
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NONPARAMETRIC TEACHING FOR SEQUENTIAL PROP-
ERTY LEARNERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Determining the properties of sequence-structured data, e.g., the sentiment of a
text, fundamentally requires learning the implicit relationship that maps sequences
to their corresponding properties. This learning process is often expensive for
sequential property learners like Recurrent Neural Networks (RNNs). To tackle
this, we introduce a paradigm called Recurrent Neural Teaching (ReNT), which
reinterprets the learning process through a novel nonparametric teaching lens.
Specifically, the latter provides a theoretical framework for teaching implicitly
defined (i.e., nonparametric) mappings via example selection. Such an implicit
mapping is realized by a dense set of sequence-property pairs, with the ReNT
teacher selecting a subset of them to facilitate faster convergence in RNN training.
By analytically investigating the effect of sequence order on parameter-based
gradient descent during training, and recasting the evolution of RNNs—driven by
parameter updates—through functional gradient descent in nonparametric teaching,
we reveal for the first time that teaching sequential property learners (i.e., RNNs) is
consistent with teaching order-aware nonparametric learners. These new findings
readily prompt ReNT to improve the learning efficiency of the sequential property
learner, achieving substantial cuts in training time for sequence-level (-32.77%
to -46.39%) and element-level (-36% to -39.17%) tasks, while still preserving its
generalization performance.

1 INTRODUCTION

Sequence-structured data, commonly referred to as sequences, are typically represented by ordered
lists of elements, where each element is associated with a specific order or timestamp (Sutskever et al.,
2014; Király & Oberhauser, 2019). Sequential properties can be classified as either sequence-level or
element-level1 (Purwins et al., 2019). For instance, the text category is a sequence-level property in
text sequences (Liu et al., 2016; Kowsari et al., 2019), whereas each word transcribed at a particular
time step is an element-level property in a speech-to-text sequence (Purwins et al., 2019). Inferring
these sequential properties essentially requires learning the implicit mapping from sequences to these
properties (Király & Oberhauser, 2019; Alley et al., 2019; Otovic et al., 2022). A visual representation
of this mapping is provided in Figure 1. As a notable sequential property learner, the Recurrent
Neural Network (RNN) (Elman, 1990; Jordan, 1997) has demonstrated exceptional generalizability,
achieving remarkable performance in diverse domains including machine translation (Cho et al.,
2014a; Liu et al., 2014), time series analysis (Hewamalage et al., 2021; Lu & Xu, 2024), and DNA
sequence processing (Liu et al., 2019; AlQuraishi & Sorger, 2021; Abd-Alhalem et al., 2021).

Nevertheless, the learning process of the implicit mapping—i.e., the training—can be quite costly for
RNNs, especially when handling large-scale sequence tasks (Salem et al., 2019; Yadav et al., 2022;
Liu et al., 2022). For instance, determining the authenticity of news—a sequence-level property—on
social media involves processing millions of news articles (Nasir et al., 2021). When it comes to
element-level property learning tasks, the scale can become overwhelmingly large (Sak et al., 2014;
Hermanto et al., 2015; Lu & Xu, 2024). Consequently, there is an urgent need to lower training costs
and enhance learning efficiency.

1This paper focuses on the sequence level in its discussion, unless indicated otherwise, with the element level
viewed as a multi-dimensional generalization.
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Figure 1: An intuitive illustration of the im-
plicit mapping f∗ between a sequence S and
its property f∗(S), where f0 represents the
mapping of the initial sequential property
learner, e.g., an initialized RNN.

Recent research on nonparametric teaching (Zhang et al.,
2023b;a; 2024; 2025) provides a promising solution to
this problem. Specifically, nonparametric teaching offers
a theoretical framework for efficiently selecting examples
when the target mapping is nonparametric, i.e., implicitly
defined. It expands on the concept of machine teach-
ing (Zhu, 2015; Zhu et al., 2018)—involves crafting a
training set (dubbed the teaching set) to aid the learner in
quickly converging the target functions—but relaxes the
assumption that target functions are parametric (Liu et al.,
2017; 2018), thus enabling the teaching of nonparametric
(viz. non-closed-form) target functions, with an emphasis
on exploring function space. Unfortunately, existing stud-
ies solely focus on treating inputs as independent entities
and fail to consider the sequential nature and temporal
dependencies, resulting in difficulties when handling se-
quential data (Vinyals et al., 2016). Additionally, updating
an RNN typically involves gradient descent in parameter
space, which differs from the functional gradient descent approach used in nonparametric teaching
within function space (Zhang et al., 2023b;a; 2024). These necessitate further investigation before
applying nonparametric teaching theory to the learning of sequential properties.

To this end, we conduct a systematic examination of how sequence order influences RNN gradient-
based training in both parameter and function spaces. Specifically, we analytically examine the
impact of element order in an input sequence on parameter-based gradient descent within parameter
space, and explicitly demonstrate that the parameter gradient retains its form when the sequence
length is scaled. The order-aware update in parameter space drives the evolution of the RNN,
which can be described using the dynamic recurrent neural tangent kernel (RNTK) (Alemohammad
et al., 2021; Emami et al., 2021), and is then formulated into function space. We show that this
dynamic RNTK converges to the order-aware canonical kernel used in functional gradient descent,
indicating that the evolution of the RNN under parameter gradient descent is consistent with that
under functional gradient descent. Hence, it is natural to view the learning process of sequential
properties through the theoretical lens of nonparametric teaching: the target mapping is realized
by a dense set of sequence-property pairs, from which the teacher selects a subset to feed to the
RNN, promoting rapid convergence of the sequential property learner. Consequently, to improve
RNN learning efficiency, we introduce a novel paradigm called ReNT, where the teacher uses a
variation of the greedy teaching algorithm from nonparametric teaching for sequential property
learning, specifically selecting sequences that exhibit the greatest discrepancy between their true
property values and the RNN outputs. Lastly, we perform extensive experiments to demonstrate the
effectiveness of ReNT across various scenarios, including both sequence-level and element-level
tasks. Our key contributions are outlined as follows:

• We propose ReNT, a novel paradigm that frames sequential property learning within the theoretical
framework of nonparametric teaching, allowing the use of greedy algorithms from this framework
to significantly improve the learning efficiency of the sequential property learner, RNN.

• We analytically investigate how sequence order affects parameter-based gradient descent in pa-
rameter space, uncovering the consistency between the evolution of RNN driven by parameter
updates and that under functional gradient descent in nonparametric teaching. We further show that
the dynamic RNTK, derived from gradient descent on parameters, converges to the order-aware
canonical kernel of functional gradient descent. These bridge nonparametric teaching theory with
sequential property learning, thereby broadening the scope of nonparametric teaching in sequential
property learning contexts.

• We showcase the effectiveness of ReNT through comprehensive experiments in sequential property
learning, covering both sequence and element levels. Specifically, ReNT reduces training time
for sequence-level (-32.77% to -46.39%) and element-level (-36% to -39.17%) tasks, all while
preserving its generalization performance.
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2 RELATED WORKS

Sequential property learning. With the prevalence of sequence-structured data in real-world
applications, there has been a notable rise in research interest in sequences (Lipton et al., 2015;
Salehinejad et al., 2017; Yu et al., 2019), particularly in learning implicit mappings from sequences to
interested properties (Király & Oberhauser, 2019; Alley et al., 2019; Otovic et al., 2022) for a variety
of downstream tasks. These tasks span areas such as text analysis (Liu et al., 2016; Kowsari et al.,
2019), time series modeling (Hewamalage et al., 2021; Lu & Xu, 2024), and biological sequence
processing (Liu et al., 2019; AlQuraishi & Sorger, 2021; Abd-Alhalem et al., 2021). Various efforts
have been made to enhance learner design for better mapping learning, such as the recurrent neural
network (RNN) learner (Elman, 1990; Jordan, 1997), the long short-term memory learner (Hochreiter
& Schmidhuber, 1997), the gated recurrent unit learner (Cho et al., 2014b), and the state space
learner (Smith et al., 2023). Efforts to boost learning efficiency have also been pursued, such as
parallelized training (Chen et al., 2015; Ruíz et al., 2019), sparse training (Liu et al., 2021), and
block-term tensor decomposition (Ye et al., 2018). In contrast, we tackle sequential property learning
from a new angle of nonparametric teaching (Zhang et al., 2023b;a) and apply an adapted version of
the greedy algorithm to improve the training efficiency of RNNs.

Nonparametric teaching. Machine teaching (Zhu, 2015; Zhu et al., 2018) is concerned with crafting
a teaching set that helps the learner swiftly converge to a target model function. It can be seen as the
inverse of machine learning: while machine learning focuses on learning a mapping from a given
training set, machine teaching strives to design the set based on a desired mapping. Its effectiveness
has been shown in a variety of fields, such as crowdsourcing (Singla et al., 2014; Zhou et al., 2018),
robustness (Alfeld et al., 2017; Ma et al., 2019; Rakhsha et al., 2020), and computer vision (Wang
et al., 2021; Wang & Vasconcelos, 2021). Nonparametric teaching (Zhang et al., 2023b;a) builds
upon iterative machine teaching (Liu et al., 2017; 2018) by extending the parameterized family of
target mappings to incorporate a broader, more general nonparametric framework. This theoretical
framework has also been proven effective in improving the efficiency of multilayer perceptrons
(MLPs) for learning implicit functions from signal coordinates to corresponding values (Sitzmann
et al., 2020; Tancik et al., 2020; Zhang et al., 2024; Luo et al., 2024), as well as enhancing the training
efficiency of graph convolutional networks for learning implicit mappings from graphs to their
relevant properties (Zhang et al., 2025). Nevertheless, the neglect of the sequential nature in these
studies makes it difficult to directly apply their findings to general tasks involving sequence-structured
data (Sutskever et al., 2014; Vinyals et al., 2016; Liu et al., 2016; Purwins et al., 2019). This work
systematically examines the impact of sequence order and highlights the alignment between the
evolution of RNN driven by parameter updates and that guided by functional gradient descent in
nonparametric teaching. These insights, for the first time, expand the reach of nonparametric teaching
in sequential property learning and position our ReNT as a way to enhance RNN learning efficiency.

