
Embedding Synthetic Off-Policy Experience for

Autonomous Driving via Zero-Shot Curricula

Eli Bronstein
⇤

Sirish Srinivasan
⇤

Supratik Paul
⇤

Aman Sinha Matthew O’Kelly Payam Nikdel Shimon Whiteson

Waymo, LLC
{ebronstein, sirishs, supratikpaul, thisisaman, mokelly, payamn, shimonw}@waymo.com

Abstract: ML-based motion planning is a promising approach to produce agents
that exhibit complex behaviors, and automatically adapt to novel environments. In
the context of autonomous driving, it is common to treat all available training data
equally. However, this approach produces agents that do not perform robustly in
safety-critical settings, an issue that cannot be addressed by simply adding more
data to the training set—we show that an agent trained using only a 10% subset
of the data performs just as well as an agent trained on the entire dataset. We
present a method to predict the inherent difficulty of a driving situation given
data collected from a fleet of autonomous vehicles deployed on public roads. We
then demonstrate that this difficulty score can be used in a zero-shot transfer to
generate curricula for an imitation-learning based planning agent. Compared to
training on the entire unbiased training dataset, we show that prioritizing difficult
driving scenarios both reduces collisions by 15% and increases route adherence
by 14% in closed-loop evaluation, all while using only 10% of the training data.

Keywords: Imitation Learning, Curriculum Learning, Autonomous Driving

1 Introduction

Autonomous vehicles (AV) typically rely on optimization-based motion planning and control meth-
ods. These techniques involve bespoke components specific to the deployment region and AV hard-
ware, and require copious hand-tuning to adapt to new environments. An alternative approach is to
apply machine learning (ML) to the lifetimes of experience that AV fleets can collect within days or
weeks. A paradigm shift to ML-based planning could automate the adaptation of behaviors to new
areas, improve planning latency, and increase the impact of hardware acceleration.
For example, imitation learning (IL) can utilize the large tranches of expert demonstrations collected
by the regular operations of AV fleets to produce policies that perform well in common scenarios,
without the need to specify a reward function. However, both the distribution from which experi-
ences are sampled and the policy used to generate the demonstrations can critically affect the IL
policy’s performance [1]. The training data distribution is especially important when learning meth-
ods are applied to problems characterized by long tail examples (c.f. [2, 3, 4, 5, 6]). In the case
of autonomous driving, the vast majority of observed scenarios are simple enough to be navigated
without any negative safety outcomes. A visual inspection of a random subset of our data suggests
that half of it consists of scenarios with the AV as the only road user in motion, while another quarter
contains other moving road users, but not necessarily close enough to the AV to affect its behavior.
As a result, IL policies may not be robust in safety-critical and long tail situations.
Reinforcement learning (RL) can be used to explicitly penalize poor behavior, but due to the complex
nature of driving [7], it is difficult to design a reward function for AVs that aligns with human
expectations. Even if reward signals were provided for safety-critical events or traffic law violations
(e.g., collisions, running a red light), they would be extremely sparse since such events are quite rare.
Furthermore, exploration to collect more long tail data is challenging due to safety concerns [8].
Despite these issues, most learning-based robotics and AV applications use the naive strategy of cre-
ating training datasets from all available demonstrations. In the context of AVs, since most driving
situations are simple, this strategy is both inefficient and unlikely to generate a policy that is robust

⇤Denotes equal contribution.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

Region 1

Vehicle Platform Deployment Region Policy

Ve
hi

cl
e C

on
fig

ur
at

io
n

Run Segments
Fleet Data

Development Planner Deployed
in Counterfactual Simulations

Run Segment Embedding Difficulty Model

Fleet Learning
A

B C

D

E

Zero-shot Transfer

Counterfactual
Difficulty Score

Expert 1

Expert N

Se
gm

en
t E

m
be

dd
in

g

Difficulty
Score

Vehicle Type 1

Vehicle Type 2

Development
Planner

Run Segment

Human Triage

Multi-layer Perceptron

Region 2

Expert
Trajectory

Roadgraph,
Other Road Users

Similarity

Same Run Segment?

