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Abstract

Low-cost slit-lamp imaging holds significant potential for transforming eye care by facil-
itating affordable and scalable cataract diagnosis. However, the development of robust,
generalizable AI-based cataract screening solutions is currently constrained by the limited
availability of large-scale, richly annotated datasets. To address this critical gap, we intro-
duce CatScreen, a comprehensive multimodal benchmark dataset specifically designed for
cataract screening, comprising approximately 18,000 slit-lamp images collected from 2,251
subjects using a portable slit-lamp camera. CatScreen is structured into three subsets:
(i) a clean set meticulously annotated by ophthalmology experts across clinically relevant
dimensions, including image gradability, quality assessment, illumination type, diagnostic
classification, cataract subtype, and severity grading according to established standards;
(ii) a noisy-labeled set that simulates real-world annotation inaccuracies; and (iii) an unla-
beled set intended to foster the development of self-supervised and semi-supervised learning
approaches. Furthermore, CatScreen integrates extensive subject-level metadata encom-
passing demographics, lifestyle factors, and detailed clinical histories, providing a holistic
perspective for comprehensive analysis. To enhance model interpretability and clinical appli-
cability, a subset of images has been precisely annotated to delineate anatomical structures
in both healthy and pathological states. Additionally, this work presents two complemen-
tary AI frameworks, Structured Sequential Analysis and Multitask Learning, each offering
distinct yet synergistic approaches toward enhancing model interpretability and efficiency.
CatScreen thus provides researchers with a robust foundation to advance reliable, inter-
pretable, and generalizable cataract screening solutions, significantly improving access to
quality eye care diagnostics, particularly in underserved and resource-limited regions.

1 Introduction

Cataract is characterized by clouding of the eye’s natural lens, resulting in diminished visual acuity. If
left untreated, cataracts can progress to complete blindness or significantly impair an individual’s mental
well-being Wang et al. (2024). Figure 1 illustrates representative examples of cataractous lens compared to
healthy eyes and natural crystalline lens affected by other ocular conditions. Globally, cataract remains the
predominant cause of blindness, impacting approximately 15.2 million individuals, constituting about 45% of
global blindness cases (Steinmetz et al., 2021; of the Global Burden of Disease Study et al., 2024). Although
cataracts have traditionally been prevalent among elderly populations, recent epidemiological studies report
a worrying rise in prevalence among younger age groups. This demographic shift is associated with multiple
modifiable and non-modifiable risk factors, including smoking, radiation exposure, and an increasing inci-
dence of diabetes (Thompson & Lakhani, 2015). Timely detection and early surgical intervention through
lens replacement remain the definitive treatment options, thereby emphasizing the necessity of effective and
accessible screening methods.

Conventionally, cataract diagnosis relies heavily on manual examinations performed by trained ophthalmolo-
gists using slit-lamp microscopy. This clinical evaluation requires significant expertise and extensive practical
experience to accurately detect cataracts, classify their subtypes, and grade their severity. Despite its effec-
tiveness, this traditional diagnostic approach faces substantial limitations, particularly in resource-limited
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Figure 1: Sample images of eyes for (a) normal, (b) cataract condition characterized by lens clouding, and
(c) various other eye conditions affecting different ocular structures.

settings characterized by insufficient qualified healthcare personnel (Flaxman et al., 2017). Consequently,
a significant fraction of the global population, especially those in underdeveloped and underserved regions,
lacks access to timely diagnosis and effective treatment options. This disparity underscores the urgent need
for innovative, scalable, and accessible diagnostic solutions that can bridge existing healthcare gaps and
enhance ocular health outcomes for diverse populations.

Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) present promising avenues to
address these diagnostic challenges. AI techniques have shown substantial potential in medical imaging anal-
ysis, particularly in detecting, segmenting, classifying, and grading various ocular diseases (Gour et al., 2023).
Integrating AI-driven automated systems into cataract screening workflows can significantly enhance diag-
nostic accuracy, efficiency, and accessibility, offering profound benefits to remote and resource-constrained
environments. However, the development and successful deployment of robust AI-based diagnostic tools
fundamentally depend on the availability and quality of comprehensive, diverse, and meticulously annotated
datasets.

Several research initiatives have leveraged slit-lamp imaging datasets to automate cataract detection and
classification. However, current slit-lamp datasets often suffer from limitations related to data diversity,
completeness, and annotation depth, hindering their applicability to generalizable and robust diagnostic
systems. For instance, Foong et al. (2007) and Shimizu et al. (2023) focused primarily on nuclear cataracts,
while Wang et al. (2023) concentrated exclusively on cortical cataracts. Such narrowly focused datasets
inherently lack comprehensive diversity, thus limiting their generalizability. Similarly, datasets provided by
Jiang et al. (2021) and (Son et al., 2022), although extensive, primarily offer limited annotation dimensions,
restricting the clinical relevance and interpretability of AI solutions derived from them. Notably absent from
these datasets are critical parameters such as detailed assessments of image quality, precise classification
of cataract subtypes, and standardized grading of cataract severity—all of which are essential elements in
comprehensive ophthalmic diagnosis. Consequently, existing AI-based methods developed from such datasets
encounter significant biases and constraints in real-world diagnostic scenarios.

Table 1: Existing slit-lamp image-based datasets for cataract diagnosis and their respective characteristics

Author Device
Used

No. of
Subjects

No. of
Images

Metadata Image
Quality?

Disease
Grading?

