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Abstract

Self supervised learning involves learning general-
purpose representations that can be useful in a va-
riety of downstream tasks. In this work, we study
the application of speech-embeddings derived
from popular self-supervised learning frameworks
such as wav2vec-2.0 and HuBERT over four dif-
ferent speech-classification tasks such as senti-
ment classification, command detection, emotion
classification and depression detection. We distin-
guish between and discuss self-supervised train-
ing tasks that induce localized and global features
of speech based on their temporal granularity:
noting that self-supervised representation learn-
ing frameworks based on the masked language-
modeling objective — such as wav2vec-2.0 and
HuBERT - induce localized embeddings, we de-
fine a self-supervised learning framework based
on SimSiam for learning global features of speech.
Through our evaluations, we find that these global
representations are better suited for tasks such as
depression detection and emotion classification
while the localized embeddings of speech can
be very useful in tasks such as speech-command
detection; we also find that our proposed model
outperforms TRILL — a popular model for learn-
ing global representations. Finally, we also pro-
pose and confirm empirically that combining the
global and localized representations of speech
helps obtain better performance across a range
of downstream tasks than each of the individual
embedding methods.
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1. Introduction

Self-supervised learning frameworks aim to learn general
purpose representations from large amounts of data through
strategically defined training tasks that do not require per-
instance manual annotations. Popular self-supervised learn-
ing frameworks include: contrastive learning frameworks
(Chen et al., 2020b;c; He et al., 2020; Henaff, 2020), clus-
tering frameworks (Asano et al., 2019; Caron et al., 2020)
and non-contrastive learning frameworks (Grill et al., 2020;
Chen & He, 2021). In this work we will explore the use of
simple siamese representation learning (SimSiam) (Chen &
He, 2021), a non-contrastive representation learning frame-
work, for speech.

As part of the self-supervised learning setup, models are
trained on cleverly defined pretext tasks to obtain general
purpose representations which can then be used for the
downstream tasks. In the context of learning self-supervised
representations of speech, we can categorize the pretext
tasks as:

* Localized pretext tasks focus on learning segment-
level representations of speech conditional on remain-
ing contextual segments of the speech. As an example,
self-supervised learning frameworks over raw speech
waves that use masked prediction as the pretext task
(Baevski et al., 2020; Hsu et al., 2021; Shor et al.,
2020) are said to induce localized representations of
speech as the task involves learning to represent and
identify segments of speech conditional on the remain-
ing segments; these localized representations of speech
can be used to obtain state-of-the-art performance in
automatic speech recognition (ASR) (Van den Oord
et al., 2018; Baevski et al., 2020; Hsu et al., 2021).
In summary, examples of localized pretext tasks for
speech include: predicting the content of the unseen
regions (Chung & Glass, 2020; Liu et al., 2020), lan-
guage model-style pre-training (Chung et al., 2019),
predicting discrete targets of masked regions (Baevski
et al., 2019; 2020; Hsu et al., 2021), combining self-
supervised learning with adversarial training (Baevski
et al., 2021).

* Global pretext tasks focus on learning global repre-
sentations of entire speech wave. For example, (Saeed
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et al., 2021) proposes to contrastively learn represen-
tations of mel-spectrograms derived from speech seg-
ments — on the other hand, wav2vec-2.0 contrastively
learns representations of speech segments conditional
on remaining segments of the raw speech. In a similar
vein, (Niizumi et al., 2021) proposes a self-supervised
learning strategy based on BYOL (Grill et al., 2020)
for learning representations of spectrograms derived
from speech segments without requiring the use of neg-
ative samples (i.e. without contrastive learning). Some
other examples of self-supervised learning frameworks
based on global pretext tasks (Chen et al., 2021; Shor
et al., 2020; Jiang et al., 2020; Shor et al., 2021) are
usually 1) applied to mel-spectrograms; and 2) use con-
trastive learning frameworks which rely on negative
samples, thus requiring large batch sizes to train the
models.