Figure 1: A The fleet collects experiences with a variety of policies in multiple operational design
domains. B The fleet data is sharded into run segments. C Fleet data is used to learn an embedding
that maps a run segment to a vector space based on similarity. D Run segments are selected for
counterfactual simulations and human triage; the outcome of this process is a labeled set of difficulty
scores. E An MLP is trained to regress from embeddings to the difficulty labels.

to difficult scenarios. A common solution is to upsample challenging examples, either by increas-
ing their sampling probability by a predetermined factor [9] or with curriculum learning [10], i.e.,
dynamically updating the sampling probability during training based on the agent’s performance.
However, both of these approaches include significant hurdles. Upsampling requires that we know
which examples are part of the long tail a priori, as in standard classification problems where the
class-label imbalance can inform a sampling strategy. In IL and RL, no such labels are available. As
such, curriculum learning is more suitable since it uses the agent’s current performance to identify
hard examples. However, standard approaches to curriculum learning are specific to the agent being
trained; they do not, for example, utilize data collected by deployed AVs running other planners,
which can provide more general, policy-agnostic insights into the long tail of driving.
In this paper, we propose an approach (summarized in Figure 1) that addresses the challenges of
upsampling and curriculum learning applied to an AV setting. Developing a road-ready AV gener-
ally involves both collecting real-world data with an expert, which can be a combination of human
drivers and thoroughly evaluated AV planners; and evaluating new development planners, which are
regularly simulated on the data collected by the expert to identify potential failure modes, generating
a large counterfactual dataset. Our method uses this readily available data to train a difficulty model
that scores the inherent difficulty of a given scenario by predicting the probability of collisions and
near-misses in simulation. This difficulty model provides several key benefits: 1) it is computation-
ally less expensive to predict a driving situation’s difficulty than to simulate it for a policy being
trained; 2) the model learns the inherent, policy-agnostic difficulty of a scenario because it is trained
on multiple development planners in different geographic regions; and 3) the model predicts a con-
tinuous score that can be used to identify scenarios within an arbitrary difficulty range, rather than
obtaining a few counterfactual failures.
We show that a zero-shot transfer of this model can identify long-tail examples that are difficult for a
new IL-based planning agent—without any fine tuning. This allows us to upsample difficult training
examples without expensive evaluation of the agent during training. Though we train the planning
agent using IL as a case study, our approach can be applied to any ML-based planning approach.
The main contributions of this paper are:

1. We train a model to predict which driving scenarios are difficult for development planners and
show that it can zero-shot transfer to the task of finding challenging scenarios on which to train
an ML-based planning agent. This generalization suggests that the model can predict the inherent
difficulty of a driving situation.

2

2. We show that training an ML-based planning agent on unbiased driving data leads to poor per-
formance on difficult examples since easy driving scenarios dominate rarer, harder cases.

3. We show that using our difficulty model to upsample more challenging scenarios reduces colli-
sions by 15% and increases route adherence by 14% on the unbiased test set. This suggests that
there are significant diminishing returns in adding common scenarios to the training dataset.

2 Related Work

The application of RL to the task of autonomous driving has received significant attention in recent
years [11]; proposed methods span the gamut of methodologies and the AV stack itself. RL has
been used to address a variety of problems including end-to-end motion planning, behavior gener-
ation, reward design, and even behavior prediction. In this work, we focus on imitation learning
techniques [12], which avoid direct specification of a reward function, and rely instead on expert
demonstrations. As a result, they can capture subtle human preferences and demonstrate impressive
performance on a variety of robotics tasks. However, despite many attempts [13, 14, 15], IL and RL
techniques still struggle with the long tail present in the driving task [4].
Like this work, Brys et al. [16] and Suay et al. [17] consider how to leverage potentially subopti-
mal demonstrations to improve the efficiency and robustness of learning. Unlike these works, we
use offline methods to learn a model of each scenario’s difficulty and bias the distribution that IL
is performed on. This approach is similar to baselines [18, 19] inspired by Peters and Schaal [9];
however, unlike these works, our setting does not provide a reward signal for the proposed demon-
strations. Instead, we use offline, off-policy simulations to learn a foundation model with which we
can efficiently approximate a scenario’s difficulty, which would have otherwise required expensive
counterfactual simulations during training. Our approach sidesteps the inefficiencies of performing
rollouts of the learnt policy on the entire dataset since inference using the difficulty model is com-
putationally much cheaper than simulation. Similar techniques have also been proposed by Brown
et al. [20]; however, they focus largely on situations with severely suboptimal demonstrations where
the reward is specified. Similar problems have also been identified in offline RL [21]. Interestingly,
Kumar et al. [22] identify the tight relationship between imitation learning and offline RL, noting the
theoretical advantage of incorporating reward information in settings like autonomous driving which
must avoid rare catastrophic failures. Our experiments provide empirical support for this insight.
Curriculum learning (CL) [10] is also closely related to this work. While not originally classi-
fied as such, methods like automatic domain randomization, prioritized experience replay [23], and
AlphaGo’s self-play [24, 25] have led to superhuman game-playing agents and breakthroughs in
sim2real transfer [23, 26, 27]. CL methods solve for surrogate objectives rather than directly opti-
mizing the final performance of the learner. They control which transitions are sampled, the behavior
of other agents in an environment, the generation of initial states, or even the reward function. CL
methods are also characterized by whether they are used on- or off-policy. For example, Uesato
et al. [28] exploit low quality policies to obtain failures in an on-policy RL setting. Finding hard
examples in the training data using this approach requires repeatedly generating rollouts for each
expert trajectory in the dataset. Such an approach is computationally infeasible when operating at
scale since the training datasets can have hundreds of thousands of real-world driving miles. Simi-
lar approaches known as hard-negative mining have been used in supervised learning settings [29];
like Uesato et al. [28] they evaluate the difficulty of examples online.
Instead, we consider variants of CL that exploit off-policy data. As in the on-policy case, the key
problem is to determine which data is interesting. Off-policy compatible methods are also gen-
erally surrogate-based. For example, they can select for diversity [30], moderate difficulty [27],
surprise [23], or learning progress [31]. Our approach is most similar to Akkaya et al. [27], but in-
stead of performing expensive agent evaluation during training, we use off-policy data both to train
a foundation model [32], which encodes experiences, and to classify the difficulty of an interaction.
We also utilize large-scale real-world data and demonstrate that simpler curricula are effective.