Remarks

Foong et al. (2007) Topcon DC-1 digital
slit-lamp

1000 1000 ✓ ✗ ✓ Nuclear Cataract

Jiang et al. (2021) slit-lamp 536 886 ✗ ✗ ✓ Infantile Cataract
Jiang et al. (2021) slit-lamp 433 757 ✗ ✗ ✓ Infantile Cataract

Son et al. (2022) SL-D7[TMS, Inc]
D850 [Nikon, Inc]

596 1972 ✓ ✗ ✓
Cataract detection

and grading
Wang et al. (2023) slit-lamp 2150 2150 ✗ ✗ ✓ Cortical cataract

Shimizu et al. (2023) Smart Eye Camera 1812 38320
frames

✗ ✗ ✗ Nuclear cataract

Proposed CatScreen Remidio Portable Slit
Lamp PSL-D20

2251 18640 ✓ ✓ ✓

Cataract detection,
grading,

quality analysis,
multimodal data
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To systematically address these limitations and foster the development of robust and clinically relevant
AI-based cataract screening tools, we introduce CatScreen, an extensive, multimodal, and comprehensively
annotated dataset acquired through an affordable, portable slit-lamp imaging device. CatScreen comprises
over 18,000 slit-lamp images collected from approximately 2,251 diverse subjects. Each image is thoroughly
annotated across several clinically relevant dimensions, including diagnostic classification, image gradability,
quality assessments, cataract subtype identification, and severity grading, all adhering to established ophthal-
mological standards. Additionally, comprehensive subject-level metadata capturing essential demographic
variables, lifestyle factors, and clinical histories accompanies the dataset. To enhance AI model explainability
and clinical relevance, a subset of images includes detailed segmentation annotations of critical anatomical
structures, such as the lens, cornea, iris, and pathological regions.

By providing a richly annotated and multidimensional ocular dataset, CatScreen uniquely addresses critical
shortcomings of existing datasets and sets a foundational resource for developing advanced, explainable,
and clinically robust AI diagnostic tools. The depth and diversity of annotations ensure that AI methods
developed using CatScreen will be applicable and generalizable across various clinical settings, enhancing
their utility in real-world ophthalmic diagnostics. Given these comprehensive features, CatScreen directly
addresses the following critical clinical and technical research questions:

Q1: How can slit-lamp image quality be reliably and objectively evaluated?

Q2: How can the type of illumination employed in slit-lamp imaging be accurately identified, and its impact
on diagnostic outcomes quantified?

Q3: How can slit-lamp images be effectively categorized into normal, cataractous, or other ocular conditions?

Q4: How can specific cataract subtypes be accurately identified and differentiated?

Q5: Upon diagnosing cataract presence, how can cataract severity be consistently and objectively assessed?

The structured and comprehensive nature of CatScreen ideally positions it for diverse screening and diag-
nostic modeling frameworks, including structured sequential analyses and multitask learning methodologies,
as elaborated in the subsequent problem formulation section.

2 Problem Formulation

The problem addressed in this work is the automated screening and diagnostic assessment of cataracts,
aiming to replicate the detailed multi-stage clinical evaluation typically performed by ophthalmologists.
Specifically, this assessment involves evaluating the quality of slit-lamp images, classifying illumination con-
ditions, diagnosing the presence or absence of cataracts, identifying specific cataract subtypes, and grading
cataract severity. The structured assessment utilizes slit-lamp images paired with comprehensive patient
metadata to provide clinically informed predictions.

Formally, we denote an input slit-lamp image as I ∈ RH×W ×C , where H, W , and C correspond to image
height, width, and color channels, respectively. Additionally, patient metadata is represented by a feature
vector M ∈ Rd, containing demographic details, lifestyle factors, and clinical histories, such as age, gender,
diabetic status, and ocular medical records. The task objective is to predict a set of clinically relevant
diagnostic attributes, denoted as A = (Q, T, D, C, G), where each attribute represents:

• Q ∈ Good, Acceptable, Poor: Image quality assessment.

• T ∈ Diffuse, Direct Focal, Retro: Illumination type classification.

• D ∈ Normal, Cataract, Others: Diagnostic categorization.

• C ∈ No cataract, Nuclear, Cortical, PSC, Pseudophakia, Others: Cataract subtype identification.

• G ∈ Not Applicable, Mild, Severe: Severity grading of cataract.
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This diagnostic formulation can be approached via two distinct yet complementary methodologies: (1)
structured sequential analysis, mirroring the sequential decision-making workflow of clinical practitioners, or
(2) multitask learning, where all diagnostic attributes are concurrently predicted from shared inputs.

To explicitly represent causal relationships and enhance interpretability, we adopt Structural Causal Models
(SCMs) for the sequential analysis, formally defined as follows:

Q = fQ(I, ϵQ), (1)
T = fT (I, Q, ϵT ), (2)
D = fD(I, M, Q, T, ϵD), (3)
C = fC(I, M, D, ϵC), (4)
G = fG(I, M, D, C, ϵG), (5)

where ϵQ, ϵT , ϵD, ϵC , ϵG denote exogenous noise variables, thus clearly delineating causal pathways and en-
hancing transparency in the diagnostic workflow.

Alternatively, the multitask learning formulation employs a unified predictive model fθ parameterized by
model weights θ, simultaneously predicting all attributes:

(Q̂, T̂ , D̂, Ĉ, Ĝ) = fθ(I, M). (6)

This model is optimized by minimizing a weighted sum of task-specific classification losses:

L(θ) = λQLQ + λT LT + λDLD + λCLC + λGLG, (7)

with each individual loss L· defined by categorical cross-entropy:

L(y, ŷ) = −
K∑

j=1
yj log(ŷj), (8)

where y is the one-hot encoded ground-truth vector, and ŷ is the predicted probability distribution over K
classes.

Acknowledging the advantages inherent in each modeling approach, we explicitly structured our CatScreen
dataset to facilitate both methodologies. This flexibility ensures the development of robust, versatile, and
clinically meaningful automated cataract screening systems.

3 CatScreen Dataset

The CatScreen dataset is a meticulously curated resource, comprising over 18,000 slit-lamp images acquired
using low-cost, portable handheld slit-lamp cameras. Aiming to deliver a comprehensive and affordable
solution for cataract diagnosis, this dataset addresses critical gaps identified in existing ophthalmic image
repositories. Prioritizing patient privacy and adhering strictly to ethical guidelines, all Protected Health
Information (PHI), including names, guardian details, contact numbers, email addresses, and other sensitive
data, has been carefully anonymized and removed. To maintain data integrity without compromising con-
fidentiality, each image is assigned a unique, non-identifying identifier indicating patient ID, pupil dilation
state (dilated or undilated), eye side (right or left), and capturing device details. Preliminary preparations,
including rigorous site selection, commenced in August 2022, leading to an extensive data collection phase
spanning from December 2022 through January 2024. This section elaborates on the detailed prerequisites,
device specifications, data acquisition procedures, and the exhaustive annotation methodologies utilized.
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3.1 Pre-requisites and Device Specifications

This subsection describes the essential preparatory steps, patient recruitment protocols, exclusion criteria,
and technical specifications of the imaging device employed.