Intuitively, localized features of speech effectively represent
fine details of speech segments conditional on remaining
speech segments — the state-of-the-art performance in ASR
obtained by the use of localized features support this intu-
ition. On the other hand, global features of speech represent
more temporally stable elements of speech and as we show
in our results, these global representations of speech are
better suited than localized representations to downstream
tasks such as emotion classification and depression detec-
tion. In fact, TRILL(Shor et al., 2020) was proposed to
learn such non-semantic representations of speech. Accord-
ingly, the localized representations of speech depend on the
speech duration and change quickly throughout a speech
sample, whereas global representations do not. In general,
a global representation of speech can be obtained from the
localized features of speech — such as those obtained from
BERT-style training — by averaging across the constituent
speech segments. We note that we can draw a parallel to
text-representation learning: for example, BERT training
over text corpora learns context-sensitive embeddings of
words whereas some downstream tasks require sentence
embeddings; see (Reimers & Gurevych, 2019) for a novel
fine-tuning method over BERT for deriving sentence em-
beddings from pre-trained BERT.

In this paper, we will propose SimSiam-speech, a simple
siamese self-supervised learning framework for speech to
learn global features of speech. We show that these global
features achieve better performance than localized features
on some downstream tasks. We will also show that combin-
ing these global features with localized features will achieve
improved performance on various downstream tasks.

The main contributions of this work are as follows:

* We introduce a SimSiam-based framework for speech
(SimSiam-Speech): Most previous self-supervised

learning work on speech has been based on frameworks
such as masked prediction similar to BERT (Kenton &
Toutanova, 2019), simple contrastive learning (Chen
et al., 2020b) and bootstrap your own latent (Grill et al.,
2020). In this work, we have extended the SimSiam
framework for speech representation learning.

* Building on the intuition that global and localized fea-
tures of speech have different temporal granularity, we
propose to combine these two representations to ob-
tain better performance on downstream tasks. In our
evaluations, we report on and analyse the application
of localized and global — both, independently and to-
gether — self supervised representations of speech on a
diverse set of speech classification tasks.
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Figure 1. Outline of the proposed SimSiam framework for speech.
Blocks with the same color have weight sharing. X (viewl) and Y
(view2) are the two different augmented views generated from the
raw speech signal S. f and h are the projector and the predictor
networks, respectively

2. Proposed Approach

SimSiam Framework for Speech builds on top of Sim-
Siam (see Figure 2 in Appendix A) and is shown in Figure
1: given a raw speech waveform S as input, two random
augmented sequences of speech segments — X and Y — are
used to enforce invariance across a sequence of speech aug-
mentations described below. We obtain the representations
of speech by average pooling the encoder outputs across
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the time steps; accordingly, these representations are used
as input to the Projector f. We refer to these representa-
tions as global representations of speech and apply them in
downstream speech classification tasks.

Given a raw speech waveform S with sampling frequency
fs, we obtain a sequence of segments s; € R< such that
s; spans d/ fs seconds — in other words, each segment s;
contains d waveform amplitudes and the waveform S con-
taining D amplitude samples gets partitioned into 7' = D /d
segments. We generate the two augmented views by first par-
titioning the sequence of segments {s; };c[1 7] into two con-
tiguous sequences X = {x;}ici1, 7y and Y = {¥y; }ic1, 1y
with an overlap of 50-80% segments as shown in Figure
1. The duration of the two augmented views X and Y is
in the range of 2.0-2.5 seconds, and Tx and 7y can be
different. We can now define the outputs obtained after
applying the encoder b (i.e. the transformer backbone),
projector f and predictor h as zx = h(f(b(X))) and
zy = stopgrad{f(b(X))} where b refers to the average-
pooled outputs obtained after applying the encoder b. The
training objective involves maximizing the cosine similarity
between zx and zy as shown:

s(X,Y

zZX zy
)= —— T (D
lzxllz llzvl2

where ||-||2 refers to lo-norm. Finally, to have a symmetric
loss as defined in (Chen & He, 2021), the loss function is
defined as:

L=s(X,Y)+sY,X). )

Augmentations: For each of the sub-sequences X and Y,
we apply the following sequence of augmentations:

1. Gaussian Noise: To each segment, apply additive
white Gaussian noise (AWGN) with SNR between
0 — 10 db and then normalize the amplitude of the
resulting segment using min-max normalization.

