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ABSTRACT

Neural PDEs have emerged as inexpensive surrogate models for numerical PDE
solvers. While they offer efficient approximations, they often lack robust uncer-
tainty quantification (UQ), limiting their practical utility. Existing UQ methods for
these models typically have high computational demands and lack guarantees. We
introduce a novel framework for calibrated physics-informed uncertainty quantifi-
cation to address these limitations. Our approach leverages physics residual errors
as a nonconformity score within a conformal prediction (CP) framework. This
enables data-free, model-agnostic, and statistically guaranteed uncertainty esti-
mates. Our framework utilises convolutional layers as finite difference stencils for
gradient estimation, our framework provides inexpensive coverage bounds for the
violation of conservation laws within model predictions. In our experiments, we
utilise CP to obtain marginal coverage for each cell and joint coverage over the
entire prediction domain of various PDEs.

1 INTRODUCTION

Numerical Partial Differential Equation (PDE) solvers are crucial for scientific simulations across
various fields (Danabasoglu et al., 2020; Giudicelli et al., 2024), but they often incur significant
computational costs and carbon footprints (Horwitz, 2024). Machine learning offers an efficient
alternative for approximating numerical simulations (Bertone et al., 2019; Karniadakis et al., 2021),
finding applications in weather modelling (Lam et al., 2023; Kurth et al., 2023), fluid dynamics
(Jiang et al., 2020; Pfaff et al., 2021), and nuclear fusion (Poels et al., 2023; Carey et al., 2024;
Gopakumar & Samaddar, 2020). Unlike traditional numerical solvers, which may suffer from nu-
merical instabilities, neural PDE solvers always produce an output. However, their accuracy and
usefulness are not assured. They may violate system physics and confidently assert incorrect solu-
tions due to various errors (Gopakumar et al., 2023a). Existing uncertainty quantification methods
for neural PDE solvers often lack coverage guarantees (Zou et al., 2024), require expensive simula-
tion data (Gopakumar et al., 2024a), or necessitate model modifications (Abdar et al., 2021).

To address these challenges, we propose a framework that leverages PDE residuals over neural PDEs
to provide uncertainty estimates with guarantees. Our approach, outlined in fig. 1, takes obtaining
predictions from the neural PDE solver, evaluates the associated Physics Residual Errors (PRE),
and performs calibration using Conformal Prediction (CP) with both marginal (univariate) and joint
(multivariate) formulations. This method provides statistically valid, guaranteed coverage within
the residual space (Vovk et al., 2005), offering error bounds based on the violation of physical
conservation laws. The framework is model-agnostic, requires no additional data, and is physics-
informed. Through this work, we explore the (over)confidence issue of neural PDE solvers(Zou
et al., 2024). This novel approach to uncertainty quantification can potentially be extended to ODEs
and other systems where model performance can be expressed as a residual. Our contributions are:

• Physics Residual Error as a nonconformity score for CP: We introduce a novel non-
conformity metric for CP over the residual space. Our approach is data-free and yields
input-independent prediction sets while relaxing exchangeability restrictions.

• Marginal and Joint CP: Our approach provides guaranteed coverage bounds both
marginally (per dimension) and jointly (entire prediction domain), enabling the identifi-
cation of regions of volatile predictions and rejection sampling across predictions.
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Figure 1: Schematic layout of the procedure for calibrated physics-informed uncertainty quantifica-
tion. Initial conditions of the PDE are fed into a neural PDE to obtain predictions. PDE residuals
are estimated over the predictions. The residual errors are calibrated using the marginal and joint
formulation of conformal prediction to obtain statistically valid error bars. Marginal-CP leads to
error bars at each point in space-time, whereas joint-CP provides error bars extending across the
entire spatio-temporal domain. This figure is for illustrative purposes only.

2 RELATED WORK

Recently, CP, as a method of performing UQ, has been gaining popularity for usage with spatio-
temporal data Sun (2022). Several works have explored the inductive CP framework for spatial and
sequential data (Stankeviciute et al., 2021; Xu & Xie, 2021; Xu et al., 2023) including in the operator
space (Ma et al., 2024). In Gopakumar et al. (2024a), the marginal-CP framework is extended to
pre-trained as well as fine-tuned surrogate models for physical system modelling across an infinite-
dimensional setting

The usage of PDE residuals under the guise of Physics-Informed Machine Learning (PIML) (Kar-
niadakis et al., 2021) was made popular as an optimisation strategy for Physics-Informed Neural
Networks (PINNs) (Raissi et al., 2019) and has found application in optimising neural operators
(Li et al., 2024) and soft/hard enforcement of the physical constraints to deep learning models (Du
et al., 2024; Chalapathi et al., 2024). However, they have rarely been used as a tool for providing
UQ to the surrogate models; and where they have found application, UQ remained uncalibrated (Zhu
et al., 2019). The majority of literature in UQ for neural PDE solvers has been looking at Bayesian
methods, such as dropout, Bayesian neural networks and Monte Carlo methods (Geneva & Zabaras,
2020; Zou et al., 2024; Psaros et al., 2023), which lack guarantees or are computationally expensive.

3 BACKGROUND

3.1 NEURAL PDE SOLVERS

Consider the generic formulation of a PDE modelling the spatio-temporal evolution of n field vari-
ables u across a range of initial conditions:

D = Dt(u) +DX(u) = 0 u ∈ Rn, X ∈ Ω, t ∈ [0, T ], (1)
u(X, t) = g X ∈ ∂Ω, (2)
u(X, 0) = a(λ,X). (3)

Here, X defines the spatial domain bounded by Ω, t the temporal domain, DX and Dt, the composite
operators of the associated spatial and temporal derivatives. The PDE is further defined by the
boundary condition g and initial condition a, which can be parameterised by λ. The set of solutions
of field variables are expressed as u ∈ U .

Neural PDE solvers aim to learn the behaviour governed by eq. (1) using a parameterised neural
network (NN θ). Starting from the initial conditions, the network is trained to solve the spatio-
temporal evolution of the fields given by Ω ∪ [0, T ]. Neural operators (NOθ) are a special class of
neural networks that learn the operator mapping from the function space of the PDE initial conditions
a ∈ A to the function space of solutions u ∈ U . A neural operator for solving an initial value
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problem can be expressed as

U = NOθ(A), u(X, t) = NOθ

(
u(X, 0)

)
X ∈ Ω, t ∈ [0, T ]. (4)

A Fourier Neural Operator (FNO) is an autoregressive neural operator that learns the spatio-
temporal evolution of PDE solution by leveraging the Fourier transform as the kernel integrator
(Li et al., 2021). The field evolution is learned using tuneable weight matrices of the network,
parameterised directly in the Fourier space of the PDE solutions.

Since CP and our extension of it provide a post-hoc measure of quantifying the uncertainty of a
neural PDE, it remains agnostic to model choice and training conditions. Considering the model
independence of our approach, we restrict our experiments to modelling PDEs with an FNO. The
FNO is chosen due to its cost-accuracy trade-off and efficiency as demonstrated by de Hoop et al.
(2022) and Gopakumar et al. (2023b). CP over a range of neural-PDE solvers is has been applied by
Gopakumar et al. (2024a), where the authors demonstrate that the coverage guarantees are upheld
irrespective of the model choice, not needing us to experiment with various model architectures.

3.2 CONFORMAL PREDICTION

Conformal prediction (CP) (Shafer & Vovk, 2008; Vovk et al., 2005) is a statistical framework that
addresses the accuracy of a predictive model. Consider a machine learning model f̂ : X → Y
trained on a dataset (Xi, Yi)

N
i=1, that is used to predict the next true label Yn+1 at query point Xn+1.

CP extends the point prediction Ỹn+1 to a prediction set Cα, ensuring that

P(Yn+1 ∈ Cα) ≥ 1− α. (5)

This guarantee, a function of the user-defined confidence level (α value), holds irrespective of the
chosen model and training dataset. The only condition is that the calibration samples and the pre-
diction samples are exchangeable. Traditional inductive CP partitions the labelled data into training
and calibration sets (Papadopoulos, 2008). The performance of the model on the latter, measured
using a nonconformity score is used to calibrate the model and obtain prediction sets.

q̂α = F−1
ŝ

(
⌈(n+ 1)(1− α)⌉

n

)
. (6)

Conventionally, nonconformity scores act on the model
predictions and a labelled dataset (Kato et al., 2023). For
deterministic models, they are often formulated as the
Absolute Error Residual (AER) of the model predictions(
f̂(X)

)
and targets

(
Y
)
. For probabilistic models, the

score function (STD) is the absolute error of the predic-
tion means

(
f̂µ(X)

)
and the targets

(
Y
)
, normalised by the standard deviation of the prediction(

f̂σ(X)
)
. Having obtained a distribution of nonconformity scores (ŝ) of the calibration dataset

(Xi, Yi)
n
i=1, a quantile (q̂) corresponding to the desired coverage (1 − α) is estimated from its cu-

mulative distribution function (Fŝ) as given in eq. (6) (Papadopoulos, 2008). The quantile estimates
the error bar associated with desired coverage and is combined with the new prediction to obtain the
prediction sets. The nonconformity score functions and their prediction sets for AER and STD are
given in eq. (7) and eq. (8), respectively.

