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Abstract

While Large Language Models (LLMs) have demonstrated significant advance-
ments in reasoning and agent-based problem-solving, current evaluation method-
ologies fail to adequately assess their capabilities: existing benchmarks either rely
on closed-ended questions prone to saturation and memorization, or subjective
comparisons that lack consistency and rigor. In this work, we introduce HeuriGym,
an agentic framework designed for evaluating heuristic algorithms generated by
LLM:s for combinatorial optimization problems, characterized by clearly defined
objectives and expansive solution spaces. HeuriGym empowers LLMs to propose
heuristics, receive evaluative feedback via code execution, and iteratively refine
their solutions. We evaluate nine state-of-the-art models on various problems across
domains such as computer systems, logistics, and biology, exposing persistent limi-
tations in tool use, planning, and adaptive reasoning. To quantify performance, we
propose the Quality-Yield Index (QYI), a metric that captures both solution pass
rate and quality. Even top models like GPT-04-mini-high and Gemini-2.5-Pro
attain QY1 scores of only 0.6, well below the expert baseline of 1. Our open-source
benchmark aims to guide the development of LL.Ms toward more effective and
realistic problem-solving in scientific and engineering domains.

1 Introduction

Large Language Models (LLMs) now excel at complex reasoning and agent-based problem-solving,
enabling applications from code generation [7897]] to adaptive decision-making [[122,/160]. However,
current evaluation frameworks fail to capture these emergent abilities, leaving open the question of
whether LLMs demonstrate genuine problem-solving ingenuity beyond pattern recognition. Current
evaluation paradigms fall into two categories, each with clear limitations. (1) Ground-truth-based
benchmarks (e.g., AIME [9§]], HumanEval [25], GPQA Diamond [111]]) rely on closed-form
questions but now suffer from ceiling effects, with models surpassing 80% accuracy [99, 5, 38]]. Even
new tests like Humanity’s Last Exam (HLE) [[107]] saw performance jump from 3% to 25% within
months [99]. These static datasets face both data contamination and a mismatch with real-world, open-
ended problem solving. (2) Judge-preference evaluations (e.g., Chatbot Arena [27]) assess models
via human or LLM-based comparisons [169]], better capturing open-ended quality but introducing
high variance. Judgments often hinge on style or superficial cues rather than reasoning [128}[164], and
LLM-as-a-judge systems remain unreliable across domains, especially for technical expertise [71].

To address these limitations, we introduce HeuriGym, a new evaluation paradigm with an agentic
framework centered on combinatorial optimization problems, which naturally combine well-defined
objectives with large solution spaces. Rather than relying on well-known benchmarks such as SAT or
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Figure 1: Overview of the HeuriGym agentic framework for heuristic program generation, execution,
and verification. We use operator scheduling [31]] as an example for the problem description.
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TSP, we assess whether LLMs can produce high-quality solutions to novel yet foundational problems
spanning computer systems [[15}|94], scientific reasoning [21} 20], computational biology [37,1149],
logistics [[76L 50], and electronic design automation [S7,[31]]. They are well-suited for benchmarking
LLMs because they resist memorization, provide clear quantitative metrics, and mirror real-world
tasks where optimal solutions are tractable only for small cases. With no heuristic dominating all
problems [[151]], the search space remains diverse, demanding algorithmic knowledge, heuristic
reasoning, and creative problem-solving—capabilities underexplored in current evaluations. Our
framework goes beyond static tests by creating an interactive loop where LLMs generate heuristics,
receive execution feedback, and iteratively refine solutions, reflecting real engineering workflows and
enabling deeper assessment of reasoning, tool use, and instruction following.

Our benchmark evaluates LLMs across (1) tool-augmented reasoning with external libraries, (2)
multi-step planning for decomposing problems, (3) instruction fidelity in following constraints, and (4)
iterative refinement from runtime feedback. It uniquely probes practical creativity, testing how models
adapt textbook algorithms or devise new strategies when exact methods like Integer Programming fail.
To assess both solution quality and yield, we propose the Quality-Yield Index (QYI), ranging from 0
(all outputs incorrect) to 1 (expert-level). Across nine optimization problems, even state-of-the-art
LLMs such as GPT-04-mini-high [99] and Gemini-2.5-Pro [38] score only 0.6 QYI, exposing their
limitations in realistic problem solving that demands theory, tool use, and adaptive reasoning.

2 HeuriGym: An Agentic Framework for Heuristic Generation

As illustrated in Fig. [T} our framework begins by presenting a formal problem description to the LLM,
which is then prompted to generate a complete heuristic algorithm. The generated program conforms
to a standardized function signature and is subsequently compiled (for C++) or interpreted (for
Python). Upon execution, the solution is verified for yield and evaluated for performance. Crucially,
the framework incorporates a feedback loop: execution logs, verification outcomes, and evaluation
costs from a small demonstration set are appended back to the prompt, enabling iterative refinement.

Problem Description As shown on the left of Fig. [, we use operator scheduling [31} I87], a
classic optimization problem in electronic design automation, as an example. Each benchmark
task is accompanied by a structured problem description with three main parts: (1) Background:
Introduces the optimization context and key terminology to help the LLLM understand the problem
setting. (2) Formalization: Defines the optimization objective and constraints using mathematical
notation (e.g., minimizing latency under hardware resource constraints), guiding the LLM toward
objective-oriented algorithm design. (3) Input/Output Format: Specifies the structure of input and
output files, providing clear expectations for parsing and execution. More detailed information on the
problem set can be found in Section 3]

Prompt Design Effective prompt engineering is crucial for leveraging LLMs’ capabilities [148],
118]]. We construct both system- and user-level prompts, tailored to each problem instance. A
complete prompt example is provided in Appendix



System prompt. The system prompt includes machine configuration details (e.g., CPU cores,
memory limits), available libraries with version numbers, and task-specific constraints such as
execution timeouts. This environment specification instructs the LLM to avoid relying on unrealistic
assumptions or producing inefficient solutions that violate runtime limits.

User prompt. In the initial iteration, the user prompt includes the problem description and a code
skeleton with a predefined function signature. As shown in Fig.[I] the LLM is only provided the
interface — function name, input path, and output path — without hints on data structures or algorithmic
approache, contrasting with prior work [113| 84} [162] that often handcrafts partial implementations
or restricts the design space. Here, LLMs must reason about the problem holistically: parsing inputs,
constructing internal representations, and designing and implementing heuristics from scratch.

Feedback Loop To emulate a few-shot in-context learning setup [42} 185] [152]], we partition the
dataset into a small demonstration set (around five instances) and a larger evaluation set. Demonstra-
tion data is used during the refinement loop to provide timely, example-based feedback to the LLM;
the evaluation set is withheld until the model stabilizes its performance.

Each problem includes a domain-specific verifier and evaluator. The verifier ensures constraint
satisfaction (e.g., dependency preservation in operator scheduling), while the evaluator calculates the
cost based on the given problem objective. If the verifier fails, diagnostic messages are recorded.

After each iteration, we log the LLM-generated solution, execution trace, verification result, and
evaluation score. These logs are appended to the prompt with the demonstration data in the next
iteration, enabling the LLM to learn from past attempts and incrementally improve its output.

Metric Design Traditional LLM benchmarks predominantly rely on the PASS @ k metric [25} 170}
65]], which measures the probability of generating a ground-truth solution within the top-k samples.
While PASS @ is effective for single-turn tasks with deterministic ground truths, it falls short in
capturing the iterative reasoning and problem-solving abilities required in our multi-round agentic
setting. Specifically, it does not reflect whether the LLM can understand problem constraints, debug
based on feedback, or iteratively refine its solutions over multiple attempts.

To better evaluate LLMs in this complex setting, we introduce a new metric, denoted as SOLVE; @1,
which tracks the LLM’s ability to solve constrained problems within ¢ iterations:

N
1
SOLVE, @1 := N Z 1 (pass stage s in the first i-th iteration) ,

n=1

where N is the total number of test instances, and s € {I, IL, III} indicates the specific stage of the
pipeline that the solution must pass. Each stage reflects a key milestone in agentic reasoning:

» Stage I: Execution. The generated program must compile or interpret correctly with all
necessary libraries included, and successfully perform basic I/O operations (e.g., reading
and writing files).

* Stage II: Solution Generation. The program must produce a non-empty output within the
predefined timeout and adhere to the expected output format.

» Stage III: Verification. The solution must satisfy all problem-specific constraints, as
checked by a problem-specific verifier.

However, SOLVE; @1 only indicates whether a feasible solution is eventually produced through the
iterative process — it does not account for solution quality. To address this, we additionally define
separate metrics for quality and yield as follows:

N ~
1 cr N
Quality = — min (1, ") Yield = —,
y N TLZ_:I Cn N

where c¢,, and ¢}, represent the cost of the LLM-generated and expert-provided solutions, respectively,
and NV is the number of instances that pass verification (Stage III) in the current iteration. In this paper,
we adopt the capped version of quality, which checks whether the LLM matches expert performance
(up to a maximum of 1), though an uncapped version can also be used to measure cases where



the LLM outperforms the expert. We define a unified metric, the Quality-Yield Index (QYI), as the
harmonic mean of quality and yield. This formulation, analogous to the F-score [140]], penalizes
imbalanced values more strongly than the arithmetic mean:

QYT = 2 - Quality - Yield
~ Quality + Yield

QYT captures both success rate and the relative quality of solutions, enabling holistic evaluation of an
LLM’s agentic reasoning capabilities, including its capacity for long-horizon planning and iterative
refinement. Additionally, we can define a weighted QY1 by averaging QY1 scores across different
problems, weighted by the number of instances in each, as an overall performance metric.

3 Benchmark Construction

This section outlines the construction of the combinatorial optimization benchmark as well as the
principles behind. Our primary goal is to evaluate an LLM’s capacity for reasoning rather than its abil-
ity to regurgitate well-known algorithms. To this end, we intentionally exclude ubiquitous problems
such as the Traveling Salesman Problem [112] and canonical satisfiability (SAT) formulations [121]] —
problems that are so widely studied and frequently included in public datasets that they are likely
memorized during pretraining. Instead, we focus on problems that meet the following criteria:

Limited exposure in the literature. For each candidate problem, we perform a Google Scholar
search and retain it only if the most-cited paper has fewer than 1,000 citations (as of April 2025). This
empirical threshold ensures that the problem is well-defined and supported by peer-reviewed work,
yet not so well-known that an LLM could solve it through rote memorization or pattern matching.

Clear natural-language specification with well-defined objectives. Each problem must be clearly
expressible using plain language without the need for visual aids. We encode mathematical objectives
in IKTEX to eliminate ambiguity, ensuring the LLM receives well-specified instructions.

Large solution spaces. We focus on problems that admit vast solution spaces with many feasible
outputs, encouraging creative exploration and reasoning rather than narrow pattern recognition [59].

Scalable data instances. Each problem includes two disjoint sets of instances: a small-scale
demonstration set and a large-scale evaluation set, differing by at least an order of magnitude. The
demonstration set supports few-shot prompting and iterative refinement, while the evaluation set is
reserved for final performance testing, as discussed in Section 2]

Reproducible expert baselines. Reference implementations are bundled in the benchmark repository
to ensure fair comparison across future studies. Where possible, we include both exact solvers (e.g.,
ILP) and high-quality heuristics to illuminate the performance gap.

We prioritize domains with real-world impact, where even small gains yield significant societal or
industrial benefits. Many selected problems remain open, with heuristics far from theoretical bounds
— offering a compelling testbed for LLMs.

Table 1: Existing combinatorial optimization problems in our HeuriGym benchmark.

Domain Problem References Difficulty
. . Operator scheduling (8701311 *
flectron}lc Dg]lg%g Technology mapping (57, 119] RS
utomation ( ) Global routing (7901811 * ok k
. E-graph extraction 1501507 *
Compilers Intra-operator parallelism [94, [168] * %k
Computational ~ Protein sequence design 13711691 *
Biology Mendelian error detection (89, 119] * %k
Logistics Airline crew pairing (70,21 *

Pickup and delivery w/ time windows  [137,(76] ) 0 @ ¢

The initial release of HeuriGym spans nine diverse real-world optimization problems, including
fundamentally different types such as covering, scheduling, and routing (Table [T). A detailed
description of each problem is provided in Appendix [E] There are 218 realistically sourced instances
released in total with hundreds of instances reserved as private test sets for future release. The
instance distribution is detailed in Appendix [H} Notably, most problems are NP-hard and feature
complex constraints, resulting in a compact yet highly challenging problem suite. To ensure clarity
and correctness, we prompt a weaker LLM [83] to identify any unclear or ambiguous statements after



drafting the initial natural language description. The full prompt template used for refining problem
descriptions is provided in Appendix [C.4]

4 Evaluation

To evaluate the reasoning capabilities of LLMs on CO problems, we benchmark nine prominent
models released in late 2024 and mid-2025. See Appendix [D|for more details about the models used.
Full experimental settings and results of each problem can be found in Appendix [A]and[F] For the
major result, we fix the temperature to O for all LLMs to ensure deterministic outputs, following
standard practice in recent benchmarks [102} [161}[107].

Table 2: Overall SOLVEj;; @¢ metric across models on the entire HeuriGym benchmark.
DeepSeek-  DeepSeek- Gemini-2.5- Gemini- LLaMA-4- LLaMA- Qwen3- Claude-3.7- GPT-04-
V3 R1 Flash 2.5-Pro Marverick 3.3 235B Sonnet mini-high
SOLVE[j@10 | 46.8% 73.4% 67.4% 65.1% 358%  339% 45.9% 60.1% 74.8%
SOLVE[ @5 42.7% 72.9% 58.3% 64.2% 335%  339% 45.4% 58.7% 69.7%
SOLVEj @1 14.2% 44.0% 25.2% 20.2% 6.0% 20.6%  38.5% 9.2% 53.2%

As shown in Table [2| most LLMs fail to fully solve a large fraction of test cases within a single
attempt, as reflected in the SOLVE[; @1 score. Increasing the number of iterations generally im-
proves performance across all models. Among all models, GPT-04-mini-high and DeepSeek-R1
demonstrate high success rates across multiple iterations, highlighting their stronger program repair
capabilities. Refer to Appendix [A]for the details of solve; @i and solve; @i.