3 BACKGROUND

Notation.2 Let S1:S = (x1, · · · ,xS) ∈ S be a sequence of length S, where xs ∈ Rd represents
the d-dimensional feature vector for the element of order s ∈ NS (NS := {1, · · · , S}). Each xs is a
row vector, denoted as [xs,j ]

⊤
d = (xs,1, · · · , xs,d), and the collection of all feature vectors is given

by an S × d feature matrix, denoted XS×d (or simply X). The s-th row and i-th column of this
matrix, which correspond to the s-th element and i-th feature, are represented by X(s,:) and X(:,i),
respectively. Alternatively, these can be written as e⊤s X and Xei, where ei is a basis vector with
its i-th entry equal to 1 and all other entries equal to 0. The property of the sequence is denoted by
y ∈ Y , where y is a scalar for sequence-level properties (i.e., Y ⊆ R) and a vector for element-level
properties (i.e., Y ⊆ Rn). A set containing m items is written as {ai}m. If {ai}m ⊆ {ai}n, then
{ai}m represents a subset of {ai}n with m items, where the indices are i ∈ Nn. A diagonal matrix
with values a1, · · · , am is denoted by diag(a1, · · · , am), and if all m values are the same, it is
simplified to diag(a;m).

Consider K(S,S′) : S × S 7→ R as a symmetric and positive definite sequence kernel (Cancedda
et al., 2003; Király & Oberhauser, 2019). It can also be expressed as K(S,S′) = KS(S

′) =
KS′(S), and for convenience, KS(·) may be abbreviated as KS . The reproducing kernel Hilbert
space (RKHS) H corresponding to K(S,S′) is defined as the closure of the linear span {f :

2See the notation table in Appendix A.1.
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f(·) =
∑r

i=1 aiK(Si, ·), ai ∈ R, r ∈ N,Si ∈ S}, with the inner product given by ⟨f, g⟩H =∑
ij aibjK(Si,Sj), where g =

∑
j bjKSj

(Liu & Wang, 2016; Zhang et al., 2023b). Instead of
assuming the ideal case with a closed-form solution f∗, we focus on the more realistic scenario where
the realization of f∗ is provided (Zhang et al., 2023b;a; 2024; 2025). To keep notation simple, we
assume the function is scalar-valued, in line with the focus on the sequence level in this discussion3.
Given the target mapping f∗ : S 7→ Y , it uniquely outputs y† for the corresponding sequence S†
such that y† = f∗(S†). Based on the Riesz–Fréchet representation theorem (Lax, 2002; Schölkopf
et al., 2002; Zhang et al., 2023b), the evaluation functional is defined as follows:

Definition 1. LetH be a reproducing kernel Hilbert space with a positive definite sequence kernel
KS ∈ H, where S ∈ S. The evaluation functional ES(·) : H 7→ R is defined by the reproducing
property as follows:

ES(f) = ⟨f,KS(·)⟩H = f(S), f ∈ H. (1)

Moreover, for a functional F : H 7→ R, the Fréchet derivative (Coleman, 2012; Liu, 2017; Zhang
et al., 2023b) of F is defined as follows:

Definition 2. (Fréchet derivative in RKHS) The Fréchet derivative of a functional F : H 7→ R at
f ∈ H, denoted by ∇fF (f), is implicitly defined by F (f + ϵg) = F (f) + ⟨∇fF (f), ϵg⟩H + o(ϵ)
for any g ∈ H and ϵ ∈ R. This derivative is also a function inH.

Recurrent neural network (RNN) is designed to learn the implicit mapping between sequences and
their associated properties (Elman, 1990; Jordan, 1997). Specifically, an L-layer RNN fθ(S1:S) ≡
X(L,S) is akin to an L-layer MLP, with the key difference being the recurrent connection. For
ℓ ∈ NL−1 and s ∈ NS ,

X(ℓ,s) = σ
(
X(ℓ−1,s)W (ℓ) +X(ℓ,s−1)W (ℓ)

r + b(ℓ)
)
, X(L,S) = X(L−1,S)W (L) + b(L), (2)

where σ represents the activation function (e.g., ReLU), W (ℓ) is the non-recurrent weight matrix at
layer ℓ, with dimensions hℓ−1 × hℓ, where hℓ denotes the width of layer ℓ and h0 = d. Additionally,
W

(ℓ)
r is the recurrent weight matrix at layer ℓ, which connects X(ℓ,t−1) to X(ℓ,t); X(0,s) ≡X(s,:)

represents the s-th input feature, and X(ℓ,0) = 0 is the initial state.

Nonparametric teaching is defined as a functional minimization over a teaching set D =
{(x1, y1), . . . (xT , yT )}, where each input x ∈ Rd signifies independent feature data without regard
to sequence order (Zhang et al., 2023b). The collection of all possible teaching sets is denoted as D:

D∗ = argmin
D∈D

M(f̂ , f∗) + λ · card(D) s.t. f̂ = A(D). (3)

The above formulation includes three main components:Mwhich quantifies the difference between f̂

and f∗ (e.g., L2 distance in RKHSM(f̂∗, f∗) = ∥f̂∗ − f∗∥H); card(·), representing the cardinality
of the teaching set D, regularized by a constant λ > 0; and A(D), which denotes the learning
algorithm used by the learners, typically based on empirical risk minimization:

f̂ = argmin
f∈H;(x,f∗(x))∈D

L(f(x), f∗(x)) (4)

with a convex loss L (w.r.t. f ), which is optimized using functional gradient descent4:

f t+1 ← f t − η Ex

(
∂L(f∗, f t)

∂f t

)
·Kx︸ ︷︷ ︸

:=G(L,f∗;ft,x), Functional Gradient

, (5)

where t = 0, 1, . . . , T is the iteration index, and η > 0 represents the learning rate.

3In nonparametric teaching, the extension from scalar-valued functions to vector-valued ones, which relates
to element-level properties, is a well-established generalization in Zhang et al., 2023a.

4The functional gradient is derived using the functional chain rule (Lemma 5) and the gradient of an evaluation
functional (Lemma 6), both of which are presented in Appendix A.2.
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4 RENT

We start by examining the impact of the sequence order on parameter-based gradient descent. Then,
by translating the evolution of RNN—driven by order-aware updates in parameter space—into
function space, we show that the evolution of RNN under parameter gradient descent aligns with that
under functional gradient descent. Lastly, we introduce the greedy ReNT algorithm, which efficiently
selects sequences with steeper gradients to improve the learning efficiency of RNN.

4.1 ORDER-AWARE UPDATE IN THE PARAMETER SPACE

W_xh W_hh W_h_t h_t-1

W_ho

Figure 2: A workflow illustration
of a three-layer RNN with a three-
length input sequence.

Let the column vector θ ∈ Rm represent the weights of all layers in
a flattened form, where m is the total number of parameters in the
RNN, and the bias term is omitted for simplicity. Figure 2 provides
an example that illustrates the workflow of this RNN. Given a train-
ing set of size N , {(Si,yi)|Si ∈ S,yi ∈ Y}N , the parameters are
updated using gradient descent (Ruder, 2016) as shown below:

θt+1 ← θt − η

N

N∑
i=1

∇θL(fθt(Si),yi). (6)

Because the learning rate η is sufficiently small, the updates are
minimal over several iterations, allowing them to be treated as a time derivative and subsequently
transformed into a differential equation (Alemohammad et al., 2021; Emami et al., 2021):

∂θt

∂t
= − η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

·
[
∂fθt(Si)

∂θt

]
N

. (7)

The term ∂fθ(S)
∂θ (with the indexes i and t omitted for simplicity), which specifies the direction for

parameter updates, can be expressed more explicitly as

[
∂X(L,S)

∂W (L) ,

non-recurrent weights︷ ︸︸ ︷
∂X(L,S)

∂W
(L−1)
(:,1)

, · · · , ∂X(L,S)

∂W
(L−1)
(:,hL−1)

,

recurrent weights︷ ︸︸ ︷
∂X(L,S)

∂W
(L−1)
r(:,1)

, · · · , ∂X(L,S)

∂W
(L−1)
r(:,hL−1)︸ ︷︷ ︸

w.r.t. the (L − 1)-th layer

, · · · ,

non-recurrent weights︷ ︸︸ ︷
∂X(L,S)

∂W
(1)
(:,1)

, · · · , ∂X
(L,S)

∂W
(1)
(:,h1)

,

recurrent weights︷ ︸︸ ︷
∂X(L,S)

∂W
(1)
r(:,1)

, · · · , ∂X(L,S)

∂W
(1)
r(:,h1)︸ ︷︷ ︸

w.r.t. the first layer

]
.