3 Background

Model-based Generative Adversarial Imitation Learning: Behavior cloning (BC) [33, 13] is a
naive imitation learning method that applies supervised learning to match the expert’s conditional
action distribution: argmax✓ Es,a⇠⇡E [log ⇡✓(a|s)]. BC policies may suffer from covariate shift,

3

resulting in quadratic worst-case error with respect to the time horizon [34]. To address this issue,
generative adversarial imitation learning (GAIL) [35] formulates IL as an adversarial game between
the policy ⇡✓ and the discriminator D! . The discriminator is trained to classify whether a given
trajectory was sampled from ⇡✓ (labeled 0) or from the expert demonstration (labeled 1), and the
policy is trained to generate trajectories that are indistinguishable from demonstrations:

argmax
✓

argmin
!

Es,a⇠⇡✓ [log D!(s, a)] + Es,a⇠⇡E [log(1�D!(s, a))].

GAIL minimizes the gap in the joint distributions of states and actions p(s, a) between the policy
and the expert, resulting in linear error with respect to the time horizon [36]. However, GAIL relies
on high variance policy gradient estimates because it uses an unknown dynamics model, making its
objective function non-differentiable. In contrast, model-based GAIL (MGAIL) [37] uses differen-
tiable dynamics in combination with the reparameterization trick [38] to reduce the variance of the
policy gradient estimates.

4 Method

A key challenge in commercial AV development is to design an AV planner that can safely and
efficiently navigate real-world settings while aligning with human expectations. At any given time,
there may exist multiple development planners under evaluation. Iteratively improving an AV plan-
ner typically involves the following three steps. 1) Data Collection: Real-world data is collected
by a fleet of vehicles in the operational area. 2) Data-Driven Simulation: A development planner
is tested in simulation by having it control the data-collecting ego vehicle in a run segment, or a
short snippet of recorded driving data. 3) Evaluation and Improvement: The development planner is
evaluated on key metrics based on these simulations, with potential issues identified and addressed.
As mentioned in Section 1, we consider an ML-based approach to developing an AV planner from
the ground up. One option is to use imitation learning to train a planning agent. Given an initial
dataset of logged expert driving, a naive approach is to train the agent on the entire dataset. However,
this means that challenging long tail segments are used only a few times during training, yielding a
planning agent that has difficulty negotiating similar situations [2, 5, 6]. Thus, to improve our agent,
we require a method to upsample these rare segments.