1. Ethical Considerations: Prior to data collection, formal approvals were obtained from the
Institutional Ethics Committees of the Postgraduate Institute of Medical Education and Re-
search (PGIMER) (approval number PGI/IEC-11/2022-2633) and Sri Sankaradeva Nethralaya
(SSN/IEC/AUGUST/2022/01). Adherence to the ethical standards outlined in the Declaration
of Helsinki was strictly maintained throughout the study. Participants were given detailed briefings
on the study’s objectives, methodologies, and potential implications. Written informed consent was
obtained from all participants, and dedicated sessions were held to address and resolve the questions
of the participants.

2. Exclusion Criteria: To guarantee data consistency, individuals with active ocular infections or
diagnosed type 1 diabetes mellitus were excluded from participation. These criteria ensured the
collection of relevant and high-quality data suitable for developing reliable diagnostic models.

3. Device Specifications: The imaging data was captured using the Remidio Portable Slit Lamp
PSL-D20 (Remidio Innovative Solutions Pvt. Ltd., Bangalore, India), a handheld, versatile, and
portable digital slit-lamp camera. Designed explicitly for efficient mobile eye examinations, the
PSL-D20 device offers adjustable slit widths ranging from 1 to 12mm and slit angles adjustable
within ±45 degrees, supporting both diffuse and direct focal illumination. The device seamlessly
integrates with an Apple iPhone SE camera, leveraging its high-resolution imaging capabilities. It
supports multiple specialized imaging modes, including standard color imaging, green (red-free), and
blue illumination. Equipped with magnification options of 10× and 16×, and a working distance
of 61mm, the PSL-D20 ensures high-quality imaging under diverse clinical settings. Images are
captured at a high resolution of 3024×4032 pixels, while videos are recorded at 1920×1080 pixels,
further enhancing data clarity and clinical applicability.

3.2 Data Collection

The CatScreen dataset comprises 18,640 slit-lamp images from 2,251 diverse participants collected across
multiple clinical sites. In addition to visual imagery, CatScreen includes comprehensive metadata captur-
ing detailed socio-demographic and clinical characteristics of each participant, significantly enriching the
dataset’s analytical potential. To facilitate various research approaches, CatScreen is systematically catego-
rized into three distinct subsets:

• Clean Set: Featuring 9,915 meticulously annotated images from 1,271 participants, this subset
serves as the foundation for robust, supervised learning model training. Domain experts provided
exhaustive annotations covering essential parameters including image gradability, diagnostic cate-
gorization, cataract subtype identification, severity grading, and illumination type. The detailed
distribution of annotations across patients and attributes is presented in Table 2a.

• Noisy Set: Consisting of 3,267 images from 505 participants, this subset includes annotations
with varying degrees of accuracy to emulate realistic clinical environments, where annotations may
inherently contain errors. Such a dataset aids in the development and evaluation of models resilient
to annotation noise.

• Unlabelled Set: Containing 5,481 images without diagnostic annotations, this subset facilitates the
exploration of innovative approaches such as self-supervised, semi-supervised, and active learning
methodologies, allowing effective utilization of unlabeled data to augment model robustness and
generalizability.
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3.2.1 Image Collection Protocol

Images were systematically captured following the protocols recommended by the WHO simplified grading
system. These images were collected under both dilated and undilated pupil conditions, using the following
specialized imaging techniques:

• Direct Optical Section Images: Captured at 10× magnification, with a slit width of 0.2 mm and
a slit-beam orientation of 30 degrees, enabling detailed visualization of distinct lens layers.

• Direct Diffuse Illumination Images: Obtained at 5× magnification, with the illuminating arm
positioned at a 45-degree angle relative to the microscope. This approach provides comprehensive
visualizations of the anterior segment of the eye in both dilated and undilated states.

• Indirect Retro-Illumination Images: Acquired under strictly controlled, dimly lit conditions
(below 15 lux) with a slit lamp-mounted iPhone SE camera flash, exclusively in dilated conditions,
offering enhanced visualization of posterior lens structures and subtle abnormalities.

3.2.2 Comprehensive Metadata

To maximize the clinical and research value of the CatScreen dataset, an extensive array of patient metadata
was collected, encompassing a broad spectrum of factors potentially influencing cataract development and
progression. Summarized comprehensively in Table 2b, key metadata elements include:

• Demographic Data: Participant ages ranged from 35 to 92 years, averaging approximately 57
years, with a well-balanced gender distribution comprising 45% females and 54% males.

• Health Conditions: Clinical histories documenting the presence of diabetes, hypertension, and
other systemic conditions that could influence ocular health.

• Eye Health History: Detailed ocular health records capturing previous incidents of eye inflam-
mation, myopia, ocular surgeries, eye trauma, and topical ocular disorders.

Through its meticulous curation, rigorous annotations, and extensive metadata, CatScreen stands as a unique
and invaluable resource, poised to significantly advance AI-driven cataract screening technologies, enabling
their widespread clinical adoption and deployment, particularly in underserved and resource-limited regions.

4 Data Annotation

Ensuring accuracy and consistency in dataset annotation is pivotal for developing robust and clinically
reliable diagnostic models. To achieve this objective, the CatScreen dataset employed a meticulous three-
tiered annotation process, structured to maximize precision, minimize annotation biases, and maintain high-
quality standards throughout.

4.1 Three-tiered Annotation Structure

The annotation procedure was designed to leverage progressively specialized expertise at each annotation
level:

1. Level 1 – Initial Annotation: Two experienced optometrists, each holding a bachelor’s degree
in optometry with a minimum of three years of hands-on experience in retinal and anterior seg-
ment imaging, performed initial annotations. These annotations provided a foundational layer for
subsequent refinement.