Here, each term represents the derivative of output X(L,S) w.r.t. weight column vectors. Unlike
derivatives when treating inputs as individual features—where all derivative terms involving the
recurrent weight matrix W

(ℓ)
r are erased, and the output fθ(S1:S) depends solely on the last element

of the sequence (i.e., fθ(S1:S) = fθ(SS:S)) making it independent of the preceding elements and
disregarding the sequence natural or temporal dependencies—the recurrent connections dictate the
aggregation of features along the sequence order, with each feature of a single element treated
individually (Alemohammad et al., 2021; Emami et al., 2021). To clearly show, in an analytical and
explicit way, how sequence order directs order-aware updates in the parameter space, we provide an
example involving the derivative of a two-layer RNN with an input sequence of length three:

∂fθ(S1:3)

∂θ
=
[ ∂X(2,3)

∂W (2)︸ ︷︷ ︸
the second layer

,

size: 1×h0︷ ︸︸ ︷
∂X(2,3)

∂W
(1)
(:,1)

, · · · , ∂X
(2,3)

∂W
(1)
(:,h1)︸ ︷︷ ︸

the first layer, h1 terms

,

1×h1︷ ︸︸ ︷
∂X(2,3)

∂W
(1)
r(:,1)

, · · · , ∂X(2,3)

∂W
(1)
r(:,h1)︸ ︷︷ ︸

the recurrent layer, h1 terms

]
, (8)

where the term ∂X(2,3)

∂W (2) is

σ
(
X(0,3)W (1) + σ

(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W (1)

r

)
W (1)

r

)
. (9)

For i ∈ Nh1
, the term ∂X(2,3)

∂W
(1)

(:,i)

, which pertains to the non-recurrent weights, is given by

σ̇3

size: 1×h0︷ ︸︸ ︷
X(0,3)

1×1︷ ︸︸ ︷
W

(2)
(i,:)︸ ︷︷ ︸

corresponds to s=3

+ σ̇3σ̇2

1×h0︷ ︸︸ ︷
X(0,2)

1×h1︷ ︸︸ ︷
W

(1)
r(i,:)

h1×1︷ ︸︸ ︷
W (2)︸ ︷︷ ︸

corresponds to s=2

+ σ̇3σ̇2σ̇1

1×h0︷ ︸︸ ︷
X(0,1)

1×h1︷ ︸︸ ︷
W

(1)
r(i,:)

h1×h1︷ ︸︸ ︷
W (1)

r

h1×1︷ ︸︸ ︷
W (2)︸ ︷︷ ︸

corresponds to s=1

, (10)
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and the term ∂X(2,3)

∂W
(1)

r(:,i)

which corresponds to the recurrent weights, is

σ̇3

size: 1×h1︷ ︸︸ ︷
σ
(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W (1)

r

) 1×1︷ ︸︸ ︷
W

(2)
(i,:)︸ ︷︷ ︸

corresponds to s=2

+ σ̇3σ̇2

1×h1︷ ︸︸ ︷
σ
(
X(0,1)W (1)

) 1×h1︷ ︸︸ ︷
W

(1)
r(i,:)

h1×1︷ ︸︸ ︷
W (2)︸ ︷︷ ︸

corresponds to s=1

, (11)

with the scalar σ̇ = ∂σ(x)
∂x , indexed by order s for specific inputs. By introducing the concatenation

operation
⊕

and defining A[κ] :=
⊕0

i=κ−1 A
i = [Aκ−1 · · · AI], Equation 10 and 11 can be

equivalently rewritten in matrix form as follows:5

e⊤i︸︷︷︸
size: 1×h1

W (1)
r

[3]︸ ︷︷ ︸
h1×3h1

diag
(
W (2); 3

)
︸ ︷︷ ︸

3h1×3

[ 3∏
k=j

σ̇kX
(0,j)

]
3︸ ︷︷ ︸

3×h0

, e⊤i︸︷︷︸
size: 1×h1

W (1)
r

[3]︸ ︷︷ ︸
h1×3h1

diag
(
W (2); 3

)
︸ ︷︷ ︸

3h1×3

[ 3∏
k=j

σ̇kX
(1,j−1)

]
3︸ ︷︷ ︸

3×h0

. (12)

The derivation is provided in Appendix A.3. When the sequence length S is reduced to 1, meaning
the input is a single element, the RNN gradient for that input matches exactly with the MLP gradient
for the same feature. This suggests that the order-aware, parameter-based gradient is more general
than the MLP gradient, indicating that this work generalizes Zhang et al., 2024 by incorporating
sequence order. Moreover, the explicit expressions in Equations 10 and 11 show that the sequence
order determines the power of W

(1)
r in the gradients, with temporal dependencies in the input

sequence accounted for by the different powers of the recurrent weights. In matrix form, as shown in
Equation 12, it is evident that the RNN gradient shape does not depend on the input sequence length
(i.e., the number of elements), but rather on the feature dimension. In other words, the parameter
gradient maintains the same form even if the input sequence length S is scaled.

4.2 THE FUNCTIONAL EVOLUTION OF RNN

The order-aware update in the parameter space guides the functional evolution of fθ ∈ H. The
resulting variation in fθ, reflecting how fθ evolves in response to changes in θ, can be derived using
Taylor’s theorem as follows:

f(θt+1)− f(θt) = ⟨∇θf(θ
t), θt+1 − θt⟩+ o(θt+1 − θt), (13)

where f(θ□) ≡ fθ□ . Similar to the transformation of parameter updates, it can be expressed in
differential form (Zhang et al., 2024):

∂fθt

∂t
=

〈
∂f(θt)

∂θt
,
∂θt

∂t

〉
︸ ︷︷ ︸

(∗)

+o

(
∂θt

∂t

)
. (14)

By substituting the specific parameter updates, i.e., Equation 7, into the first-order approximation
term (∗) of this variation, we obtain

∂fθt

∂t
= − η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

· [Kθt(Si, ·)]N + o

(
∂θt

∂t

)
, (15)

where the symmetric and positive definite Kθt(Si, ·) :=
〈

∂fθt (Si)
∂θt ,

∂fθt (·)
∂θt

〉
(refer to the detailed

derivation in Appendix A.4). The inclusion of nonlinear activation functions in f(θ) introduces
nonlinearity with respect to θ, making the remainder o(θt+1 − θt) nonzero. In contrast, Jacot et al.,
2018; Alemohammad et al., 2021; Emami et al., 2021 apply the chain rule directly, giving less
focus on the convexity of L with respect to θ. As a result, the first-order approximation is derived
as the variation, with Kθ referred to as the recurrent neural tangent kernel (RNTK). It has been
proved that the RNTK remains constant during training under the assumption of an infinite RNN
width (Alemohammad et al., 2021; Emami et al., 2021). However, in practical scenarios, there is no
need for the RNN width to be infinite, prompting us to explore the dynamic RNTK (An example of
how the RNTK is computed is shown in Figure 6 in Appendix A.4).

5The gradient vanishing/exploding issue (Bengio et al., 1994) is apparent in W
(1)
r

[3]
, but it is not the focus

of this work.
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Consider approaching the variation of fθ ∈ H from a high-level, functional viewpoint (Zhang et al.,
2024). Through functional gradient descent, it can be written as:

∂fθt

∂t
= −ηG(L, f∗; fθt , {Si}N ), (16)

where the functional gradient is expressed as:

G(L, f∗; fθt , {Si}N ) =
1

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

· [K(Si, ·)]N . (17)

The asymptotic connection between the RNTK and the order-aware canonical kernel (Cancedda
et al., 2003; Király & Oberhauser, 2019; Zhang et al., 2024) in the context of functional gradient is
presented in Theorem 3 below, with the proof provided in Appendix B.2.
Theorem 3. Given a convex loss L and a training set {(Si,yi)|Si ∈ S,yi ∈ Y}N , the dynamic
RNTK, which results from gradient descent on the parameters of an RNN, converges pointwise to
the order-aware canonical kernel in the dual functional gradient with respect to the input sequences.
Specifically, the following holds:

lim
t→∞

Kθt(Si, ·) = K(Si, ·),∀i ∈ NN . (18)

This indicates that RNTK, which includes sequence order information, acts as a dynamic alternative
to the order-aware canonical kernel in functional gradient descent with sequence inputs, causing the
RNN evolution through parameter gradient descent to align with the evolution in functional gradient
descent (Kuk, 1995; Alemohammad et al., 2021; Geifman et al., 2020). This functional insight
bridges the gap between the teaching of the sequential property learner, RNN, and that of order-aware
nonparametric learners, while also making further analysis simpler (e.g., a convex functional L
retains its convexity with respect to fθ from a functional viewpoint, but is generally nonconvex
when considering θ). By utilizing the functional insight and adopting the canonical kernel (Dou &
Liang, 2021) instead of RNTK (which should be considered in conjunction with the remainder), it
helps in deriving the sufficient reduction regarding L in Proposition 4, with the proof deferred to
Appendix B.3.
Proposition 4. (Sufficient Loss Reduction) Let the convex loss L be Lipschitz smooth with a constant
τ > 0, and the order-aware canonical kernel be bounded above by γ > 0. If the learning rate η
satisfies η ≤ 1/(2τγ), then a sufficient reduction in L is guaranteed, as shown by

∂L
∂t
≤ −ηγ

2

(
1

N

N∑
i=1

∂L(fθt(Si),yi)

∂fθt(Si)

)2

. (19)

This shows that the variation of L over time is bounded above by a negative value, implying it
decreases by at least the magnitude of this bound as time goes on, thereby guaranteeing convergence.

4.3 RENT ALGORITHM

Building on the insights into how sequence order influences parameter-based gradient descent and the
consistency between teaching an RNN and a nonparametric learner, we propose the ReNT algorithm.
This algorithm aims to amplify the steepness of gradients in order to enhance the learning efficiency of
the RNN. By treating the gradient as the sum of projections of ∂L(fθ,f

∗)
∂fθ

onto the basis {K(Si, ·)}N ,

the gradient norm can be increased simply by maximizing the projection coefficient ∂L(fθ(Si),yi)
∂fθ(Si)

,
eliminating the need to compute the norm of the basis ∥K(Si, ·)∥H (Wright, 2015; Zhang et al.,
2024). This indicates that selecting sequences that either maximize

∣∣∣∂L(fθ(Si),yi)
∂fθ(Si)

∣∣∣ or correspond to

the larger components of ∂L(fθ,f
∗)

∂fθ
can effectively amplify the gradient, implying that

{Si}m∗
= argmax

{Si}m⊆{Si}N

∥∥∥∥[∂L(fθ(Si),yi)

∂fθ(Si)

]
m

∥∥∥∥
2

. (20)

From a functional perspective, for a convex loss functional L, the norm of the partial derivative
of L with respect to fθ, denoted as ∥∂L(fθ)

∂fθ
∥H, is positively correlated with ∥fθ − f∗∥H. As fθ

7
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Figure 3: Training dynamics of f with PGD and FGD, where fPGD closely tracks fFGD, demonstrating empirical
consistency in their evolution.

gradually approaches f∗, the value of ∥∂L(fθ)
∂fθ
∥H decreases (Boyd et al., 2004; Coleman, 2012).