To assess solution quality, we compare the final LLM-generated programs to expert-designed solutions
using the weighted QYI metric defined in Section [2] As illustrated in Figure [3| a substantial
performance gap remains: even the best-performing model, Gemini-2.5-Pro, achieves a QYT of
only 0.62, indicating that its solutions are, on average, just 60% as effective as expert-crafted ones.
Several models, such as LLaMA-3.3 and LLaMA-4, produce results with QYT scores below 30%,
highlighting their limited effectiveness on these tasks. We also estimate the API cost for each model
and find that Gemini-2.5-Flash offers the best cost-efficiency relative to its achieved QYI. Additional
ablation studies, extra experiments, and analyses are provided in the Appendix [A]and [F}
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Figure 2: Quality-Yield Index and estimated API cost of different models.

5 Limitation and Future Work

We highlight two main challenges for future LLM development in combinatorial optimization: (1)
Correctness — reducing hallucinations and improving constraint satisfaction, and (2) Performance
— navigating large search spaces for high-quality solutions. While our framework establishes a
foundation, two limitations remain. First, the current experimental pipeline is implemented in Python
for accessibility. Although preliminary C++ results (Appendix are available, full integration
of highly-efficient compiled languages remains challenging due to reliance on domain-specific
libraries. Second, our iterative self-refinement agentic workflow can be interpreted as a form of
Test-Time Scaling, analogous to compute-optimal scaling [130], which creates opportunities to
incorporate techniques such as best-of-N sampling [[134], beam search [154], and evolutionary
algorithms [97, [162]. Such directions are not fully explored in our paper. Currently HeuriGym
includes only nine problems. Although these have been carefully curated to test reasoning and
generalization, they may eventually become saturated as LLM capabilities improve. Overall, we
believe HeuriGym can serve as a shared testbed that guides and inspires future research toward greater
LLM autonomy.
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A Evaluation

To evaluate the reasoning capabilities of LLMs on CO problems, we benchmark nine prominent
models released in late 2024 and mid-2025 (Appendix [D). These models represent the current
state-of-the-art in general-purpose LLMs and rank among the top entries on OpenRouter [100]
and Chatbot Arena leaderboards [27]. We exclude smaller models due to the complexity of the
benchmark tasks. All evaluations are conducted via official APIs to ensure reproducibility. We adopt
the agentic workflow in Fig. [I] constraining each model to generate Python programs that solve
the given problems under fixed resource limits: a maximum of 8 CPU cores and problem-specific
timeouts. We also allow the models to access the given Python libraries for external tool use. Full
details of the experimental settings and results of each problem can be found in Appendix [F|

A.1 Overall Performance

Table 3: Overall SOLVE,; @ metric of models on the whole HeuriGym benchmark.

SOLVE1 SOLVE SOLVE]

Model @10 @5 @1 @10 @5 @1 @10 @5 @1
DeepSeek-V3 46.8% 42.7% 142% | 87.6% 83.0% 66.1% | 100.0% 100.0%  90.8%
DeepSeek-R1 73.4% 729% 44.0% 88.1% 88.1%  60.6% | 100.0% 100.0% 71.6%
Gemini-2.5-Flash 67.4% 583% 252% | 83.9% 79.4%  56.4% | 100.0% 100.0%  72.9%
Gemini-2.5-Pro 65.1% 642% 20.2% 89.4% 89.0% 42.7% | 100.0% 100.0% 51.4%
LLaMA-4-Maverick | 35.8% 33.5% 6.0% 84.9% 74.3% 8.3% 85.3% 85.3% 13.3%
LLaMA-3.3 339% 339% 20.6% | 78.4% 784%  40.4% 99.5% 99.5% 61.9%
Qwen3-235B 459% 454% 38.5% | 86.2% 83.0%  56.0% | 100.0% 100.0%  70.6%
Claude-3.7-Sonnet | 60.1% 58.7%  9.2% 97.7% 97.7%  413% | 100.0% 100.0%  60.1%
GPT-04-mini-high 748% 69.7% 53.2% | 100.0% 100.0% 93.1% | 100.0% 100.0% 100.0%

For the overall evaluation, we fix the generation temperature at 0, following standard practice in recent
LLM benchmarks [[102} 161} [107]. This ensures deterministic outputs and eliminates randomness
across runs. Notably, OpenAl’s o-series models only support a fixed temperature of 1.0 [99]]. We
measure the multi-round performance using the SOLVE; @i metric, where ¢ € {1,5,10} indicates
the number of iterations allowed.

As shown in Table[3] most LLMs fail to solve a large fraction of test cases within a single attempt,
as reflected in the SOLVE[ @1 score. Increasing the number of iterations generally improves
performance across all models. For instance, the SOLVEyy; success rate rises from 53.2% to 74.8% for
GPT-04-mini-high as ¢ increases, underscoring the importance of iterative refinement in improving
LLM-generated solutions. Among all models, GPT-04-mini-high and DeepSeek-R1 demonstrate
high success rates across multiple iterations, highlighting their stronger program repair capabilities.

To assess solution quality, we compare the final LLM-generated programs to expert-designed solutions
using the weighted QYT metric defined in Section[2] As illustrated in Fig.[3] a substantial performance
gap remains: even the best-performing model, Gemini-2.5-Pro, achieves a QYT of only 0.62,
indicating that its solutions are, on average, just 60% as effective as expert-crafted ones. Several
models, such as LLaMA-3.3 and LLaMA-4-Maverick, produce results with QYT scores below 30%,
highlighting their limited effectiveness on these tasks. We also estimate the API cost for each model
and find that Gemini-2.5-Flash offers the best cost-efficiency relative to its achieved QYI.

1.0 1.0
QYI=0.20
QYI=0.40 o
0.8 1 QYI1=0.60 ro.8 ¢
Yi=0. =
qvize.g0 - GPT-04-migi Gemini-2.5-Prp
> 0.6 1 Gemini-2.5-Pro@@) Gpmini-2.5-Flashpeepseek-R1 g( to.e =
9 o PT-04-mini XX Claude-3.7-Sonnet o)
® Gemini-2.5-Flas Qwen3-235B 3( a
3 Qwen3-235B, DeepSeek-R1 5
© 0.4 1 (©) Claude-3.7-Sonnet JPeepSeek-V3 o4 a
DeepSeek-V3 1{aMA-3.3-70B
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Figure 3: Quality-Yield Index and estimated API cost of different models.
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We further compare state-of-the-art open-source evolutionary frameworks under the same setting (a
fixed budget of 10 iterations), using Gemini-2.5-Pro—the best-performing model in our benchmark—
as the base LLM. The initial program is generated directly from the problem description. As shown
in Table 4] these frameworks perform poorly, often worse than the baseline model. Their main
weakness is the lack of incorporating program execution feedback, and their search process breaks
context across iterations, stalling progress on repeatedly patching the initial flawed program. This
highlights both the complexity of our benchmark and the need for LLMs to reason more deeply about
problem-specific strategies. These frameworks originally only target toy problems under 20 lines of
code (e.g., TSP, bin packing), while our benchmark typically requires 300+ lines, making strategy
discovery essential rather than relying on prebuilt meta-heuristics.

Table 4: Performance of evolutionary frameworks. Table 5: Ablation study on pickup and
Frameworks SOLVE; @10  QYI delivery with time windows.
Gemini-2.5-Pro 0.6514 0.6170 # of Demos / QYI
HSEvo 0.5000 04491 # of Feedback Rounds
[135] ’ ’ 5/10 0.4196
ReEvo 3/10 0.2829
[162) 04771 04486 0710 02351
EoH 5/5 0.3330
[84] 0.4954 0.4492 5 03350

To identify common failure modes, we analyze and categorize the most common error types produced
by the evaluated models, as shown in Fig.[d] These include: (1) Hallucinated APIs: using nonexistent
or outdated library calls. (2) Incorrect algorithmic logic: flawed implementation even when the
general approach is reasonable. (3) Constraint misunderstanding: ignoring or misinterpreting problem
constraints. (4) Timeouts: no output or the execution time exceeds the given constraints. Additional
error cases and examples are listed in Appendix [F.7]

To assess the robustness and sensitivity of LLM performance under different settings, we conduct a
set of ablation experiments with full details in Appendix[F

Temperature. We evaluate three representative models across the QY1 spectrum using temperatures
T € {0.0,0.5,1.0}. Fig.[5|shows that higher T increases diversity and quality but lowers yield
due to more invalid outputs (Appendix [F3). Greedy decoding (" = 0) has maximum yield with
suboptimal quality, while stochastic sampling (7" = 1) achieves better quality at the cost of solving
fewer problems. This reveals a fundamental trade-off between quality and yield that future LLMs
must address.

Few-shot demonstrations. We assess the impact of in-context examples by comparing zero-shot,
half-shot, and full-shot prompts. Due to budget constraints, these experiments are conducted on
a few representative models. Specifically, we evaluate Gemini-2.5-Pro on the pickup and deliv-
ery problem—one of the most challenging tasks in our benchmark (full results in Appendix [F4).
As shown in Table 5] providing more informative demonstrations significantly boosts the overall
performance, especially for tasks involving unfamiliar domains or requiring long-horizon reasoning.

Feedback rounds. To evaluate the role of iterative refinement, we vary the number of feedback
rounds given to LLMs (1, 5, and 10), keeping the temperature fixed at 0. The results in Table [3]
show that later iterations frequently fix logic errors or constraint violations from earlier attempts,
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Table 6: Comparison with other recent benchmarks.

. Well-Defined Large Agentic Evaluation
Subjects Benchmark Objective Solution Space  Setting Metrics
Frontier Humanity’s Last Exam

Knowledge  (HLE) [107] v X X Accuracy
HumanEval [25] v X X PASS@FK
Software BigCodeBench [170] v X X PASS@FK
Enineerin LiveCodeBench [62] v X X PASS@1
g € SWE-Bench [65] v X X PASS@1
CommitO [166] v X v Pass rate
Performance
Engineering KernelBench [102] X 4 X FAST,,
. . ~ Chatbot Arena [27] X v X ELO
Daily-Life Tasks - “p o b [161] v/ v v PASS k
Combinatorial NPHardEval [48] v X X Accuracy
Optimization GraphArena [[136] v X X Accuracy
P HeuriGym (This work) v v v SOLVE, @i, QYI

underscoring the value of multi-round reasoning. We provide further analysis in Appendix [A.2]and
Appendix [F5]

A.2 Case Study

We present a case study on technology mapping [19] to highlight both the promise and current
limitations of LLMs, where the task is to cover a logic network with K -input lookup tables (LUTs)
while minimizing their total count; we fix K = 6. As an expert baseline, we use ABC [14], a state-
of-the-art logic synthesis tool that leverages optimized cut enumeration and dynamic programming
(DP)-based covering. We find that top-performing LLMs, such as GPT-04-mini-high and Gemini-
2.5-Pro, can mimic similar heuristic strategies and iteratively refine them through feedback. Fig. [6]
shows GPT-04-mini-high explores a range of approaches over multiple iterations, evolving from
naive mappings to sophisticated DP-based heuristics with pruning. It finally converges on a strategy
that effectively balances yield and quality, achieving the highest QYI. The full generated programs
across those iterations are listed in Appendix

1.0 —8— Quality
Q —o— Yield
0.8 F Naive 6-LU [ DP w/ aggressive
mapping

pruning
Pass all, low (& Best balance

quality

[ DP w/ static
pruning

@ Lower yield,
higher quality

0.4 4

[ DP wio pru
A\ TimeoutError

Number of Iterations

Figure 6: One iterative example of GPT-04-mini-high on the technology mapping problem.

A.3 Ablation Study

Nonetheless, a substantial gap remains between LLMs and expert tools (~60% of expert performance),
due to the latter’s extensive use of domain-specific optimizations and efficient implementations. This
suggests that while LLMs can learn and refine heuristic algorithms, they are not yet capable of
generating solutions with expert-level performance in real-world complex optimization tasks.

B Related Work

LLMs for Combinatorial Optimization. Recent LLM-based combinatorial optimization (CO) meth-
ods follow two main paradigms. The first emphasizes formalization—translating natural language
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into structured optimization problems. This direction was initiated by the NL4Opt Competition [110],
with follow-up work improving domain-specific model training [[153 164} [77] and prompting strate-
gies [157,13,161]. While effective on benchmarks, these methods struggle to scale due to their reliance
on exact solvers [31]. The second paradigm focuses on heuristic discovery. FunSearch [113]] and
AlphaEvolve [97]] use LLMs with evolutionary search to generate novel heuristics, but require evalu-
ating thousands of candidates. Recent approaches [162, 84, 35] improve efficiency via metaheuristic
templates, but still limit LLMs to filling in a small portion of the algorithm. In contrast, HeuriGym
removes reliance on templates or scaffolds. It tasks LLMs with generating complete, self-contained
optimization programs, including custom data structures and end-to-end pipelines—better reflecting
real-world CO challenges, where success depends on uncovering problem-specific structure and
designing bespoke algorithms [[151]].