4.1 Difficulty Model

The key idea behind our method is to use the real-world run segments replayed in simulation with
development planners to learn a difficulty model that predicts the difficulty of a logged segment, i.e.,
whether a development planner is likely to have a poor safety outcome in simulation. We train the
difficulty model on simulations of multiple development planners in different geographic areas, so
it can be seen as marginalizing over a diverse distribution of development planners. This makes the
model more likely to be able to identify the inherent difficulty of a segment. In turn, this facilitates
the zero-shot transfer from training on data from development planners to inferring difficulty for a
substantially different planning agent. Intuitively, segments that development planners find difficult
are likely to be difficult for the planning agent as well. Specifically, we use the difficulty model’s
scores to inform our upsampling strategy for training the planning agent.
The evaluation process for development planners typically involves large-scale simulations, with
potentially problematic behaviors flagged for engineers to address. We train the difficulty model to
predict collisions and near-misses attributable to the development planner, as opposed to other road
users. This data is generated in the normal course of the AV planner development cycle, so no new
training data is needed.
Since we want to marginalize out the idiosyncrasies of individual development planners, we model
a simulation’s safety outcome y 2 {0, 1} (1 if a collision or near-miss occurred, 0 otherwise) as
a function of the logged run segment alone. The input to our model is a learned segment em-
bedding from a separately trained model. Given a logged run segment, we collect static features
(e.g., road/lane layouts, crosswalks, stop signs), dynamic features (e.g., positions and orientations
of other road users over time), and kinematic information about the data-collecting ego vehicle.
We use these features to generate two top-down images of the segment: one of the ego vehicle’s
trajectory, and another of the static features and other road users’ trajectories. We encode each im-
age into a dense d-dimensional embedding vector (as in [39]) using a CNN and contrastively train

4

a classifier (e.g., [40]) with cross-entropy loss to determine if two images are from the same run
segment (see Figure 1c). Our difficulty model is an MLP that learns a function f : Rd

! [0, 1] map-
ping the embedding to the simulated safety outcome y. We trained this model using cross-entropy
loss on a dataset of 5.6k positive and 80k negative examples. The number of negative examples was
downsampled by multiple orders of magnitude since the prevalence of simulated collisions and near-
misses is extremely low. The model produces uncalibrated scores by design, as trying to calibrate it
to the extremely small unbiased prevalence rate of positive examples is numerically unstable.

4.2 Sampling Strategies

Given the long-tail nature of the difficulty scores (see Figure 2), it is natural to upsample difficult
segments during training. A standard solution for upsampling in classification problems is to create
separate datasets for each class, and then generate a batch by sampling a specified proportion from
each dataset. Since this requires discretized classes, it cannot be applied to our real-valued difficulty
scores. Moreover, due to the large training dataset size it is not scalable to upsample individual seg-
ments: the entire dataset cannot fit in memory and random access to individual examples from disk is
incompatible with distributed file sharding of data. Instead, we partition the dataset into ten equally
sized buckets, each corresponding to a decile of the data by difficulty scores, with up/downsampling
achieved by assigning different sampling probabilities to each bucket. This enables us to efficiently
generate batches on the fly (e.g., sampling a weighted batch of k run segments requires minimal
overhead over the k constant-time accesses to the head pointers of each bucket). This decile-based
bucketing also ensures that our method is agnostic to the model scores, which are uncalibrated.
We consider two training variants: 1) a fixed weighting scheme for each bucket, held constant
throughout training, and 2) a schedule of weights for each bucket that changes as training progresses.
Specifically, we use the following three sampling strategies. “Highest-10%” trains the agent only on
the highest scoring bucket (i.e., on the segments with the highest 10% difficulty scores). “Uniform-
10%” upsamples difficult segments by setting each bucket’s sampling weight to the range of diffi-
culty scores in that bucket (in the limit of infinite buckets, this approaches a uniform distribution over
the difficulty scores). “Geometric-schedule-10%” implements a geometric progression of weights
with each bucket weighted equally at the beginning of training and weighted proportional to its av-
erage difficulty score at the end of training (see Appendix 8.2 for further details). In Section 5.4
we compare the performance of these training variants against several baselines. Our variants are
trained on only a 10% sample of available data.

5 Experiments

To prevent information leakage between the difficulty model and the planning agent, the former is
trained on a dataset collected more than six months prior to the dataset for the latter. The training
dataset for the planning agent consists of over 14k hours of driving logged by a fleet of vehicles. We
split the data into 10 second run segments, resulting in over 5 million training segments. We also
create two test sets, chronologically separate from the training set to prevent train-test leakage. The
first unbiased test set is composed of 20k segments sampled uniformly from logged data. The second
set consists of 10k segments with difficulty scores in the top one percentile of the training data’s score
distribution. The distributions of the difficulty model scores for the train set and unbiased test set
both have long tails (see Figure 2) – scores above 0.85 account for only around 0.5% of the dataset.
As described in Section 4.2, we split the training dataset into 10 equal sized buckets based on the
difficulty score deciles. 200 run segments are further split from each training bucket to obtain vali-
dation buckets for model selection. To highlight the effect of our training schemes on performance
on segments of varying difficulty, we use the same bucketing approach for the unbiased test set as
for the training set. We report the full, unbiased test set results by aggregating over all buckets.

5.1 Baselines

We report three baselines for comparison, which differ in their training data: “Baseline-all” is trained
on the full dataset, “Baseline-10%” is trained on a uniformly randomly sampled 10% of the full
dataset, and “Baseline-lowest-10%” is trained only on the bucket with the lowest difficulty scores.