4 PHYSICS RESIDUAL ERROR (PRE)

We introduce a novel data-free nonconformity score for Conformal Prediction (CP) to obtain statis-
tically valid and guaranteed error bounds for neural PDE solvers. The Physics Residual Error (PRE)
is defined as the PDE residual (Saad & Schultz, 1986) estimated over the discretised PDE solution
obtained from the surrogate model. For an abstract PDE as in eq. (1), the PDE residual is the eval-
uation of the composite differential operator D. The PDE residual is treated as a score function by
taking its L1 norm as indicated in eq. (9). While well-defined PDEs have solutions obeying eqs. (1)
to (3), numerical solutions often fail to converge to the true solution (Pinder, 2018). Neural PDEs,
trained on approximate numerical data, are further prone to non-convergent predictions. In PDE
numerical analysis, the norm of the PDE residual is often used as a criterion for stability, conver-
gence, and accuracy (Iserles, 2009). The PRE typically represents the violation of conservation laws
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associated with the physical system. Using the residual error as a nonconformity score evaluates the
neural PDE solver’s performance by quantitatively estimating its effectiveness in modelling a PDE.

Nonconformity Score Function (S) Prediction Sets (P)

AER ŝ =
(
|f̂(Xi)− Yi|

)n
i=1

Cα(Xn+1) = f̂(Xn+1)± q̂α (7)

STD ŝ =

(
|f̂µ(Xi)− Yi|

fσ(Xi)

)n

i=1

Cα(Xn+1) = f̂µ(Xn+1)± q̂α f̂σ(Xn+1) (8)

PRE ŝ =
(
|D(f̂(Xi))|

)n
i=1

Cα
(
D
(
f̂(Xn+1)

))
= ±q̂α (9)

The norm of the residual operator itself (|D(NOθ(u))|) provides a measure of UQ for the neural
PDE. However, it is limited by the accuracy of the gradient estimation method and can become com-
putationally expensive when exploring a vast solution space (Tolsma & Barton, 1998). By using the
residual norm as a nonconformity score, we are further calibrating the approximate physics residual
error that is obtained by an inexpensive and coarse differential operator. CP using PRE provides
statistically valid and guaranteed error bars across the PDE’s residual space, incorporating physi-
cal information into the calibration procedure, and providing a calibrated measure of the physical
misalignment of the surrogate model.

PRE as a nonconformity score enables data-free conformal prediction. The estimated scores rely
only on the neural PDE predictions over a range of initial conditions, not on the target as in AER and
STD. The only criterion is that the calibration and prediction domains arise from exchangeable initial
conditions of the PDE. As shown in eq. (9), PRE allows for obtaining “prediction sets” indepen-
dent of the prediction inputs (see appendix B for formalism). Traditional CP methods by design
ensure that the predictions always fall within the estimated error bars (see eqs. (7) and (8)). They
only provide guarantees that the true solution will obey coverage determined by α. our CP-PRE
formulation provides no guarantee that the true solution lies within the coverage bounds. Instead, it
ensures that prediction outputs will lie within these bounds, allowing for the identification of predic-
tions falling outside the coverage bounds Cα. Through our method, prediction sets can be validated
without needing the true solution.

4.1 MARGINAL-CP

The CP formulation was initially conceptualised for calibrating univariate functions with single-
point outputs (Vovk et al., 2005). It has recently been extended to spatio-temporal data, with multi-
dimensional outputs with an immutable tensor structure (Gopakumar et al., 2024a). Within such
spatio-temporal settings, CP has been implemented to provide marginal coverage, i.e. the calibration
procedure provides independent error bars for each cell within the spatio-temporal domain. For an
output tensor (Y ) of shape (Y ∈ RNx×Ny×Nt ), where Nx, Ny, Nt represent the spatio-temporal
discretisation of the domain, marginal-CP uses the non-conformity scores outlined in eqs. (7) to (9)
across each cell of Y to obtain error bars which will be compliant eq. (5) for each cell. Marginal-CP
using PRE helps indicate regions within a single prediction that lie outside the calibrated physical
bounds and require specific attention, treating those predictions with caution.

4.2 JOINT-CP

The joint-CP formulation constructs a calibration procedure that provides coverage bands for mul-
tivariate functions. These coverage bands expand across the entire simulation domain Ω × [0, T ]
(discretised as RNx×Ny×Nt ) rather than an individual cell within it. For a coverage band (Cα),
the joint-CP formulation ensures that 1 − α predictions/solutions would lie within the bounds. For
performing joint-CP, the non-conformity scores are modified to reflect the supremum of the score
functions S in eqs. (7) to (9). They are modulated by the standard-deviation σ of the calibration
scores (Diquigiovanni et al., 2021) to allow for obtaining prediction bands with varying widths
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based on local behaviour (Diquigiovanni et al., 2022). The modifications of the score functions and
prediction sets to perform CP are given by

ŝ = sup
X∈Ω, t∈[0,T ]

(
S

σ(S)

)
, (10)

Cα = P × σ(S), (11)

where S and P are the formulations of the nonconformity scores and prediction sets used for
marginal-CP as shown in eqs. (7) to (9). Joint-CP becomes particularly useful in identifying pre-
dictions that fail to fall within coverage, allowing us to perform rejection sampling, where we can
accept or reject a prediction based on a predetermined probability. Similar to that demonstrated by
Casella et al. (2004), our framework can perform rejection sampling using a CP-based criterion. The
acceptance probability is based on confidence level α, allowing the joint-CP formulation using PRE
to filter through predictions of the neural PDE solver. Upon being rejected, the initial conditions that
led to those predictions could be provided to the expensive physics-based numerical PDE solver for
further evaluation.

4.3 DIFFERENTIAL OPERATOR: FINITE-DIFFERENCE STENCILS AS CONVOLUTIONAL
KERNELS

Calibrating neural PDEs using PRE nonconformity scores requires frequent evaluations of the com-
posite differential operator (D) in eq. (1). For PDEs, this involves estimating numerous spatio-
temporal gradients across the discretised domain, ranging from millions in simple cases to billions
for complex physics. To address this computational challenge, we developed a scalable gradient
estimation method for evaluating physics residual error.

We employ convolution operations with Finite Difference (FD) stencils as convolutional kernels
for gradient estimation (Actor et al., 2020; Chen et al., 2024a;b). For instance, the 2D Laplacian
operator ∇2, using a central difference scheme with discretisation h, can be approximated by

∇2 ≈ 1

h2

[
0 1 0
1 −4 1
0 1 0

]
(12)

and used as a kernel. This approach is justified by the mathematical equivalence of FD approxima-
tions and discrete convolutions in the discretised domain. Both represent matrix-vector multiplica-
tions of a block Toeplitz matrix with a field vector (Strang, 1986; Fiorentino & Serra, 1991). The
efficiency of this method stems from the optimised implementation of convolution operations in ma-
chine learning libraries like PyTorch (Paszke et al., 2019) and TensorFlow (Abadi et al., 2015). The
Basic linear Algebra subroutines (BLAS) within these libraries leverage vectorisation and efficient
memory access, resulting in significant performance improvements. Our experiments show a 1000x
speed-up using torch.nn.functional.conv3d compared to a numpy implementation of the equivalent
FD approximation on a standard CPU.

The FD approximation offers several advantages over Automatic Differentiation (AD) for our ap-
plication. It is compatible with CP as a post-hoc measure, requires no architectural modifications,
and is model-agnostic. Furthermore, FD implemented via convolutions is more memory-efficient
than AD, which requires storing the entire computational graph. Our focus on the (mis)alignment
of neural PDEs with eq. (1) allows us to disregard boundary conditions in our error bar estimations.