Evaluation on LLMs. As shown in Table [6] existing LLM benchmarks expose key limitations.
Many focus on closed-ended tasks in domains like mathematics [98]], programming [25, 1170} 86]], and
specialized knowledge [111,[107,|55], with fixed ground-truths that are prone to data contamination
(see §[I). In contrast, open-ended benchmarks [27, [102] encourage diverse outputs but often lack
clear objectives, resulting in inconsistent evaluations. Benchmarks like NPHardEval [48] and
GraphArena [136] assess exact solutions to small NP-hard instances, limiting real-world relevance
where heuristic solutions are often preferred for scalability. Our benchmark instead accepts any
feasible solution that satisfies constraints, enabling broader evaluation of algorithmic reasoning. It
tasks LLMs with synthesizing executable code, using external libraries, and refining solutions through
execution feedback, mimicking realistic workflows. We also propose new evaluation metrics to
quantify multi-round reasoning, as detailed in Section 2}

C Prompt Design

In this section, we detail the system and user prompts used by the LLM agent, as well as the auxiliary
prompt employed to enhance our problem descriptions.

C.1 System Prompt

Each iteration of our benchmark begins with a task-agnostic system prompt that instructs the LLM to
generate and iteratively refine executable heuristics for combinatorial optimization problems. This
system prompt is followed by a task-specific problem statement and an input/output specification.
The prompt includes placeholders — highlighted in red — that are dynamically instantiated at runtime
for each task. For instance, {NUM_CPU_CORES} represents the CPU core limit for the task (default:
8), and {TIMEOUT} specifies the wall-clock time limit (default: 10 seconds).

System Prompt

You are a world-class optimization expert and algorithmic problem solver. Your task is to
develop a highly efficient solution to the following optimization problem. Please analyze the
problem background, mathematical formulation, and I/O specifications with extreme rigor
and attention to detail.

Your mission is to devise and implement the most performant algorithm possible, optimizing
for both computational efficiency and solution quality. You should leverage your deep
knowledge of algorithms, data structures, and optimization techniques to craft a powerful
solution. You have complete freedom in your algorithmic approach. Think systematically and
creatively. Your goal is to push the boundaries of what’s possible within the computational
constraints. Please strictly follow the instructions below.

* A problem template is provided below. You only need to implement the solve
function. Do NOT modify the function signature including the data types of the
input arguments. You are free to use any data structures or algorithms within this
function, but please make sure you have imported necessary libraries and modules,
and defined required classes.
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System Prompt (Continued)

¢ The evaluation machine has {NUM_CPU_CORES} CPU cores and sufficient mem-
ory to run your program. The time limit for this question is { TIMEOUT} seconds.
You are free to implement parallel algorithms where appropriate to maximize perfor-
mance.

* The Python version is 3.12. You may use any standard Python libraries and only the
following third-party libraries:

— numpy==2.2.5
— networkx==3.4.2
— pandas==2.2.3

* Your response should consist of a complete implementation of the ‘solve’ func-
tion. Do NOT include any explanations, comments, additional text, or Markdown
formatting.

* You will receive execution feedback after the user runs your program, including
runtime metrics and correctness evaluation.

C.2 User Prompt

For each problem, the first iteration begins with the following user prompt, which introduces the task
and its objective to the LLM, along with a program template that the model is expected to complete.

User Prompt

# Problem Information
{PROBLEM DESCRIPTION}

# Program Template

def solve(input_file: str, solution_file: str):

mwmn

Solve the optimization problem.

Please do NOT change the function name and arguments.
Inputs should be read from input_file
and outputs should be written to solution_file.
Input and output formats have been specified in the
problem statement.
nnn
raise NotImplementedError(
"This is a placeholder implementation you need to fill in."

)

C.3 Prompts for Improvement Guidance

Based on the feasibility of the final outputs, we issue one of two improvement prompts in subsequent
iterations. If any test cases fail, we provide the following prompt:
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Improvement Guidance Case 1

# Feedback from Previous Iteration (Iteration {iteration-1})
These are the test cases and results from the previous iteration:
## Test Case 1: {test_name}

**Input File:**

{content}

**Result:**

{execution_message}

## Test Case 2: {test_name}
**Input File:**

{content}

**Result:**
{execution_message}

# Improvement Guidance
The program failed to produce valid solutions for some test cases. Please fix the following
issues:

1. Check for compilation errors or runtime exceptions.

2. Ensure the program handles all edge cases and meets the problem constraints
correctly.

3. Verify that the input and output format match the expected format.

4. Make sure all required functions are implemented correctly, and no external forbid-
den libraries are used.

5. If the program is not able to produce valid solutions for any test case, please try to
find the root cause and fix it.

6. If the program is able to produce valid solutions for some test cases, please try to
improve the solution.

Otherwise, if all test cases pass verification, we issue the following prompt:

Improvement Guidance Case 2

# Feedback from Previous Iteration (Iteration {iteration-1})

# Improvement Guidance
Please carefully observe the problem structure and improve upon this program by:

1. Addressing any weaknesses in the previous approach.
2. Introducing more advanced or efficient algorithms.
3. Focusing on improving performance for test cases.

Your goal is to improve the solution for as many test cases as possible, with special attention
to those where the previous solution performed poorly.

C.4 Refinement Prompt for Problem Descriptions

To ensure clarity and correctness in problem specification, we employ a human-in-the-loop process.
Specifically, we prompt a weaker LLM to flag any unclear or ambiguous statements in the task
description. The following prompt is used for this purpose:
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Refinement Prompt for Problem Descriptions

If you were to solve the programming task below, do you have any questions? Is there
anything I should clarify before you begin writing code?

# Problem Description
{PROBLEM DESCRIPTION}

C.5 Example Problem Description

The following provides an example problem description for operator scheduling. For other problems,
please refer to our repository.

## Background

High-level synthesis (HLS) is an important stage in electronic design automation (EDA), aimed at
translating a high-level program specification (e.g., written in C/C++ or SystemC) into a
cycle-accurate hardware implementation. After the program is parsed and analyzed, it is typically
transformed into an intermediate representation known as a Control Data Flow Graph (CDFG). This
graph captures the operations (e.g., arithmetic, memory accesses) and their control/data
dependencies. The CDFG can further be processed into a Directed Acyclic Graph (DAG) to facilitate
scheduling and optimization.

Tereld

e of the core challenges in HLS is operator scheduling, which determines the exact control step (or
cycle) at which each operation is executed, while satisfying data dependencies and resource
constraints. Efficient scheduling plays a critical role in optimizing design quality in terms of
performance, area, and power.

rile

## Formalization

Consider a CDFG with $n$ operation nodes $o_i$, where $i \in 0 = \{1, 2, \ldots, n\}$, and a precedence
relation $\prec$ on $0$ that captures operation dependencies. Each operation $o_i$ is associated
with a cycle delay $d_i \in \mathbb{Z}"+$ and a resource type $r_i \in R = \{1, 2, \ldots, k\}$. Let
$T = \{0, 1, 2, \ldots, L\}$ represent the set of control steps (c-steps), and define a schedule as
an $n$-tuple $s = (t_1, t_2, \ldots, t_n)$, where $t_i \in T$ denotes the start time (c-step) of
operation $o_i$.

Tered

A schedule $s$ is feasible if it satisfies all data dependencies:

$\forall i, j \in 0: i \prec j \Rightarrow t_i + d_i \leq t_j$.

Let $S$ denote the set of all feasible schedules. For a given schedule $s$, let $N_r(t)$ be the number
—» of operations that use resource $r$ in control step $t$, and define the total usage of resource $r$
«— as $N_r = \sum_{t \in T} N_r(t)$.

Given a bound $G_r$ on the number of available instances for each resource type $r \in R$, the operator
< scheduling problem is to find a feasible schedule $s \in S$ that minimizes the overall latency $L$,
— defined as

$\min_{s \in S} \max_{i \in 0} (t_i + d_i)$,

subject to the resource constraints

$\forall r \in R, t \in T: N_r(t) \leq G_r$.

## Input Format
The input is provided in JSON format with the following structure:

“Tjson
{
"name": "input",
"delay": {
"mul": 3,
"sub": 1
},
"resource": {
"mul": 2,
"sub": 1
},
"nodes": [
["ﬂl" R Ilmu1||] )
[lln2|| s “mul"] s
["n3" s Ilsubu]
1,
"edges": [
["n1", "n3", "1lhs"],
["n2", "n3", "rhs"]
]
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Where:

- "name”: Name of the input graph

- “delay”: Maps each resource type to its execution delay in cycles

- “resource’: Maps each resource type to the number of available functional units

- "nodes”: List of nodes, where each node is represented as * [node_id, resource_type]*

- “edges’: List of edges, where each edge is represented as ~[source_node, target_node, edge_name]"

## Output Format

The output should provide the execution schedule of the program, indicating the start cycle of each
< operation. For example, the following output means that "nl" and "n2" start at cycle O, while "n3"
— starts at cycle 3:

D Models

The LLM:s used in our experiments are listed in Table[5] All models were accessed via official APIs
provided by their respective organizations, except for the Meta models, which are accessed through
the OpenRouter [100] APL.

Table 7: Model specifications with API names and official pricing.

Organization Model API Name Price ($In/$Out) Type
OpenAl GPT-04-mini-high 04-mini:high 1.1/4.4 Reasoning
Anthropic Claude-3.7-Sonnet  claude-3-7-sonnet-20250219 3/15 Reasoning
DeepSeek DeepSeek-V3 deepseek-chat(0324) 0.27/1.10 Base
DeepSeek DeepSeek-R1 deepseek-reasoner 0.55/2.19 Reasoning
Google Gemini-2.5-Flash gemini-2.5-flash-preview-04-17 0.15/3.5 Reasoning
Google Gemini-2.5-Pro gemini-2.5-pro-preview-05-06 1.25/10.0 Reasoning
Meta LLaMA-3.3 meta-llama/Llama-3.3-70B-Instruct 0.07/0.33 Base
Meta LLaMA-4-Maverick  meta-llama/Llama-4-Maverick-17B-128E-Instruct  0.27/0.85 Base
Alibaba Qwen3-235B qwen3-235b-a22b 0.29/2.86 Reasoning

E Problem Set

In this section, we provide more details on the problems included in Table[I] For a representative
problem description used in the prompts, please consult our repository for additional details.

E.1 Operator Scheduling

Operator scheduling is a critical stage in high-level synthesis (HLS) [32} [103], the process of
converting behavioral hardware descriptions into register-transfer level (RTL) implementations.
This task involves carefully assigning each operation to a specific clock cycle while managing a
variety of constraints such as data dependencies, resource availability, and performance targets. The
effectiveness of the scheduling process is vital, as it directly influences key design metrics including
area, power consumption, and execution time, making it an important focus in the field of electronic
design automation (EDA).

Over the years, researchers have developed a wide range of techniques to tackle the inherent challenges
of operator scheduling in HLS. Exact methods, such as those based on integer linear programming
(ILP) [60, [101]], can provide optimal solutions but often suffer from scalability issues. As a result,
many commercial and academic HLS tools [[155] [16] rely on heuristics to achieve practical, near-
optimal results. Traditional heuristic approaches, including priority-function-based methods [[125]
1051 [106], focus on balancing resource utilization with performance requirements. Notably, methods
leveraging systems of difference constraints (SDC) enable an efficient formulation that captures a
rich set of scheduling restrictions and casts the optimization objective into a linear programming (LP)
framework [31, 134]. More recently, the incorporation of machine learning techniques [22, 187]] has
further advanced the state-of-the-art, enhancing both scheduling efficiency and solution quality in the
face of increasingly complex hardware designs.
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E.2 Technology Mapping

Technology mapping, in the context of logic synthesis for integrated circuits and field-programmable
gate arrays (FPGAs), is the process of converting a logic network into an equivalent network of
standard cells or logic resources from a specific technology library. The objective is to optimize key
design metrics such as area, delay, and power consumption. It is a crucial step in the VLSI design
flow and FPGA design flow, determining the actual physical implementation of a design.

Here in our problem setting, we focus on area-optimal technology mapping for lookup table (LUT)-
based FPGAs. Given an input logic network, the goal is to cover the network with K -input subgraphs,
each of which can be implemented by a K-LUT, while minimizing the number of LUTs representing
the circuit area.

The most widely adopted approaches are cut-based methods, which operate in two stages: cut
enumeration and cut selection. In this approach, all feasible K-input cuts—i.e., subgraphs with at
most K inputs—are enumerated for each node in the boolean network. Then, a dynamic programming-
based selection process chooses one cut per node to construct a full LUT cover of the circuit,
optimizing for metrics such as area or delay [[19} 29, 192]. A refinement of this approach is known as
priority cut pruning, which retains only a limited set of the most promising cuts per node rather than
considering all possible cuts. This significantly improves scalability for large circuits and is widely
implemented in tools such as ABC [14].

E.3 Global Routing

The global routing problem addresses the challenge of planning signal paths across a chip after logic
placement, determining how a set of nets should traverse the layout to ensure connectivity while
reserving space for detailed routing. Rather than producing exact wire geometries, global routing
generates abstract paths through routing regions. This step must account for routing congestion, layer
limitations, and timing criticality, while managing a growing number of nets in modern designs like
Very-Large-Scale Integration (VLSI). The quality of the global routing solution plays a critical role in
determining the feasibility and effectiveness of downstream routing stages and can ultimately dictate
the success or failure of physical design closure.

The problem has been studied extensively via sequential and ILP-based methods. Maze routing,
introduced by [74]], laid the groundwork for sequential approaches, with subsequent improvements
such as the work by [132]. For multi-terminal nets, rectilinear Steiner tree methods were devel-
oped [30]. However, sequential routing lacks global coordination and often leads to congestion.
ILP-based methods formulate routing as a 0-1 programming, concurrently optimizing over all nets
with objectives like wire length and capacity constraints. While exact ILP solvers are computationally
intensive, relaxation techniques such as randomized rounding [17]] and multi-commodity network flow
models [[127, 4] have been employed. Interior-point methods for solving the LP relaxation [[142, [12]]
have also proven effective for scalable and near-optimal routing.