2. Shuffling: Randomly select and shuffle 20 — 40% of
the segments.

3. Masking: Randomly select 20 — 40% of the segments
and replace the segments with an R? vector sampled
uniformly from the hypercube [0.9, 1.1]¢.

4. Add silence segments: Select N random locations
and insert silence segments whose R vector has all
components set equal to the lowest amplitude of the
original speech waveform .S. We choose N to be equal
to 10% of the sequence length (i.e. Tx or Ty).

Encoder network b: We use a multi-layer Transformer
architecture (Kenton & Toutanova, 2019) as the en-
coder network. The transformer model consists of 12

transformer-encoder layers, each containing 12 attention
heads. Each segment (i.e. z; and y;) is projected to a
768-dimensional vector before passing as input to the
transformer; for example, the input and output of the
transformer for sequence X is of shape T'x x 768. The
non-linear projection networks used within the transformer
consist of one hidden layer having 2048 units with ReLU as
the non-linearity. Finally, we use the standard self-attention
(Vaswani et al., 2017) as the Multi-Head-Attention module
with layer-norm normalization.

Projector (f) and Predictor (h) networks: We follow
the architecture of the projector and predictor as defined
in (Chen & He, 2021). The projector network takes a
768-dimensional global representation as input and has
2048-dimensional output vector while the prediction
network has both input and output dimensions equal to
2048: the projector has two hidden layers, each having
2048 ReLU units and batch normalization (BN) (Ioffe &
Szegedy, 2015) in between; the prediction network has one
hidden layer with 512 ReL U units and BN.

Pre-training dataset: For a fair comparison with the previ-
ous self-supervised learning models, our SimSiam-speech
model is pre-trained using the LibriSpeech dataset (Panay-
otov et al., 2015). LibriSpeech dataset derived from public
domain audio books contain 960 hours of speech data
collected from 2338 different speakers (1128 female and
1210 male speakers). In this work, we discard utterances
with duration less than 3 seconds as we select two speech
segments each of duration ranging from 2.0-2.5 seconds,
with an overlap of 50-80% in duration, to train our models.

Pre-training Details: Input speech is sampled at f; =
16kHz. We take raw speech waveform as input and use d =
1000 for creating segments. Our models are pre-trained with
a batch size of 480 using Adam optimizer with a learning
rate of 3e~* and a weight decay of 5¢=°. Furthermore,
the learning rate has a cosine decay schedule (Chen et al.,

2020a).

3. Experiments
3.1. Downstream Tasks

We compare and evaluate the representations extracted from
the pre-trained SimSiam-speech model on a diverse set of
downstream tasks to test different aspects of the representa-
tions. The downstream tasks are summarized in Table 1 and
are as follows:

1. Sentiment classification: We use CMU Multimodal
Opinion-Level Sentiment Intensity (CMU-MOSI)
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Table 1. Details of the datasets used for downstream tasks. #Class, #Sample and Avg. Len(s) refer to the number of classes, number of

samples and average length in seconds, respectively

DATASET TASK #CLASS #SAMPLE AVG.
LEN(S)
MOSI (ZADEH ET AL., 2016) SENTIMENT 2 2199 4.2
MOSEI (ZADEH ET AL., 2018) SENTIMENT 2 23453 7.28
SPEECH-
COMMANDS (WARDEN, 2018) COMMAND 12 100,503 1.0
IEMOCAP (BUSSO ET AL., 2008) EMOTION 4 3846 4.5
DAIC (GRATCH ET AL., 2014) DEPRESSION 2 219 960

(Zadeh et al., 2016) and (2) CMU Multimodal Opin-
ion Sentiment and Emotion Intensity (CMU-MOSEI)
(Zadeh et al., 2018) datasets to evaluate the pre-trained
models for the task of sentiment classification.

2. Low-vocabulary speech recognition: We use speech
commands (Warden, 2018) dataset which contains
short spoken commands for the task of low-vocabulary
speech recognition.

3. Speech emotion recognition: We use IEMOCAP
(Busso et al., 2008) dataset for the downstream task of
speech emotion recognition.

4. Depression detection: DAIC-WOZ (Gratch et al.,
2014) dataset is used for the downstream task of de-
pression detection.