5

��� ��� ��� ��� ��� ���
0RGHO�6FRUH

�

�

�

�

'
HQ

VL
W\

(a) Train Dataset

������ ������ ������ ������ ������ ������
�0�R�G�H�O���6�F�R�U�H

��

��

��

��

�'�
H

�Q
�V

�L
�W

�\

(b) Unbiased Test Dataset

Figure 2: Distribution of the difficulty model scores for the train and test datasets. The ten alternating
shaded backgrounds indicate the thresholds of the decile buckets.

5.2 Training Details

We use the planning agent described in Bronstein et al. [41], which employs a stochastic continuous
action policy conditioned on a goal route and is trained using a combination of MGAIL and BC. See
Appendix 8.7 for additional details. We train 10 random seeds of each agent variant and baseline
for 200k steps. After the initial 100k training steps, we evaluate each agent on the validation set at
intervals of 10k steps. We select the agent checkpoint with the lowest sum of collision and off-road
driving rates, and evaluate it on the held-out test set. Since the learnt policy is stochastic, we report
the average performance of 16 independent rollouts for each test run segment.

5.3 Metrics

We assess the planning agent’s performance using the following binary metrics (1 if the event of
interest occurred in the segment, 0 otherwise):

1. Route Failure: the agent deviates from the goal “road route” at the start of the segment, which
includes all lanes in the road containing the goal lane-specific route.

2. Collision: the agent’s bounding box intersects with another road user’s bounding box.
3. Off-road: the agent’s bounding box exits the drivable road area.
4. Route Progress ratio: ratio of the distance traveled along the route by the agent and the expert.

We also report the overall failure rate as the union of the first three metrics; a segment is considered a
failure if any of the binary metrics is nonzero. When comparing the performance of different agents,
we prioritize this failure rate due to the safety-critical nature of driving, while also considering the
route progress ratio to ensure the agents are making efficient forward progress.

5.4 Results

We present the performance of our training variants and baselines on the full, unbiased test set in
Table 1. Each variant’s action policy is conditioned on the expert’s initial goal route, which is held
constant throughout the segment.
We observe no significant difference between the performance of Baseline-10% and Baseline-all,
demonstrating that simply increasing the training dataset size does not necessarily lead to better
performance. Also, Baseline-lowest-10% has the worst performance for the collision and off-road
metrics. This suggests that the easiest segments are not representative of the entire test set distri-
bution and do not contain enough useful information to learn from. However, Baseline-lowest-10%
achieves the lowest route failure rate. We believe this is because the least difficult training bucket
is primarily composed of segments in which it is simple to follow the route, such as one-lane roads
with no other road users and minimal interaction. This could cause the Baseline-lowest-10% agent
to overfit to the route features and follow the route well at the expense of safety.
All three of our upsampling variants achieve significantly lower collision rates, and comparable
off-road and route failure rates to the baselines (with the exception of Baseline-lowest-10%’s route
failure rate). This key result demonstrates that segments with high predicted difficulty contain the

6

Table 1: Evaluation of agents and baselines on the full unbiased test set (mean ± standard error of
each metric across 10 seeds). For all metrics except route progress, lower is better.

Agent Variant
Route Failure

rate (%)
Collision
rate (%)

Off-road
rate (%)

Route Progress
ratio (%)

Failure
rate (%)

Baseline-all 1.38±0.13 1.46±0.09 0.73±0.07 81.21±0.39 3.33±0.20
Baseline-10% 1.34±0.06 1.50±0.09 0.67±0.06 81.12±0.37 3.28±0.13
Baseline-lowest-10% 1.14±0.05 4.15±0.11 0.98±0.10 81.88±0.41 5.91±0.13