[S8] provided a comprehensive survey of global routing techniques for integrated circuits. [93]
revisited the problem, offering a historical perspective and highlighting key open challenges that
remain unresolved. More recently, to foster the development of advanced global routing methods,
[79, 180] introduced an ISPD contest that encourages the use of GPU-based techniques to accelerate
global routing.

E.4 E-Graph Extraction

E-graph [[18, 96] is a data structure that compactly represents a set of expressions. Given an input
program and a set of rewrite rules, an e-graph is constructed by applying the rules to the program,
generating new expressions, and merging equivalent expressions. It has been widely used to represent
and explore the huge number of equivalent program space in tensor graph transformation [158| 24,
sparse linear algebra optimization [[146]], code optimization [72} [129]], digital signal processor (DSP)
compilation [[141} [138]], circuit datapath synthesis [139, 26|, and floating-point arithmetic [[104].

In an e-graph, all functionally equivalent terms are organized in the same equivalent classes, known as
e-classes. Nodes within each e-class that represent values or operators are called e-nodes. E-classes
are a partition of e-nodes, where each e-node belongs to exactly one e-class. Dependencies in e-graphs
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are directed, which point from e-nodes to their children e-classes, indicating the operator (e-node)
requires the values (e-nodes) from the child e-classes to compute its value.

In e-graph extraction, an optimized term from an e-graph is extracted after rewrites, based on a user-
defined cost model. The goal is to produce a functionally equivalent but improved implementation of
the original input program. The e-graph extraction problem is proven to be NP-hard when common
sub-expressions are considered [133] [165].

Existing e-graph extraction methods include exact methods employing ILP [26, [129]]. Recently, there
has been significant progress in employing heuristics for e-graph extraction. These include a simple
working-list method [[104]], a relaxation method utilizing gradient descent [15]], and a specialized
method tailored for sparse e-graphs [49]. The dataset used in evaluation for this work primarily
comes from SmoothE [[15]].

E.5 Intra-Operator Parallelism

Intra-Operator Parallelism (IOPDDL), an emerging challenge introduced in the ASPLOS’25 contest
track [94], addresses the complexities of distributed deep learning. Leading teams in this com-
petition have predominantly employed meta-heuristic approaches, distinguished by their unique
pre-processing and optimization strategies.

The effective distribution of large machine learning models across multiple hardware accelerators
is paramount for achieving desired performance in both training and serving applications [[168|
167, 11264 1109, [75) 44| 23]]. This task necessitates sharding the computation graph to minimize
communication overhead, a process made intricate by the vast number of operations and tensors
involved. Specifically, for a given graph where nodes represent operations with distinct execution
strategies (each possessing associated cost and memory usage), an optimal strategy must be chosen
for every node. The objective is to minimize the aggregate sum of node and edge costs, without
exceeding a strict memory usage constraint across all devices at any point. The inherent diversity in
topological and memory characteristics of ML models across varied tasks and modalities renders this
problem especially demanding.

E.6 Protein Sequence Design

Understanding how proteins fold into their native three-dimensional structures [66} [147]] is a central
problem in structural biology [91 [45]], traditionally framed as a forward problem: predicting the
structure a given amino acid sequence will adopt [82, [145]. In contrast, the protein sequence
design or inverse folding problem starts from a fixed target structure and seeks sequences that
are likely to fold into it. Many works have shown that this inverse formulation not only offers
practical applications in protein engineering but also deepens our understanding of sequence—structure
relationships [43} 1163124, 40, 135 73]].

A common modeling approach treats sequence design as a global optimization problem over the space
of amino acid sequences. Methods developed by [135], [124], and others define a fitness function to
select sequences with favorable folding properties. These functions are designed to balance positive
design (low free energy in the target structure) with negative design (high energy in competing folds),
promoting both thermodynamic stability and structural specificity. More recently, people have been
working on multi-state design with more or less general fitness functions [[108], 18, 6} 95 159,152} [143]].

In our benchmark, we focus on the Grand Canonical (GC) model [[135] of protein sequence design.
The GC model operates on (i) a detailed three-dimensional geometric representation of a target
structure with n residues, (ii) a simplified binary alphabet distinguishing only hydrophobic (H)
and polar (P) residues, and (iii) a fitness function ® that favors sequences with densely packed
hydrophobic cores while penalizing solvent-exposed hydrophobic residues. Despite its simplicity,
the H/P model has been shown to capture key qualitative features of real protein structures [41167].
Several studies [90, [11] have explored the correspondence between sequences optimized under the GC
model and those observed in natural proteins. However, a key obstacle has remained: computing an
optimal sequence for a given structure is computationally challenging. The brute-force enumeration
over all 2 H/P sequences is infeasible for realistic protein sizes, and the algorithmic complexity of
the problem was explicitly raised as an open question by [54]. An efficient algorithm that constructs
an optimal sequence in polynomial runtime was introduced later [69] using network flow.
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E.7 Mendelian Error Detection

Chromosomes encode an individual’s genetic information, with each gene occupying a specific
position known as a locus. At each locus, a diploid organism carries two alleles—one inherited
from each parent—forming its genotype. When direct genotyping is not available, researchers rely
on the observable traits or phenotypes, which represent sets of compatible genotypes. A group of
related individuals, along with their phenotypes at a locus, is organized into a pedigree, where each
individual is either a founder or has parents defined within the structure.

Due to experimental and human errors, pedigree data may contain inaccuracies. These errors are
classified as either parental errors (incorrect parentage, which we assume do not occur here) or
phenotype errors, which can lead to Mendelian errors. A Mendelian error arises when all genotype
combinations compatible with observed phenotypes violate Mendel’s law that each individual inherits
one allele from each parent. Detecting such inconsistencies is computationally challenging; the
number of possible genotype combinations grows exponentially with pedigree size, making full
enumeration impractical. In fact, verifying consistency has been shown to be NP-complete [1].

Error detection and correction are crucial for downstream tasks like genetic mapping or disease gene
localization. However, existing tools are often limited by scalability issues, strong assumptions,
or incomplete analysis. To address these limitations, a soft constraint network framework for
detecting Mendelian inconsistencies was proposed [[119]], estimating the minimum number of required
corrections, and suggesting optimal modifications. These problems naturally align with weighted
constraint satisfaction and provide a rich testbed for scalable and flexible inference in large, complex
pedigrees.

E.8 Airline Crew Pairing

The airline crew pairing problem is a well-established topic in operations research. It involves
constructing sequences of flight legs—known as pairings—that begin and end at a crew base, cover
all scheduled flights, and satisfy a variety of regulatory and contractual constraints. The primary goal
is to minimize total crew-related costs, such as wages, hotel accommodations, and deadhead travel,
while ensuring legality and operational feasibility. This problem is typically formulated as a set
partitioning model and addressed using column generation and branch-and-price techniques [39} 168]].
Foundational systems developed for carriers like American Airlines demonstrated the effectiveness of
these methods at scale [9]. More recent innovations include dynamic constraint aggregation [47] and
machine learning-based pairing generation [156], which are now integral to commercial solvers such
as Jeppesen [63] and Sabre [[L17], capable of processing monthly schedules with tens of thousands of
flights.

In addition to exact methods, heuristic and metaheuristic techniques — such as genetic algorithms,
simulated annealing, and local search — have been explored to improve scalability and reduce
computation time, particularly for medium-sized instances or disruption recovery [88,[131]. These
hybrid approaches aim to complement exact optimization methods by leveraging historical data and
incorporating planner preferences, offering more flexible and adaptive solutions in practice.

E.9 Pickup and Delivery Problem with Time Windows

The Pick-up and Delivery Problem with Time Windows (PDPTW), originally proposed by [46], is
generalized from a classical NP-hard combinatorial optimization problem—the Capacitated Vehicle
Routing Problem (CVRP). It introduces additional complexity through precedence constraints,
requiring pick-up locations to precede corresponding drop-off locations, and service time windows at
each location. The problem can be seen in many logistic and public transportation systems, with the
primary objective of minimizing the total travel cost.

Over the past three decades, a wide range of models and algorithms have been proposed to address
the PDPTW, with most falling into the category of heuristic or metaheuristic approaches. Prominent
works include simulated annealing [76, [13]], large neighborhood search [33}[115]], and iterated local
search [120]]. In contrast, research into exact solution methods has been relatively limited, with the
most effective approaches relying on the set partitioning formulation combined with the branch-cut-
and-price algorithm [[114,[10]]. [116] provided a comprehensive survey of PDPTW solvers developed
up to 2007. [56] later reviewed more recent advancements up to 2018, with a particular emphasis on
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PDPTW variants for people transportation, referred to as the Dial-a-Ride problem. [137] develop a
mathematical model and applies heuristics (Genetic Algorithm, Simulated Annealing, Tabu Search)
to analyze how time-window constraints affect urban pickup/delivery truck routing and scheduling.

To support algorithm development, several benchmark datasets have been created and maintained.
The Li and Lim dataset [76] is widely used and includes instances ranging from 100 to 1000 locations.
More recently, [120] released a larger-scale dataset generated from real-world spatial-temporal
distributions.

F Additional Experiments

In this section, we provide more experimental results and analysis on our benchmark.

F.1 Experimental Settings

By default, we constrain LLMs to generate Python code for each problem and execute the code on a
CPU server, with each instance allocated 8 CPU cores. The timeout for each problem is specified in
Table[8]

Table 8: Timeout for each problem.

Problem Timeout (sec)
Operator scheduling 10
Technology mapping 10

Global routing 300

E-graph extraction 10

Intra-op parallelism 60

Protein sequence design 10

Mendelian error detection 10

Airline crew pairing 10

Pickup and delivery w/ time windows 60

F.2 Detailed Results on Each Problem

We provide the detailed SOLVE; @ values for each problem in Tables 0| through The variation
in SOLVE, @1 across different problems highlights the diverse levels of difficulty, as summarized in
Table[I] For instance, the global routing problem remains unsolved by all evaluated LLMs — even
for generating a single feasible solution. In the case of the pickup and delivery problem, the low
SOLVE;; @10 ratio also indicates that current LLMs struggle to consistently satisfy the problem’s
constraints.

Table 9: SOLVE, @; results on operator scheduling problem.

SOLVE[1 SOLVE[ SOLVE]

Model @10 @5 @] @10 @5 @] @10 @5 @]
DeepSeek-V3 100.0% 100.0% 4.2% 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
DeepSeek-R1 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Gemini-2.5-Flash 100.0% 100.0% 0.0% 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
Gemini-2.5-Pro 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
LLaMA-4-Maverick | 20.8% 0.0% 0.0% 100.0% 4.2% 0.0% 100.0% 100.0% 4.2%
LLaMA-3.3 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Qwen3-235B 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Claude-3.7-Sonnet | 100.0% 100.0% 0.0% 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
GPT-04-mini-high 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
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Table 10: SOLVE, @+ results on technology mapping problem.

\ SOLVEq SOLVEq SOLVE;
Model @10 @5 @] @10 @5 @] @10 @5 @]
DeepSeek-V3 0.0% 0.0% 0.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
DeepSeek-R1 87.1% 87.1% 774% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Gemini-2.5-Flash 0.0% 0.0% 0.0% 93.5% 77.4% 67.7% | 100.0% 100.0% 100.0%
Gemini-2.5-Pro 74.2% 74.2% 0.0% | 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
LLaMA-4-Maverick 0.0% 0.0% 0.0% | 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
LLaMA-3.3 0.0% 0.0% 0.0% | 100.0% 100.0% 0.0% 100.0% 100.0% 6.5%
Qwen3-235B 0.0% 0.0% 0.0% | 100.0%  87.1% 0.0% 100.0% 100.0% 3.2%
Claude-3.7-Sonnet ~ 87.1% 87.1% 0.0% | 100.0% 100.0% 64.5% | 100.0% 100.0% 100.0%
GPT-04-mini-high 100.0% 100.0% 45.2% | 100.0% 100.0% 51.6% | 100.0% 100.0% 100.0%
Table 11: SOLVE @+ results on global routing problem.
SOLVE[1 SOLVE[ SOLVE]
Model @10 @5 @] @10 @5 @1 @10 @5 @1
DeepSeek-V3 00% 0.0% 0.0% | 33.3% 33.3% 0.0% 100.0% 100.0% 100.0%
DeepSeek-R1 00% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 100.0% 100.0%
Gemini-2.5-Flash 00% 0.0% 0.0% | 20.8% 0.0% 0.0% 100.0% 100.0% 100.0%
Gemini-2.5-Pro 0.0% 0.0% 0.0% | 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
LLaMA-4-Maverick | 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
LLaMA-3.3 00% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 100.0% 4.2%
Qwen3-235B 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 100.0% 100.0%
Claude-3.7-Sonnet | 0.0% 0.0% 0.0% | 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
GPT-04-mini-high 00% 0.0% 0.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Table 12: SOLVE, @+ results on e-graph extraction problem.
SOLVE1 SOLVE SOLVE]
Model @10 @5 @] @10 @5 @] @10 @5 @]
DeepSeek-V3 4.3% 0.0% 0.0% 100.0% 100.0% 82.6% | 100.0% 100.0% 100.0%
DeepSeek-R1 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Gemini-2.5-Flash 100.0% 100.0% 0.0% 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
Gemini-2.5-Pro 100.0% 100.0% 0.0% 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
LLaMA-4-Maverick 0.0% 0.0% 0.0% 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
LLaMA-3.3 39.1% 39.1% 0.0% 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Qwen3-235B 87.0% 87.0% 87.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Claude-3.7-Sonnet | 39.1% 39.1% 0.0% 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
GPT-04-mini-high 100.0% 100.0%  39.1% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Table 13: SOLVE, @+ results on intra-op parallelism problem.
SOLVE[1 SOLVE[ SOLVE]
Model @10 @5 @1 @10 @5 @1 @10 @5 @1
DeepSeek-V3 82.1% 53.6% 35.7% 82.1% 53.6% 357% | 100.0% 100.0% 100.0%
DeepSeek-R1 92.9% 92.9% 35.7% 92.9% 92.9% 357% | 100.0% 100.0%  35.7%
Gemini-2.5-Flash 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Gemini-2.5-Pro 82.1% 82.1% 0.0% 82.1% 82.1% 0.0% 100.0% 100.0% 0.0%
LLaMA-4-Maverick | 96.4% 96.4% 3.6% 100.0% 100.0% 3.6% 100.0% 100.0% 3.6%
LLaMA-3.3 75.0% 75.0% 3.6% 82.1% 82.1% 3.6% 100.0% 100.0% 100.0%
Qwen3-235B 75.0% 71.4% 67.9% 78.6% 75.0% 75.0% | 100.0% 100.0% 100.0%
Claude-3.7-Sonnet | 82.1% 82.1% 71.4% 82.1% 82.1% 78.6% | 100.0% 100.0%  96.4%
GPT-04-mini-high 100.0% 100.0% 929% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Table 14: SOLVE; @+ results on protein sequence design problem.
SOLVEq1 SOLVEq; SOLVEg
Model @10 @5 @] @10 @5 @] @10 @5 @]
DeepSeek-V3 833% 833% 83.3% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
DeepSeek-R1 87.5% 87.5% 0.0% | 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
Gemini-2.5-Flash 95.8% 95.8% 95.8% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Gemini-2.5-Pro 100.0% 95.8%  0.0% | 100.0%  95.8% 0.0% 100.0% 100.0% 4.2%
LLaMA-4-Maverick | 83.3% 833%  0.0% 95.8% 95.8% 0.0% 100.0% 100.0% 4.2%
LLaMA-3.3 12.5%  12.5% 12.5% | 95.8% 95.8% 95.8% 95.8% 95.8% 95.8%
Qwen3-235B 87.5% 875% 87.5% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Claude-3.7-Sonnet | 58.3% 45.8% 0.0% | 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
GPT-04-mini-high 91.7% 91.7% 91.7% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
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Table 15: SOLVE; @+ results on mendelian error detection problem.