5 EXPERIMENTS

Methodology: Within each experiment, we start with data generation from a numerical solver,
which is used to train a neural PDE solver, followed by UQ using CP. As laid out in fig. 1, the
calibration procedure for demonstrating CP formulation with PRE involves three key steps: (a)
sample model inputs from a bounded domain of initial conditions to generate predictions, (b) calcu-
lating PRE(s) for each prediction, and (c) using these PRE(s) as nonconformity scores to calibrate
the model’s physical error in residual space, employing both marginal and joint-CP formulations.
Validation is performed by sampling initial conditions from the same bounds used in calibration.
As shown in fig. 2, marginal-CP achieves guaranteed expected coverage, while joint-CP coverage
fluctuates slightly around the guarantee due to its modulation function (see eqs. (10) and (11)).
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Figure 2: Validation plots demonstrating coverage guarantee detailed in eq. (5) obtained by
performing CP using PRE across experiments. The average empirical coverage obtained by CP is
given on the y-axis (ranging from 0 to 1, with 1 representing 100% coverage), while the coverage
for which we calibrate is represented on the x-axis. We obtain guaranteed coverage while using
marginal-CP formulation, and near-to-ideal coverage for the joint-CP formulation.

5.1 1D ADVECTION EQUATION

Consider the one-dimensional advection equation
∂u

∂t
+ v

∂u

∂x
= 0. (13)

The state variable of interest u is bounded within the domain x ∈ [0, 2], t ∈ [0, 0.5] and moves
within the domain at a constant velocity v. Data generation is performed by solving eq. (13) using
a Crank-Nicolson method (Crank & Nicolson, 1947). Data is sampled using a parameterised initial
condition that characterises the amplitude and position of the Gaussian field. Generated data is used
to train a 1D FNO that takes in the initial condition and autoregressively with a step size of 1, learns
to map the next 10 time frames. A reproducible script is attached in the supplementary material.

Figure 3: Advection Equation: (Left) Comparing the neural PDE (FNO) performance with that
of the physics-based numerical solver at the last time instance. (Middle) Upper and lower bounds
for 90% coverage obtained by performing marginal-CP. (Right) Upper and lower bounds for 90%
coverage obtained by performing joint-CP. Marginal-CP provides tighter bounds for a prediction as
opposed to joint-CP, whereas joint-CP provides a method of employing a relative sense of reliability
of a prediction within a domain.

Figure 3 demonstrates the guaranteed bounds obtained over the residual space of eq. (13) utilising
both the marginal and joint-CP formulations. Being cell-wise, marginal-CP guarantees coverage for
each discretised point within the spatio-temporal domain. This allows for tighter bounds and error
quantification of interested subdomains within regions but does not provide any guarantee across
the entire prediction domain. Joint-CP acting across the entire domain provides a guarantee as to
whether a prediction (instead of a single cell) will fall within the domain or not. Larger bounds are
observed as they extend over the multivariate nature of the output. Though this comes with bigger
bounds, it provides us with a mechanism to perform rejection-sampling of predictions. Within joint-
CP, bounds dictating 1 − α coverage suggest that approximately, α × 100% predictions from the
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same domain will fall outside the bounds and can be rejected. Further details about the physics,
parameterisation of the initial conditions, model and its training can be found in appendix E.

5.2 1D BURGERS EQUATION

Consider the 1D Burgers’ Equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
. (14)

The state variable of interest u is bounded within the domain x ∈ [0, 2], t ∈ [0, 1.25]. The field is
prescribed by a kinematic viscosity ν = 0.002. Data is generated by solving eq. (14) using a spectral
method (Canuto et al., 2007). Data sampled using a parameterised initial condition is used to train
a 1D FNO that takes in the initial distribution of the state and learns to autoregressively predict the
PDE evolution for the next 30 time frames.

Figure 4: Burgers’ Equation: (Left) Comparing the neural PDE (FNO) performance with that
of the physics-based numerical solver at the last time instance. (Middle) Upper and lower bounds
for 90% coverage obtained by performing marginal-CP. (Right) Upper and lower bounds for 90%
coverage guaranteed by joint-CP over the residual space.

Figure 4 illustrates the guaranteed bounds over the residual space of eq. (14) using marginal and
joint-CP formulations for 90% coverage. Marginal-CP provides cell-wise coverage, yielding tighter
bounds for specific subdomains. Joint-CP provides bounds 50 times larger than that of the marginal-
CP as it covers the entire prediction domain. Despite the large bounds, approximately α × 100%
predictions fall outside it as given in fig. 2. For details on physics, initial condition parameterisation,
model, and training, see appendix F.

5.3 2D WAVE EQUATION

Consider the two-dimensional wave equation

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
. (15)

The state variable of interest u is bounded within the domain x ∈ [−1, 1], y ∈ [−1, 1], t ∈ [0, 1.0]
and moves at a constant speed c = 1.0. Data is generated by solving eq. (15) using a spectral-
based solver (Canuto et al., 2007) with periodic boundary conditions. Data is sampled using a
parameterised initial condition of the amplitude and position of the Gaussian field. Generated data
is used to train a 2D FNO starting from the initial condition, autoregressively learning the roll-out
for the next 20 time frames.

Figure 5 provides a parallel comparison of the model prediction, the PRE over the prediction and
the error bounds for 90% coverage obtained by performing marginal and joint-CP. Joint-CP creates
bounds an order of magnitude higher than that of the marginal to account for the entire spatio-
temporal domain. The utility of the PRE becomes clear in fig. 5, where for a seemingly well-fit
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Figure 5: Wave equation: (From left to right) neural PDE (FNO) prediction at the last time instance,
physics residual error of the prediction, Upper error bars obtained by performing marginal-CP and
joint-CP respectively (90% coverage). For brevity, we have only shown the upper error bars of the
symmetric prediction sets. mod represents the modulation function in eq. (9).

prediction of the neural-pde the PRE is characterised by noisy features even in areas where the field
should be zero. This is further visualised in fig. 16 in appendix G. By using CP, we are able to cali-
brate these features highlighting physical inconsistencies of the prediction. Our method also comes
with the advantage of being data-free, which means that exchangeability becomes less of a concern
as we can change the calibration domain and hence the prediction domain by simply reformulating
the PRE accordingly. Further details about the experiment can be found in appendix G.

5.4 2D NAVIER-STOKES EQUATION

Consider the two-dimensional Navier-Stokes equations

∇⃗ · v⃗ = 0 (Continuity equation), (16)
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗ = ν∇2v⃗ −∇P (Momentum equation), (17)

where we are interested in modelling the evolution of the velocity vector (v⃗ = [u, v]) and pressure
(P ) field of an incompressible fluid with kinematic viscosity (ν). For data generation, eqs. (16)
and (17) are solved on a domain x ∈ [0, 1], y ∈ [0, 1], t ∈ [0, 0.5] using a spectral-based solver
(Canuto et al., 2007). A 2D multi-variable FNO (Gopakumar et al., 2024b) is trained to model the
evolution of velocity and pressure autoregressively up until the 20th time instance.

x

y

PRE: Dmom(u, v, P)

5

0

5

×10 5

(a) PRE of the Momentum Equa-
tion over the FNO prediction.

x

y

Marginal CP (+q)

2

4

6

8×10 5

(b) Upper error bar indicating
90% coverage with marginal-CP

x

y

Joint CP (+q × mod)

0.5

1.0

1.5

2.0

2.5

3.0
×10 4

(c) Upper error bar indicating 90%
coverage with joint-CP

Figure 6: Navier-Stokes: CP using the Momentum Equation (17) as the PRE for a neural PDE
surrogate model solving the Navier-Stokes equations.

Unlike previous examples, the Navier-Stokes case is comprised of two equations and hence has two
PRE estimates: The continuity equation in eq. (16) and the momentum equation eq. (17), represent-
ing the conservation of mass and momentum respectively. Our method of performing CP over the
residual space using PRE, allows us to calibrate the deviation of the model from the physical ground
truth with respect to each equation. Figure 6 represents the PRE of the momentum equation over
the FNO prediction, the upper bounds obtained by performing marginal and joint-CP over the FNO
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prediction. In fig. 18, the same is depicted for the conservation of mass. Having two PDE residuals
provides our framework added scrutiny in identifying relatively inconsistent predictions, as those
that violate both bounds can be rejected easily. Further details about the physics, parameterisation
of the initial conditions, model and its training can be found in appendix H.

