (OOD)
performance on dataset reconstruction shifts (ImageNet-
V2 (Recht et al., 2019), CIFAR-10.1 (Recht et al., 2018),
CIFAR-10.2 (Lu et al., 2020)). Similar linear trends are also
observed in transfer learning (Kornblith et al., 2019), cross-
benchmark evaluation (Miller et al., 2021), and sub-type
shifts (Santurkar et al., 2021).

In contrast, we empirically show that out-of-distribution
performance has a nonlinear correlation with in-distribution
performance under subpopulation shifts. To understand this
phenomenon, we decompose the model’s performance into
performance on each subpopulation. We show that there
is a ”moon shape” correlation (parabolic uptrend curve)
between the test performance on the majority subpopulation
and the minority subpopulation. We empirically show that
this phenomenon holds across a wide spectrum of model
architectures, training settings, and datasets. Interestingly,
the performance correlations become more nonlinear when
there is a stronger spurious correlation in the training data.
We provide rigorous theoretical explanations of how the
spurious correlation and the subpopulation accuracy gap are
related in a simple binary classification setting.
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Figure 2. Majority subpopulation accuracies vs. minority sub-
population accuracies. There is a striking nonlinear correlation
(moon-shape) between the majority subpopulation performance
and the minority subpopulation performance. Datasets with spu-
rious correlations (top) show more nonlinear correlations than
datasets without spurious correlations (bottom).

2. Experimental setup
Preliminaries: ML with diverse subpopulations We
consider the overall data distribution with D = {1, . . . , D}
diverse subpopulations. Each subpopulation d ∈ D cor-
responds to a fixed data distribution Pd. In each of our
main experiment, we compare the performance on two
data distributions. (1) in-distribution (ID), or the train-
ing distribution, P tr =

∑
d∈D rtrd Pd, where {rtrd } denotes

the mixture probabilities in the training set. (2) out-of-
distribution (OOD) is also a mixture of the D subpopu-
lations, P ts =

∑
d∈D rtsd Pd, where {rtsd } is the mixture

probabilities in the test set, but with a different proportion
of subpopulations, i.e., {rtsd } ≠ {rtrd }.

Experimental procedure For simplicity, we consider
D = 2 subpopulations. The training distribution has a ma-
jority subpopulation (e.g., rtrd = 90%), and a minority sub-
population (e.g., rtrd = 10%). As for the out-of-distribution,
the majority subpopulation and minority subpopulation are
equally representative (e.g., rtsd = 50%). On each dataset:

1. We first train 500 different ML models {f1, f2, ...} in-
dependently by varying the model architectures, train-
ing durations, and hyperparameters following the search
space of commercial AutoML (AutoGluon).

2. For each trained ML model fi, we evaluate the ID per-
formance, and the OOD performance.

Subpopulation Shift Datasets We categorize our datasets
into two categories based on the underlying reason of
degraded ML performance on the minority subpopula-
tion (Eyuboglu et al., 2022; Oakden-Rayner et al., 2020):

• Spurious correlation. If a target variable is correlated
with another variable Z in the training distribution, the
model may learn to rely on Z to make predictions. One
example is that cat images can be mostly indoor and dog
images mostly outdoor. We experiment with three exist-
ing datasets in the community: MetaShift (Liang & Zou,
2022), Waterbirds (Sagawa et al., 2020), and Modified-
CIFAR4 V1 (Rolf et al., 2021).

• Rare subpopulation. Without obvious spurious corre-
lation, ML models can still underperform on subpopu-
lations that occur infrequently in the training set (e.g.
patients with a darker skin tone), since the rare subpop-
ulation will not significantly affect model loss during
training. We adopted PACS (Li et al., 2017), Office-
Home (Venkateswara et al., 2017), Modified-CIFAR4
V2 (Rolf et al., 2021) for experiments.