\ SOLVEq SOLVEq SOLVEj

Model @10 @5 @1 @10 @5 @1 @10 @5 @1
DeepSeek-V3 100.0% 100.0% 0.0% | 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
DeepSeek-R1 100.0% 100.0% 0.0% 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
Gemini-2.5-Flash 100.0% 10.0% 10.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Gemini-2.5-Pro 80.0% 80.0% 80.0% | 80.0% 80.0% 80.0% | 100.0% 100.0% 100.0%
LLaMA-4-Maverick 60.0% 60.0% 60.0% 60.0% 60.0% 60.0% 60.0% 60.0% 60.0%
LLaMA-3.3 55.0% 55.0% 55.0% 55.0% 55.0% 55.0% 100.0% 100.0% 100.0%
Qwen3-235B 55.0% 55.0% 0.0% 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
Claude-3.7-Sonnet  100.0% 100.0% 0.0% 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
GPT-04-mini-high 100.0% 50.0% 35.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%

Table 16: SOLVE @+ results on airline crew pairing problem.

SOLVE1 SOLVE[ SOLVE]

Model @10 @5 @1 @10 @5 @1 @10 @5 @1
DeepSeek-V3 100.0% 100.0% 0.0% 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
DeepSeek-R1 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Gemini-2.5-Flash 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 1000% 14.3%
Gemini-2.5-Pro 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100.0% 100.0% 100.0%
LLaMA-4-Maverick | 100.0% 100.0% 0.0% 100.0% 100.0% 35.7% | 100.0% 100.0% 100.0%
LLaMA-3.3 42.9% 42.9% 42.9% 42.9% 42.9% 429% | 100.0% 100.0% 100.0%
Qwen3-235B 21.4% 21.4% 0.0% 100.0% 85.7% 0.0% 100.0% 100.0% 0.0%
Claude-3.7-Sonnet | 100.0% 100.0% 0.0% 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
GPT-04-mini-high 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%

Table 17: SOLVE, @+ results on pickup and delivery with time windows problem.

SOLVE[1 SOLVE[ SOLVE;

Model @10 @5 @1 @10 @5 @1 @10 @5 @1
DeepSeek-V3 0.0% 0.0% 0.0% 80.0% 73.3% 73.3% | 100.0% 100.0% 100.0%
DeepSeek-R1 16.7% 133% 33% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Gemini-2.5-Flash 96.7% 90.0% 6.7% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Gemini-2.5-Pro 30.0% 26.7% 13.3% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
LLaMA-4-Maverick | 0.0% 0.0% 0.0% | 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
LLaMA-3.3 0.0% 0.0% 0.0% | 100.0% 100.0% 0.0% 100.0% 100.0% 0.0%
Qwen3-235B 0.0% 0.0% 0.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%
Claude-3.7-Sonnet | 0.0% 0.0% 0.0% | 100.0% 100.0% 16.7% | 100.0% 100.0% 100.0%
GPT-04-mini-high 3.3% 0.0% 0.0% | 100.0% 100.0% 100.0% | 100.0% 100.0% 100.0%

F.3 Ablation on Temperature

We evaluate various models across different temperature settings, T € {0.0,0.5,1.0}. For each
model, we run 10 iterations per problem and report the highest QYI achieved across these iterations as
the final QYT score for that problem. The overall benchmark score is then computed as the arithmetic
mean of QYT across all problems. Detailed results are shown in Tables [T8]to [20]

In general, improving the temperature can be beneficial to quality as the model becomes more creative,
but may harm yield as it may not follow the constraints strictly. Note that yield emphasizes the best
iteration that achieves the highest QYI, whereas SOLVEyy reflects the cumulative success rate across
iterations; therefore, their values may differ. Additionally, the weighted QYT is not the harmonic mean
of weighted yield and weighted quality, as it is computed by aggregating metrics across different
problems using a weighted approach.

We also report an uncapped version of the weighted QYT metricﬂ which better reflects cases where
LLM-generated programs outperform expert solutions on certain test instances. Improvements
are underlined in the tables. While this variant achieves slightly higher scores for most models —
indicating occasional superior performance — it also confirms that, in the majority of cases, LLMs
still lag significantly behind expert solutions.

>The uncapped version of quality is computed as 1/N 25:1 ¢r,/cn, and the uncapped QY1 is derived by
substituting the original quality metric with this uncapped variant.
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Table 18: Performance of different models on Temperature = 0.

Model Weighted Yield Weighted Quality " c.gnted QYT Weighted QYT

(Capped) (Uncapped)
Claude-3.7-Sonnet 0.5963 0.4686 0.5034 0.5034
DeepSeek-R1 0.6972 0.5775 0.5498 0.5553
DeepSeek-V3 0.4587 0.3890 0.3707 0.3707
Gemini-2.5-Flash 0.6606 0.5281 0.5682 0.5753
Gemini-2.5-Pro 0.6468 0.6700 0.6170 0.6228
LLaMA-3.3 0.3394 0.3521 0.2951 0.2953
LLaMA-4-Maverick 0.3211 0.3383 0.2955 0.2955
Qwen3-235B 0.4450 0.4513 0.4355 0.4423

Table 19: Performance of different models on Temperature = 0.5.
Weighted QYI Weighted QYI

Model Weighted Yield Weighted Quality (Capped) (Uncapped)
Claude-3.7-Sonnet 0.6147 0.6468 0.5437 0.5451
DeepSeek-R1 0.5138 0.5751 0.4743 0.4812
DeepSeek-V3 0.3716 0.4645 0.3322 0.3322
Gemini-2.5-Flash 0.4817 0.5700 0.4760 0.4828
Gemini-2.5-Pro 0.4817 0.5609 0.4767 0.4789
LLaMA-3.3 0.3991 0.4407 0.4108 0.4108
LLaMA-4-Maverick 0.3349 0.3712 0.3050 0.3646
Qwen3-235B 0.4128 0.4798 0.4269 0.4327

Table 20: Performance of different models on Temperature = 1.
Weighted QYI Weighted QYI

Model Weighted Yield Weighted Quality (Capped) (Uncapped)
Claude-3.7-Sonnet 0.5138 0.5924 0.4828 0.4841
DeepSeek-R1 0.5688 0.5625 0.5313 0.5383
DeepSeek-V3 0.4128 0.4188 0.3839 0.3841
GPT-04-mini-high 0.6927 0.6440 0.6089 0.6158
Gemini-2.5-Flash 0.4771 0.7688 0.5030 0.5047
Gemini-2.5-Pro 0.5229 0.4893 0.4921 0.4981
LLaMA-3.3 0.3028 0.3627 0.2868 0.2916
LLaMA-4-Maverick 0.2982 0.3271 0.2667 0.2672
Qwen3-235B 0.5459 0.5228 0.5294 0.5364

F.4 Few-Shot Demonstration

Table [21{highlights the impact of few-shot demonstrations on LLM performance across the entire
HeuriGym benchmark. Introducing only a small number of demonstrations (e.g., three) can negatively
affect solution quality and success rate, as these examples may not be representative of the overall
dataset, leading the model to overfit to them. However, providing a larger set of demonstrations can
potentially improve QY]I, as the model benefits from greater diversity and can learn more generalizable
patterns.

Table 21: Impact of few-shot demonstrations on performance (Model: Gemini-2.5-Pro).
#of Demos Weighted Yield Weighted Quality Weighted QYI

Zero-shot 0.5872 0.7159 0.5999
Half-shot 0.5092 0.6526 0.5361
Full-shot 0.6468 0.6700 0.6170

F.5 Feedback Rounds

Table [22] shows that increasing the number of feedback rounds has a nuanced impact on performance.
While a moderate number of rounds (e.g., five) can enhance overall quality by guiding the model to
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refine its solutions, excessive feedback may lead to diminishing returns or even degrade performance.
This suggests that too many rounds can overwhelm the model, making it harder to identify and
prioritize the most critical information from the feedback.

Table 22: Impact of feedback rounds on performance (Model: Gemini-2.5-Pro).
# of Feedback Rounds Weighted Yield Weighted Quality Weighted QYI

1 0.6193 0.7290 0.6253
5 0.6055 0.7313 0.6259
10 0.6468 0.6700 0.6170

F.6 Iterative Best-of-N Sampling

To investigate the benefits of test-time search strategies, we sample k candidate programs in each
iteration, evaluate them, and return feedback for all k£ programs to the LLM. After a fixed number
of iterations, we select the best-performing program from the entire pool — a process we refer to as
iterative best-of-N sampling. The total number of sampled programs is held constant across different
values of k. This strategy allows the model to explore diverse candidate solutions in parallel and
evolve the program based on evaluative feedback.

As shown in Table increasing k leads to better quality of results, indicating that aggregating
feedback across multiple candidates allows the LLM to better explore the solution space and improve
sampling efficiency by allocating computational budget toward more informative evaluations.

Table 23: Impact of iterative best-of-N sampling on performance (Model: Gemini-2.5-Pro).
# of Samples @ Iteration Weighted Yield Weighted Quality Weighted QYI
2@5 0.5688 0.7698 0.6160
1@10 0.6468 0.6700 0.6170

F.7 Error Analysis

In the following, we present representative examples of common errors made by LLMs during
heuristic generation. These errors highlight current limitations in code reliability and execution:

* Import error: This type of error occurs when the generated code relies on external libraries
that are not available in the environment. In the example below, the model attempts to import
the ortools library, which results in a ModuleNotFoundError. Such errors suggest that
the model does not strictly follow the instructions given in the prompt.

File "operator_scheduling/gemini-2.5-flash-preview-04-17/iteration4/sol
— ver.py", line 2, in <module>
from import cp_model
ModuleNotFoundError: No module named 'ortools'

* API misuse error: LLMs often misuse APIs due to a misunderstanding of library interfaces.
In the following case, the model tries to call random () directly from the random module,
which is not callable.

File "intra_op_parallel/o4-mini/iteration3/solver.py", line 64, in
— init_jitter
if len(ci) > 1 and random() < 0.1:

TypeError: 'module' object is not callable

» Syntax error: Syntax errors are common when the model fails to adhere to basic language
rules. In this example, there is an unmatched parenthesis in a while loop condition, leading
to a SyntaxError. Such mistakes typically indicate a lack of code completion validation in
the generation process.

File "crew_pairing/deepseek-chat/iteration7/solver.py", line 60
while len(used_legs) < len(df)):
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SyntaxError: unmatched ')'

* Runtime error: Even syntactically and semantically correct code can fail at runtime. In this
case, the model modifies a dictionary while iterating over it, which raises a RuntimeError.
This highlights the model’s difficulty in reasoning about the actual executable code in a long
context.

File "technology_mapping/llama-4-maverick/iteration2/solver.py", line
— 104, in technology_mapping
for successor in G.successors(node):
RuntimeError: dictionary changed size during iteration

F.8 C++ Example

We conduct preliminary experiments on the technology mapping problem by modifying the prompt
to instruct the LLM to generate a C++ solution, using the provided function template: void
solve(const std::string& input_file, const std::string& output_file).

Integrating C++ into our agentic feedback loop remains challenging due to dependencies on domain-
specific libraries and the complexity of parallel execution. As a result, our preliminary experiment
with C++ involves only a single iteration of prompting.

Table 24] presents a performance comparison between the Python solution with 10 iterations and the
C++ solution with just one iteration. Although the C++ solution does not produce high-quality output
in its initial attempt, it already achieves a better yield than the Python solution after 10 iterations —
an unexpectedly strong outcome. Notably, the Python solution fails to generate any valid result in
its first iteration. This is attributed to the significantly faster execution speed of C++ code, which
enables it to avoid the timeout errors frequently encountered by Python in this task.