5.5 2D MAGNETOHYDRODYNAMICS

Consider the magnetohydrodynamic (MHD) equations:

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0 (Continuity equation), (18)

ρ

(
∂v⃗

∂t
+ v⃗ · ∇v⃗

)
=

1

µ0
B⃗× (∇⃗ × B⃗)−∇P (Momentum equation), (19)

d

dt

(
P

ργ

)
= 0 (Energy equation), (20)

∂B⃗

∂t
= ∇⃗ × (v⃗ × B⃗) (Induction equation), (21)

∇⃗ · B⃗ = 0 (Gauß law for magnetism), (22)

where the density (ρ), velocity vector (v⃗ = [u, v]) and the pressure of plasma is modelled under
a magnetic field (B⃗ = [Bx, By]) across a spatio-temporal domain x, y ∈ [0, 1]2, t ∈ [0, 5]. µ0 is
the magnetic permeability of free space. Equations (18) to (22) represents the ideal MHD equations
obtained as a combination of the Navier-Stokes equations for fluid flow with Maxwell’s equations
of electromagnetism (Alfvén, 1942; Gruber & Rappaz, 1985; Mocz et al., 2014). The equations
assume perfect conductivity (no magnetic diffusivity) and no viscosity. We focus our experiment on
the modelling of the Orszag-Tang vortex of a turbulent plasma (Orszag & Tang, 1979) with the data
being generated using a finite volume method Eymard et al. (2000). A 2D FNO is trained to model
the evolution of all 6 variables over a dataset generated by parameterised initial conditions.

x

y

PRE: Denergy( , v, P, B)

5

0

5

×10 2

(a) PRE of the Energy Equation
eq. (20) over the FNO prediction.

x

y

Marginal CP (+q)

0.2

0.4

0.6

0.8

1.0×10 1

(b) Upper error bar indicating 90%
coverage with marginal-CP

x

y

Joint CP (+q × mod)

0.5

1.0

1.5

2.0

(c) Upper error bar indicating 90%
coverage with joint-CP

Figure 7: MHD: CP using the Energy Equation (20) as the PRE for a neural PDE surrogate model
solving the Ideal MHD equations. The last time instance of the prediction is shown.

Equations (18) to (22) provides us with 5 measures of estimating the PRE of the the MHD surrogate
model. Each PRE estimate is dependent on a different set of variables associated with the system
and allows us to infer errors contributed to each variable accordingly. In fig. 7 CP is performed
using the energy equation eq. (20), which depends on all of the 6 variables and has a higher error
value than that of the induction equation as shown in fig. 8 which is dependent on the velocity and
magnetic fields only. Plots indicating CP utilising the other residuals (figs. 20 and 21) as well as
further details about the physics and the surrogate model can be found in appendix I.
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(a) PRE of the Induction Equation
eq. (21) over the FNO prediction.

x
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(b) Upper error bar indicating
90% coverage with marginal-CP

x
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(c) Upper error bar indicating 90%
coverage with joint-CP

Figure 8: MHD: CP using the Induction eq. (21) as the PRE for a neural PDE surrogate model
solving the Ideal MHD equations. The last time instance of the prediction is shown.

6 DISCUSSION

If “All models are wrong, but some are useful” (Box, 1976), through this work, we explore a novel
framework for providing data-free, model and domain agnostic measure of usefulness of neural PDE
models. We deploy a principled method of evaluating the accuracy of the solution, i.e. its (calibrated)
obedience to the known physics of the system under study. As opposed to other methods of UQ
for neural PDEs, our method is physics-informed and offers coverage guarantees. This calibration
procedure is not limited to PDE modelling but may apply to ODEs or any other scenario where
the model outputs can be framed as a residual. We conclude with a discussion of the strengths,
limitations and potential improvements.

Strengths The PRE estimates the violation of conservation laws in neural PDE predictions, en-
abling calibration of physics deviation with statistical coverage guarantees. This post-hoc uncer-
tainty quantification is model- and physics-agnostic, scaling linearly with model complexity and
quasi-linearly with PDE complexity due to the additive nature of differential operators. Our frame-
work reformulates CP to be data-free, expressing model inaccuracy solely through PRE, and does
not require a labelled dataset. This approach reduces calibration costs and loosens exchangeabil-
ity restrictions. The PRE formulation (section 4, appendix B) yields input-independent prediction
sets, allowing for the identification of weak predictions within single simulations (marginal-CP) and
across multiple predictions (joint-CP). The latter enables rejection sampling, potentially serving as
an active-learning pipeline for neural PDE solvers (Musekamp et al., 2024).

Limitations Our method’s coverage bounds exist in the PDE residual space rather than the Eu-
clidean space of physical variables. Transforming to physical space involves challenging set propa-
gation through integral operations, which may require linear approximations (Teng et al., 2023) or
expensive MCMC sampling (Andrieu et al., 2003) for complex PDEs. The data-free approach lacks
a grounding target for calibration, though we argue that a large sample of model outputs provides
a statistically significant overview of uncertainty. The sampling cost from the neural-PDE solver
for calibration must be considered. The modulation function in Equation (11) improves local bound
representation but compromises CP guarantee assumptions in the joint setting (fig. 2). PRE estima-
tion using finite-difference stencils also introduces the errors associated with Taylor expansion. The
current formulation is limited to regular grids with fixed spacing, though extensions to unstructured
grids via graph convolutions are possible (Eliasof & Treister, 2020).

7 CONCLUSION

The PRE-CP formulation provides a novel framework for providing guaranteed and physics-
informed uncertainty estimates for each cell within a prediction as well as across predictions. Our
work enhances the reliability of neural PDE solvers, potentially broadening their applicability in
science and engineering domains where robust uncertainty quantification is crucial.

10
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A THEOREM: DATA-FREE CP

Preliminaries: Let D : Rm → Rm be a physics residual operator mapping a function to its
PDE residual value, where: {Xi}ni=1 is the calibration set, f̂ is the model, q̂α is estimated as the
⌈(n+ 1)(1− α)⌉/n -quantile of {|D(f̂(Xi))|}ni=1

Theorem 1. If the residuals {D(f̂(Xi))}n+1
i=1 are exchangeable random variables, then for any

significance level α ∈ (0, 1) and any new input Xn+1 we have the following coverage guarantee:

P(|D(f̂(Xn+1))| ∈ Cα) ≥ 1− α ; Cα = [−q̂α, q̂α]

Proof. Let Ri = |D(f̂(Xi))| for i = 1, . . . , n + 1. We have, by assumption, (R1, . . . , Rn, Rn+1)
is an exchangeable sequence. Define the rank π of Rn+1 w.r.t. all other residuals:

π(Rn+1) = |{i = 1, . . . , n+ 1 : Ri ≤ Rn+1}|

By exchangeability, the rank π(Rn+1) is uniformly distributed over {1, . . . , n+ 1}. Therefore,

P (π(Rn+1) ≤ ⌈(n+ 1)(1− α)⌉) = ⌈(n+ 1)(1− α)⌉
n

≥ 1− α.

By construction of q̂α we have that,

{π(Rn+1) ≤ ⌈(n+ 1)(1− α)⌉} ⊆ {Rn+1 ≤ q̂α}.

Putting this together,

P (|D(f̂(Xn+1))| ≤ q̂α) = P (Rn+1 ≤ q̂α) ≥ 1− α,

which completes the proof.
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B PRE: SCORE FUNCTION AND PREDICTION SETS

For a general nonconformity score S, the prediction set for a new input Xn+1 is typically defined
as:

Cα(Xn+1) = {y : S(Xn+1, y) ≤ q̂α},
where q̂α is the (1− α)-quantile of the nonconformity scores on the calibration set.

For AER and STD, the nonconformity scores depend on both the input X and the output (target) Y :

SAER(X,Y ) = |f̂(X)− Y |,

SSTD(X,Y ) =
|f̂µ(X)− Y |

f̂σ(X)
.

The resulting prediction sets are:

Cα
AER(Xn+1) = [f̂(Xn+1)− q̂α, f̂(Xn+1) + q̂α],

Cα
STD(Xn+1) = [f̂µ(Xn+1)− q̂αf̂σ(Xn+1), f̂µ(Xn+1) + q̂αf̂σ(Xn+1)].

These prediction sets clearly depend on the input Xn+1.

For PRE, the nonconformity score depends only on the model output and not on the target:

SPRE(f̂(X)) = |D(f̂(X))− 0|,

where D is the PDE residual operator. The key difference is that the true output Y for PRE, irre-
spective of the PDE is always 0 and does not depend on the input X . PRE is a measure of how well
the model output satisfies the physics rather than how it fits certain data. Hence, we can formulate
a nonconformity score that is data-free and eventually leads to input-independent prediction sets as
given below.

For PRE, we can reframe the prediction set definition:

Cα
PRE = {f̂(X) : |D(f̂(X))| ≤ q̂α}.

This set is not defined in terms of the true Y values but in terms of the allowable model outputs
f̂(X) that satisfy the PDE residual constraint. Thus, the prediction set can be expressed as:

Cα
PRE = [−q̂α, q̂α].