This relationship becomes particularly significant when L is strongly convex with a larger convexity
constant (Kakade & Tewari, 2008; Arjevani et al., 2016). Building on these insights, the ReNT
algorithm selects sequences by

{Si}m∗
= argmax

{Si}m⊆{Si}N

∥[fθ(Si)− f∗(Si)]m∥2 . (21)

The pseudocode, along with the element-level version, is presented in Algorithm 1.

5 EXPERIMENTS AND RESULTS

We begin by using a synthetic sequence to empirically show the evolution consistency between
parameter-based gradient descent (PGD) and functional gradient descent (FGD). Next, we evaluate
ReNT on sequence-level tasks, then proceed to validate it on element-level tasks. The overall results
on the test set are shown in Table 1, which clearly highlights the effectiveness of ReNT in sequential
property learning: it reduces training time by -32.77% to -46.39% for sequence-level tasks and -36%
to -39.17% for element-level tasks, all while maintaining comparable testing performance. Detailed
settings and additional discussion are given in Appendix C.

ReNT Dataset Time (s) Loss ↓ MAE ↓ ACC ↑

✗

Electricity 2394.97 0.0060±0.0011 0.0539±0.0042 -
Weather 1004.08 0.0035±0.0002 0.0278±0.0001 -

Yelp 22726.54 0.9547±0.0186 - 0.6033±0.0027
AG News 447.11 0.4656±0.0102 - 0.8782±0.0015

UD 519.27 0.5418±0.0453 - 0.8643±0.0028
CoNLL 394.40 0.4302±0.0172 - 0.8934±0.0035

✓

B

S

Electricity 1283.98 (-46.39%) 0.0049±0.0004 0.0515±0.0017 -
Weather 675.05 (-32.77%) 0.0034±0.0001 0.0277±0.0006 -

Yelp 14455.28 (-36.40%) 0.9323±0.0039 - 0.6043±0.0026
AG News 287.73 (-35.68%) 0.4095±0.0135 - 0.8783±0.0013

UD 316.03 (-39.17%) 0.4637±0.0279 - 0.8716±0.0042
CoNLL 252.35 (-36.00%) 0.3369±0.0245 - 0.8987±0.0071

Electricity 1330.68 (-44.44%) 0.0050±0.0003 0.0517±0.0008 -
Weather 696.70 (-30.63%) 0.0034±0.0001 0.0270±0.0006 -

Yelp 15071.09(-33.68%) 0.9344±0.0096 - 0.6027±0.0035
AG News 295.15 (-33.97%) 0.4062±0.0133 - 0.8775±0.0020

UD 335.32 (-35.45%) 0.4744±0.0195 - 0.8628±0.0019
CoNLL 261.89 (-33.61%) 0.3293±0.0136 - 0.9040±0.0046

Table 1: Training time and testing results across different bench-
marks. ReNT (B) and ReNT (S) demonstrate similar testing perfor-
mance while significantly reducing training time compared to the
"without ReNT", across sequence-level (Electricity, Weather, Yelp,
AG News) and element-level (UD, CoNLL) tasks.

Synthetic 1D sequence. For an in-
tuitive visualization, we utilize a
synthetic 1D sequence and present
the training dynamics of f obtained
through both PGD and FGD. Specif-
ically, this sequence is generated us-
ing AR(2) (i.e., the target mapping)
as f∗({xt−2, xt−1}) ≡ xt = 1.4 ∗
xt−1 − 0.6 ∗ xt−2 + ϵt, t ∈ N, with
initial x−2 = 1.2 and x−1 = −0.1
where ϵt is a white noise process with
zero mean and constant variance 0.42.
The function corresponding to PGD is
obtained by inputting the Fourier Fea-
ture embedding (Tancik et al., 2020)
of {xt−2, xt−1} into the RNN trained
using PGD, while the function corre-
sponding to FGD is represented by
dense points of the nonparametric function updated using FGD. As depicted in Figure 3, f∗ is well
fitted by both PGD and FGD. Moreover, the function obtained through PGD closely mirrors the one
obtained through FGD. This observation indicates the consistency in the evolution of the function
through both PGD and FGD, suggesting that teaching an RNN aligns with teaching a nonparametric
target function.

Given the common practice of training RNN in batches, i.e., sequences are fed in batches, it is both
natural and intuitive to implement ReNT at the batch level. This involves selecting batches that exhibit
the largest average discrepancy between the actual properties and the corresponding RNN outputs,
referred to as ReNT (B). Meanwhile, another variant, called ReNT (S), selects single sequence with
the largest discrepancies within each batch in proportion, then reorganizes the selected sequences
into new batches.

Sequence-level tasks. We evaluate ReNT on time series forecasting (i.e., sequence-level regression)
using the UCI Electricity Load Diagrams (Trindade, 2015) and Weather (for Biogeochemistry,

8
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2020) datasets, and on text classification (i.e., sequence-level classification) with the Yelp Review
Full (Zhang et al., 2015) and AG News (Zhang et al., 2015) datasets. To clearly showcase the
practical training efficiency of ReNT, we plot wall-clock time against evaluation metrics (MAE or
ACC) for each dataset. Validation is conducted at the end of each training epoch, meaning the model
is evaluated on the validation set after every training cycle.
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(d) AG News.
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Figure 4: Performance on the validation set
across various benchmarks.

Figures 4 (a) and (b) display the validation Mean Abso-
lute Error (MAE) curves for the two regression tasks. As
seen, the curve widths for ReNT (B) and ReNT (S) are
approximately halved and reduced by about one-third,
respectively, demonstrating significant reductions in to-
tal training time. Along with the results in Table 1, it is
clear that both ReNT (B) and ReNT (S) outperform the
"without ReNT" in terms of training loss and validation
MAE, while also considerably shortening training time.

Figures 4 (c) and (d) show the validation accuracy curves
for two text classification datasets of different sizes: the
large-scale Yelp Review Full and the smaller AG News.
As indicated by the curves, ReNT consistently reduces
total training time by more than a third, while achieving
similar validation accuracy on both datasets. Table 1 fur-
ther underscores the time-saving effect of ReNT, where
ReNT (B) reduces training time by over 2 hours on
the large-scale Yelp Review Full dataset (Zhang et al.,
2015). In both datasets, ReNT (B) slightly outperforms the "without ReNT" in terms of test metrics,
achieving a lower test loss. Overall, ReNT provides substantial training time savings in sequence-level
classification tasks without compromising performance.

Element-level tasks. We also assess ReNT on element-level classification tasks, using two widely
recognized benchmarks: Part-of-Speech tagging with the Universal Dependencies dataset (UD) (Nivre
et al., 2016), and Named Entity Recognition with the CoNLL-2003 dataset (CoNLL) (Tjong Kim Sang
& De Meulder, 2003).

As seen in Figures 4 (e) and (f), both ReNT (B) and ReNT (S) achieve validation performance on par
with the "without ReNT" setting for element-level classification tasks, within the same wall-clock
time. Furthermore, Table 1 indicates that ReNT (B) cuts total training time by over a third, while
consistently maintaining test performance comparable to the "without ReNT" setting across both
datasets. These results underscore the substantial improvements in training efficiency offered by
ReNT in element-level tasks, with generalization ability intact.

All experimental results across a range of sequential property learning tasks show that, despite
the overhead introduced by the sampling process, ReNT (B) and ReNT (S) consistently provide
significant training time reductions while achieving similar generalization performance, and in some
cases, even outperform the "without ReNT".

6 CONCLUDING REMARKS AND FUTURE WORK

This paper introduces ReNT, a novel paradigm that improves the learning efficiency of sequential
property learners (RNNs) through nonparametric teaching theory. Specifically, ReNT cuts the
wallclock time required to learn the implicit mapping from sequences to properties of interest by
32.77% to 46.39%, while preserving comparable test performance, as demonstrated by extensive
experiments. Moreover, ReNT establishes a theoretical link between the evolution of an RNN through
parameter-based gradient descent and the evolution of a function using functional gradient descent in
nonparametric teaching. This connection between nonparametric teaching theory and RNN training
expands the potential applications of nonparametric teaching in sequential property learning.

In future work, it would be intriguing to investigate the practical applications of ReNT to enhance the
efficiency of data-driven approaches (Touvron et al., 2021; AlQuraishi & Sorger, 2021) in sequential
property learning, especially in areas like DNA sequence analysis.
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REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our work. The detailed notation,
theoretical background, and algorithm are provided in Appendix A. All proofs of lemmas, theorems,
and propositions are included in Appendix B. Appendix C contains the full experimental setup,
including dataset-specific preprocessing procedures, implementation details of the algorithms, and
additional discussions.

STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

We used a large language model for language polishing on the manuscript (e.g., grammar and
wording). The research ideas, methods, experiments, analyses, figures/tables, and conclusions were
conceived and produced by the authors. The authors take full responsibility for all content.
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A ADDITIONAL DISCUSSIONS

A.1 NOTATION OVERVIEW

Notation Description
S1:S Sequence of length S consisting of ordered elements x1, · · · ,xS

[xs,j ]
⊤
d d-dimensional feature vector corresponding to the s-th element with

components xs,j

x Abbreviated notation for [xj ]d
XS×d Collection of all feature vectors, an S × d feature matrix
X(s,:) The s-th row of X (the feature vector for the s-th element)
X(:,i) The i-th column of X (The i-th feature across all elements)
ei The i-th basis vector (1 at the i-th position, 0 elsewhere)
S Collection of all sequences
y Property of the sequences (scalar or vector)
Y Space of sequential properties (R or Rn)
{ai}m A set containing m items
diag(a1, . . . , am) Diagonal matrix with entries a1, . . . , am
diag(a;m) Diagonal matrix with m repeated values a
NS := {1, · · · , S} Set of natural numbers from 1 to S
K(S,S′) A symmetric and positive definite sequence kernel
H Reproducing kernel Hilbert space (RKHS) defined by K
f∗ Target mapping from S to Y
y† Property f∗(S†) of sequence S†

Table 2: Summary of Key Notations.