2. Level 2 – Secondary Review and Refinement: A senior optometrist possessing a master’s
degree in optometry and over five years of clinical and imaging experience conducted an exhaustive
secondary review. This intermediate stage involved meticulous refinement and correction of initial
annotations to resolve ambiguities and discrepancies.
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Label Classes Train Val Test Total Images

Diagnosis

Normal 1845 251 545 2641
Cataract 3627 523 996 5146
Others 1526 224 378 2128

Cataract Type

Normal 1845 251 545 2641
Nuclear Cataract 3357 479 924 4760
Cortical Cataract 184 30 48 262
Posterior SC 75 14 24 113
Pseudophakia 1495 220 365 2080
Others 42 4 13 59

Cataract Grade
Not Applicable 3371 475 923 4769
Mild 2970 428 796 4194
Severe 657 200 95 952

Image Quality
Good 134 22 20 176
Acceptable 6112 871 1680 8663
Bad 752 105 219 1076

Illumination type
Diffuse Illumination 2130 296 606 3032
Direct Focal 2996 423 795 4214
Retro 1872 279 518 2669

(a)
Set Gender Age

Participants Clean Noisy Clean Noisy
Clean Set 1271 Females 578 231 Max 92 86
Noisy Set 505 Males 693 274 Min 35 51

Mean ± Std 57.2 ± 9.96 61 ± 7.22
Diabetes Status Hypertension Status Systemic Illness Status

Clean Noisy Clean Noisy Clean Noisy
No 815 199 No 710 181 No 1002 295
Yes 456 306 Yes 561 324 Yes 269 210

Eye Problem Status Use of Spectacles Ocular Surgery Done?
Clean Noisy Clean Noisy Clean Noisy

No 396 195 No 367 166 No 667 354
Yes 875 310 Yes 904 339 Yes 604 151

(b)

Table 2: Showcasing the (a) distribution of each label in training, validation and testing, and (b) summarizing
the distribution of participants of clean and noisy sets based on sociodemographic factors and other clinical
characteristics.

3. Level 3 – Expert Validation: Final validation and oversight were provided by a retina-trained
ophthalmologist with over a decade of clinical and diagnostic experience. This expert-level validation
ensured maximum accuracy, consistency, and clinical relevance of the final annotations, thereby
enhancing the dataset’s reliability and applicability in developing diagnostic AI solutions.

The annotation process was systematically divided into three essential phases: gradability assessment,
ground-truth collection, and anatomical and pathological annotation.

4.2 Gradability Assessment

Image gradability is crucial for ensuring diagnostic accuracy in ophthalmic imaging research. Recognizing
its importance, a rigorous two-stage gradability assessment protocol was developed and implemented.
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Figure 2: Presents the samples of the CatScreen in diffuse illumination setting across various labels.

In the first stage, trained opticians assessed the image quality in real-time at the point of capture. Images
failing predefined stringent criteria related to clarity, sharpness, and contrast were immediately discarded
and replaced with newly captured images. The second stage involved Level 1 annotators performing a
comprehensive reevaluation of the images using identical quality standards. Only those images passing both
stages of rigorous scrutiny were deemed gradable and included for detailed annotation and further analysis.

The key parameters evaluated during this gradability assessment included:

• Clear visibility of at least 80% of the anterior segment of the eye.

• Distinct visibility of critical morphological features including the iris, lens, cornea, and other anterior
ocular structures.

• Optimal sharpness and contrast for accurate clinical interpretation.

• At least 95% clarity of all morphological landmarks.

4.3 Ground-truth Collection

Each selected image underwent a detailed multi-label annotation process, capturing comprehensive diagnostic
insights. Figure 2 showcases the multi-label annotation of some sample images in diffuse illumination.

a. Image Quality: Annotated using a 10-point Likert scale, the image quality ratings were aggregated into
three distinct categories to mitigate subjective variability: Poor (Grades 1–3), Acceptable (Grades 4–8), and
Good (Grades 9–10).

b. Illumination Type: Images were categorized based on three illumination techniques commonly used in
slit-lamp imaging:

• Direct Focal Illumination: Utilizing a narrow, focused beam directed to highlight specific anterior
ocular structures such as the lens and cornea, enhancing visibility of fine details and layer structures.
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• Diffuse Illumination: Employing a broad, uniform light source, this method provides an overall
visualization of the anterior segment, suitable for general screening and holistic assessment.

• Retro-Illumination: Involving light reflected from behind the retina to visualize the posterior lens,
this method accentuates subtle abnormalities such as posterior lens opacities.

c. Diagnostic Label: Images were classified into three diagnostic categories:

• Normal (No): Images with no detectable abnormalities.

• Cataract (Cat): Images exhibiting any evidence of lens clouding.

• Others (Oth): Images indicating conditions such as pseudophakia, pterygium, conjunctivitis, or
corneal scarring.

d. Cataract Type: Six categories were utilized for identifying cataract subtypes:

• No Cataract: No visible opacification.

• Nuclear Cataract: Opacities predominantly within the lens nucleus.

• Cortical Cataract: Peripheral lens opacities characterized by wedge-like patterns.

• Posterior Subcapsular Cataract (PSC): Opacities located posteriorly, affecting the lens cap-
sule’s back.

• Pseudophakia (PP): Presence of an artificial intraocular lens.

• Others: Any conditions not fitting exclusively into above categories or combinations thereof.

e. Cataract Grade: Cataract severity was classified into three distinct grades:

• Not Applicable: For normal or other non-cataract cases.

• Mild: Early-stage cataracts with minimal to moderate lens opacity.

• Severe: Advanced cataracts characterized by dense and extensive lens opacification.

4.4 Anatomical and Pathological Annotations

To further enhance the dataset’s interpretability and clinical relevance, a subset of images underwent
meticulous segmentation-based annotations. Using the Oxford VGG Image Annotator tool (available at
[https://www.robots.ox.ac.uk/~vgg/software/via/via_demo.html]), annotators delineated key ocular
structures such as the cornea, iris, lens, and sclera. Additionally, pathological features such as cataracts,
corneal scars, pterygium, conjunctival hemorrhages, and edema were accurately identified and annotated.
These detailed annotations are critical for training AI models capable of anatomically accurate diagnos-
tic predictions and for validating the clinical interpretability of the models. Sample annotated images are
presented in Figure 3, and precise coordinates of each annotation are systematically documented.