We expect to see further performance improvement with C++ after we integrate it into the feedback
loop in our framework.

Table 24: Impact of C++ code on technology mapping performance (Model: Gemini-2.5-pro).
Language # of Iterations Yield Quality QYI
Python 10 0.7419  0.6423  0.6885
C++ 1 0.7742 03493 0.4814

F.9 Token Usage

Table [25| presents an example of token usage when running the complete HeuriGym benchmark
across different models. Among them, Gemini-2.5-Pro consumes the most tokens for prompt and
completion.

Table 25: Token counts from a single run of HeuriGym across different models.

Model Prompt Tokens Completion Tokens
Claude-3.7-Sonnet 1911947 298369
DeepSeek-R1 1215661 702746
DeepSeek-V3 1536084 122058
GPT-04-mini-high 1063688 978891
Gemini-2.5-Flash 2742487 332569
Gemini-2.5-Pro 2880737 455739

LLaMA-3.3 969887 77523
LLaMA-4-Maverick 1497730 77080
Qwen3-235B 1089888 127447
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G Detailed Analysis of Case Study

Here we include a detailed analysis of the case study in Section[A:2] We append the entire code of
each iteration and analyze the generated solution.

In the first iteration, the GPT-04-mini-high model generates an algorithm based on cut enumeration
and dynamic programming (DP)-based cut selection, which is the common approach used in technol-
ogy mapping tools. The core logic is highlighted in the following code snippet. However, it does
not prune the cut enumeration space and computes all possible K -feasible cuts for each node, which
leads to an exponential explosion in computation time. While this achieves high quality, it frequently
triggers TimeoutError for larger datasets, resulting in low yield.

# iteration 1: base algorithm without pruning the search space

def solve(input_file: str, solution_file: str):
from collections import deque
class Node:
__slots__ = ('name','fanin_names','fanins','fanouts','patterns_one‘,'patterns_zero',‘const_val‘)
def __init__(self,name):
self.name = name
self.fanin_names = []
self.fanins = []
self.fanouts = []
self.patterns_one = []
self.patterns_zero = []
self.const_val = None
raw_lines = open(input_file).read().splitlines()
lines = []
i=0
while i < len(raw_lines):
line = raw_lines[i].rstrip()
if not line or line.lstrip().startswith('#'):
i+=1
continue
if line.endswith('\\'):
merged = line[:-1].rstrip()
i+=1
while i < len(raw_lines):
nxt = raw_lines[i].rstrip()
if nxt.endswith('\\'):
merged += ' ' + nxt[:-1].rstrip()
i+=1
else:
merged += ' ' + nxt
i+=1
break
lines.append (merged)
else:
lines.append(line)
i+=1
model_name = ''
input_list = []
output_list = []
nodes = {}
idx = 0
while idx < len(lines):
1 = lines[idx].strip()
if not 1 or l.startswith('#'):
idx += 1
continue
if 1.startswith('.model'):
parts = 1.split()
if len(parts) > 1:
model_name = parts[1]
idx += 1
elif 1l.startswith('.inputs'):
parts = 1.split()
for name in parts[i:]:
input_list.append(name)
if name not in nodes:
nodes [name] = Node(name)
idx += 1
elif 1.startswith('.outputs'):
parts = 1.split()
for name in parts[i:]:
output_list.append(name)
idx += 1
elif 1.startswith('.names'):
parts = 1.split()
in_names = parts([1:-1]
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69 out_name = parts([-1]

70 if out_name not in nodes:

71 nodes [out_name] = Node(out_name)

72 node = nodes [out_name]

73 node.fanin_names = in_names[:]

74 patterns = []

75 j = ddx + 1

76 while j < len(lines):

71 1j = lines[j]l.stripQ

78 if not 1j or 1j.startswith('.') or 1j.startswith('#'):
79 break

80 patterns.append(1j)

81 § 4= 1

82 if len(in_names) == O:

83 if patterns and patterns[0].strip() == '1':
84 node.const_val = 1

85 else:

86 node.const_val = 0

87 else:

88 for pline in patterns:

89 parts2 = pline.split()

90 if len(parts2) == 1:

91 mask = parts2[0]; bit = '1'

92 else:

93 mask = parts2[0]; bit = parts2[i]
94 if bit == '1':

95 node.patterns_one.append (mask)
96 else:

97 node.patterns_zero.append (mask)
98 idx = j

99 elif 1.startswith('.end'):

100 break

101 else:

102 idx += 1

103 for node in nodes.values():

104 node.fanins = []

105 for fn in node.fanin_names:

106 if fn in nodes:

107 node.fanins.append(nodes[fn])

108 node.fanouts = []

109 for node in nodes.values():

110 for f in node.fanins:

111 f.fanouts.append(node)

112 reachable = set()

113 dq = deque()

114 for out in output_list:

115 if out in nodes:

116 dq.append (out)

117 while dq:

118 u = dq.pop()

119 if u in reachable:

120 continue

121 reachable.add (u)

122 for f in nodes[u] .fanins:

123 if f.name not in reachable:

124 dq.append (f .name)

125 nodes = {name:node for name,node in nodes.items() if name in reachable}
126 for node in nodes.values():

127 node.fanins = [f for f in node.fanins if f.name in nodes]
128 node.fanouts = [f for f in node.fanouts if f.name in nodes]
129 indeg = {name: len(node.fanins) for name,node in nodes.items()}
130 dq = deque([name for name,d in indeg.items() if d == 0])
131 topo_names = []

132 while dq:

133 u = dq.popleft()

134 ‘topo_names . append (u)

135 for w in nodes([u] .fanouts:

136 indeg[w.name] -= 1

137 if indeg[w.name] ==

138 dq.append (w.name)

139 topo_list = [nodes[name] for name in topo_names]
140 K=¢6

141 def prune_cuts(cset):

142 cuts = list(cset)

143 res = []

144 for ¢ in cuts:

145 skip = False

146 for d in cuts:

147 if d is not c and d.issubset(c):

148 skip = True

149 break

150 if not skip:

151 res.append(c)
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152 return res

153 cuts = {} # Cut Enumeration

154 for n in topo_list:

155 if not n.fanins:

156 cuts[n.name] = [frozenset([n.name])]
157 else:

158 cuts_n = None

159 for £ in n.fanins:

160 cf = cuts[f.name]

161 if cuts_n is None:

162 cuts_n = cf[:]

163 else:

164 newset = set()

165 for cl in cuts_n:

166 for c2 in cf:

167 u=cl| c2

168 if len(u) <= K:

169 newset.add (u)
170 cuts_n = prune_cuts(newset)
171 if cuts_n is None:

172 cuts_n = []

173 cuts_set = set(cuts_n)

174 cuts_set.add(frozenset ([n.name]))
175 cuts[n.name] = prune_cuts(cuts_set)
176 cost = {}

177 best_cut = {}

178 INF = 10%%18

179 for n in topo_list: # DP-based Cut Selection
180 if not n.fanins:

181 cost[n.name] = 0

182 best_cut[n.name] = None

183 else:

184 bcut = None

185 bval = INF

186 for ¢ in cuts[n.name]:

187 if ¢ == frozenset([n.name]):
188 continue

189 s =0

190 for m in c:

191 s += cost.get(m,0)

192 cval = s + 1

193 if cval < bval:

194 bval = cval; bcut = c

195 if bcut is None:

196 fl = frozenset([f.name for f in n.fanins])
197 bcut = fl

198 s =0

199 for m in bcut:

200 s += cost.get(m,0)

201 bval = s + 1

202 cost[n.name] = bval

203 best_cut[n.name] = bcut

204 mapping_nodes = set()

205 dq = deque()

206 for out in output_list:

207 if out in best_cut and best_cut[out] is not None:
208 dq.append (out)

209 while dq:

210 u = dg.pop()

211 if u in mapping_nodes:

212 continue

213 mapping_nodes.add (u)

214 c = best_cut[u]

215 if c:

216 for m in c:

217 if m in nodes:

218 nm = nodes [m]

219 if m not in input_list and nm.const_val is None:
220 dq.append (m)

221 mapping_topo = [n for n in topo_list if n.name in mapping_nodes]
222 f = open(solution_file,'w')

223 f.write('.model '+model_name+'\n')

224 f.write('.inputs '+' '.join(input_list)+'\n')
225 f.wurite('.outputs '+' '.join(output_list)+'\n')
226 for n in mapping_topo:

227 leaves = best_cut[n.name]

228 inputs = sorted(leaves)

229 k = len(inputs)

230 N = 1<<k

231 full_mask = (I1<<N) - 1

232 masks = []

233 for i in range(k):

234 m=0
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for j in range(N):
if (G>>idel:
m |= (1<<j)
masks . append (m)
vis = set()
queue2 = [n.name]
while queue2:
u = queue2.pop()
if u in vis or u in inputs:
continue
vis.add(u)
for fn in nodes[u] .fanins:
if fn.name not in vis:
queue?2.append (fn.name)
cone_nodes = [nodes[name] for name in topo_names if name in vis]
val = {}
for i,name in enumerate(inputs):
val[name] = masks[i]
for v in cone_nodes:
if v.const_val is not None:
val[v.name] = full_mask if v.const_val==1 else 0O
else:
if v.patterns_zero:
zero_mask = 0
for p in v.patterns_zero:
m = full_mask
for idx,ch in enumerate(p):
vm = val[v.fanin_names[idx]]
if ch=='1":
m &= vm
elif ch=='0":
m &= ("vm)&full_mask
zero_mask |=m
val[v.name] = (“zero_mask)&full_mask
else:
one_mask = 0
for p in v.patterns_one:
m = full_mask
for idx,ch in enumerate(p):
vm = val[v.fanin_names[idx]]

if ch=='1":
m &= vm
elif ch=='0":
m &= ("vm)&full_mask
one_mask |=m

val[v.name] = one_mask
root_mask = val[n.name]
f.write('.names '+' '.join(inputs)+' '+n.name+'\n')
for j in range(N):
if (root_mask>>j)&l:
line = ''.join('1l' if (j>>i)&1 else '0O' for i in range(k))
f.write(line+' 1\n')
f.write('.end\n')
f.close()

In the second iteration, the model overcorrects by adopting a naive 6-LUT mapping strategy that
trivially assigns each node to a separate LUT. While this approach passes all test cases within the
timeout, it produces poor solution quality. Specifically, it redundantly maps each non-primary-input
node as an individual LUT by directly copying inputs to outputs, resulting in excessive and inefficient
resource usage.

# iteration 2: a very naive mapping strategy. Simply copy the input to the output

def solve(input_file: str, solution_file: str):
raw = open(input_file).read().splitlines()
merged = []
i=0
while i < len(raw):
line = raw[i].rstrip()
if not line or line.lstrip().startswith('#'):
i+=1
continue
if line.endswith('\\'):
accum = line[:-1].rstrip()
i+=1
while i < len(raw):
nxt = raw[i] .rstrip()
if nxt.endswith('\\'):
accum += ' ' + nxt[:-1].rstrip()
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i+=1
else:
accum += ' ' + nxt
i+=1
break
merged . append (accum)
else:
merged.append(line)
i+=1
with open(solution_file, 'w') as f:
for 1 in merged:
f.write(1l + '"\n')

In the third iteration, the model proposes a more sophisticated strategy that first applies static pruning
to the cut enumeration space — limiting the number of cuts per node to 20 — followed by a dynamic
programming-based cut selection. This approach improves solution quality, though full yield is still
not achieved. Additionally, truth table computation is optimized using bitwise operations.

# iteration 3: static pruning by capping the number of cuts per node to M = 20; efficient bitwise
— operations

def solve(input_file: str, solution_file: str):
from collections import deque
raw_lines = open(input_file).read().splitlines()
lines = []
i=0
while i < len(raw_lines):
line = raw_lines[i].rstrip()
if not line or line.lstrip().startswith('#'):
i+=1
continue
if line.endswith('\\'):
accum = line[:-1].rstrip()
i+=1
while i < len(raw_lines):
nxt = raw_lines[i].rstrip()
if nxt.endswith('\\'):
accum += ' ' + nxt[:-1].rstrip()
i+=1
else:
accum += ' ' + nxt
i+=1
break
lines.append (accum)
else:
lines.append(line)
i+=1
class Node:
def __init__(self, name):
self.name = name
self.fanin_names = []
self.patterns_one = []
self.patterns_zero = []
self.const_val = None
self.fanins = []
self.fanouts = []
model_name = ''
input_list = []
output_list = []
nodes = {}
idx = 0
while idx < len(lines):
1 = lines[idx].strip()

if not 1:
idx += 1
continue

if 1.startswith('.model'):
parts = 1.split()
if len(parts) > 1:
model_name = parts[1]
idx += 1
elif 1l.startswith('.inputs'):
parts = 1.split()
for name in parts([i:]:
input_list.append(name)
if name not in nodes:
nodes [name] = Node (name)
idx += 1
elif 1.startswith('.outputs'):
parts = 1.split()
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62 for name in parts[i:]:

63 output_list.append(name)

64 idx += 1

65 elif 1.startswith('.names'):

66 parts = l.split()

67 in_names = parts[1:-1]

68 out_name = parts[-1]

69 if out_name not in nodes:

70 nodes [out_name] = Node(out_name)

71 node = nodes[out_name]

72 node.fanin_names = in_names[:]

73 patterns = []

74 j o= ddx + 1

75 while j < len(lines) and not lines[j].startswith('.'):
76 s = lines[j].stripQ)

77 if s:

78 patterns.append(s)

79 §o4+=1

80 if len(in_names) == O:

81 if patterns and patterns[0] == '1':

82 node.const_val = 1

83 else:

84 node.const_val = 0

85 else:

86 for pline in patterns:

87 parts2 = pline.split()