A.2 FUNCTIONAL GRADIENT

Zhang et al., 2023b;a introduce the chain rule for functional gradients (Gelfand & Silverman, 2000)
(see Lemma 5) and use the Fréchet derivative to compute the derivative of the evaluation functional
in RKHS (Coleman, 2012) (cf. Lemma 6).

Lemma 5. (Chain rule for functional gradients) For differentiable functions G(F ) : R 7→ R that
depend on functionals F (f) : H 7→ R, the expression

∇fG(F (f)) =
∂G(F (f))

∂F (f)
· ∇fF (f) (22)

is typically referred to as the chain rule.

Lemma 6. The gradient of the evaluation functional at the feature x, defined as Ex(f) = f(x) :
H → R, is given by ∇fEx(f) = K(x, ·), where K(x,x′) : Rd × Rd → R represents a feature-
based kernel.

A.3 THE DERIVATION OF ORDER-AWARE UPDATES IN THE PARAMETER SPACE.

Before presenting the detailed derivation, we first provide visualizations of general RNNs: Figure 5a
illustrates a three-layer RNN, while Figure 5b shows a three-layer RNN with a lag-two recurrent
connection, the formulation of which is given in Equation 23.

X(ℓ,s) = σ
(
X(ℓ−1,s)W (ℓ) +X(ℓ,s−1)W

(ℓ)
r1 +X(ℓ,s−2)W

(ℓ)
r2 + b(ℓ)

)
X(L,S) = X(L−1,S)W (L) + b(L) (23)

The gradient for these extensions can be derived using the same approach as the one demonstrated
below, though with more complex, yet straightforward, notations.
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W_xh W_hh W_h_t h_t-1

W_ho

(a) A three-layer RNN.

W_xh W_hh W_h_t h_t-1

W_ho

(b) A three-layer RNN with a lag-
two recurrent connection.

Figure 5: Visualizations of general RNNs.

Consider the derivative of a two-layer RNN with an input sequence of length three:

∂fθ(S1:3)

∂θ
=

 ∂X(2,3)

∂W (2)︸ ︷︷ ︸
the second layer

,

row vector of size h0︷ ︸︸ ︷
∂X(2,3)

∂W
(1)
(:,1)

, · · · , ∂X
(2,3)

∂W
(1)
(:,h1)︸ ︷︷ ︸

the first layer, h1 terms

,

row vector of size h1︷ ︸︸ ︷
∂X(2,3)

∂W
(1)
r(:,1)

, · · · , ∂X(2,3)

∂W
(1)
r(:,h1)︸ ︷︷ ︸

the recurrent layer, h1 terms

 .(24)

By applying the chain rule, we can compute the derivative of fθ(S1:3) with respect to the second-layer
weights W (2), a vector of size h1, as follows:

∂X(2,3)

∂W (2)
=

∂X(1,3) ·W (2)

∂W (2)
= X(1,3)

= σ
(
X(0,3)W (1) + σ

(
X(0,2)W (1) + σ

(
X(0,1)W (1) + 0

)
W (1)

r

)
W (1)

r

)
.(25)

The derivative of fθ(S1:3) with respect to the first-layer weights, which are non-recurrent, is more
intricate. For i ∈ Nh1

,

∂X(2,3)

∂W
(1)
(:,i)

=
∂ σ
(
X(0,3)W (1) + σ

(
X(0,2)W (1) + σ

(
X(0,1)W (1) + 0

)
W

(1)
r

)
W

(1)
r

)
W (2)

∂W
(1)
(:,i)

=
∂
(
X(0,3)W (1) + σ

(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W

(1)
r

)
W

(1)
r

)
∂W

(1)
(:,i)

σ̇3W
(2)

=

X(0,3)e⊤i +
∂
(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W

(1)
r

)
∂W

(1)
(:,i)

σ̇2W
(1)
r

 σ̇3W
(2)

=

X(0,3)e⊤i +

X(0,2)e⊤i +
∂
(
X(0,1)W (1)

)
∂W

(1)
(:,i)

σ̇1W
(1)
r

 σ̇2W
(1)
r

 σ̇3W
(2)

=
(
X(0,3)e⊤i +

(
X(0,2)e⊤i +X(0,1)e⊤i σ̇1W

(1)
r

)
σ̇2W

(1)
r

)
σ̇3W

(2)

=
(
X(0,3)e⊤i +X(0,2)e⊤i σ̇2W

(1)
r +X(0,1)e⊤i σ̇1W

(1)
r σ̇2W

(1)
r

)
σ̇3W

(2)

= σ̇3X
(0,3)e⊤i W

(1)
r

0
W (2)︸ ︷︷ ︸

corresponds to s=3

+ σ̇3σ̇2X
(0,2)e⊤i W

(1)
r

1
W (2)︸ ︷︷ ︸

corresponds to s=2

+ σ̇3σ̇2σ̇1X
(0,1)e⊤i W

(1)
r

2
W (2)︸ ︷︷ ︸

corresponds to s=1

= σ̇3 X(0,3)︸ ︷︷ ︸
size: 1×h0

size: 1×1︷ ︸︸ ︷
W

(2)
(i,:) +σ̇3σ̇2 X(0,2)︸ ︷︷ ︸

size: 1×h0

size: 1×h1︷ ︸︸ ︷
W

(1)
r(i,:) W (2)︸ ︷︷ ︸

size: h1×1

+σ̇3σ̇2σ̇1 X(0,1)︸ ︷︷ ︸
size: 1×h0

size: 1×h1︷ ︸︸ ︷
W

(1)
r(i,:) W (1)

r︸ ︷︷ ︸
size: h1×h1

size: h1×1︷ ︸︸ ︷
W (2) ,(26)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

with the scalar σ̇ = ∂σ(x)
∂x , indexed by order s for specific inputs. Colored notations are used for

improved readability. With A[κ] :=
⊕0

i=κ−1 A
i = [Aκ−1 · · · AI], it can be rewritten in matrix

form as

∂X(2,3)

∂W
(1)
(:,i)

=

3∑
j=1

X(0,j)e⊤i W
(1)
r

3−j
W (2)

3∏
k=j

σ̇k


= e⊤i︸︷︷︸

size: 1×h1

W (1)
r

[3]︸ ︷︷ ︸
h1×3h1

diag
(
W (2); 3

)
︸ ︷︷ ︸

3h1×3

 3∏
k=j

σ̇kX
(0,j)


3︸ ︷︷ ︸

3×h0

(27)

The term e⊤i offers a clear approach to deriving the derivative for the other weights, ∂X(2,3)

∂W
(1)

(:,j)

, j ̸= i.

Take into account the derivative of fθ(S1:3) with respect to the first-layer recurrent weights, which is
more complicated. For i ∈ Nh1 ,

∂X(2,3)

∂W
(1)
r(:,i)

=
∂ σ
(
X(0,3)W (1) + σ

(
X(0,2)W (1) + σ

(
X(0,1)W (1) + 0

)
W

(1)
r

)
W

(1)
r

)
W (2)

∂W
(1)
r(:,i)

=
∂
(
X(0,3)W (1) + σ

(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W

(1)
r

)
W

(1)
r

)
∂W

(1)
r(:,i)

σ̇3W
(2)

=
∂ σ
(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W

(1)
r

)
W

(1)
r

∂W
(1)
r(:,i)

σ̇3W
(2)

=

∂
(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W

(1)
r

)
∂W

(1)
r(:,i)

σ̇2W
(1)
r

+ σ
(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W (1)

r

) ∂W
(1)
r

∂W
(1)
r(:,i)

 σ̇3W
(2)

=
(
σ
(
X(0,1)W (1)

)
e⊤i σ̇2W

(1)
r + σ

(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W (1)

r

)
e⊤i

)
σ̇3W

(2)

= σ̇3σ
(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W (1)

r

)
e⊤i W

(2) + σ̇3σ̇2σ
(
X(0,1)W (1)

)
e⊤i W

(1)
r W (2)

= σ̇3σ
(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W (1)

r

)
e⊤i W

(1)
r

0
W (2)︸ ︷︷ ︸

corresponds to s=2

+ σ̇3σ̇2σ
(
X(0,1)W (1)

)
e⊤i W

(1)
r

1
W (2)︸ ︷︷ ︸

corresponds to s=1

= σ̇3 σ
(
X(0,2)W (1) + σ

(
X(0,1)W (1)

)
W (1)

r

)
︸ ︷︷ ︸

size: 1×h1

size: 1×1︷ ︸︸ ︷
W

(2)
(i,:) +σ̇3σ̇2 σ

(
X(0,1)W (1)

)
︸ ︷︷ ︸

size: 1×h1

size: 1×h1︷ ︸︸ ︷
W

(1)
r(i,:) W (2)︸ ︷︷ ︸

size: h1×1

= σ̇3 X(1,2)︸ ︷︷ ︸
size: 1×h1

size: 1×1︷ ︸︸ ︷
W

(2)
(i,:) +σ̇3σ̇2 X(1,1)︸ ︷︷ ︸

size: 1×h1

size: 1×h1︷ ︸︸ ︷
W

(1)
r(i,:) W (2)︸ ︷︷ ︸

size: h1×1

(28)
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Figure 6: Graphical illustration of RNTK computation: Kθ(S1:3,S
′
1:2) =

〈
∂fθ(S)

∂θ
, ∂fθ(S

′)
∂θ

〉
=

∂fθ(S)

∂W
(2)
(1)

∂fθ(S
′)

∂W
(2)
(1)

+ · · ·+ ∂fθ(S)

∂W
(2)
(h1)

∂fθ(S
′)

∂W
(2)
(h1)

+ ∂fθ(S)

∂W
(1)
(1,1)

∂fθ(S
′)

∂W
(1)
(1,1)

+ · · ·+ ∂fθ(S)

∂W
(1)
(d,h1)

∂fθ(S
′)

∂W
(1)
(d,h1)

+ ∂fθ(S)

∂W
(1)
r(1,1)

∂fθ(S
′)

∂W
(1)
r(1,1)

+

· · ·+ ∂fθ(S)

∂W
(1)
r(h1,h1)

∂fθ(S
′)

∂W
(1)
r(h1,h1)

.