This formulation is independent of the input X , as it only depends on the quantile q̂α derived from
the calibration set as given in eq. (6).

To validate predictions using PRE:

1. For a new input Xn+1, compute f̂(Xn+1).

2. Calculate the residual: r = |D(f̂(Xn+1))|.
3. Check if r ∈ [−q̂α, q̂α] for a given α.

If the condition in step 3 is satisfied, the error bounds dictated by [−q̂α, q̂α] is considered valid
according to the CP framework, regardless of the specific input Xn+1.
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C COMPARISON TO OTHER UQ METHODS

Method Data-Free Modification-Free Sampling-Free Guaranteed Coverage Physics-Informed
MC Dropout ! % % % %

Deep Ensemble ! % % % %

BNN ! % % % %

SWA-G ! % % % %

CP-AER % ! ! ! %

CP-PRE (Ours) ! ! ! ! !

Table 1: Comparing features across various UQ measures. Our method is data-free, does not require
any modifications or sampling, and helps obtain guaranteed coverage bounds in a physics-informed
manner.

Table 2: Wave Equation - Coverage measured for 2σ(∼ 95%)

in-distribution out-distribution Time

UQ L2 Coverage L2 Coverage Train (hr) Eval (s)

Deterministic 1.77e-05 ± 3.69e-07 - 2.46e-03 ± 2.00e-05 - 0:38 22
MC Dropout 1.44e-04 ± 3.26e-06 97.31 ± 0.03 2.12e-03 ± 2.60e-05 89.83 ± 0.07 0:52 120
Deep Ensemble 8.76e-06 ± 2.43e-07 98.02 ± 0.04 2.42e-03 ± 1.58e-05 83.44 ± 0.12 3:10 112
BNN 1.92e-04 ± 1.92e-06 97.10 ± 0.09 2.67e-03 ± 1.26e-05 91.76 ± 0.10 0:53 118
SWA-G 1.41e-05 ± 1.74e-06 94.55 ± 3.25 2.55e-03 ± 2.82e-05 81.90 ± 3.31 0:47 113
CP-AER 1.76e-05 ± 4.40e-07 95.70 ± 0.21 2.46e-03 ± 1.41e-05 95.59 ± 0.14 0:38 23
CP-PRE (Ours) 1.78e-05 ± 4.61e-07 95.52 ± 0.21 2.46e-03 ± 1.25e-05 95.39 ± 0.12 0:38 23

Table 3: Navier-Stokes Equations - Coverage measured for 2σ(∼ 95%)

in-distribution out-distribution Time

UQ L2 Coverage L2 Coverage Train (hr) Eval (s)

Deterministic 1.05e-04 ± 6.91e-06 - 3.67e-03 ± 5.30e-05 - 3:22 25
MC Dropout 5.96e-04 ± 2.30e-05 82.21 ± 0.22 4.30e-03 ± 8.05e-05 44.05 ± 0.26 3:34 153
Deep Ensemble 1.22e-04 ± 3.95e-06 91.31 ± 0.08 3.67e-03 ± 3.52e-05 30.74 ± 0.19 16:22 147
BNN 6.90e-03 ± 1.31e-04 89.91 ± 0.20 6.95e-03 ± 1.31e-04 85.19 ± 0.23 3:39 152
SWA-G 1.96e-04 ± 1.15e-05 84.22 ± 2.37 3.63e-03 ± 1.37e-04 31.00 ± 2.85 3:28 146
CP-AER 1.05e-04 ± 6.58e-06 95.56 ± 0.40 3.66e-03 ± 2.81e-05 95.54 ± 0.15 3:22 26
CP-PRE (Ours) 1.07e-04 ± 5.18e-06 95.44 ± 0.22 3.70e-03 ± 4.23e-05 95.57 ± 0.14 3:22 34

Table 4: Magnetohydrodynamic Equations - Coverage measured for 2σ(∼ 95%)

in-distribution out-distribution Time

UQ L2 Coverage L2 Coverage Train (hr) Eval (s)

Deterministic 2.20e-03 ± 5.20e-03 - 4.71e-02 ± 1.06e-03 - 5:00 40
MC Dropout 3.29e-02 ± 5.86e-04 41.13 ± 0.19 2.09e-01 ± 1.38e-03 16.91 ± 0.06 5:30 240
Deep Ensemble 3.59e-03 ± 3.51e-04 78.15 ± 0.16 3.41e-01 ± 3.15e-02 39.63 ± 0.31 26:25 235
BNN 4.20e-03 ± 4.08e-05 90.24 ± 0.10 4.63e-02 ± 8.98e-04 62.37 ± 0.46 5:40 240
SWA-G 2.61e-03 ± 9.68e-05 48.50 ± 3.81 4.53e-02 ± 6.64e-04 14.22 ± 1.35 5:22 236
CP-AER 2.20e-03 ± 4.38e-05 95.61 ± 0.26 4.69e-02 ± 8.18e-04 95.60 ± 0.27 5:00 42
CP-PRE (Ours) 2.20e-03 ± 4.96e-03 95.54 ± 0.18 4.71e-02 ± 1.06e-03 95.67 ± 0.22 5:00 82

TABLE INDEX

Deterministic: Vanilla FNO (Li et al., 2021)

MC Dropout: FNO with Dropout (Gal & Ghahramani, 2016)

Deep Ensemble: Ensemble of FNOs (Lakshminarayanan et al., 2017)

SWA-G: Stochastic Weighted Averaging - Gaussian (Maddox et al., 2019)

in-distribution: Model evaluated on initial states sampled from the same parameter range (as given
in the appendix) of the initial condition as used in the training data.
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out-distribution: Model evaluated on initial states sampled from a different parameter range of the
initial conditions as used in the training data.

L2: L2 norm of the model output with the ground truth in the normalised domain.

Coverage: Percentage coverage of the model outputs within the estimated error bounds

Train Time: Training time on a single A100 GPU.

Eval. Time: Evaluation time on a single A100 GPU.
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D CONVOPERATOR: CONVOLUTIONAL KERNELS FOR GRADIENT
ESTIMATION

Within the code base for this paper, we release a utility function that constructs convolutional layers
for gradient estimation based on your choice of order of differentiation and Taylor approximation.
This allows for the PRE score function to be easily expressed in a single line of code 1

This section provides an overview of the code implementation and algorithm for estimating the PRE
using Convolution operations. We’ll use an arbitrary PDE example with a temporal gradient ∂u

∂t and

a Laplacian
(

∂2

∂x2 + ∂2

∂y2

)
to illustrate the process.

∂u

∂t
− α

(
∂2u

∂x2
+

∂2u

∂y2

)
+ βu = 0, (23)

where u is the field variable, t is time, x and y are spatial coordinates, and α and β are constants.
To estimate the PDE residual given by eq. (23), we need to estimate the associated spatio-temporal
gradients.

First, we use the ConvOperator class from Utils/ConvOps 2d.py to set up the convolu-
tional layer with kernels taken from the appropriate finite difference stencils:

from ConvOps_2d import ConvOperator

# Define each operator within the PDE
D_t = ConvOperator(domain=’t’, order=1) #time-derivative
D_xx_yy = ConvOperator(domain=(’x’,’y’), order=2) #Laplacian
D_identity = ConvOperator() #Identity Operator

The ConvOperator class is used to set up a gradient operation. It takes in variable(s) of
differentiation and order of differentiation as arguments to design the appro-
priate forward difference stencil and then sets up a convolutional layer with the stencil as the kernel.
Under the hood, the class will take care of devising a 3D convolutional layer, and setup the kernel so
that it acts on a spatio-temporal tensor of dimensionality: [BS, Nt, Nx, Ny] which expands to batch
size, temporal discretisation and the spatial discretisation in x and y.

alpha, beta = 1.0, 0.5 # Example coefficients
D = ConvOperator() #Additive Kernels
D.kernel = D_t.kernel - alpha * D_xx_yy.kernel - beta * D_identity.kernel

The convolutional kernels are additive i.e. in order to estimate the residual in one convolutional
operation, they could be added together to form a composite kernel that characterises the entire PDE
residual.

Once having set up the kernels, PRE estimation is as simple as passing the composite class instance
D the predictions from the neural PDE surroga te (ensuring that the output is in the same order as
the kernel outlined above).

y_pred = model(X)
PRE = D(y_pred)

Only operating on the outputs, this method of PRE estimation is memory efficient, computationally
cheap and with the ConvOperator evaluating the PDE residual can be done in a single line of
code.