4.5 Quality Assurance Protocol

A comprehensive quality assurance (QA) protocol was implemented, involving initial annotations by Level
1 annotators followed by systematic reviews by Level 2 annotators. For initial QA validation, the first
500 annotated images underwent inter-annotator agreement analysis, specifically targeting diagnostic labels.
A kappa score threshold of 0.60 was set as the standard for acceptable agreement. Any discrepancies
or disagreements were rigorously addressed in structured group discussions involving the expert Level 3
annotator. Following this initial validation phase, continuous monthly QA checks were conducted, reviewing
25% of annotated images over three consecutive months. This rigorous annotation and QA protocol ensured
high levels of annotation precision and consistency, reinforcing CatScreen’s suitability as a reliable and
clinically valuable dataset for developing advanced ophthalmic diagnostic AI solutions.
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Figure 3: Presents (a) the annotation process where the input image is classified corresponding to multiple
labels and (b) various annotations for anatomical and pathological regions in a slit-lamp image.

4.6 Data Records

The Catscreen dataset will be made publicly available for research purposes upon acceptance. A sample
snapshot of the dataset is available at https://github.com/Anonymousresearcher002/Data2025.git. There is
a primary folder named CatScreen with the following directory structure:

• Clean: This folder includes a subfolder "Clean images" containing clean image data and a metadata
file, clean_meta, with detailed socio-demographic and medical information for each participant in the
clean set. Additionally, three CSV files for training, testing, and validation are provided, containing
label information such as image quality, diagnostic label, severity grade, and more.

• Noisy: This folder includes a subfolder "Noisy images" containing noisy image data and a metadata
file, noisy_meta, with detailed socio-demographic and medical information for each participant. A
CSV file, noisy_labels, is also included, providing label information for each attribute.

• Unlabelled dataset: This folder includes a subfolder "Unlabelled images".

• A CSV file, "Region_annotation", is also included, containing the filenames and coordinate infor-
mation of various regions within each image.

5 CatScreen Framework and Experimental Details

This section presents a detailed overview of the CatScreen Framework, aligning it with the mathematical
problem formulation described in Section 2. It introduces two complementary modeling approaches, Struc-
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(a)

(b)

Figure 4: Presents the two complementary frameworks: (a) structured sequential analysis framework for
automated cataract screening and (b) Multitask learning framework where each label is jointly predicted for
automated cataract screening.

tured Sequential Analysis and Multitask Learning, and provides descriptions of the evaluation protocols,
baseline algorithms, and implementation specifics essential for validation of automated cataract screening
solutions.

5.1 CatScreen Framework

The CatScreen Framework is designed to address the automated diagnostic tasks delineated mathematically
in Section 2, specifically targeting the accurate prediction of clinically relevant attributes A = (Q, T, D, C, G)
from slit-lamp images I and patient metadata M . To achieve accurate and clinically interpretable predictions,
it employs two paradigms: Structured Sequential Analysis and Multitask Learning, summarized in Table 3.

1. Structured Sequential Analysis: Figure 4a represents the Structured Sequential Analysis framework.
This approach closely mimics the clinical reasoning of the doctors by explicitly modelling the depen-
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dencies among diagnostic attributes. Each stage builds upon preceding predictions, reflecting the
typical sequential decision-making of ophthalmologists.
Starting with a slit-lamp image (I), the model first assesses the image quality (Q) and illumination
type (T). These are important as they directly affect the subsequent diagnostic predictions. Based
on these intermediate assessments, the model then predicts the overall diagnosis (D) by combining
it with patient metadata (M), determining whether the eye is normal, has a cataract or shows other
conditions. If a cataract is detected, the model then proceeds to classify the cataract type and its
severity grade. By sequentially building each prediction upon prior outputs, this approach facilitates
explicit feature refinement and error control at each stage, aligning well with medical interpretability
requirements.

Table 3: Comparison of Structured Sequential Analysis and Multitask Learning Frameworks for cataract
screening.

Aspect Structured Sequential Analysis Multitask Learning
Approach Sequential prediction with causal conditioning Parallel prediction of all attributes
Architecture Separate models per attribute Shared backbone with task-specific heads
Advantages Mimics clinical workflows, interpretable Leverages inter-task correlations, efficient
Limitations Higher computational cost Less explicit causal modeling

2. Multitask Learning Framework: Figure 4b presents the multitask approach. Unlike the sequential
approach, this framework predicts all the diagnostic attributes jointly from the same set of inputs. A
shared feature encoder first extracts global representations from the slit-lamp image (I), enriched by
patient metadata (M), thereby capturing visual and contextual information. Separate task-specific
classification heads are then used to simultaneously predict image quality (Q), illumination type
(T), diagnosis (D), cataract subtype (C), and severity grade (G). This parallel formulation allows
the model to leverage correlations among tasks while avoiding explicit sequential dependencies, thus
enabling efficient end-to-end learning. The overall training objective combines individual classifi-
cation losses for each task into a composite loss function (as described in Equation 7), promoting
shared representation learning while allowing specialization for each attribute.

5.2 Experimental Protocol and Baselines

To evaluate the effectiveness of these frameworks, rigorous experimental protocols and baseline assessments
were developed, ensuring reliability, reproducibility, and generalizability.

5.2.1 Evaluation Protocol

Table 2a presents the distribution of available labels in the clean set. This part of the CatScreen dataset
was partitioned into training, validation, and testing subsets following a 70:10:20 split. To maintain data
integrity and avoid data leakage, partitioning was performed strictly at the patient level, ensuring all images
from a single patient reside exclusively within one subset. Furthermore, balanced representation of diag-
nostic categories across all partitions was carefully maintained, reducing biases and ensuring robust model
generalization across varied diagnostic scenarios.

5.2.2 Baseline Algorithms

Benchmark experiments were conducted using both Structured Sequential Analysis and Multitask Learning
frameworks to establish foundational performance metrics. These baseline experiments focused solely on
visual information from slit-lamp images, providing insights into the intrinsic discriminative power of the
visual data alone, without integrating patient metadata.