Highest-10% 1.33±0.06 1.23±0.09 0.74±0.02 77.95±1.33 3.10±0.10

Uniform-10% 1.35±0.09 1.17±0.08 0.75±0.07 80.67±0.73 3.07±0.17

Geometric-schedule-10% 1.19±0.07 1.25±0.04 0.74±0.10 80.48±0.36 2.92±0.11

majority of useful information needed for good aggregate performance. Geometric-schedule-10%
has the largest improvement over the baselines, with a significantly lower collision rate, comparable
route failure and off-road rates, and a minimal decrease in the route progress ratio. This highlights
the advantage of observing the whole spectrum of data at the start of training, and progressively
increasing the proportion of difficult segments to emphasize more useful demonstrations.
To get a more nuanced view of each variant’s performance, we compare the variants to Baseline-
10% for each of the test buckets. Figure 3 shows the performance for the lowest (0-10%), low/mid
(30-40%), highest (90-100%), and long tail (99-100%) test buckets. See Figures 5 and 6 in the
Appendix for metrics for all the test buckets.
Not only does each agent’s collision rate correlate with the difficulty score, but so do the route failure
and off-road rates, with the exception of Highest-10%’s off-road rate. This shows that segments that
were challenging for development planners are also likely to be challenging for our planning agent,
which enables the zero-shot transfer of the difficulty model. It also demonstrates that although the
difficulty model was only trained to predict collisions and near-misses, its predicted score describes
a broader notion of difficulty, as measured by other key planning metrics.
On the highest and long tail buckets, Highest-10% and Uniform-10% achieve much lower colli-
sion rates and overall failure rates than Geometric-schedule-10% and the baseline. This shows that
upsampling difficult segments results in better overall performance on those segments, not just on
metrics that are highly correlated with the difficulty label (i.e., collisions and near-misses). This is
encouraging, since it suggests that the training labels for the difficulty model do not need to fully
define expert driving behavior in order for the resulting planning agent to exhibit improved perfor-
mance across multiple metrics. However, Highest-10% and Uniform-10% perform comparable to,
or worse than the baseline on the lowest and low/mid buckets across all metrics, with especially
poor performance on the route failure and off-road metrics. Thus, extreme upsampling of difficult
segments sacrifices performance at the other end of the spectrum, since the easiest segments become
too rare in the training data. Geometric-schedule-10% addresses this issue by upsampling difficult
segments while maintaining sufficiently broad coverage over the difficulty distribution. While it
does not achieve equally low collision rates as the Highest-10% and Uniform-10% variants on the
highest and long tail buckets, it outperforms the baseline on collisions and performs well on the
lowest and low/mid buckets, yielding the best overall performance.

6 Limitations

While our difficulty model successfully identified challenging segments, it was only trained to pre-
dict collisions and near-misses, which are just one indication of difficulty. There are other labels
that would be helpful for a more comprehensive difficulty model, such as traffic law violations,
route progress, and discomfort caused to both the ego vehicle’s passengers and other road users.
Moreover, the difficulty model could be improved by incorporating the severity of the negative
safety outcome into the training labels. Furthermore, as noted in Section 1, a large proportion of the
available data consists of situations with very few other road users in the scene. The difficulty model
could be replaced with a heuristics-based approach of pruning such scenarios, though the viability
of doing so is difficult to gauge a priori.
In terms of evaluation metrics, we focused primarily on safety metrics, since these are of paramount
importance for real-world deployment. However, we have not considered other facets of driving
like comfort and reliability, which can also significantly affect the viability of ML-based planners.

7

�������� ���������� ������������ ������������
��

��

��

����

�K�L�J�K�H�V�W��������

�X�Q�L�I�R�U�P��������

�J�H�R�P�H�W�U�L�F���V�F�K�H�G�X�O�H��������

�E�D�V�H�O�L�Q�H��������

(a) Overall failure rate (%)

�������� ���������� ������������ ������������
��

��

��

��

��

(b) Route failure rate (%)

�������� ���������� ������������ ������������
������

������

������

������

��������

(c) Collision rate (%)

�������� ���������� ������������ ������������
������

������

������

������

������

(d) Off-road rate (%)

Figure 3: Metrics for the Baseline-10%, Highest-10%, Geometric-schedule-10%, and Baseline-
10% variants on multiple decile test buckets according to the difficulty score. For each metric, each
variant’s performance is shown for the lowest (0-10%), low/mid (30-40%), highest (90-100%), and
long tail (99-100%) test buckets.

Finally, while we have demonstrated that our method of upsampling long tail segments leads to better
performance, we have done so only for an agent trained using MGAIL. Quantifying the performance
gains with other learning methods remains a topic for future work.

7 Conclusion

We showed that the naive strategy of training on an unbiased driving dataset is suboptimal due to
the large fraction of data that does not provide additional useful experience. By utilizing readily
available data collected while evaluating development planners in simulation, we trained a model
to identify difficult segments with poor safety outcomes. We then applied this model in a zero-
shot manner to develop training curricula that upsample difficult examples. Planning agents trained
with these curricula outperform the naive strategy in aggregate and are more robust in challenging,
long tail scenarios. However, overly aggressive upsampling produces policies that do not handle
simpler situations well. We conclude that sampling strategies that prioritize difficult segments but
also include easier ones are likely to achieve the best overall performance.
We have also showed that training on the full dataset does not yield any significant benefit over
training on only 10% of the data sampled uniformly at random, demonstrating that simply adding
more unbiased data to the training set does not necessarily improve performance. This suggests
that we can use our difficulty model to reduce the cost of AV system development in two areas:
targeting active data collection when operating a fleet of vehicles and selective retention of large-
scale sensor logs. Namely, since the difficulty model can predict which driving scenarios are likely
to be challenging for new planning agents, we could identify geographic “hotspots” where these
scenarios occur and use these locations to inform our data collection process. Furthermore, since
biasing the planning agent’s training dataset toward difficult segments leads to better results with
only a fraction of the available data, we could use the difficulty model scores to reduce the amount
of stored data without sacrificing downstream performance.