D.1 IMPACT OF DISCRETISATION

As demonstrated in (Bartolucci et al., 2023), the discretisation of the inputs and hence model outputs
plays an important role in the accuracy of the neural-PDE solvers. Though the neural operators are
constructed for discretisation-invariant behaviour due to the band-limited nature of the functions,

1The code and associated utility functions can be found in this github repository.
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they often exhibit discretisation-convergent behaviour rather than be fully discretisation-invariant.
This is of particular importance in the temporal dimensions as these neural-PDE models utilise a
discrete, autoregressive based time-stepping and is baked into the model within its training regime
(McCabe et al., 2023). Due to lack of control in the discretisation within the temporal domain
(dt), the PRE estimates tend to have higher numerical errors as well. In fig. 9, we visualise the
evaluation of finite difference in 2D+time as a 3D convolution. The finite difference stencil i.e. the
convolutional kernel has a unit discretisation of dx, dy and dt associated with the problem and is
applied over the signal i.e. the output from the neural-PDE u spanning the domain x, y, t, where
x ∈ [0, X], y ∈ [0, Y ], t ∈ [0, T ].

Figure 9: PRE estimation using the 3D convolutions with finite difference stencils as convolutional
kernels being applied over the neural-PDE predictions as the signals.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0
x

0.04

0.02

0.00

0.02

0.04

D
(u

)

Coarse (dt=0.01)
PRE
Lower Bound
Upper Bound

(a) PRE-CP over coarser discretisation

0.0 0.5 1.0 1.5 2.0
x

0.0150

0.0075

0.0000

0.0075

0.0150

D
(u

)

Fine (dt=0.005)
PRE
Lower Bound
Upper Bound

(b) PRE-CP over finer discretisation

0.2 0.4 0.6 0.8
1-

0.2

0.4

0.6

0.8

1.0

Em
pi

ric
al

 C
ov

er
ag

e

Coverage
Ideal
Coarse
Fine

(c) Guaranteed coverage irrespective of dis-
cretisation error.
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the model outputs., however, the width of the obtained coverage bounds indicates the discretisation
error associated with the gradient estimation. Coverage taken for α = 0.1 ∼ 90% coverage.
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E 1D ADVECTION EQUATION

E.1 PHYSICS

Consider the one-dimensional advection equation, parameterised by the initial condition:

∂u

∂t
= vD

∂u

∂x
, x ∈ [0, 2], t ∈ [0, 0.5],

u(x, t = 0) = Ae(x−X)2 . (24)

Here u defines the density of the fluid, x the spatial coordinate, t the temporal coordinate and v
the advection speed. initial condition is parameterised by A and X , representing the amplitude and
position of a Gaussian distribution. A no-flux boundary condition bounds the system.

The numerical solution for the above equation is built using a finite difference solver with a crank-
nicolson method implemented in Python. We construct a dataset by performing a Latin hypercube
sampling across parameters A,X . Each parameter is sampled from within the domain given in
table 5 to generate 100 simulation points, each with its own initial condition. Each simulation is run
for 50-time iterations with a ∆t = 0.01 across a spatial domain spanning [0,2], uniformly discretised
into 200 spatial units in the x-axis.

Table 5: Domain range of initial condition parameters for the 1D advection equation.

Parameter Domain Type

Amplitude (A) [50, 200] Continuous
Position (X) [0.5, 1.0] Continuous

E.2 MODEL AND TRAINING

We use a one-dimensional FNO to model the evolution of the convection-diffusion equation. The
FNO learns to perform the mapping from the initial condition to the next time instance, having a
step size of 1. The model autoregressively learns the evolution of the field up until the 10th time
instance. Each Fourier layer has 8 modes and a width of 16. The FNO architecture can be found in
table 6. Considering the field values governing the evolution of the advection equation are relatively
small, we avoid normalisations. The model is trained for up to 100 epochs using the Adam optimiser
Kingma & Ba (2015) with a step-decaying learning rate. The learning rate is initially set to 0.005
and scheduled to decrease by half after every 100 epochs. The model was trained using an LP-loss
(Gopakumar et al., 2024b).

Table 6: Architecture of the 1D FNO deployed for modelling 1D Advection Equation

Part Layer Output Shape

Input - (50, 1, 200, 1)
Lifting Linear (50, 1, 200, 16)
Fourier 1 Fourier1d/Conv1d/Add/GELU (50, 1, 16, 200)
Fourier 2 Fourier1d/Conv1d/Add/GELU (50, 1, 16, 200)
Fourier 3 Fourier1d/Conv1d/Add/GELU (50, 1, 16, 200)
Fourier 4 Fourier1d/Conv1d/Add/GELU (50, 1, 16, 200)
Fourier 5 Fourier1d/Conv1d/Add/GELU (50, 1, 16, 200)
Fourier 6 Fourier1d/Conv1d/Add/GELU (50, 1, 16, 200)
Projection 1 Linear (50, 1, 200, 256)
Projection 2 Linear (50, 1, 200, 1)
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Figure 11: Advection Equation: Marginal-CP with α = 0.5

E.3 CALIBRATION AND VALIDATION

To perform the calibration as outlined in section 5, model predictions are obtained using initial
conditions sampled from the domain given in table 5. The same bounded domain for the initial
condition parameters is used for calibration and validation. 100 initial conditions are sampled and
fed to the model to obtain and prediction for both the calibration and the validation.
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Figure 12: Advection Equation: joint-CP with α = 0.5
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F 1D BURGERS EQUATION

F.1 PHYSICS

Consider the one-dimensional Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,

u(x, t = 0) = sin(απx) + cos(−βπx) +
1

cosh(γπx)
, (25)

where u defines the field variable, ν the kinematic viscosity, x the spatial coordinate, t the temporal
coordinates. α, β and γ are variables that parameterise the initial condition of the PDE setup. The
system is bounded periodically within the mentioned domain.

The solution for the Burgers’ equation is obtained by deploying a spectral solver (Canuto et al.,
2007). The dataset is built by performing a Latin hypercube scan across the defined domain for the
parameters α, β, γ, sampled for each simulation. We generate 1000 simulation points, each one with
its initial condition and use it for training.

The physics of the equation, given by the various coefficients is held constant across the dataset
generation throughout as given in eq. (25). Each data point, as in each simulation is generated with
a different initial condition as described above. The parameters of the initial conditions are sampled
from within the domain as given in table 7. Each simulation is run for 500-time iterations with a
∆t = 0.0025 across a spatial domain spanning [0, 2], uniformly discretised into 1000 spatial units
in the x and y axes. The temporal domain is subsampled to factor in every 10th time instance, while
the spatial domain is downsampled to every 5th instance.

Table 7: Domain range of initial condition parameters for the 1D Burgers’ equation.

Parameter Domain Type

α [−3, 3] Continuous
β [−3, 3] Continuous
γ [−3, 3] Continuous

F.2 MODEL AND TRAINING

We train a 1D FNO to map the spatio-temporal evolution of the field variables. We deploy an auto-
regressive structure that performs time rollouts allowing us to map the initial distribution recursively
up until the 30th time instance with a step size of 1. Each Fourier layer has 8 modes and a width of
32. The FNO architecture can be found in table 8. We employ a linear range normalisation scheme,
placing the field values between -1 and 1. Each model is trained for up to 500 epochs using the Adam
optimiser (Kingma & Ba, 2015) with a step-decaying learning rate. The learning rate is initially set
to 0.005 and scheduled to decrease by half after every 100 epochs. The model was trained using an
LP-loss (Gopakumar et al., 2024b).

F.3 CALIBRATION AND VALIDATION

To perform the calibration as outlined in section 5, model predictions are obtained using initial
conditions sampled from the domain given in table 7. The same bounded domain for the initial
condition parameters is used for calibration and validation. 1000 initial conditions are sampled
and fed to the model to perform the calibration and 100 samples are gathered for performing the
validation.
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Figure 13: Burgers Equation: Marginal-CP with α = 0.75
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Figure 14: Burgers Equation: joint-CP with α = 0.75
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Table 8: Architecture of the 1D FNO deployed for modelling 1D Burgers’ equation

Part Layer Output Shape

Input - (50, 1, 200, 1)
Lifting Linear (50, 1, 200, 32)
Fourier 1 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 200)
Fourier 2 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 200)
Fourier 3 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 200)
Fourier 4 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 200)
Fourier 5 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 200)
Fourier 6 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 200)
Projection 1 Linear (50, 1, 200, 256)
Projection 2 Linear (50, 1, 200 1)
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G WAVE EQUATION

G.1 PHYSICS

Consider the two-dimensional wave equation:

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
= 0, x, y ∈ [−1, 1], t ∈ [0, 1],

u(x, y, t = 0) = e−A
(
(x−X)2+(y−Y )2

)
, (26)

∂u(x, y, t = 0)

∂t
= 0, u(x, y, t) = 0, x, y ∈ ∂Ω, t ∈ [0, 1], (27)

where u defines the field variable, c the wave velocity, x and y the spatial coordinates, t the temporal
coordinates. A,X and Y are variables that parameterise the initial condition of the PDE setup. There
exists an additional constraint to the PDE setup that initialises the velocity of the wave to 0. The
system is bounded periodically within the mentioned domain.