Structured Sequential Analysis Baseline: In this setup, each diagnostic attribute — including image
quality (Q), illumination type (T), overall diagnosis (D), cataract subtype (C), and severity grade (G)
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is predicted independently using separate models, without explicitly cascading outputs from one stage to
another. Instead of enforcing explicit sequential conditioning, each prediction implicitly captures relevant
cues from the image that may be shared across attributes. For example, although severity and subtype
are clinically related, no direct sequential dependencies are imposed during training; each model learns to
internally extract latent information from the image that implicitly reflects these relationships. This design
serves as a fundamental baseline to understand the inherent capacity of visual representations to support
each task in isolation while still allowing the model to leverage potential cross-attribute signals implicitly
embedded in the learned features.

Multitask Learning Baseline: In contrast, the multitask baseline jointly predicts all labels in a single
end-to-end model. A common feature extractor first learns an overall representation from the slit-lamp
image. Then, separate prediction heads work in parallel to estimate image quality (Q), illumination type
(T), diagnosis (D), cataract subtype (C), and severity grade (G). The model is trained using a combined
loss that balances each task, helping it learn shared information across tasks while allowing each prediction
head to focus on its specific details. This formulation enables the model to exploit inter-task correlations
more explicitly within a single unified architecture and supports rapid multi-attribute inference in a clinical
setting.

For a comprehensive assessment, diverse deep learning architectures were employed, encompassing con-
volutional neural networks (CNNs) and transformer-based models. Specifically, models such as VGG-16
(Simonyan & Zisserman, 2015), ResNet18 (He et al., 2016), ResNet34 (He et al., 2016), MobileNet-V2 (San-
dler et al., 2018), EfficientNet-B4 (Tan & Le, 2019), DenseNet-121 (Huang et al., 2017), swin transformer
(swin_base_patch4_window_224) (Liu et al., 2021), and vision transformer (vit_base_patch16_224)
(Dosovitskiy et al., 2021), all pretrained on the ImageNet dataset (Deng et al., 2009), were evaluated to
benchmark model performance across different architectural paradigms. These were selected for their proven
performance in image classification, balancing efficiency and feature extraction.

5.2.3 Implementation Details

All models were trained for 50 epochs using the AdamW optimizer with an initial learning rate of 0.0001
and a weight decay of 1 × 10−5. Weighted cross-entropy loss was employed to mitigate class imbalances
prevalent within ophthalmic datasets. Computational experiments were executed using PyTorch on a DGX
workstation equipped with 256 GB RAM and four Nvidia V100 GPUs (each with 32 GB memory).

6 Results and Analysis

This section analyzes the baseline performance outcomes obtained using the Structured Sequential Analysis
and Multitask Learning frameworks. The performance metrics used to evaluate these approaches include
the F1 score, precision, and recall, providing an insight into each framework’s strengths and limitations.
Additionally, this section discusses key technical challenges identified during experimentation and elucidates
how the CatScreen dataset contributes effectively toward mitigating these issues.

6.1 Structured Sequential Analysis

Table 4 summarizes the F1 scores for each diagnostic attribute across various popular deep learning backbone
architectures utilized for medical imaging classification tasks. Complementing these results, Figure 5 visually
illustrates the mean precision and recall achieved by each model, facilitating intuitive comparisons. The
results consistently indicate an inverse correlation between the complexity of the classification task and
model performance. For simpler classification tasks, such as illumination type classification, nearly all models
achieved excellent F1 scores (0.90–0.98). Particularly, the Diffuse and Direct Focal illumination types were
classified with very high confidence, reflecting their distinctive visual characteristics. However, the Retro
illumination type showed marginally lower performance (0.90–0.93), possibly attributable to subtler visual
cues and its similarity to direct focal illumination.
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6.1.1 Image Quality Assessment

In the task of image quality assessment, the Acceptable class consistently achieved robust F1 scores ranging
between 0.91 and 0.93. Conversely, Good and Poor categories showed significantly weaker performance,
often with near-zero scores. This result highlights a notable data imbalance favoring the Acceptable class,
emphasizing the need for data augmentation strategies or class-balanced loss functions to enhance model
sensitivity towards minority classes.

6.1.2 Diagnostic Classification

Diagnostic classification demonstrated moderate-to-high accuracy across most models. The Cataract class
notably exhibited high F1 scores (0.78–0.81), attributable to its distinct visual features and adequate repre-
sentation in the dataset. In contrast, the Normal class showed relatively lower scores (0.60–0.66), reflecting
the challenges of distinguishing early-stage cataracts from healthy eyes due to subtle visual overlaps. The
Others category demonstrated strong performance (0.92–0.95) despite minor variations, suggesting some
degree of heterogeneity in these conditions and highlighting opportunities for further data enrichment.

6.1.3 Cataract Type Classification

Cataract subtype classification proved significantly challenging due to subtle visual distinctions and class
imbalance. Pseudophakia (PP) achieved consistently high F1 scores (0.88–0.93) due to its visually dis-
tinct characteristics. However, subtypes like Posterior Subcapsular Cataract (PSC) and Cortical performed
poorly (F1 scores ranging from 0.00–0.32 and 0.13–0.52 respectively), highlighting difficulties arising from
their subtle visual patterns and limited training data. The Nuclear subtype showed intermediate to strong
performance (0.72–0.77), benefiting from central opacity features, while the Others subtype presented highly
inconsistent results (0.10–0.21), primarily driven by data scarcity.
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Figure 5: Showcasing the mean precision and recall across varying classification labels.