3. The moon shape phenomenon
3.1. Finding 1: nonlinear correlation of ML

performance across data subpopulations

Out-of-distribution vs. in-distribution Figure 1 show
the nonlinear correlation between the out-of-distribution per-
formance and the in-distribution performance across multi-
ple subpopulation shifts datasets. Moreover, datasets con-
structed with spurious correlations (Figure 1 top) seems to
have more nonlinear correlations compared to the datasets
without obvious spurious correlations (Figure 1 bottom).

Majority vs. Minority To understand this phenomenon,
we decompose the model’s performance into performance
on each subpopulation. As shown in Figure 2, there is a

”moon shape” correlation (parabolic uptrend curve) between
the test performance on the majority subpopulation and the
minority subpopulation. We show that this nonlinear corre-
lation holds across model architectures, training durations
and hyperparameters (Supp. Figure 8). It also holds for both
ImageNet-pretrained or train-from-scratch (Supp. Figure 6).

Moreover, datasets with spurious correlations (Top row of
Figure 1) again show more nonlinearity compared to those
without obvious spurious correlations (Bottom row of Fig-
ure 1). Importantly, for datasets with spurious correlations,
even with probit-transformed axes (Miller et al., 2021) as
used by several prior works (Recht et al., 2019; Taori et al.,
2020), the performance correlations still remain nonlinear
(Supp. Figure 7). This confirms that such nonlinear correla-
tions are indeed not captured by the previous work.

Discussion: Why the moon shape is not obvious Fig-
ure 3 demonstrates one reason why the non-linear correla-
tion structure (i.e., the moon shape) is non-trivial. Consider
a thought experiment in which we interpolate two models
A, B (indicated by red circles) picked from the moon shape
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Figure 3. Why the moon shape is not obvious. Mixture of
models can fill in the moon shape.
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Figure 4. The moon shape persists across different training
epochs. We stratify Figure 2 based on the number of training
epochs. The x-axis indicates majority subpopulation performance.
The y-axis indicates minority subpopulation performance. Most
of the models have converged after 10 epochs. The moon shape is
apparent in each snapshot and persists across training epochs.

curve by flipping a biased coin with probability p: If the
coin lands head up, classify with model A. Otherwise clas-
sify with model B. Varying p in [0, 1] gives a line between
model A and model B. This thought experiment demon-
strates that the interpolation line is an achievable region for
the ML models, but the models deviate substantially away
from this interpolation line, forming a moon shape.

Discussion: The moon shape persists within and across
different training epochs In Figure 4, we stratify Figure 2
(a) by the number of training epochs. For each fixed training
epoch, we still find a clear moon shape across the different
models. Moreover, the similar moon shape persists across
different training epochs. Results on other datasets are also
similar (Supp. Figure 9). This finding motivates us to
focus our analysis on comparing across different models
rather than comparing the subpopulation performance of a
single model across training epochs (which is an interesting
direction complementary to our scope).

3.2. Finding 2: spurious correlation makes the moon
shape more nonlinear

Setup To explore the effect of different level of spurious
correlations, we conduct multiple controlled experiments
on Modified-CIFAR4 V1 (Rolf et al., 2021), which was
created by subsetting to the bird, car, horse, and plane
classes from CIFAR-10. The task is to predict whether
the image subject moves primarily by air (plane/bird)
or land (car/horse), which is spuriously correlated with
whether the image contains an animal (bird/horse) or vehi-
cle (car/plane). The majority subpopulation is the vehicles:

“land-vehicle(automobile)”, “air-vehicle(airplane)”. The mi-
nority subpopulation is the animals: “land-animal(horse)”,
“air-animal(bird)”.