8

Acknowledgments

We thank Ben Sapp, Eugene Ie, Jonathan Bingham, and Ryan Polkowski for their helpful comments,
and to Ury Zhilinsky for his support with experiments and infrastructure.

References

[1] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4rl: Datasets for deep data-driven
reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[2] J. Frank, S. Mannor, and D. Precup. Reinforcement learning in the presence of rare events. In
Proceedings of the 25th international conference on Machine learning, pages 336–343, 2008.

[3] N. Kalra and S. M. Paddock. Driving to Safety: How Many Miles of Driving Would It Take to
Demonstrate Autonomous Vehicle Reliability? RAND Corporation, 2016.

[4] S. Shalev-Shwartz, S. Shammah, and A. Shashua. Safe, multi-agent, reinforcement learning
for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

[5] S. Paul, K. Chatzilygeroudis, K. Ciosek, J.-B. Mouret, M. Osborne, and S. Whiteson. Al-
ternating optimisation and quadrature for robust control. In AAAI Conference on Artificial
Intelligence, 2018.

[6] S. Paul, M. A. Osborne, and S. Whiteson. Fingerprint policy optimisation for robust reinforce-
ment learning. In International Conference on Machine Learning, 2019.

[7] J. De Freitas, A. Censi, B. W. Smith, L. Di Lillo, S. E. Anthony, and E. Frazzoli. From
driverless dilemmas to more practical commonsense tests for automated vehicles. Proceedings
of the national academy of sciences, 118(11), 2021.

[8] S. Lange, T. Gabel, and M. Riedmiller. Batch reinforcement learning. In Reinforcement learn-
ing, pages 45–73. Springer, 2012.

[9] J. Peters and S. Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pages
745–750, 2007.

[10] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P.-Y. Oudeyer. Automatic curriculum learn-
ing for deep rl: A short survey. arXiv preprint arXiv:2003.04664, 2020.

[11] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and P. Pérez. Deep
reinforcement learning for autonomous driving: A survey. IEEE Transactions on Intelligent
Transportation Systems, 2021.

[12] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Comput. Surv., 50(2), apr 2017. doi:10.1145/3054912. URL https://doi.
org/10.1145/3054912 .

[13] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In
D. Touretzky, editor, Advances in Neural Information Processing Systems, volume 1.
Morgan-Kaufmann, 1988. URL https://proceedings.neurips.cc/paper/1988/file/
812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf .

[14] M. Bojarski et al. End to end learning for self-driving cars. CoRR, 2016. URL http://
arxiv.org/abs/1604.07316 .

[15] J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Infor-
mation Processing Systems, pages 4565–4573, 2016.

[16] T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Nowé. Reinforcement
learning from demonstration through shaping. In Twenty-fourth international joint conference
on artificial intelligence, 2015.

[17] H. B. Suay, T. Brys, M. E. Taylor, and S. Chernova. Learning from demonstration for shaping
through inverse reinforcement learning. In AAMAS, pages 429–437, 2016.

9

http://dx.doi.org/10.1145/3054912
https://doi.org/10.1145/3054912
https://doi.org/10.1145/3054912
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316

[18] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and
I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances
in neural information processing systems, 34, 2021.

[19] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee, I. Mor-
datch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning, pages
158–168. PMLR, 2022.

[20] D. Brown, W. Goo, P. Nagarajan, and S. Niekum. Extrapolating beyond suboptimal demon-
strations via inverse reinforcement learning from observations. In International conference on
machine learning, pages 783–792. PMLR, 2019.

[21] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems, 2020. URL https://arxiv.org/abs/2005.01643 .

[22] A. Kumar, J. Hong, A. Singh, and S. Levine. When should we prefer offline reinforcement
learning over behavioral cloning? arXiv preprint arXiv:2204.05618, 2022.

[23] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In ICLR
(Poster), 2016.