It can be expressed in matrix form as

∂X(2,3)

∂W
(1)
r(:,i)

=

3∑
j=1

X(1,j−1)e⊤i W
(1)
r

3−j
W (2)

3∏
k=j

σ̇k

 #X(1,0) = 0

= e⊤i︸︷︷︸
size: 1×h1

W (1)
r

[3]︸ ︷︷ ︸
h1×3h1

diag
(
W (2); 3

)
︸ ︷︷ ︸

3h1×3

 3∏
k=j

σ̇kX
(1,j−1)


3︸ ︷︷ ︸

3×h0

(29)

The explicit expressions above reveal that the sequence order governs the power of W (1)
r in the

gradients, with temporal dependencies in the input sequence reflected in the varying powers of the
recurrent weights. The matrix form clearly shows that the RNN gradient is not affected by the length
of the input sequence (i.e., the number of elements), but instead depends on the feature dimension. In
other words, the parameter gradient stays the same even if the input sequence length S is scaled.

A.4 RECURRENT NEURAL TANGENT KERNEL (RNTK)

By substituting the parameter evolution (Equation 7)

∂θt

∂t
= − η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

·
[
∂fθt(Si)

∂θt

]
N

. (30)
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into the first-order approximation term (∗) of Equation 14, it gets

(∗) =

〈
∂fθt(·)
∂θt

,− η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

·
[
∂fθt(Si)

∂θt

]
N

〉

= − η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

·
〈
∂fθt(·)
∂θt

,

[
∂fθt(Si)

∂θt

]
N

〉
= − η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

·
[〈

∂fθt(·)
∂θt

,
∂fθt(Si)

∂θt

〉]
N

= − η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

· [Kθt(Si, ·)]N , (31)

which derives Equation 15 as

∂fθt

∂t
= − η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

· [Kθt(Si, ·)]N + o

(
∂θt

∂t

)
, (32)

where the symmetric and positive definite Kθt(Si, ·) :=
〈

∂fθt (Si)
∂θt ,

∂fθt (·)
∂θt

〉
is referred to as recurrent

neural tangent kernel (RNTK) (Alemohammad et al., 2021; Emami et al., 2021). Figure 6 shows the
process of calculating the RNTK. Simply put, examining a model behavior by focusing on the model
itself, rather than on its parameters, typically involves using kernel functions.

It can be seen that the quantity ∂fθt (·)
∂θt , which represents the partial derivative of the RNN with

respect to its parameters, appears in Kθt(Si, ·) =
〈

∂fθt (Si)
∂θt ,

∂fθt (·)
∂θt

〉
, is determined by both the

structure and the specific parameters θt, but does not rely on the input sequence. The other term
∂fθt (Si)

∂θt depends not only on the RNN structure and specific θt, but also on the input sequence.
If the input to ∂fθt (Si)

∂θt is not specified, the RNTK reduces to its general form Kθt(·, ·). When
a specific sequence Sj is defined as the input for ∂fθt (·)

∂θt , RNTK becomes a scalar, expressed as
Kθt(Si,Sj) = ⟨∂fθt (Si)

∂θt ,
∂fθt (Sj)

∂θt ⟩. These align with the kernel used in functional gradient descent.
By specifying the input sequence Si, one coordinate of Kθt is fixed, directing the RNN to update
along Kθt(Si, ·), with the update magnitude determined by ∂fθt (Si)

∂θt . This process adheres to the
fundamental concept of functional gradient descent. In essence, the RNTK and the canonical kernel
share a consistent mathematical structure and exhibit similar influences on the evolution of the
corresponding RNN. Additionally, Theorem 3 underscores the asymptotic relationship between the
RNTK and the canonical kernel within the context of functional gradient descent.
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A.5 RENT ALGORITHM

Algorithm 1 ReNT Algorithm
Input: Target mapping f∗ realized by a dense set of sequence-property pairs, initial RNN fθ0 , the
size of selected training set m ≤ N , small constant ϵ > 0 and maximal iteration number T .

Set fθt ← fθ0 , t = 0.

while t ≤ T and ∥[fθt(Si)− f∗(Si)]N∥2 ≥ ϵ do
The teacher selects m teaching sequences:

/* (Sequence-level) Sequences corresponding to the m largest
|fθt(Si)− f∗(Si)|. */

{Si}m∗
= argmax

{Si}m⊆{Si}N

∥[fθt(Si)− f∗(Si)]m∥2.

/* (Element-level) Sequences associated with the m largest
∥fθt (Si)−f∗(Si)∥2

Si
. */

{Si}m∗
= argmax

{Si}m⊆{Si}N

∥∥∥[ fθt (Si)−f∗(Si)
Si

]
m

∥∥∥
F

, with Frobenius norm ∥ · ∥F .

Provide {Si}m∗ to the RNN learner.

The learner updates fθt based on received {Si}m∗:

// Parameter-based gradient descent.
θt ← θt − η

m

∑
Si∈{Si}m

∗ ∇θL(fθt(Si), f
∗(Si)).

Set t← t+ 1.
end
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B DETAILED PROOFS

Before diving into the detailed proofs, we first introduce the gradient of an evaluation functional
ES(f).

Lemma 7. The gradient of an evaluation functional ES(f) = f(S) : H 7→ R is ∇fES(f) = KS .

B.1 PROOF OF LEMMA 7

Let us define a function ϕ by adding a small perturbation ϵg (ϵ ∈ R, g ∈ H) to f ∈ H, so that
ϕ = f + ϵg. Since RKHS is closed under addition and scalar multiplication, ϕ ∈ H. Thus, for an
evaluation functional ES [f ] = f(S) : H 7→ R, we can evaluate ϕ at S as

ES [ϕ] = ES [f + ϵg]

= ES [f ] + ϵES [g] + 0

= ES [f ] + ϵ⟨K(S, ·), g⟩H + 0 (33)

Referring to the implicit definition of the Fréchet derivative in an RKHS (see Definition 2), given by
ES [f + ϵg] = ES [f ] + ϵ⟨∇fES [f ], g⟩H + o(ϵ), it follows from Equation 33 that the gradient of the
evaluation functional is ∇fES [f ] = KS .

■

B.2 PROOF OF THEOREM 3

By analyzing the evolution of an RNN through parameter changes and from a high-level viewpoint
within the function space, we gain

− η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

· [K(Si, ·)]N

= − η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

·
[〈

∂fθt(Si)

∂θt
,
∂fθt(·)
∂θt

〉]
N

+ o

(
∂θt

∂t

)
. (34)

After the reorganization, we obtain

− η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

· [K(Si, ·)−Kθt(Si, ·)]N = o

(
∂θt

∂t

)
. (35)

By incorporating the evolution of the parameters

∂θt

∂t
= −η ∂L

∂θt
= − η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

·
[
∂fθt(Si)

∂θt

]
N

(36)

into the remainder, we obtain

− η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

· [K(Si, ·)−Kθt(Si, ·)]N = o

(
− η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

·
[
∂fθt(Si)

∂θt

]
N

)
. (37)

When training an RNN with a convex loss L, which is convex with respect to fθ but not necessarily
with respect to θ, the following limit holds for the vector: limt→∞

[
∂L(fθt (Si),yi)

∂fθt (Si)

]
N

= 0. Since the
right-hand side of this equation is a higher-order infinitesimal than the left, maintaining this equality
leads to the conclusion that

lim
t→∞

[K(Si, ·)−Kθt(Si, ·)]N = 0. (38)

This indicates that for every S ∈ {Si}N , GNTK converges pointwise to the canonical kernel.

■
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B.3 PROOF OF PROPOSITION 4

Referring back to the definition of the Fréchet derivative in Definition 2, the convexity of L indicates
that

∂L
∂t
≤
〈

∂L
∂fθt+1

,
fθt

∂t

〉
H︸ ︷︷ ︸

Υ

. (39)

By determining the Fréchet derivative of ∂L
∂fθt+1

and the evolution of fθt , the term on the right-hand
side, Υ, can be written as

Υ =
〈
Gt+1,−ηGt

〉
H

= − η

N2

〈[
∂L(fθt+1(Si),yi)

∂fθt+1(Si)

]⊤
N

· [KSi
]N , [KSi

]⊤N ·
[
∂L(fθt(Si),yi)

∂fθt(Si)

]
N

〉
H

= − η

N2

[
∂L(fθt+1(Si),yi)

∂fθt+1(Si)

]⊤
N

·
〈
[KSi ]N , [KSi ]

⊤
N

〉
H ·
[
∂L(fθt(Si),yi)

∂fθt(Si)

]
N

= − η

N

[
∂L(fθt(Si),yi)

∂fθt(Si)

]⊤
N

K̄

[
∂L(fθt+1(Si),yi)

∂fθt+1(Si)

]
N

, (40)

where K̄ = K/N , and K is an N × N symmetric, positive definite matrix with elements
K(Si,Sj) located at the i-th row and j-th column. For simplicity, we use the shorthand nota-

tion ∂f
θ□
L(fθ□ ;Si) :=

∂L(f
θ□

(Si),yi)