3.2. Models for Comparison

We compare the performance of the pre-trained SimSiam-
speech model with various publicly available SOTA speech
representation models:

* Mockingjay (Liu et al., 2020): Mockingjay, a
transformer-based model, was trained using BERT-like
loss to predict masked frames.

¢ VQ-wav2vec (Baevski et al., 2019): VQ-wav2vec
uses online k-means clustering to quantize the dense
representations for training a deep convolutional net-
work with a BERT-like loss.

¢ Wav2vec-2.0 (Baevski et al., 2020): Wav2vec-2.0, a
transformer-based model, was trained to predict the
discrete representation of the masked frames using a
BERT-like loss.

« HuBERT (Hsu et al., 2021): HuBERT, an extension
of wav2vec-2.0, utilizes an offline clustering step to
provide aligned target labels to train transformer model
using BERT-like loss.

e TRILL (Shor et al., 2020): TRILL, a transformer-
based model, was trained on mel spectrograms using a
triplet loss.

Note that VQ-wav2vec, wav2vec-2.0 and HuBERT takes
raw speech waveform as input whereas Mockingjay and
TRILL takes mel spectrogram as input. While Mockingjay,
VQ-wav2vec, wav2vec-2.0 and HuBERT learn localized
features, TRILL learns global features. Further, we also use
the openSMILE (Eyben et al., 2010) and COVAREP (De-
gottex et al., 2014) features as a baseline.

3.3. Evaluation Details

For each downstream dataset, we freeze the weights of the
pre-trained models, and extract representations from the
encoder for the downstream task. We apply a non-linear
projection (i.e. linear projection followed by non-linearity)
to these representations and then pass it as input to the
softmax classifier. The number of hidden units are selected
based on the performance on the validation set. For the case
of combining the representations extracted from different
pre-trained models, we simply concatenate the non-linear
projections applied to the representations before passing it
as input to the softmax layer.

3.4. Results

We provide results obtained by performing 5-fold cross
validation on each dataset, unless otherwise mentioned.

Table 2 shows the performance of the proposed SimSiam-
Speech (SimSiam-S) compared to previous self-supervised
models across four diverse set of downstream tasks. For the
downstream tasks of emotion recognition and depression
detection, proposed SimSiam-S and TRILL performs better
than the other pre-trained models, with SimSiam-S outper-
forming TRILL. For the downstream tasks of sentiment clas-
sification and low-vocabulary speech recognition, HuBERT
and wav2vec-2.0 performs better. This shows that the mod-
els learning global representations (SimSiam-S and TRILL)
perform better on some tasks while models learning local-
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Table 2. Performance (in terms of accuracy) on different downstream tasks by using the representations obtained from different pre-trained
models. Details of tasks: MOSI and MOSEI for sentiment classification, Speech commands for command detection, IEMOCAP for

emotion classification, and DIAC-WoZ for depression detection

SPEECH
MODEL MOSI MOSEI CoMmMANDS IEMOCAP DAIC-WOZ
COVAREP (AcousTIC FEATURE) 46.6 52.9 48.2 48.2 53.3
OPENSMILE (ACOUSTIC FEATURE) 51.3 58.1 39.8 51.6 56.8
MOCKINGJAY (LOCALIZED) 56.3 69.1 87.4 52.4 58.7
VQ-WAV2VEC (LOCALIZED) 54.1 68.2 86.7 51.6 60.4
WAV2VEC-2.0 (LOCALIZED) 60.8 70.4 89.6 55.6 61.9
HUBERT (LOCALIZED) 61.9 71.1 90.2 54.9 61.3
TRILL (GLOBAL) 56.8 63.5 78.5 61.7 64.1
SIMSIAM-S (OURS) (GLOBAL) 59.0 65.8 85.1 62.2 66.4
WAV2VEC-2.0 + HUBERT 62.3 71.3 90.5 56.5 62.2
WavV2VEC-2.0 + TRILL 62.2 70.7 90.3 62.8 68.2
HUBERT + TRILL 63.7 71.4 90.9 62.6 67.8
TRILL + SIMSIAM-S 59.3 65.5 85.3 62.4 66.9
WAV2VEC-2.0 + SIMSTAM-S 64.8 71.2 91.1 63.7 71.2
HUBERT + SIMS1AM-S 65.9 71.8 91.4 63.5 70.3