[24] A. L. Samuel. Some studies in machine learning using the game of checkers. ii—recent
progress. IBM Journal of research and development, 11(6):601–617, 1967.

[25] G. Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level play.
Neural computation, 6(2):215–219, 1994.

[26] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. Nature, 529(7587):484–489, 2016.

[27] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[28] J. Uesato, A. Kumar, C. Szepesvari, T. Erez, A. Ruderman, K. Anderson, K. D. Dvijotham,
N. Heess, and P. Kohli. Rigorous agent evaluation: An adversarial approach to uncover catas-
trophic failures. In International Conference on Learning Representations, 2018.

[29] A. Shrivastava, A. Gupta, and R. Girshick. Training region-based object detectors with online
hard example mining. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 761–769, 2016.

[30] M. Fang, T. Zhou, Y. Du, L. Han, and Z. Zhang. Curriculum-guided hindsight experience
replay. Advances in neural information processing systems, 32, 2019.

[31] C. Colas, P. Fournier, M. Chetouani, O. Sigaud, and P.-Y. Oudeyer. Curious: intrinsically
motivated modular multi-goal reinforcement learning. In International conference on machine
learning, pages 1331–1340. PMLR, 2019.

[32] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258, 2021.

[33] D. Michie, M. Bain, and J. Hayes-Miches. Cognitive models from subcognitive skills. IEE
control engineering series, 44:71–99, 1990.

[34] S. Ross et al. A reduction of imitation learning and structured prediction to no-regret online
learning. In AI Stats, 2011.

[35] J. Ho and S. Ermon. Generative adversarial imitation learning. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings.neurips.
cc/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf .

10

https://arxiv.org/abs/2005.01643
https://proceedings.neurips.cc/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf

[36] G. Swamy, S. Choudhury, J. A. Bagnell, and Z. S. Wu. Of moments and matching: A game-
theoretic framework for closing the imitation gap, 2021.

[37] N. Baram, O. Anschel, I. Caspi, and S. Mannor. End-to-end differentiable adversarial imitation
learning. In International Conference on Machine Learning, pages 390–399. PMLR, 2017.

[38] M. Xu et al. Variance reduction properties of the reparameterization trick. In AI Stats, 2019.

[39] M. Chidambaram, Y. Yang, D. Cer, S. Yuan, Y.-H. Sung, B. Strope, and R. Kurzweil. Learning
cross-lingual sentence representations via a multi-task dual-encoder model. arXiv preprint
arXiv:1810.12836, 2018.

[40] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

[41] E. Bronstein, M. Palatucci, D. Notz, B. White, A. Kuefler, Y. Lu, S. Paul, P. Nikdel, P. Mougin,
H. Chen, J. Fu, A. Abrams, P. Shah, E. Racah, B. Frenkel, S. Whiteson, and D. Anguelov. Hier-
archical model-based imitation learning for planning in autonomous driving. In 2022 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pages 8652–8659. IEEE,
2022.

[42] H. Namkoong and J. C. Duchi. Stochastic gradient methods for distributionally robust opti-
mization with f-divergences. Advances in neural information processing systems, 29, 2016.

[43] Y. Liu, J. Zhang, L. Fang, Q. Jiang, and B. Zhou. Multimodal motion prediction with stacked
transformers, 2021.

[44] J. Mercat et al. Multi-head attention for multi-modal joint vehicle motion forecasting. In ICRA,
2020.

[45] J. Lee et al. Set transformer: A framework for attention-based permutation-invariant neural
networks. In ICML, 2019.

[46] A. Jaegle et al. Perceiver: General perception with iterative attention. In ICML, 2021.

[47] F. Torabi, G. Warnell, and P. Stone. Generative adversarial imitation from observation. arXiv
preprint arXiv:1807.06158, 2018.

[48] C. Zhang, R. Guo, W. Zeng, Y. Xiong, B. Dai, R. Hu, M. Ren, and R. Urtasun. Rethinking
closed-loop training for autonomous driving. In S. Avidan, G. Brostow, M. Cissé, G. M.
Farinella, and T. Hassner, editors, Computer Vision – ECCV 2022, pages 264–282, Cham,
2022. Springer Nature Switzerland. ISBN 978-3-031-19842-7.

11

	Introduction
	Related Work
	Background
	Method
	Difficulty Model
	Sampling Strategies

	Experiments
	Baselines
	Training Details
	Metrics
	Results

	Limitations
	Conclusion
	Appendix
	Difficulty Bucket Statistics
	Geometric Schedule
	Uniform Variant
	Metrics by Bucket
	Adaptive Importance Sampling Variants
	Other Variants
	Planning Agent Details
	Evaluation With Interactive Agents