6.1.4 Cataract Severity Grading

Cataract severity grading emerged as particularly challenging, with Severe cases consistently showing poor
F1 scores (0.15–0.28), reflecting significant class imbalance and limited representation. The Not Applica-
ble (NA) category, representing non-cataract cases, achieved higher scores (0.76–0.80), and the Mild class
produced moderate scores (0.65–0.70). These results emphasize the need for richer datasets that include
adequate representation of severe cataract cases and advanced model architectures to accurately capture
severe pathological patterns.
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Models/Classes Res18 VGG-16 Res34 M_V2 E-b4 D121 Swin ViT
Quality

Good 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.07
Acceptable 0.92 0.93 0.93 0.92 0.91 0.92 0.92 0.91
Poor 0.12 0.00 0.12 0.19 0.13 0.18 0.05 0.12

Illumination Type
Diffuse 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Direct Focal 0.94 0.94 0.93 0.94 0.94 0.95 0.94 0.93
Retro 0.92 0.92 0.91 0.92 0.92 0.93 0.91 0.90

Diagnosis
Normal 0.60 0.66 0.60 0.64 0.64 0.65 0.65 0.64
Cataract 0.78 0.79 0.80 0.79 0.79 0.80 0.81 0.81
Others 0.93 0.94 0.95 0.94 0.94 0.95 0.94 0.92

Cataract Type
NA 0.61 0.62 0.67 0.64 0.62 0.63 0.67 0.58
Nuclear 0.74 0.74 0.77 0.75 0.74 0.75 0.75 0.72
Cortical 0.36 0.30 0.38 0.38 0.45 0.52 0.40 0.13
PSC 0.13 0.08 0.16 0.11 0.25 0.13 0.32 0.00
PP 0.91 0.92 0.92 0.91 0.90 0.92 0.93 0.88
Others 0.11 0.21 0.10 0.11 0.21 0.11 0.17 0.13

Cataract Grade
NA 0.77 0.80 0.76 0.76 0.77 0.79 0.79 0.80
Mild 0.65 0.69 0.66 0.66 0.67 0.67 0.68 0.70
Severe 0.23 0.20 0.21 0.21 0.19 0.19 0.28 0.15

Table 4: F1 Score comparison of multiple labels across various backbones as feature extractors. ( Here
Res: ResNet, M_V2: MobileNet-V2, E-b4: EfficientNet-B4, D121: DenseNet121, PP: Pseudophakia, PSC:
Posterior Subcapsular Cataract, NA: Not Applicable)

6.2 Multitask Learning Framework

Table 5 summarizes the F1 scores for each diagnostic attribute within the multitask learning framework,
where multiple tasks are predicted simultaneously from shared visual representations.

6.2.1 Image Quality Assessment and Illumination Type Classification

In multitask learning, image quality prediction again showed robust performance in the Acceptable cate-
gory (F1: 0.92–0.93). Conversely, the Good and Poor categories exhibited critically low performance (F1
near 0), highlighting persistent challenges due to class imbalance. Interestingly, Vision Transformer (ViT)
demonstrated slight improvement in the Poor category (F1: 0.10), emphasizing the potential of transformer
architectures for capturing subtle visual differences. Further, illumination type classification demonstrated
exceptional performance across all models, achieving nearly perfect scores for the Diffuse category (F1:
0.98). Strong performances were also recorded for Direct Focal and Retro illumination classes, with F1
scores ranging from 0.90 to 0.95, highlighting the consistency and reliability of models in handling clearly
distinguishable visual features.

6.2.2 Diagnostic Classification and Cataract Type Classification

Diagnostic classification within the multitask framework again yielded strong outcomes for the Cataract (F1:
0.79–0.82) and Others (F1: 0.91–0.94) classes, reflecting their visually distinct and adequately represented
nature. The Normal category continued to pose challenges (F1: 0.60–0.67), reiterating difficulties in differ-
entiating healthy from early pathological states due to subtle visual overlaps. Next, subtype classification
presented considerable challenges within the multitask framework. The Pseudophakia (PP) and Nuclear
cataract classes showed commendable performances (F1: 0.87–0.92 and 0.74–0.78, respectively). In contrast,
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Models/Classes Res18 VGG-16 Res34 M_V2 E-b4 D121 Swin ViT
Quality

Good 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Acceptable 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.93
Poor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10

Illumination Type
Diffuse 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
Direct Focal 0.95 0.94 0.93 0.94 0.93 0.94 0.94 0.94
Retro 0.92 0.92 0.92 0.92 0.90 0.91 0.92 0.91

Diagnosis
Normal 0.63 0.66 0.64 0.63 0.60 0.65 0.67 0.66
Cataract 0.79 0.81 0.80 0.80 0.79 0.80 0.80 0.82
Others 0.91 0.91 0.92 0.89 0.91 0.92 0.94 0.92

Cataract Type
NA 0.65 0.66 0.63 0.64 0.61 0.65 0.67 0.67
Nuclear 0.76 0.75 0.76 0.76 0.74 0.76 0.75 0.78
Cortical 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50
PSC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PP 0.90 0.92 0.89 0.87 0.89 0.91 0.92 0.91
Others 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Cataract Grade
NA 0.79 0.80 0.78 0.78 0.78 0.79 0.81 0.81
Mild 0.69 0.71 0.69 0.71 0.70 0.70 0.71 0.74
Severe 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0.09

Table 5: F1 Score comparison of multiple labels across various backbones as feature extractors for multitask
learning approach. (Here Res: ResNet, M_V2: MobileNet-V2, E-b4: EfficientNet-B4, D121: DenseNet121,
PP: Pseudophakia, PSC: Posterior Subcapsular Cataract, NA: Not Applicable)

the Cortical, PSC, and Others subtypes consistently yielded near-zero scores, emphasizing the limitations
imposed by subtle visual differences, insufficient data, and high intra-class variability. The ViT architecture,
however, demonstrated notable improvement for the Cortical subtype (F1: 0.50), confirming the potential
of transformer-based models in fine-grained classification tasks.

6.2.3 Cataract Severity Grading

Severity grading results mirrored challenges observed in the sequential analysis. The Not Applicable (NA)
and Mild classes performed reasonably well (F1: 0.70–0.81), while the Severe category remained problematic
with consistently poor scores (near-zero F1 scores). The slight improvement observed in the Severe category
by ViT (F1: 0.09) further supports transformer architectures’ capability to manage complex visual variations
better than traditional models.