We use the same test sets and only change the training
data. For the training data, we fixed the size of majority
subpopulation (6,000 images) and minority subpopulation
(4,000 images). Meanwhile, we also ensure that the dataset
is class-balanced: i.e., 5,000 images for both Y = 0 and
Y = 1. Formally, since we fix (1) P (Y = 1) = 0.5, (2)
P (Z = 1) = 0.6, and (3) the total size of the training set
as 10, 000 images, there is effectively only one degree of
freedom left, which we vary to change the level of spurious
correlation. See the theory section for the exact formula. In-
tuitively, we increase the level of the spurious correlation by
adding more “land-vehicle(automobile)”, “air-animal(bird)”
(indicated by the red boxes in Figure 5), and removing
“land-animal(horse)”, “air-vehicle(airplane)” (gray boxes).

Results and Observations The four scatter plot panels
in Figure 5 are ordered by increasingly stronger spurious
correlations. As can be seen, interestingly, the performance
correlations become more nonlinear when there is a stronger
spurious correlation in the training data. Altogether, these
results indicate that the existence of spurious correlation
plays a crucial role in shaping how the out-of-distribution
performance correlates with the in-distribution performance,
which is underexplored in the previous literature. Motivated
by our experimental findings, we provide rigorous theoreti-
cal explanations in the next section about how the spurious
correlation and the subpopulation accuracy gap are related.

4. Theoretical analysis of the accuracy gap
across subpopulations

We rigorously study the effect of the spurious correlation
on the accuracy gap between the majority and the minority
subpopulations in a binary classification setting.

We denote an input and an output random variable by X
and Y , respectively. We denote a random variable for a
subpopulation by Z, where Z = 1 indicates the majority
subpopulation, otherwise Z = 0. We assume that the un-
derlying data generating mechanism is Z ← Y → X , that
is X and Z are conditionally independent given Y , i.e.,
X ⊥ Z | Y . We assume

P(Z = 1 | Y = 1) = π1, P(Z = 1 | Y = 0) = π0.

Note that π1 = π0 is a necessary and sufficient condition for
Y ⊥ Z. In this respect, the level of spurious correlation can
be expressed as |π1− π0|. With these notations, the subpop-
ulation accuracy gap for a model g is defined as the absolute
difference between the two subpopulation accuracy:∣∣∣E[1(Y = g(X)) | Z = 1]− E[1(Y = g(X)) | Z = 0]

∣∣∣.
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Figure 5. Stronger spurious correlation creates more nonlinear performance correlation. Left: We vary the level of the spurious
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the performance correlations become more nonlinear when there is a stronger spurious correlation in the training data.

In the following theorem, we explicitly show that the sub-
population accuracy gap is proportional to the level of spu-
rious correlation |π1 − π0|. The proof is deferred to the
Appendix.
Theorem 1 (The higher the level of spurious correlation,
the larger the accuracy gap). The subclass accuracy gap for
a binary classifier g is expressed as follows.

Accuracy Gap

=
P(Y = 1)P(Y = 0)

P(Z = 1)P(Z = 0)
|π1 − π0| |TPR− TNR| ,

where TPR and TNR denote the true positive rate
E(g(X) = 1 | Y = 1) and the true negative rate
E(g(X) = 0 | Y = 0), respectively.

Theorem 1 shows that the subpopulation accuracy gap is
expressed as a function of |π1 − π0| and |TPR− TNR|. A
direct consequence is that the accuracy gap gets larger when
the level of spurious correlation |π1 − π0| increases. It is
possible to keep P(Z = 1) and P(Y = 1) as constants while
|π1 − π0| changes. In particular, it occurs when π1 and π0

are related as π1 = (P(Z = 1)− P(Y = 0)π0)/P(Y = 1),
which captures the setting of Figure 5.
Remark 1 (Models on the similar ROC curve). Suppose
that there is a trained binary classification model and its
ROC curve is not a straight line, which is typically the case.
We can think of different points on the curve as different mod-
els whose predicted probability outputs are only different
by constant shifts. Given that a point on the ROC curve is
described as (1− TNR,TPR), TPR changes nonlinearly
with respect to TNR. Hence, the |TPR − TNR| changes
nonlinearly, and so does the accuracy gap by Theorem 1.
This can provide one explanation for our experimental ob-
servations that different models form the moon shape curve.