The solution for the wave equation is obtained by deploying a spectral solver that uses a leapfrog
method for time discretisation and a Chebyshev spectral method on tensor product grid for spatial
discretisation (Gopakumar et al., 2023a). The dataset is built by performing a Latin hypercube scan
across the defined domain for the parameters A,X, Y , which accounts for the amplitude and the
location of the 2D Gaussian, sampled for each simulation. We generate 1000 simulation points,
each one with its initial condition and use it for training.

The physics of the equation, given by the various coefficients is held constant across the dataset
generation throughout as given in eq. (26). Each data point, as in each simulation is generated with
a different initial condition as described above. The parameters of the initial conditions are sampled
from within the domain as given in table 9. Each simulation is run for 150-time iterations with a
∆t = 0.00667 across a spatial domain spanning [−1, 1]2, uniformly discretised into 64 spatial units
in the x and y axes. The temporal domain is subsampled to factor in every 5th time instance only.

Table 9: Domain range of initial condition parameters for the 2D wave equation.

Parameter Domain Type

Amplitude (A) [10, 50] Continuous
X Position (X) [0.1, 0.5] Continuous
Y Position (X) [0.1, 0.5] Continuous

G.2 MODEL AND TRAINING

We train a 2D FNO to map the spatio-temporal evolution of the field variables. We deploy an auto-
regressive structure that performs time rollouts allowing us to map the initial distribution recursively
up until the 20th time instance with a step size of 1. Each Fourier layer has 16 modes and a width of
32. The FNO architecture can be found in table 9. We employ a linear range normalisation scheme,
placing the field values between -1 and 1. Each model is trained for up to 500 epochs using the Adam
optimiser (Kingma & Ba, 2015) with a step-decaying learning rate. The learning rate is initially set
to 0.005 and scheduled to decrease by half after every 100 epochs. The model was trained using
an LP-loss (Gopakumar et al., 2024b). The performance of the trained model can be visualised in
fig. 15.

G.3 CALIBRATION AND VALIDATION

To perform the calibration as outlined in section 5, model predictions are obtained using initial
conditions sampled from the domain given in table 9. The same bounded domain for the initial
condition parameters is used for calibration and validation. 1000 initial conditions are sampled
and fed to the model to perform the calibration and 100 samples are gathered for performing the
validation.
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Table 10: Architecture of the 2D FNO deployed for modelling the 2D wave equation

Part Layer Output Shape

Input - (50, 1, 64, 64, 1)
Lifting Linear (50, 1, 64, 64, 32)
Fourier 1 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 64, 64)
Fourier 2 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 64, 64)
Fourier 3 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 64, 64)
Fourier 4 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 64, 64)
Fourier 5 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 64, 64)
Fourier 6 Fourier2d/Conv2d/Add/GELU (50, 1, 32, 64, 64)
Projection 1 Linear (50, 1, 64, 64, 256)
Projection 2 Linear (50, 1, 64, 64 1)

Figure 15: Wave Equation: Temporal evolution of field associated with the wave equation modelled
using the numerical spectral solver (top of the figure) and that of the FNO (bottom of the figure).
The spatial domain is given in Cartesian geometry.
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Figure 16: Analying the PRE over the ground truth and the prediction. Though the neural PDE
solver is capable of learning seemingly indistinguishable emulation of the physics while exploring
the PRE over each tells a different story. As opposed to the smooth laplacian of the PRE over
the ground truth, PRE over the prediction indicates a noisy solution, potentially arising due to the
stochasticity of the optimisation process.
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H 2D NAVIER-STOKES EQUATIONS

H.1 PHYSICS

Consider the two-dimensional Navier-Stokes equations:

∇ · v⃗ = 0,

∂v⃗

∂t
+ (v⃗ · ∇)v⃗ = ν∇2v⃗ −∇P,

with initial conditions:

u(x, y, t = 0) = − sin(2παy) y ∈ [−1, 1], (28)
v(x, y, t = 0) = − sin(4πβx) x ∈ [−1, 1], (29)

where u defines the x-component of velocity, v defines the y-component of velocity. The Navier-
stokes equations solve the flow of an incompressible fluid with a kinematic viscosity ν. The system
is bounded with periodic boundary conditions within the domain. The dataset is built by performing
a Latin hypercube scan across the defined domain for the parameters α, β, which parameterises the
initial velocity fields for each simulation. We generate 500 simulation points, each one with its
initial condition and use it for training. The solver is built using a spectral method outlined in Philip
Mocz’s code.

Each data point, as in each simulation is generated with a different initial condition as described
above. The parameters of the initial conditions are sampled from within the domain as given in
table 11. Each simulation is run up until wallclock time reaches 0.5 ∆t = 0.001. The spatial
domain is uniformly discretised into 400 spatial units in the x and y axes. The temporal domain is
subsampled to factor in every 10th time instance, and the spatial domain is downsampled to factor
every 4th time instance leading to a 100× 100 grid for the neural PDE.

Table 11: Domain range of initial condition parameters for the 2D Navier-Stokes equations

Parameter Domain Type

Velocity x-axis (u0) [0.5, 1.0] Continuous
Velocity y-axis (v0) [0.5, 1.0] Continuous

H.2 MODEL AND TRAINING

We train a 2D multivariable FNO to map the spatio-temporal evolution of the field variables
(Gopakumar et al., 2024b). We deploy an auto-regressive structure that performs time rollouts al-
lowing us to map the initial distribution recursively up until the 20th time instance with a step size
of 1. Each Fourier layer has 8 modes and a width of 16. The FNO architecture can be found in
table 12. We employ a linear range normalisation scheme, placing the field values between -1 and
1. Each model is trained for up to 500 epochs using the Adam optimiser (Kingma & Ba, 2015) with
a step-decaying learning rate. The learning rate is initially set to 0.005 and scheduled to decrease
by half after every 100 epochs. The model was trained using an LP-loss (Gopakumar et al., 2024b).
The performance of the trained model can be visualised in fig. 17.

H.3 CALIBRATION AND VALIDATION

To perform the calibration as outlined in section 5, model predictions are obtained using initial
conditions sampled from the domain given in table 11. The same bounded domain for the initial
condition parameters is used for calibration and validation. 1000 initial conditions are sampled
and fed to the model to perform the calibration and 100 samples are gathered for performing the
validation.
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(a) Spatio-temporal evolution of the horizontal component of velocity (u).

(b) Sptio-temporal evolution of the vertical component of velocity (v).

(c) Spatio-temporal evolution of the pressure field (P ).

Figure 17: Navier-Stokes Equations: Temporal evolution of velocity and pressure modelled using
the numerical spectral solver (top of the figure) and that of the FNO (bottom of the figure).
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Table 12: Architecture of the 2D FNO deployed for modelling 2D Navier-Stokes equations

Part Layer Output Shape

Input - (50, 1, 100, 100, 1)
Lifting Linear (50, 1, 100, 100 16)
Fourier 1 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 100, 100)
Fourier 2 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 100, 100)
Fourier 3 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 100, 100)
Fourier 4 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 100, 100)
Fourier 5 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 100, 100)
Fourier 6 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 100, 100)
Projection 1 Linear (50, 1, 100, 100, 256)
Projection 2 Linear (50, 1, 100, 100 1)

x

y

PRE: Dcont(u, v)

1.0

0.5

0.0

0.5

1.0

(a) PRE of the Continuity Equa-
tion over the FNO prediction.
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(b) Upper error bar indicating
90% coverage with marginal-CP
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(c) Upper error bar indicating 90%
coverage with joint-CP

Figure 18: Navier-Stokes Equations: CP using the Continuity eq. (16) as the PRE.
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I 2D MAGNETOHYDRODYNAMICS

Consider the Ideal MHD equations in 2D:

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0,

ρ

(
∂v⃗

∂t
+ v⃗ · ∇v⃗

)
=

1

µ0
B⃗× (∇⃗ × B⃗)−∇P,

d

dt

(
P

ργ

)
= 0,

∂B⃗

∂t
= ∇⃗ × (v⃗ × B⃗),

∇⃗ · B⃗ = 0,

with initial conditions:

u = −sin(2aπY ), (30)
v = sin(2bπX), (31)

P =
γ

4cπ
, (32)

where the density (ρ), velocity field (v⃗ = [u, v]) and the pressure of plasma is modelled under a
magnetic field (B⃗ = [Bx, By]) across a spatio-temporal domain x, y ∈ [0, 1]2, t ∈ [0, 5]. µ0 is
taken to be the magnetic permeability of free space. The system is bounded with periodic boundary
conditions within the domain. The dataset is built by performing a Latin hypercube scan across the
defined domain for the parameters a, b, c, which parameterises the initial velocity fields for each
simulation. We generate 500 simulation points, each one with its initial condition and use it for
training. The solver is built using a finite volume method outlined in Philip Mocz’s code.