6.3 Comparative Model Analysis

Overall, transformer-based models such as Vision Transformer (ViT) and Swin Transformer consistently ex-
hibited superior or comparable performance across challenging tasks requiring subtle visual differentiation.
Specifically, transformer architectures demonstrated notable strengths in capturing nuanced textural differ-
ences, such as those observed in cortical cataracts and other fine-grained pathological conditions. These archi-
tectures excelled due to their attention-based mechanisms, enabling models to focus dynamically on regions
of interest that are clinically relevant yet visually subtle. In contrast, traditional convolutional neural net-
work architectures such as ResNet and VGG demonstrated robust results predominantly on well-represented
classes with clear and distinct visual features, but consistently struggled with fine-grained classification and
minority classes. The performance disparity arises primarily due to the inherent design of CNNs, which em-
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phasizes local spatial features and tends to overlook subtle global context required for differentiating visually
similar conditions.

These performance patterns clearly illustrate the inherent complexity associated with fine-grained medi-
cal image classification, especially in ophthalmic diagnostics. Anatomically, certain cataract types—such
as the spoke-like opacities characterizing cortical cataracts or the subtle granular patterns indicative of
posterior subcapsular cataracts pose substantial challenges for current CNNs and even transformer-based
models. Furthermore, the significant feature overlap between normal eyes and early-stage cataract conditions
exacerbates the challenge of establishing distinct decision boundaries, often resulting in diagnostic ambigu-
ity. From a clinical perspective, these results highlight the necessity for more sophisticated representation
learning methodologies that can reliably identify subtle pathological characteristics inherent in fine-grained
ophthalmic classification scenarios. Effective solutions may require augmenting visual models with patient-
specific contextual information, such as socio-demographic features, diabetic conditions, or detailed ocular
history, to achieve more informed and accurate diagnostic predictions.

6.4 Technical Challenges and CatScreen’s Contributions

Our findings identify several promising directions for future research to address current limitations. Leverag-
ing self-supervised pretraining techniques can enhance models’ abilities to extract meaningful features from
unlabeled ophthalmic data. Moreover, integrating advanced attention mechanisms and multi-scale feature
refinement strategies could significantly boost model sensitivity to subtle visual distinctions, critical for effec-
tive fine-grained classification. These methods can help models better discriminate between visually similar
ophthalmic conditions, ultimately leading to more robust, interpretable, and clinically reliable diagnostic
outcomes.

The multitask learning framework specifically requires careful balancing between shared representations and
task-specific fine-tuning to mitigate negative transfer and improve overall task performance. Implementing
dynamic task-weighting or uncertainty-based loss re-weighting strategies could address these challenges ef-
fectively. Conversely, the structured sequential analysis framework would benefit from explicitly modeling
inter-task dependencies. Figure 6 showcases the sample result images with true and predicted labels that are
misclassified due to poor-quality images. In sequential causal models, early-stage errors cascade forward and
cause misclassifications in subsequent tasks that depend on these intermediate predictions. This emphasizes
the critical need for robust handling of quality variations to mitigate cascading errors in sequential decision
models. Approaches such as cascaded conditioning, multi-stage refinement modules, or cross-task attention
mechanisms could leverage shared clinical features while maintaining modularity and improving diagnostic
accuracy.

Future research will explore the explicit evaluation of incorporating patient metadata, such as demographics
and clinical histories, alongside visual data, potentially enhancing diagnostic accuracy and clinical applica-
bility. Additionally, addressing class imbalance using techniques like data augmentation, synthetic oversam-
pling, or focal loss methods could significantly improve sensitivity to minority classes, particularly severe
cataract cases and extreme image quality categories. Further research into advanced attention mechanisms,
ensemble approaches, or hierarchical classification strategies specifically targeted toward challenging cataract
subtypes, such as Cortical and PSC, could better capture nuanced visual distinctions. Lastly, explicitly eval-
uating model robustness through the noisy-labeled subset by leveraging semi-supervised and robust learning
approaches would enhance real-world generalizability and reliability.

To support these research directions effectively and address identified technical challenges, CatScreen provides
several key contributions and innovative features:

• Class Imbalance and Minority Class Performance: Both SCM and MTL frameworks exhibited
significantly reduced performance on minority classes. CatScreen addresses this issue by preserving
realistic class distributions, thereby facilitating the development of models robust to real-world class
imbalances.

• Fine-grained Classification: Differentiating subtle visual distinctions among cataract subtypes
and severity levels remains challenging. CatScreen’s fine-grained annotations and precise labeling
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Figure 6: Presents the sample result images of poor-quality images causing misclassification across diagnosis
and severity grade labels

enable models to learn nuanced, clinically meaningful distinctions, thus enhancing interpretability
and diagnostic accuracy.

• Robustness to Annotation Noise: Clinical datasets inherently contain annotation inaccuracies.
CatScreen includes a Noisy Set specifically designed to develop and evaluate models robust against
imperfect annotations, thus aligning more closely with real-world clinical practice.

• Utilizing Unlabelled Data for Enhanced Representation Learning: To boost generalization
and robustness, CatScreen offers a substantial Unlabelled Set. This set supports the development of
self-supervised, semi-supervised, and active learning techniques, enabling models to utilize extensive
unlabeled data for improved feature extraction and stronger generalization.

7 Conclusion

CatScreen advances ophthalmic diagnostics by offering a richly annotated, large-scale slit-lamp image dataset
tailored specifically for addressing real-world challenges in cataract screening. It captures a comprehensive
range of clinically relevant annotations, including image gradability, illumination types, cataract subtypes,
and severity grades, enabling the creation of highly interpretable and clinically meaningful AI solutions. Be-
yond traditional supervised learning, CatScreen dataset uniquely incorporates noisy-labelled and unlabeled
data subsets, thereby facilitating research into robust self-supervised and semi-supervised learning strategies
reflective of practical clinical scenarios. The detailed patient metadata further enhances its utility by sup-
porting the integration of holistic clinical contexts into diagnostic models. Additionally, this work presents
two complementary AI frameworks, Structured Sequential Analysis and Multitask Learning, each offering
distinct yet synergistic approaches toward enhancing model interpretability and efficiency. By addressing
crucial challenges such as class imbalance, subtle visual distinctions among cataract types, annotation noise,
and the effective utilization of unlabeled data, CatScreen establishes a strong foundation for developing
robust, accessible, and clinically reliable cataract screening tools. We anticipate that CatScreen will inspire
extensive innovation, significantly accelerating the adoption of AI-driven eye care solutions and improving
global cataract screening and management.
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