The setting considered in this remark is admittedly simpli-
fied to provide some intuition. In practice, different models
(with different architectures and hyperparameters) may not
correspond to different points on one ROC curve. However,
if the different models do approximately trace out an ROC
curve, then the intuition here can apply.

5. Discussion
This work demonstrates that the performance of different
models on the majority and minority data subpopulations
can have nonlinear correlations. We show that this nonlin-
ear correlation phenomenon is persistent across different
datasets, different types of models, and both within and
across training epochs. This intriguing phenomenon also
leads to nonlinear correlations in models’ performances in
subpopulation shifts. Our findings complement and contrast
previous empirical studies showing a linear correlation in
model performance during other types of distribution shifts.
Our experiments and theory also provide insights into how
spurious correlations in the data can increase this nonlinear
pattern.

Our finding has implications for model selection. As ML
model building is becoming increasingly turn-key with tech-
nologies such as automated machine learning (AutoML),
selecting the best model that performs well across diverse
data subpopulations is increasingly a major challenge. Our
results suggest that, when there is no spurious correlation,
models with higher aggregate performance (which is largely
skewed by the majority subpopulation performance) gen-
erally also perform better on the minority subpopulation.
However, with spurious correlation, the situation becomes
more nuanced: there exists a phase transition point with
negative correlation before, and positive correlation after.
In settings where subpopulations performance is important
(e.g. fairness considerations), we recommend autoML prac-
titioners to use similar type of scatter plots as our Figure 2
to diagnose model selection.

More generally, subpopulation shift is ubiquitous in ML
applications. Our work highlights how model improvement
in one subpopulation may have nonlinear effects on perfor-
mance in other subpopulations. Further analysis and under-
standing of this nonlinear pattern is an important direction
of future work.
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A. Extended Descriptions of The Moon Shape Phenomenon
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Figure 6. The moon shape exists for both models pretrained on ImageNet and models trained from scratch. Since models in other
figures are all fine-tuned starting from ImageNet pre-trained checkpoints, we add an experiment of training from scratch. The moon
shape is even more obvious for models trained from scratch. This shows that the moon shape is not an artifact of ImageNet pre-trained
checkpoints, but a much broader phenomenon. Similarly, we also verify that this nonlinear correlation holds across model architectures,
training durations and hyperparameters (Supp. Figure 8), and the imbalance between subpopulations (Figure 5).

A.1. Extended descriptions of the nonlinear correlation under probit-transformation

In Figure 2, we decompose the model’s performance into performance on each subpopulation. We found that there is a
”moon shape” correlation (parabolic uptrend curve) between the test performance on the majority subpopulation and the
minority subpopulation. This nonlinear correlations hold across model architectures, training durations and hyperparameters
(Supp. Figure 8), and the imbalance between subpopulations (Figure 5). We have also found that datasets with spurious
correlations (Top row of Figure 2) show more nonlinearity compared to those without obvious spurious correlations (Bottom
row of Figure 2).

Recent empirical works find that there is a strong linear relationship between in-distribution (ID) and out-of-distribution
(OOD) performance under several specific types of data shifts. Most works report the linear relationship with the original per-
formance axis-scale, while several works report that with probit-transformed (a non-linear transformation) accuracy (Miller
et al., 2021; Recht et al., 2019; Taori et al., 2020), the linear correlation of performance would be more precise. Here
the probit transform is the inverse of the cumulative density function (CDF) of the standard Gaussian distribution, i.e.,
ltransformed = Φ−1(l).