88 if len(parts2) == 1:

89 mask = parts2[0]; bit = '1'

90 else:

91 mask = parts2[0]; bit = parts2[1]
92 if bit == '1':

93 node.patterns_one.append (mask)

94 else:

95 node.patterns_zero.append (mask)

96 idx = j

97 elif 1.startswith('.end'):

98 break

99 else:

100 idx += 1

101 for node in nodes.values():

102 node.fanins = [nodes[nm] for nm in node.fanin_names if nm in nodes]
103 node.fanouts = []

104 for node in nodes.values():

105 for f in node.fanins:

106 f.fanouts.append(node)

107 reachable = set()

108 stack = [nm for nm in output_list if nm in nodes]

109 while stack:

110 u = stack.pop()

111 if u in reachable: continue

112 reachable.add (u)

113 for p in nodes[u] .fanin_names:

114 if p in nodes and p not in reachable:

115 stack.append (p)

116 nodes = {nm:nd for nm,nd in nodes.items() if nm in reachable}
117 for nd in nodes.values():

118 nd.fanins = [f for f in nd.fanins if f.name in nodes]
119 nd.fanouts = [f for f in nd.fanouts if f.name in nodes]
120 indeg = {nm: len(nd.fanins) for nm,nd in nodes.items()}
121 dq = deque([nm for nm,d in indeg.items() if d == 0])
122 topo = []

123 while dq:

124 u = dq.popleft()

125 topo . append (u)

126 for w in nodes[u] .fanouts:

127 indeg[w.name] -= 1

128 if indeg[w.name] ==

129 dq.append (w.name)

130 topo_nodes = [nodes[nm] for nm in topo]

131 name_to_idx = {nd.name:i for i,nd in enumerate(topo_nodes)}
132 idx_to_node = topo_nodes

133 idx_to_name = [nd.name for nd in topo_nodes]

134 N = len(topo_nodes)

135 PI_idx = set(name_to_idx[nm] for nm in input_list if nm in name_to_idx)
136 self_mask = [1 << i for i in range(N)]

137 K=¢6

138 M =20

139 cuts = [[] for _ in range(N)]

140 for i, nd in enumerate(topo_nodes):

141 if i in PI_idx or nd.const_val is not None:

142 cuts[i] = [self_mask[i]]

143 continue

144 fan_idxs = [name_to_idx[x] for x in nd.fanin_names if x in name_to_idx]
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145 c_list = None

146 for £ in fan_idxs:

147 fcuts = cuts[f]

148 if c_list is None:

149 c_list = fcuts[:M]

150 else:

151 newset = set()

152 for a in c_list[:M]:

153 for b in fcuts[:M]:

154 u=al b

155 if u.bit_count() <= K:
156 newset.add (u)

157 if newset:

158 1st = sorted(newset, key=lambda x: x.bit_count())
159 c_list = 1st[:M]

160 else:

161 c_list = []

162 if not c_list:

163 break

164 if c_list is None:

165 c_list = []

166 s = set(c_list)

167 s.add(self_mask[i])

168 1st2 = sorted(s, key=lambda x: x.bit_count())
169 cuts[i] = 1st2[:M]

170 INF = 10%x*18

171 cost = [0]*N

172 bestM = [None]*N

173 for i, nd in enumerate(topo_nodes):

174 if i in PI_idx or nd.comnst_val is not None:
175 cost[i]l = 0

176 bestM[i] = None

177 continue

178 bestc = INF

179 bm = None

180 for cm in cuts[i]:

181 if cm == self_mask[i]:

182 continue

183 s =0

184 m = cm

185 while m:

186 1sb =m & -m

187 j = lsb.bit_length() - 1

188 s += cost[j]

189 m ~= lsb

190 cval = s + 1

191 if cval < bestc:

192 bestc = cval

193 bm = cm

194 if bm is None:

195 s =0

196 mask = 0

197 for f in nd.fanin_names:

198 if f in name_to_idx:

199 j = name_to_idx[f]

200 mask |= self_mask[j]

201 s += cost[j]

202 bm = mask

203 bestc = s + 1

204 cost[i] = bestc

205 bestM[i] = bm

206 mapping = set()

207 stack = [name_to_idx[nm] for nm in output_list if nm in name_to_idx]
208 visited = set()

209 while stack:

210 u = stack.pop()

211 if u in visited:

212 continue

213 visited.add (u)

214 bm = bestM[u]

215 if bm is None or bm == self_mask[u]:
216 continue

217 mapping.add(u)

218 m = bm

219 while m:

220 lsb = m & -m

221 j = 1sb.bit_length() - 1

222 m ~= lsb

223 if j not in visited and j not in PI_idx and topo_nodes[j].const_val is None:
224 stack.append(j)

225 mapped = [i for i in range(N) if i in mapping]
226 with open(solution_file, 'w') as f:

227 f.write('.model ' + model_name + '\n')
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228 f.write('.inputs ' + ' '.join(input_list) + '\n')

229 f.write('.outputs ' + ' '.join(output_list) + '\n')

230 for i in mapped:

231 nd = topo_nodes[i]

232 bm = bestM[i]

233 leaves = [j for j in range(N) if (bm >> j) & 1]

234 inputs = [idx_to_name[j] for j in leaves]

235 k = len(inputs)

236 Np = 1 << k

237 full = (1 << Np) - 1

238 masks = []

239 for t in range(k):

240 mm = 0

241 for j in range(Np):

242 if (§ >> t) & 1:

243 mm = 1 << j

244 masks . append (mm)

245 val = {}

246 for t,j in enumerate(leaves):

247 val[j] = masks[t]

248 vis = set(leaves)

249 stack2 = [i]

250 while stack2:

251 u = stack2.pop()

252 if u in vis:

253 continue

254 vis.add(u)

255 for p in topo_nodes[u].fanins:

256 pi = name_to_idx.get(p.name)

257 if pi is not None and pi not in vis:

258 stack2.append (pi)

259 cone = [j for j in range(N) if j in vis and j not in leaves]

260 for j in sorted(cone, key=lambda x: name_to_idx[topo_nodes[x].name]):
261 v = topo_nodes[j]

262 if v.const_val is not None:

263 val[j] = full if v.const_val == 1 else O

264 else:

265 if v.patterns_zero:

266 zm = 0

267 for p in v.patterns_zero:

268 mm = full

269 for t,ch in enumerate(p):

270 fn = v.fanin_names[t]

271 pj = name_to_idx.get(fn)

272 if pj is None:

273 mm = 0

274 break

275 vm = vallpjl

276 if ch == "1":

271 mm &= vm

278 elif ch == '0':

279 mm &= (“vm) & full

280 zm |=

281 valljl =
282 else:

283 om = 0
284 for p in v.patterns_one:

285 mm = full

286 for t,ch in enumerate(p):
287 fn = v.fanin_names[t]
288 pj = name_to_idx.get(fn)
289 if pj is None:

290 mm = 0

291 break

292 vm = val[pj]

293 if ch == "1":

294 mm &= vm

295 elif ch == '0':

296 mm &= (“vm) & full

Fh

("zm) & full

ol
298 vallj
299 root = vallil
300 f.write('.names ' + ' '.join(inputs) + ' ' + nd.name + '\n')
301 for j in range(Np):
302 if (root >> j) & 1:
303 bits = ''.join('1' if (j >> t) & 1 else '0' for t in range(k))
304 f.write(bits + ' 1\n")
305 f.urite('.end\n")
306
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In the fourth iteration, the cut limit per node is increased from 20 to 30, enabling broader solu-
tion exploration and potentially improving quality. Additionally, the algorithm reduces redundant
computations by caching precomputed scores for each cut.

# iteration 4: explore larger solution space; reduce redundant computations

def solve(input_file: str, solution_file: str):
from collections import deque
raw = open(input_file).read().splitlines()
lines = []
i=0
while i < len(raw):
1 = raw[i].rstrip()
if not 1 or 1.lstrip().startswith('#'):
i+=1
continue
if 1l.endswith('\\'):
acc = 1[:-1].rstrip()
i+=1
while i < len(raw):
nl = raw[i].rstrip()
if nl.endswith('\\'):

acc += ' ' + nl[:-1].rstrip(Q)
i+=1
else:
acc += ' ' + nl
i+=1
break
lines.append(acc)
else:
lines.append (1)
i+=1
class Node:
__slots__ = ('name','fanin_names','patterns_one', 'patterns_zero','const_val','fanins','fanouts')

def __init__(self,n):
self.name = n
self.fanin_names = []
self.patterns_one = []
self.patterns_zero = []
self.const_val = None
self.fanins = []
self.fanouts = []

model = ''
inputs = []
outputs = []
nodes = {}
idx = 0

while idx < len(lines):
1 = lines[idx].strip()
if not 1:
idx += 1; continue
if 1.startswith('.model'):
parts = 1.split()
if len(parts)>1: model = parts[1]
idx += 1
elif 1l.startswith('.inputs'):
parts = 1.split()
for nm in parts[1:]:
inputs.append (nm)
if nm not in nodes: nodes[nm] = Node(nm)
idx += 1
elif 1l.startswith('.outputs'):
parts = 1.split()
for nm in parts[1:]:
outputs.append (nm)
idx += 1
elif 1.startswith('.names'):
parts = 1.split()
inps = parts[1:-1]; outp = parts[-1]
if outp not in nodes: nodes[outp] = Node(outp)
nd = nodes [outp]
nd.fanin_names = inps[:]
pats = []
j = idx+1
while j < len(lines) and not lines[j].startswith('.'):
s = lines[j].strip()
if s: pats.append(s)
j+=1
if not inps:
if pats and pats[0]=='1': nd.const_val = 1
else: nd.const_val = 0
else:
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79 for pt in pats:

80 sp = pt.split()

81 if len(sp)==1:

82 mask = sp[0]; bit = '1'

83 else:

84 mask,bit = sp[0],sp[1]

85 if bit=='1': nd.patterns_one.append(mask)
86 else: nd.patterns_zero.append(mask)

87 idx = j

88 elif 1l.startswith('.end'):

89 break

90 else:

91 idx += 1

92 for nd in nodes.values():

93 nd.fanins = [nodes[nm] for nm in nd.fanin_names if nm in nodes]
94 for nd in nodes.values():

95 for f in nd.fanins:

96 f.fanouts.append(nd)

97 reachable = set()

98 st = [nm for nm in outputs if nm in nodes]

99 while st:

100 u = st.pop()

101 if u in reachable: continue

102 reachable.add (u)

103 for p in nodes[u].fanin_names:

104 if p in nodes and p not in reachable:

105 st .append(p)

106 nodes = {nm:nd for nm,nd in nodes.items() if nm in reachable}
107 for nd in nodes.values():

108 nd.fanins = [f for f in nd.fanins if f.name in nodes]
109 nd.fanouts = [f for f in nd.fanouts if f.name in nodes]
110 indeg = {nm: len(nd.fanins) for nm,nd in nodes.items()}
111 dq = deque([nm for nm,d in indeg.items() if d==0])

112 topo = []

113 while dq:

114 u = dq.popleft(); topo.append(u)

115 for w in nodes[u] .fanouts:

116 indeg[w.name] -= 1

117 if indeg[w.name]==0: dq.append(w.name)

118 topo_nodes = [nodes[nm] for nm in topo]

119 N = len(topo_nodes)

120 name_to_idx = {nd.name:i for i,nd in enumerate(topo_nodes)}
121 idx_to_name = [nd.name for nd in topo_nodes]

122 PI = set(name_to_idx[nm] for nm in inputs if nm in name_to_idx)
123 cost = [0]*N

124 bestM = [None]*N

125 K=¢6

126 M = 30

127 cuts = [[] for _ in range(N)]

128 for i,nd in enumerate(topo_nodes):

129 if i in PI or nd.const_val is not None:

130 cost[i] = 0

131 bestM[i] = None

132 cuts[i] = [(i<<i, 0)]

133 continue

134 fans = [name_to_idx[nm] for nm in nd.fanin_names if nm in name_to_idx]
135 c_list = None

136 for f in fans:

137 fcuts = cuts[f]

138 if len(fcuts) > M: fcuts = fcuts[:M]

139 if c_list is None:

140 c_list = fcuts.copy()

141 else:

142 newm = {}

143 for ml,scl in c_list:

144 for m2,sc2 in fcuts:

145 m=ml | m2

146 if m.bit_count() <= K:

147 if m in newm: continue

148 t =m; sc =0

149 while t:

150 1sb = t & -t; j = 1sb.bit_length()-1
151 sc += cost[jl; t "= 1sb

152 newm[m] = sc

153 if not newm:

154 c_list = []

155 break

156 items = sorted(newm.items(), key=lambda x: x[1])
157 c_list = items[:M]

158 if c_list is None: c_list = []

159 fb = 0

160 scf = 0

161 for f in fans:
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162 fb = (1<<f)

163 scf += cost[f]

164 if fb.bit_count() <= K:

165 if not any(m==fb for m,_ in c_list):

166 c_list.append ((fb, scf))

167 bestc = 10**18; bm = None

168 for m,sc in c_list:

169 v ==sc + 1

170 if v < bestc:

171 bestc = v; bm = m

172 if bm is None:

173 bm = fb; bestc = scf + 1

174 cost[i] = bestc; bestM[i] = bm

175 cuts[i] = sorted(c_list, key=lambda x: x[1])[:M]
176 mapping = set()

177 st = [name_to_idx[nm] for nm in outputs if nm in name_to_idx]
178 vis = set()

179 while st:

180 u = st.pop()

181 if u in vis: continue

182 vis.add(u)

183 bm = bestM[u]

184 if bm is None: continue

185 mapping.add(u)

186 t = bm

187 while t:

188 1sb = t & -t; j = 1sb.bit_length()-1; t ~= 1sb
189 if j in PI or topo_nodes[j].const_val is not None: continue
190 if j not in vis: st.append(j)