ized representations (HuBERT and wav2vec-2.0) perform
better on other tasks. We can also observe in Table 2 that
combining global and localized representations (HuBERT
+ SimSiam-S and wav2vec-2.0 + SimSiam-S) achieve sig-
nificant improvements in performance compared to the case
of combining two global (wav2vec-2.0 + HuBERT) or two
localized representations (TRILL + SimSiam-S). For all the
downstream tasks, combining SimSiam-S with local rep-
resentations (HUBERT or wav2vec-2.0) achieves the best
performance.

4. Ablation Studies

We conducted ablation studies to analyze the importance
of stop-gradient, projector and predictor networks when
SimSiam framework is extended to speech—which is a se-
quential data. We trained different SimSiam-Speech models
by discarding one component at a time. All the models were
pre-trained using the 960 hours of LibriSpeech dataset. It
can be observed from Table 3 that all the three components
i.e., projector, predictor and stop-gradient are required to
avoid the model collapse. Even discarding a single compo-
nent will lead to the model collapse. These observations are
in agreement with those reported in (Chen & He, 2021).

5. Conclusion

In this work, we discuss the application of self-supervised
embeddings to speech classification tasks as the downstream
tasks. In doing so, we highlight the distinction between self-
supervised learning frameworks that favor global versus
localized embeddings of speech: in this study, pretext tasks
which operate on smaller speech units are said to yield lo-

Table 3. Ablation study results. Proj., Pred., SG refer to projector
network, predictor network and stop-gradient, respectively. Re-
sults obtained for different SimSiam-Speech models trained by
discarding one of the component

SPEECH
ProJ. PRED. SG CoMMANDS IEMOCAP
X v v 6.8 19.1
v X v 7.3 18.5
v v X 6.5 20.8
v v v 85.1 62.2

calized embeddings, while those operating on entire speech
sequences are said to yield global embeddings. We define
a self-supervised learning framework for learning global
features of speech and propose combining both global and
localized features of speech for obtaining more robust down-
stream performance. Our empirical experiments confirm
that global embeddings of speech capture certain paralin-
guistic elements and can be particularly useful in tasks such
as emotion classification and depression detection, while
localized embeddings of speech can be effective in tasks
such as sentiment classification and speech-command de-
tection. Importantly, we find that combining the global and
localized representation of speech leads to better perfor-
mance across a range of tasks than each of the individual
embedding methods alone.
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Global and Localized Self-Supervised Models of Speech

A. Background

The SimSiam framework (Chen & He, 2021) is an extension of BYOL (Grill et al., 2020) for learning self-supervised
representations of images. Like other recently proposed self-supervised learning frameworks, SimSiam induces represen-
tations invariant over the set of pre-defined data augmentations. The core components of the SimSiam framework are as
shown in Figure 2: given an input image z, the two random augmented views — x; and x5 — of the input x are first passed
through a series of Encoder-Projector-Predictor, and Encoder-Projector networks respectively; the training objective involves
maximizing the cosine similarity between these final representations. The predictor and the stop-gradient are essential to
avoid model collapse, which we will also show in the ablation studies. Finally, the encoder representations are used as the
general-purpose representations of images in downstream tasks.
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Figure 2. Outline of the SimSiam framework initially proposed for images (Chen & He, 2021). Blocks with the same color have weight
sharing.

In summary, SimSiam is a simplified self-supervised learning framework which has been shown to achieve SOTA perfor-
mance on image downstream tasks without relying on negative sample pairs, large batch sizes and momentum encoder. In
this paper, we adapt the SimSiam framework to learn self-supervised global representations of speech. Siamese neural
networks, trained using supervised learning framework, were used for speech-based tasks such as voice casting (Gresse et al.,
2019) and emotion recognition in speech (Lian et al., 2018). Further, siamese neural networks trained in a unsupervised
fashion were used for speech-based tasks such as spoken keyword spotting (Riad et al., 2018) and speaker verification (Khan
& Hernando Pericas, 2020).