Therefore, to better compare with the existing literature, we also plot with probit-transformed performance as shown in
Supp. Figure 7. Importantly, for datasets with spurious correlations, even with probit-transformed axes as used by several
prior works (Miller et al., 2021; Recht et al., 2019; Taori et al., 2020), the performance correlations still remain nonlinear
(Supp. Figure 7). The fact that ours remain nonlinear with probit-transformed axes (Supp. Figure 7) is an especially exciting
finding, since it confirms that the nonlinear correlations we found here under subpopulation shifts are indeed not captured by
the previous work. Our findings indicate that the linear correlation trend reported by recent work is not necessarily true if
there are subpopulation shifts with spurious correlation. As the presence of spurious correlation creates such an interesting
phenomenon, this also motivates our theoretical analysis on the relationship between the level of spurious correlation and
the moon shape.

A.2. Extended descriptions on the moon shape within and across different training epochs

In Figure 4, we stratify the dots in Figure 2 (a) (i.e. the trained models) by the number of training epochs. For each fixed
training epoch, we still find a clear moon shape across the different models. Moreover, the similar moon shape persists
across different training epochs. In other words, the moon shape persists within and across different training epochs.

Supp. Figure 9 verify that similar results are also shown when we stratify the scatter plot dots by the number of training
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epochs on other datasets. This finding motivates us to focus our analysis on comparing across different models rather
than comparing the subpopulation performance of a single model across training epochs (which is an interesting direction
complementary to our scope).

B. Extended Related Work
Linear correlations between ID and OOD performances Existing research mostly reports linear correlations between
ID and OOD performances. The linear correlations were first reported in recent dataset reconstruction settings including
ImageNet-V2 (Recht et al., 2019), CIFAR-10.1 (Recht et al., 2018), CIFAR-10.2 (Lu et al., 2020), where new test sets of
popular benchmarks are collected closely following the original dataset creation process. As there are subtle differences in
the dataset creation pipeline, the test performance on the new test set is often lower, but appears to be linearly correlated
with the performance on the original test set (Lu et al., 2020; Miller et al., 2020; Recht et al., 2018; 2019; Yadav & Bottou,
2019). Later researchers also found the linear trends in the context of cross-benchmark evaluation (Taori et al., 2020; Miller
et al., 2021), and transfer learning (Kornblith et al., 2019; Andreassen et al., 2021), where a model’s ImageNet test accuracy
linearly correlates with the transfer learning accuracy. Similar linear trends are also observed in sub-type shifts (Hendrycks
& Dietterich, 2019; Santurkar et al., 2021) (e.g., the training data for the “dog” class are all from a specific breed while the
test data come from another breed). Different from these studies, we (1) focus on subpopulation shifts, where we also present
the first systematic study on the performance correlation between data subpopulations, and (2) find nonlinear correlations
of ML performance across data subpopulations, which is not captured in previous work. Importantly, we show that for
datasets with spurious correlations, even with probit-transformed axes as used by several prior work (Miller et al., 2021;
Recht et al., 2019; Taori et al., 2020), the performance correlations still remain nonlinear. This confirms that the nonlinear
(“moon shape”) correlation phenomenon is indeed not captured by previous work.

ML with diverse subpopulations A major challenge in ML is that a model can have very disparate performances even
when it’s applied to different subpopulations of its training and evaluation data. Models with low average error can still fail
on particular groups of data points (Hashimoto et al., 2018; Buolamwini & Gebru, 2018; Blodgett et al., 2016). For example,
predictive models for clinical outcomes that are accurate on average in a patient population are reported to underperform
drastically for some subpopulations, potentially introducing or reinforcing inequities in care access and quality (Pfohl
et al., 2022). Similar performance disparity, have also been observed in radiograph classification (Badgeley et al., 2019;
Zech et al., 2018; DeGrave et al., 2021), face recognition (Grother et al., 2011; Buolamwini & Gebru, 2018), speech
recognition (Koenecke et al., 2020; Blodgett et al., 2016; Jurgens et al., 2017), academic recommender systems (Sapiezynski
et al., 2017)), and automatic video captioning (Tatman, 2017), among others. Worse, as model accuracy affects user retention,
the minority group might shrink and thus even amplifies the performance disparity over time (Hashimoto et al., 2018;
Fuster et al., 2017). These case studies highlight the importance of understanding the ML performance disparity across
subpopulations.
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C. Proofs
In this section, we provide a proof of Theorem 1.