∂f
θ□

(Si)
. The last term in Equation 40 can then be rewritten as

− η

N

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθt+1L(fθt+1 ;Si)

]
N

= − η

N

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
([

∂fθt+1L(fθt+1 ;Si)
]
N
+
[
∂fθtL(fθt ;Si)

]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
= − η

N

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθtL(fθt ;Si)

]
N

− η

N

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
([

∂fθt+1L(fθt+1 ;Si)
]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
= − η

N

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθtL(fθt ;Si)

]
N

+
η

N

([
∂fθt+1L(fθt+1 ;Si)

]⊤
N
−
[
∂fθtL(fθt ;Si)

]⊤
N
−
[
∂fθt+1L(fθt+1 ;Si)

]⊤
N

)
·K̄ ·

([
∂fθt+1L(fθt+1 ;Si)

]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
. (41)

The final term in Equation 41 above can be expanded as
η

N

([
∂fθt+1L(fθt+1 ;Si)

]⊤
N
−
[
∂fθtL(fθt ;Si)

]⊤
N
−
[
∂fθt+1L(fθt+1 ;Si)

]⊤
N

)
·K̄
([

∂fθt+1L(fθt+1 ;Si)
]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
=

η

N

([
∂fθt+1L(fθt+1 ;Si)

]
N
−
[
∂fθtL(fθt ;Si)

]
N

)⊤
K̄
([

∂fθt+1L(fθt+1 ;Si)
]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
− η

N

[
∂fθt+1L(fθt+1 ;Si)

]⊤
N
K̄
([

∂fθt+1L(fθt+1 ;Si)
]
N
−
[
∂fθtL(fθt ;Si)

]
N

)
=

η

N

[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]
N

− η

N

([
∂fθt+1L(fθt+1 ;Si)

]
N
− 1

2

[
∂fθtL(fθt ;Si)

]
N

)⊤

K̄

([
∂fθt+1L(fθt+1 ;Si)

]
N
− 1

2

[
∂fθtL(fθt ;Si)

]
N

)
+

η

4N

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθtL(fθt ;Si)

]
N
. (42)

Since K̄ is positive definite, it is evident that

η

N

([
∂fθt+1L(fθt+1 ;Si)

]
N
− 1

2

[
∂fθtL(fθt ;Si)

]
N

)⊤

K̄

([
∂fθt+1L(fθt+1 ;Si)

]
N
− 1

2

[
∂fθtL(fθt ;Si)

]
N

)
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is a non-negative term. Therefore, by combining Equations 40, 41, and 42, we get

Υ ≤ − 3η

4N

[
∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθtL(fθt ;Si)

]
N︸ ︷︷ ︸

Φ

+
η

N

[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]
N︸ ︷︷ ︸

Ψ

.

(43)

Given the definition of the evaluation functional and the assumption that L is Lipschitz smooth with
a constant τ > 0, the term Ψ in the final part of Equation 43 is upper-bounded as follows:

Ψ =
[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]⊤
N
K̄
[
∂fθt+1L(fθt+1 ;Si)− ∂fθtL(fθt ;Si)

]
N

=

[
ESi

(
∂L(fθt+1)

∂fθt+1

− ∂L(fθt)

∂fθt

)]⊤
N

K̄

[
ESi

(
∂L(fθt+1)

∂fθt+1

− ∂L(fθt)

∂fθt

)]
N

≤ τ2 [ESi (fθt+1 − fθt)]
⊤
N K̄ [ESi (fθt+1 − fθt)]N

= τ2
〈
(fθt+1 − fθt) , [KSi

]
⊤
N

〉
H
· K̄ · ⟨[KSi

]N , (fθt+1 − fθt)⟩H

= η2τ2 ·
[
∂fθtL(fθt ;Si)

]⊤
N

〈
[KSi

]N , [KSi
]⊤N
〉
H

N
· K̄ ·

〈
[KSi

]N , [KSi
]⊤N
〉
H

N
·
[
∂fθtL(fθt ;Si)

]
N
.

(44)

Given the assumption that the canonical kernel is bounded above by a constant γ > 0, we have〈
[KSi

]N , [KSi
]⊤N
〉
H ≤ γ

〈
[1]N , [1]⊤N

〉
,

and

K̄ ≤ γ

N

〈
[1]N , [1]⊤N

〉
.

Consequently, Φ is upper bounded by

Φ ≤ γ

N

〈[
∂fθtL(fθt ;Si)

]⊤
N
, [1]N

〉 〈
[1]⊤N ,

[
∂fθtL(fθt ;Si)

]
N

〉
=

γ

N

(
N∑
i=1

∂fθtL(fθt ;Si)

)2

. (45)

Additionally, the final term in Equation 44 is also bounded from above:

η2τ2 ·
[
∂fθtL(fθt ;Si)

]⊤
N

〈
[KSi

]N , [KSi
]⊤N
〉
H

N
· K̄ ·

〈
[KSi

]N , [KSi
]⊤N
〉
H

N
·
[
∂fθtL(fθt ;Si)

]
N

≤ η2τ2

[
γ

N

N∑
i=1

∂fθtL(fθt ;Si)

]⊤
· K̄ ·

[
γ

N

N∑
i=1

∂fθtL(fθt ;Si)

]
N

≤ η2τ2γ3

N

〈[
1

N

N∑
i=1

∂fθtL(fθt ;Si)

]⊤
N

, [1]N

〉〈
[1]⊤N ,

[
1

N

N∑
i=1

∂fθtL(fθt ;Si)

]
N

〉

=
η2τ2γ3

N

(
N∑
i=1

∂fθtL(fθt ;Si)

)2

. (46)

Therefore, by combining Equations 43, 44, 45, and 46, we obtain

Υ ≤ −ηγ
(
3

4
− η2τ2γ2

)(
1

N

N∑
i=1

∂fθtL(fθt ;Si)

)2

, (47)
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which means

∂L
∂t
≤ Υ ≤ −ηγ

(
3

4
− η2τ2γ2

)(
1

N

N∑
i=1

∂fθtL(fθt ;Si)

)2

. (48)

Thus, if η ≤ 1
2τγ , it follows that

∂L
∂t
≤ −ηγ

2

(
1

N

N∑
i=1

∂fθtL(fθt ;Si)

)2

= −ηγ

2

(
1

N

N∑
i=1

∂L(fθt(Si),yi)

∂fθt(Si)

)2

. (49)

■
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C EXPERIMENT DETAILS

This section provides an overview of the experiment, including the setup, additional results, and a
brief analysis of sequence-level and element-level tasks on benchmark datasets. The code will be
made available.

C.1 EXPERIMENTAL SETUP

Device Setup. All experiments are conducted using NVIDIA GeForce RTX 3090 (24GB) GPUs.

Datasets. We assess ReNT on a range of widely used benchmark datasets across various tasks:

• UCI Electricity Load Diagrams (Trindade, 2015) (referred to as Electricity; CC BY 4.0):
A multivariate time series dataset featuring electricity consumption data from 370 clients,
commonly used for forecasting tasks. It contains 26,304 hourly records across all series.

• Weather (for Biogeochemistry, 2020) (CC BY 4.0): A meteorological time series dataset that
includes hourly climate data such as temperature, humidity, and wind speed. It comprises
52,696 hourly observations collected over six years.

• Yelp Review Full (Zhang et al., 2015) (referred to as Yelp): A sentiment classification
dataset containing complete user reviews, with ratings ranging from 1 to 5 stars. The dataset
includes 650,000 labeled samples evenly distributed across five classes.

• AG News (Zhang et al., 2015): A topic classification dataset consisting of news articles
from four categories: World, Sports, Business, and Sci / Technology. It contains 120,000
samples, with 30,000 instances per class.

• Universal Dependencies (UD) (Nivre et al., 2016): A part-of-speech tagging dataset built
from treebanks in several languages, designed for syntactic analysis. It includes over 15,000
annotated samples across multiple languages.

• CoNLL-2003 (Tjong Kim Sang & De Meulder, 2003) (referred to as CoNLL): A named
entity recognition benchmark made up of annotated newswire data from Reuters, covering
entities such as people, organizations, locations, and miscellaneous categories. The dataset
contains over 20,000 annotated samples.

We use the Electricity and Weather datasets in sequence-level tasks for time series forecasting.
To accommodate model capacity and sequence diversity, we select the top 40 most variant series
from the Electricity dataset, meanwhile, utilize the complete Weather dataset. For the Electricity
dataset, we adopt a sliding window setup, where each input sequence consists of the past 180 time
steps used to predict the next 72 time steps. For the Weather dataset, we use the past 96 time
steps as input to forecast the next 24 time steps. All time series inputs are standardized using a
StandardScaler (Pedregosa et al., 2011), and then split into training, validation, and test sets with a
ratio of 70% / 15% / 15%.

We use the Yelp and AG News datasets in sequence-level tasks for text classification. Specifically, We
hold out 10% of the original training set for validation, and adopt the official test sets for evaluation.

We use the UD and CoNLL datasets in element-level tasks for part-of-speech tagging and named
entity recognition, respectively. We follow the official splits provided by the dataset authors for
training, validation, and testing.

The train/validation/test configurations for all benchmark datasets are summarized in Table 3.

Dataset train validation test

Electricity 3063 657 657
Weather 1149 237 237

Yelp 585000 65000 50000
AG News 108000 12000 7600

UD 12543 2002 2077
CoNLL 14987 3466 3684

Table 3: Dataset splitting for the benchmark datasets.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

ReNT strategy. To accommodate the specific characteristics of different datasets, ReNT adopts
various sampling ratios and interval strategies accordingly.

• Sampling Ratio
– Step – Incrementing the sampling ratio from a predefined minimum (i.e., init-ratio) to 100%

in equal intervals, where the ratio increases stage-by-stage based on training progress.
– R-Step – Decrementing the sampling ratio from a predefined maximum (i.e., init-ratio) to a

predefined minimum in equal intervals, where the ratio gradually decreases stage-by-stage
as training progresses.