Each data point, as in each simulation is generated with a different initial condition as described
above. The parameters of the initial conditions are sampled from within the domain as given in
table 11. Each simulation is run up until wallclock time reaches 0.5 with a varying temporal dis-
cretisation. The spatial domain is uniformly discretised into 128 spatial units in the x and y axes.
The temporal domain is downsampled to factor in every 25th time instance.

Table 13: Domain range of initial condition parameters for the 2D MHD equations

Parameter Domain Type

Velocity x-axis (a) [0.5, 1.0] Continuous
Velocity y-axis (b) [0.5, 1.0] Continuous
Pressure (c) [0.5, 1.0] Continuous

I.1 MODEL AND TRAINING

We train a 2D multi-variable FNO to map the spatio-temporal evolution of the 6 field variables
collectively. We deploy an auto-regressive structure that performs time rollouts allowing us to map
the initial distribution recursively up until the 20th time instance with a step size of 1. Each Fourier
layer has 8 modes and a width of 16. The FNO architecture can be found in table 14. We employ a
linear range normalisation scheme, placing the field values between -1 and 1. Each model is trained
for up to 500 epochs using the Adam optimiser (Kingma & Ba, 2015) with a step-decaying learning
rate. The learning rate is initially set to 0.005 and scheduled to decrease by half after every 100
epochs. The model was trained using an LP-loss (Gopakumar et al., 2024b). The performance of
the trained model can be visualised in fig. 19.
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(a) Spatio-temporal evolution of density (ρ).

(b) Spatio-temporal evolution of the horizontal component of velocity (u).

(c) Spatio-temporal evolution of the vertical component of velocity (v).

Figure 19: Navier-Stokes Equations: Temporal evolution of velocity and pressure modelled using
the numerical spectral solver (top of the figure) and that of the FNO (bottom of the figure). (Contin-
ued on next page)
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(d) Spatio-temporal evolution of the pressure field (P ).

(e) Spatio-temporal evolution of the horizontal component of the magnetic field (Bx).

(f) Spatio-temporal evolution of the vertical component of the magnetic field (By).

Figure 19: Navier-Stokes Equations: Temporal evolution of velocity and pressure modelled using
the numerical spectral solver (top of the figure) and that of the FNO (bottom of the figure). (Contin-
ued from previous page)
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Table 14: Architecture of the 2D FNO deployed for modelling 2D MHD equations

Part Layer Output Shape

Input - (50, 1, 128, 128, 1)
Lifting Linear (50, 1, 128, 128 16)
Fourier 1 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 128, 128)
Fourier 2 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 128, 128)
Fourier 3 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 128, 128)
Fourier 4 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 128, 128)
Fourier 5 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 128, 128)
Fourier 6 Fourier2d/Conv2d/Add/GELU (50, 1, 16, 128, 128)
Projection 1 Linear (50, 1, 128, 128, 256)
Projection 2 Linear (50, 1, 128, 128 1)

I.2 CALIBRATION AND VALIDATION

To perform the calibration as outlined in section 5, model predictions are obtained using initial
conditions sampled from the domain given in table 11. The same bounded domain for the initial
condition parameters is used for calibration and validation. 100 initial conditions are sampled and
fed to the model to perform the calibration and 100 samples are gathered for validation.
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(a) PRE of the Continuity Equation
eq. (18) over the FNO prediction.
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Figure 20: MHD: CP using the Continuity Equation (18) as the PRE for a neural PDE surrogate
model solving the Ideal MHD equations.
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(a) PRE of the Induction Equation
eq. (22) over the FNO prediction.
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Figure 21: MHD: CP using the Gauss’s law for magnetism eq. (22) as the PRE for a neural PDE
surrogate model solving the Ideal MHD equations.
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J INITIAL AND BOUNDARY CONDITIONS

As mentioned in section 4.3, the focus of our experiments has been in quantifying the misalignment
of the model with the PDE in the domain of the problem. A well-defined PDE is characterised by the
PDE on the domain, the initial condition across the domain at t = 0 and the boundary conditions, re-
flecting the physics at the boundary. Within a neural-PDE setting, the initial condition does not need
to be enforced or measured for as the neural-PDE is set up as an initial-value problem, taking in the
initial state to autoregressively evolve the later timesteps and hence does not come under the purview
of the neural-PDE’s outputs. The boundary conditions, whether Dirichlet, Neumann or periodic, fol-
lows a residual structure as outlined in eq. (2), allowing us to use it as a PRE-like nonconformity
score for performing conformal prediction. In all the problems we have under consideration, the
PDEs are modelled under periodic boundary conditions:

∂u

∂X
= 0; X ∈ ∂Ω (33)

By deploying the eqn 33 as the PRE across the boundary, we can obtain error bars over the boundary
conditions as well. Within fig. 22, we demonstrate the error bars obtained by using the boundary
conditions as the PRE nonconformity scores for the Navier-Stokes equations.

Figure 22: Error bars obtained over the boundary conditions over the right wall of domain of the
Navier-Stokes Equation using Marginal and Joint CP. The empirical coverage obtained using the
boundary condition as the PRE nonconformity score is also given.
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K UTILISING PRE-CP AS A MEASURE OF MODEL QUALITY

While evaluating the performance of a neural-PDE, it is important to their fit not just to the data but
to the underlying physics. PRE-CP will provide guaranteed coverage irregardless of the quality of
the model. It will have considerably wider error bounds when the neural-PDE (whether PINN or a
Neural Operator) fails to comply with the physics. However, we believe that this is an advantage
of our method. In PRE-CP formulation, the bounds are estimated across the PDE residual, where
the ground truth for a well-fit solution should always be near zero. If we get wide error bars further
away from the 0 for potentially high coverage estimates, it is a strong indication that statistically the
model violates the physics of interest.

Consider the example with the Advection equation. We have two models, a well-fit (good model)
and a poorly fit one (bad model). As shown in fig. 23, though we obtain guaranteed coverage in
the case of both the bad and good models, the width of the error bars indicates the quality of the
model. Taken for 90 % coverage, the width of the coverage bounds obtained over the bad model is
substantially larger than that obtained by the good model.
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Figure 23: PRE-CP provides guaranteed coverage irrespective of the model performance, however,
the width of the obtained coverage bounds indicates the accuracy of the model in obeying the un-
derlying physics. Coverage taken for α = 0.1 ∼ 90% coverage.

There still could be a concern as to what width can be considered to be within a good range within
the residual space. This could be estimated by running the PRE convolution operator(s) across a
single numerical simulation of the interested physics, thereby estimating the impact of the operator
in estimating the residual. The PRE over the simulation data will allow us to judge what ranges for
the coverage width differentiate between a ”bad” and a ”good” model.
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L PLASMA MODELLING WITHIN A TOKAMAK

In (Gopakumar et al., 2024b), the authors model the evolution of plasma blobs within a Fusion
reactor (known as a Tokamak) following reduced magnetohydrodynamics. Plasma, characterised by
density ρ, electric potential ϕ and Temperature T under the absence of magnetic pressure confining
it in place, moves radially outward to the wall of the reactor driven by its kinetic pressure. We
demonstrate the ability to scale our method by applying it to obtain valid error bars across the multi-
variable FNO trained for plasma modelling.
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Figure 24: Reduced MHD: PRE-CP using the Temperature equation (Eqn. 3 in (Gopakumar et al.,
2024b)) of reduced-MHD to bound the plasma surrogate models. The PRE captures the model error
relatively well, allowing us to provide lower and upper error bars corresponding to our required
coverage.

As shown in figure 24, our method can capture the model error across a range of predictions and can
devise error bars that provide guaranteed coverage without needing any additional data. In figure
24a, we demonstrate the absolute error in the model prediction of the temperature evolution, and
correlate that with the PRE over the temperature equations in figure 24b.
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