Proof of Theorem 1. For any z ∈ {0, 1}, we have

E[1(Y = g(X)) | Z = z] =

1∑
y=0

E[1(y = g(X)) | Z = z, Y = y]P(Y = y | Z = z)

=

1∑
y=0

E[1(y = g(X)) | Y = y]P(Y = y | Z = z)

= TPR× P(Y = 1 | Z = z) + TNR× P(Y = 0 | Z = z).

Here, the second equality is due to X ⊥ Z | Y . Therefore, the accuracy gap between the two subpopulations is expressed as
follows.

Accuracy Gap =
∣∣E[1(Y = g(X)) | Z = 1]− E[1(Y = g(X)) | Z = 0]

∣∣
=

∣∣∣TPR× (
P(Y = 1 | Z = 1)− P(Y = 1 | Z = 0)

)
+TNR×

(
P(Y = 0 | Z = 1)− P(Y = 0 | Z = 0)

) ∣∣∣
=

∣∣P(Y = 1 | Z = 1)− P(Y = 1 | Z = 0)
∣∣× |TPR− TNR| .

By the Bayes’ theorem

P(Y = 1 | Z = 1) =
π1P(Y = 1)

P(Z = 1)
, P(Y = 1 | Z = 0) =

(1− π1)P(Y = 1)

P(Z = 0)
,

we have

P(Y = 1 | Z = 1)− P(Y = 1 | Z = 0) =
π1P(Y = 1)

P(Z = 1)
− (1− π1)P(Y = 1)

P(Z = 0)

=
π1P(Y = 1)P(Z = 0)− (1− π1)P(Y = 1)P(Z = 1)

P(Z = 1)P(Z = 0)

=

{
P(Z = 0)− (1− π1)

}
P(Y = 1)

P(Z = 1)P(Z = 0)
.

Since P(Z = 0) = 1− (π1P(Y = 1) + π0P(Y = 0)) = 1− π1 + (π1 − π0)P(Y = 0), we have

Accuracy Gap =
P(Y = 1)P(Y = 0)

P(Z = 1)P(Z = 0)
|π1 − π0| × |TPR− TNR| .

It concludes a proof.
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(c) Modified-CIFAR4 (V1)  
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(e) OfficeHome  
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(f) Modified-CIFAR4 (V2)  

Figure 7. Majority subpopulation accuracies vs. minority subpopulation accuracies (Figure 2) plotted in probit-transformed axes.
(a-c) Results on three datasets with explicit spurious correlation by dataset construction. The correlation between the majority
subpopulation performance and the minority subpopulation performance is still non-linear even after the probit-transform of axes. This
finding significantly broadens the literature, where previous work mostly reports a precise linear trend between the out-of-distribution
performance and in-distribution performance in probit scale. Based on prior research, one might expect the majority subpopulation
performance and the minority subpopulation performance to be linearly correlated. In contrast, we show that the majority subpopulation
performance and the minority subpopulation performance can be correlated in a non-linear way even in probit scale. (d-f) Results on
three datasets without explicit spurious correlation. Without spurious correlation, the majority subpopulation performance and the
minority subpopulation performance appears to be in a linear trend, which is aligned with the previous literature. All together, these results
indicate that the existence of spurious correlation plays an crucial role in shaping how the out-of-distribution performance correlates with
the in-distribution performance, which is largely ignored by the previous literature.
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Figure 8. The strong correlations hold across model architectures, training durations and hyper parameters.
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Figure 9. The moon shape persists across different training epochs. Results on other datasets similar to Figure 4. We stratify
Figure 2 based on the number of training epochs. The x-axis indicates majority subpopulation performance. The y-axis indicates minority
subpopulation performance. Most of the models have converged after 10 epochs. The moon shape is apparent in each snapshot and
persists across training epochs.