• Sampling Interval
– Incremental (Zhang et al., 2024) – Sampling is performed frequently during an initial

proportion of training, after which the sampling interval gradually increases as training
progresses.

– Constant – Sampling is triggered at the beginning of training, and subsequently performed
at a fixed interval throughout the rest of training.

Given the distinct modality characteristics of each dataset, we design our sampling strategies ac-
cordingly. For time series regression tasks, the input exhibits strong temporal dependencies and
relatively stable structural patterns. In early training stages, the model typically lacks awareness of
global trends. Therefore, we apply the Step + Incremental strategy, starting with frequent sampling of
representative subsets and gradually increasing the sampling ratio. This helps the model progressively
learn temporal dynamics while reducing redundant computation in later phases.

In contrast, textual classification tasks involve data with high diversity, complex syntactic structures,
and strong context-dependent semantics. To enable the model to broadly capture diverse linguistic
patterns in early stages, we employ the R-step + Constant strategy, i.e., a high initial sampling
ratio with a fixed interval, then gradually reduce the sampling ratio as training proceeds, which is
more suitable for textual modalities, allowing efficient training while preserving model stability and
improving generalization.

The detailed hyperparameter settings for each dataset are listed in Table 4. We also conduct ablation
studies on the key sampling parameter init-ratio to evaluate its effect on training efficiency and
performance. Detailed results are presented in Table 5 and Table 6, which report results based on the
ReNT (B) variant. For a detailed description of the sampling strategies applied to each dataset, please
refer to Section C.3.

Hyperparameter Settings. The key hyperparameter settings for all benchmark datasets are listed in
Table 4.

Dataset lr Batch-size RNN Layers Hidden size Sampling ratio Sampling interval Init-ratio Epochs

Electricity 0.0001 32 2 128 Step Incremental 0.1 30
Weather 0.00005 32 2 128 Step Incremental 0.05 100

Yelp 0.0001 256 2 64 R-Step Constant 0.7 100
AG News 0.0002 256 2 64 R-Step Constant 0.7 50

UD 0.0002 32 2 64 R-Step Constant 0.8 75
CoNLL 0.0002 32 2 64 R-Step Constant 0.7 50

Table 4: Key hyperparameter settings for the benchmark datasets, with the “Sampling ratio”, “Sampling interval”,
and “Init-ratio” specified for ReNT.

Dataset Metric 0.05 0.1 0.2 0.3 0.5 full

Electricity MAE 0.0542 0.0515 0.0526 0.053 0.0509 0.0539
Training time (s) 1225.31 1283.98 1459.99 1502.57 2040.74 2394.97

Weather MAE 0.0268 0.0282 0.0270 0.0315 0.0265 0.0278
Training time (s) 419.98 560.23 624.71 709.78 829.22 1004.08

Table 5: Performance comparison under different init-ratio settings on regression datasets.

Time Consumption Details. The selection process in ReNT mainly involves model inference and
a subsequent ranking step, whose cost is much lower than backpropagation, especially for high-
dimensional sequence data. As shown in Table 7, on the Yelp dataset, both ReNT (B) and ReNT (S)
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Dataset Metric 0.9 0.8 0.7 0.75 0.6 full

UD ACC 0.8659 0.8716 0.8652 0.8652 0.8623 0.8643
Training time (s) 355.68 316.03 303.69 299.73 285.76 519.27

CoNLL ACC 0.9045 0.9020 0.8987 0.8930 0.8988 0.8934
Training time (s) 401.99 282.88 252.35 232.47 201.84 394.40

Table 6: Performance comparison under different init-ratio settings on classification datasets.

considerably reduce the overall training time compared with the baseline, even when including the
sampling stage.

ReNT Sampling Time (s) Training/Validating Time (s) Full Time (s)

✗ - 24815.66 24815.66
B 957.67 13117.38 14075.05
S 988.63 13316.91 14305.54

Table 7: Time consumption comparison with and without ReNT on the Yelp dataset.

C.2 GENERALIZABILITY OF RENT ON RNN VARIANTS

The concept and analysis of ReNT hold great potential for broader applications. Although it is beyond
the scope of this paper, we also validate the adaptability and generality of ReNT across different
recurrent neural network architectures. We replaced the default two-layer vanilla RNN used in the
main experiments with two variants: a two-layer GRU and a two-layer LSTM. Experiments were
conducted on the Electricity dataset, and the results are summarized in Table 8. As shown, both
ReNT (B) and ReNT (S) consistently outperform the "without ReNT" in terms of testing loss and
mean absolute error (MAE). More notably, both variants achieve a substantial reduction in training
time—approximately one-third—demonstrating significant efficiency gains consistent with those
observed in the original RNN setting. These results demonstrate that ReNT’s training efficiency
enhancement is not restricted to specific RNN architectures, confirming its general applicability as
expected.

ReNT Variants Training Time (s) Testing Loss ↓ Testing MAE ↓

✗
GRU (Cho et al., 2014b) 1941.13 0.0041 0.0461

LSTM (Hochreiter & Schmidhuber, 1997) 2247.06 0.0052 0.0489

B
GRU (Cho et al., 2014b) 1278.01 0.0040 0.0458

LSTM (Hochreiter & Schmidhuber, 1997) 1223.72 0.0050 0.0471

S
GRU (Cho et al., 2014b) 1242.38 0.0041 0.0468

LSTM (Hochreiter & Schmidhuber, 1997) 1254.27 0.0048 0.0470

Table 8: Performance comparison of ReNT on RNN variants on the Electricity dataset.

To further examine the scalability of ReNT, we conducted additional experiments on larger recurrent
architectures with increased numbers of layers and hidden sizes. Although existing research on RNNs
typically adopts relatively lightweight architectures with no more than four layers Feng et al. (2024),
which is also consistent with most of our experimental settings, we aim to verify whether the efficiency
benefits of ReNT persist in deeper and wider configurations. As summarized in Table 9, both ReNT
(B) and ReNT (S) maintain competitive or improved predictive accuracy while substantially reducing
training time—often by nearly half—compared with the corresponding settings without ReNT. This
confirms that the advantages of ReNT extend robustly to larger RNN configurations.

C.3 ADDITIONAL DISCUSSION

After an extensive literature survey, we find that no mature methods have emerged in recent years
that apply sample selection strategies—including curriculum learning (Bengio et al., 2009) and active
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ReNT Layers / Hidden Size Training Time (s) Testing Loss ↓ Testing MAE ↓

✗

6 / 128 3253.90 0.0061 0.0566
6 / 256 3173.86 0.0088 0.0700
8 / 128 3486.68 0.0078 0.0657
8 / 256 4117.61 0.0074 0.0633

B

6 / 128 1816.87 0.0061 0.0542
6 / 256 1696.54 0.0055 0.0541
8 / 128 2044.74 0.0058 0.0557
8 / 256 2209.65 0.0058 0.0544

S

6 / 128 1994.76 0.0059 0.0547
6 / 256 1827.34 0.0061 0.0560
8 / 128 1935.30 0.0062 0.0566
8 / 256 2268.56 0.0056 0.0542

Table 9: Performance comparison of ReNT with different layer and hidden size settings.

learning (Cohn et al., 1996)—to specifically improve the training efficiency of RNNs, which may
also represent a promising direction for future research.

Sequence-level tasks. In sequence-level regression tasks, we adopt the Step + Incremental sampling
strategy. Specifically, during an initial short phase of training, sampling is performed frequently.
After this phase, the sampling interval gradually increases. Throughout the entire training process, the
sampling ratio starts from the initial value init-ratio and progressively increases until it reaches 100%.
For the relatively smaller Weather dataset, we set the ratio to 0.05, while for the more challenging
Electricity dataset, where feature patterns are harder to capture, we use a higher value of 0.1.

As shown in Figure 7, although frequent sampling is applied at the beginning, ReNT (B) and ReNT (S)
select only a small subset of the most diverse samples in the time series. As a result, their validation
loss decreases at a comparable rate to the "without ReNT" setting, while substantially shortening the
overall training time.
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Figure 7: Validation loss performance on sequence-level regression tasks.

In sequence-level classification tasks, we adopt the R-Step + Constant sampling strategy. Specifically,
a higher sampling ratio of 0.7 is used at the beginning of training to cover more examples, and the
ratio gradually decreases to a minimum of 0.4 as training progresses. The sampling interval remains
fixed throughout the entire training process. This strategy is applied consistently across both datasets
used for classification.

Figure 8 presents the validation loss curves under this strategy on two datasets of different scales.
ReNT (B) and ReNT (S) exhibit similar descending trends compared to the "without ReNT" setting.
Due to the dynamic nature of the sampled data subsets, some fluctuations appear during the earlier
stages, but the curves gradually stabilize and eventually converge to lower loss values than those of
"without ReNT". Moreover, the training process terminates much earlier, further demonstrating the
efficiency of ReNT under this strategy. Detailed results are reported in Table 6.

Element-level tasks. Similar to the setup for sequence-level classification, we adopt the R-Step +
Constant sampling strategy for element-level classification tasks. Specifically, an initial sampling
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Figure 8: Validation loss performance on sequence-level classification tasks.

ratio of 0.8 is used for the named entity recognition task on the UD dataset, while a ratio of 0.7 is
applied to the part-of-speech tagging task on the CoNLL-2003 dataset. The minimum sampling ratio
in both cases is set to 0.4, and the sampling interval remains constant throughout training.

Figure 9 shows the validation loss curves under this configuration. In both tasks, ReNT (B) and
ReNT (S) exhibit almost identical loss reduction trends to the "without ReNT" setting during the
early training stages. Nevertheless, both methods terminate training substantially earlier and converge
to lower final loss values, demonstrating clear efficiency gains with no compromise in model quality.
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Figure 9: Validation loss performance on element-level classification tasks.
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