191 mapped = sorted(mapping)

192 with open(solution_file, 'w') as f:

193 f.write('.model ' + model + '\n')

194 f.write('.inputs ' + ' '.join(inputs) + '\n')
195 f.write('.outputs ' + ' '.join(outputs) + '\n')
196 for i in mapped:

197 nd = topo_nodes[i]

198 bm = bestM[i]

199 leaves = [j for j in range(N) if (bm>>j)&1]
200 inputs_1 = [idx_to_name[j] for j in leaves]
201 k = len(inputs_1)

202 Np = 1<<k

203 full = (1<<Np) - 1

204 masks = []

205 for t in range(k):

206 mm = 0

207 for j in range(Np):

208 if (§>>t)&1: mm |= 1<<j

209 masks . append (mm)

210 val = {}

211 for t,j in enumerate(leaves):

212 val[j]l = masks[t]

213 vis2 = set(leaves)

214 stk = [i]

215 while stk:

216 u = stk.pop()

217 if u in vis2: continue

218 vis2.add(u)

219 for p in topo_nodes[u] .fanins:

220 pj = name_to_idx.get(p.name)

221 if pj is not None and pj not in vis2:
222 stk.append(pj)

223 cone = [j for j in topo if False]

224 cone = [j for j in range(N) if j in vis2 and j not in leaves]
225 for j in sorted(cone):

226 v = topo_nodes[j]

227 if v.const_val is not None:

228 val[j] = full if v.const_val==1 else 0O
229 else:

230 if v.patterns_zero:

231 zm = 0

232 for p in v.patterns_zero:

233 mm = full

234 for t,ch in enumerate(p):
235 fn = v.fanin_names[t]
236 pj = name_to_idx.get(fn)
237 if pj is None:

238 mm = O; break

239 vm = vallpjl

240 if ch=='1"'": mm &= vm

241 elif ch=='0": mm &= ("vm)&full
242 zm |= mm

243 val[j] = ("zm)&full

244 else:
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om = 0
for p in v.patterns_one:
mm = full
for t,ch in enumerate(p):
fn = v.fanin_names[t]
pj = name_to_idx.get(fn)
if pj is None:
mm = 0; break

vm = vall[pj]
if ch=="'1': mm &= vm
elif ch=='0': mm &= (“vm)&full
om |= mm
val[j]l = om
root = vallil
f.write('.names ' + ' '.join(inputs_1) + ' ' + nd.name + '\n')

for j in range(Np):
if (root>>j)&il:
pat = ''.join('1' if (j>>t)&1 else '0' for t in range(k))
f.write(pat + ' 1\n')
f.write('.end\n')

In the fifth iteration, it introduces a dynamic pruning method by adapting the cut limit based on circuit
size—more cuts for smaller circuits (higher quality), and fewer for large circuits (better yield).

# iteration 5: dymamic pruning of cut enumeration space

def solve(input_file: str, solution_file: str):
from collections import deque
raw = open(input_file).read().splitlines()
lines = []
i=0
while i < len(raw):
1 = raw[i] .rstrip()
if not 1 or 1.lstrip().startswith('#'):
i+=1
continue
if l.endswith('\\'):
acc = 1[:-1].rstrip()
i+=1
while i < len(raw):
nl = raw[i].rstrip()
if nl.endswith('\\'):

acc += ' ' + nl[:-1].rstripQ)
i+=1
else:
acc += ' ' + nl
i+=1
break
lines.append(acc)
else:
lines.append (1)
i+=1
class Node:
__slots__ = ('name','fanin_names','patterns_one','patterns_zero','const_val','fanins','fanouts')

def __init__(self,n):
self.name = n
self.fanin_names = []
self.patterns_one = []
self.patterns_zero = []
self.const_val = None
self.fanins = []
self.fanouts = []
model = ''
inputs = []
outputs = []
nodes = {}
idx = 0
while idx < len(lines):
1 = lines[idx].strip()
if not 1:
idx += 1; continue
if 1.startswith('.model'):
parts = 1.split()
if len(parts) > 1: model = parts[i]
idx += 1
elif 1.startswith('.inputs'):
parts = 1.split()
for nm in parts[i:]:
inputs.append (nm)
if nm not in nodes: nodes[nm] = Node(nm)
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57 idx += 1

58 elif 1l.startswith('.outputs'):

59 parts = l.split()

60 for nm in parts([i:]:

61 outputs.append (nm)

62 idx += 1

63 elif 1.startswith('.names'):

64 parts = 1.split()

65 inps = parts[i:-1]; outp = parts[-1]

66 if outp not in nodes: nodes[outp] = Node(outp)

67 nd = nodes [outp]

68 nd.fanin_names = inps[:]

69 pats = []

70 j o= ddx + 1

71 while j < len(lines) and not lines[j].startswith('.'):
72 s = lines[j].strip()

73 if s: pats.append(s)

74 j+=1

75 if not inps:

76 nd.const_val = 1 if pats and pats[0] == '1' else O
77 else:

78 for pt in pats:

79 sp = pt.split()

80 if len(sp) == 1:

81 mask, bit = sp[0], '1'

82 else:

83 mask, bit = sp[0], spl[i]

84 if bit == '1': nd.patterns_one.append (mask)
85 else: nd.patterns_zero.append(mask)

86 idx = j

87 elif 1.startswith('.end'):

88 break

89 else:

90 idx += 1

91 for nd in nodes.values():

92 nd.fanins = [nodes[nm] for nm in nd.fanin_names if nm in nodes]
93 for nd in nodes.values():

94 for f in nd.fanins:

95 f.fanouts.append(nd)

96 reachable = set()

97 st = [nm for nm in outputs if nm in nodes]

98 while st:

99 u = st.pop()

100 if u in reachable: continue

101 reachable.add (u)

102 for p in nodes[u].fanin_names:

103 if p in nodes and p not in reachable:

104 st.append (p)

105 nodes = {nm:nd for nm,nd in nodes.items() if nm in reachable}
106 for nd in nodes.values():

107 nd.fanins = [f for f in nd.fanins if f.name in nodes]
108 nd.fanouts = [f for f in nd.fanouts if f.name in nodes]
109 indeg = {nm: len(nd.fanins) for nm,nd in nodes.items()}

110 dq = deque([nm for nm,d in indeg.items() if d == 0])

111 topo = []

112 while dq:

113 u = dq.popleft(); topo.append(u)

114 for w in nodes[u].fanouts:

115 indeg[w.name] -= 1

116 if indegl[w.name] == 0: dq.append(w.name)

117 topo_nodes = [nodes[nm] for nm in topol

118 N = len(topo_nodes)

119 name_to_idx = {nd.name: i for i, nd in enumerate(topo_nodes)}
120 idx_to_name = [nd.name for nd in topo_nodes]

121 PI = set(name_to_idx[nm] for nm in inputs if nm in name_to_idx)
122 cost = [0] * N

123 bestM = [None] * N

124 K=¢6

125 if N <= 1500:

126 M= 64

127 elif N <= 3000:

128 M = 48

129 elif N <= 5000:

130 M= 32

131 else:

132 M = 20

133 cuts = [[] for _ in range(N)]

134 def prune_cuts(items, limit):

135 items_sorted = sorted(items, key=lambda x: (x[1], x[0].bit_count()))
136 pr = [

137 for m, sc in items_sorted:

138 dom = False

139 for pm, psc in pr:
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140 if psc <= sc and (pm & m) == pm:
141 dom = True

142 break

143 if not dom:

144 pr.append((m, sc))

145 if len(pr) >= limit:

146 break

147 return pr

148 for i, nd in enumerate(topo_nodes):

149 if i in PI or nd.const_val is not None:
150 cost[i] = 0

151 bestM[i] = None

152 cuts[i]l = [(1 << i, 0)]

153 continue

154 fans = [name_to_idx[nm] for nm in nd.fanin_names if nm in name_to_idx]
155 fans.sort(key=lambda x: len(cuts[x]))
156 c_list = None

157 for f in fans:

158 fcuts = cuts[f]

159 if not fcuts:

160 c_list = []

161 break

162 fcuts = fcuts[:M]

163 if c_list is None:

164 c_list = fcuts.copy()

165 else:

166 newm = {}

167 for ml, scl in c_list:

168 for m2, sc2 in fcuts:

169 m=ml | m2

170 if m.bit_count() <= K:
171 s2 = scl + sc2

172 prev = newm.get (m)
173 if prev is None or s2 < prev:
174 newm[m] = s2
175 if not newm:

176 c_list = []

177 break

178 c_list = prune_cuts(list(newm.items()), M)
179 if not c_list:

180 um = 0; usc = 0

181 for £ in fans:

182 um |= (1 << f)

183 usc += cost[f]

184 c_list = [(um, usc)]

185 um = 0; usc = 0

186 for f in fans:

187 um |= (1 << f)

188 usc += cost[f]

189 if um.bit_count() <= K and all(m != um for m, _ in c_list):
190 c_list.append((um, usc))

191 c_list = prune_cuts(c_list, M)

192 bestc = 10**18; bm = None

193 selfm = (1 << i)

194 for m, sc in c_list:

195 if m == selfm:

196 continue

197 v =sc+ 1

198 if v < bestc:

199 bestc = v; bm = m

200 if bm is None:

201 bm = um

202 bestc = usc + 1

203 cost[i] = bestc

204 bestM[i] = bm

205 cuts[i] = c_list

206 mapping = set()

207 st = [name_to_idx[nm] for nm in outputs if nm in name_to_idx]
208 vis = set()

209 while st:

210 u = st.pop()

211 if u in vis: continue

212 vis.add(u)

213 bm = bestM[u]

214 if bm is None: continue

215 mapping.add (u)

216 t = bm

217 while t:

218 1sb =t & -t

219 j = 1lsb.bit_length() - 1

220 t ~= 1sb

221 if j in PI or topo_nodes [j] .const_val is not None: continue
222 if j not in vis:
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223 st.append(j)

224 mapped = sorted(mapping)

225 with open(solution_file, 'w') as f:

226 f.write('.model ' + model + '\n')

227 f.write('.inputs ' + ' '.join(inputs) + '\n')

228 f.write('.outputs ' + ' '.join(outputs) + '\n')

229 for i in mapped:

230 nd = topo_nodes[i]

231 bm = bestM[i]

232 leaves = [j for j in range(N) if (bm >> j) & 1]
233 inputs_1 = [idx_to_name[j] for j in leaves]

234 k = len(inputs_1)

235 Np = 1 << k

236 full = (1 << Np) - 1

237 masks = []

238 for t in range(k):

239 mm = O

240 for j in range(Np):

241 if (5 >> 1) & 1t

242 mm |= 1 << j

243 masks . append (mm)

244 val = {}

245 for t, j in enumerate(leaves):

246 vall[jl = masks[t]

247 seen = set(leaves)

248 stk = [i]

249 cone = []

250 while stk:

251 u = stk.pop()

252 if u in seen: continue

253 seen.add (u)

254 cone . append (u)

255 for p in topo_nodes[u].fanins:

256 pj = name_to_idx.get(p.name)

257 if pj is not None and pj not in seen:
258 stk.append (pj)

259 cone.sort ()

260 for j in cone:

261 v = topo_nodes[j]

262 if v.const_val is not None:

263 val[j] = full if v.const_val == 1 else O
264 else:

265 if v.patterns_zero:

266 zm = 0

267 for p in v.patterns_zero:

268 mm = full

269 for t, ch in enumerate(p):

270 fn = v.fanin_names[t]

271 pj = name_to_idx.get(fn)
272 if pj is None:

273 mm = 0

274 break

275 vm = val[pjl

276 if ch == "1":

271 mm &= vm

278 elif ch == '0':

279 mm &= (“vm) & full

280 zm

281 vall[j]
282 else:

283 om = 0
284 for p in v.patterns_one:

285 mm = full

286 for t, ch in enumerate(p):
287 fn = v.fanin_names[t]
288 pj = name_to_idx.get(fn)
289 if pj is None:

290 mm = 0

291 break

292 vm = vall[pj]

293 if ch == "1":

294 mm &= vm

295 elif ch == '0':

296 mm &= (“vm) & full
297 [
298 vallj
299 root = vallil
300 f.write('.names ' + ' '.join(inputs_1) + ' ' + nd.name + '\n')

301 for j in range(Np):

302 if (root >> j) & 1:

303 pat = ''.join('1' if (j >> t) & 1 else '0' for t in range(k))
304 f.write(pat + ' 1\n')

305 f.write('.end\n")

|
= ("zm) & full
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H Datasets

We summarize the original data sources for each problem in Table [26| and the number of data
instances in Table All datasets are derived from real-world applications. We further partition or
transform them into standardized input formats, ensuring the inclusion of both small-scale instances
for demonstration purposes and large-scale instances for evaluation. For detailed data organization,
please refer to our repository.

Table 26: Datasets used in our benchmark.

Problem Original Data Source

Operator scheduling EXPRESS [144]

Technology mapping EPFL [7] and ISCASS8S5 [53]

Global routing ISPD’24 Contest [[79]

E-graph extraction SmoothE [15]

Intra-op parallelism ASPLOS 24 Contest [94]

Protein sequence design Protein Data Bank (PDB) [36]

Mendelian error detection Cost Function Library [[119/123]

Airline crew pairing China Graduate Mathematical Modeling Competition’21 F [28]

Pickup and delivery w/ time windows MetaPDPTW [76]

Table 27: Number of instances of each problem in HeuriGym.

Problem # of Instances
Operator scheduling 24
Technology mapping 31
Global routing 24
E-graph extraction 23
Intra-op parallelism 28
Protein sequence design 24
Mendelian error detection 20
Airline crew pairing 14
Pickup and delivery w/ time windows 30
Total 218
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