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Abstract
Foundation models have brought changes to the
landscape of machine learning, demonstrating
sparks of human-level intelligence across a di-
verse array of tasks. However, a gap persists in
complex tasks such as causal inference, primarily
due to challenges associated with intricate reason-
ing steps and high numerical precision require-
ments. In this work, we take a first step towards
building causally-aware foundation models for
treatment effect estimations. We propose a novel,
theoretically justified method called Causal Infer-
ence with Attention (CInA), which utilizes multi-
ple unlabeled datasets to perform self-supervised
causal learning, and subsequently enables zero-
shot causal inference on unseen tasks with new
data. This is based on our theoretical results that
demonstrate the primal-dual connection between
optimal covariate balancing and self-attention, fa-
cilitating zero-shot causal inference through the
final layer of a trained transformer-type architec-
ture. We demonstrate empirically that CInA effec-
tively generalizes to out-of-distribution datasets
and various real-world datasets, matching or even
surpassing traditional per-dataset methodologies.
These results provide compelling evidence that
our method has the potential to serve as a stepping
stone for the development of causal foundation
models.

1. Introduction
Recent advances in artificial intelligence have created a
paradigm shift in which models are trained on large amounts
of data and can be adapted to different tasks, dubbed founda-
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tion models (Bommasani et al., 2021). These models, which
often employ self-supervision, can extract valuable knowl-
edge from various types of data, including natural language
(Devlin et al., 2018; Brown et al., 2020), images (Radford
et al., 2021), and biological sequencing counts (Theodoris
et al., 2023). This acquired knowledge allows the model to
generalize when asked to perform tasks in novel scenarios.
With vast amounts of data becoming increasingly available
from diverse sources, such models are of interest to lever-
age information that can be learned in order to build more
intelligent systems (Bubeck et al., 2023).

A critical aspect of intelligent systems is the ability to
reason about cause-and-effect relationships, which is vi-
tal to making informed decisions across various domains,
including healthcare, economics, and statistics (Harrison &
March, 1984; Kube et al., 2019; Geffner et al., 2022; Zhang
et al., 2023c). There have been significant debates regard-
ing whether current foundation models acquire the ability
to reason about causality (Kıcıman et al., 2023; Zečević
et al., 2023). However, it was observed that existing founda-
tion models have difficulties with causal tasks that involve
intricate reasoning or high numerical precision (Bubeck
et al., 2023; Mahowald et al., 2023; Wolfram, 2023; Zečević
et al., 2023; Jin et al., 2023), such as treatment effect estima-
tions. Furthermore, performance may decline when tested
on datasets that were not part of the training set (Feder
et al., 2022). Motivated by this shortcoming, it is crucial to
build causally-aware foundation models (see Appendix A
for a definition) capable of extracting causal information
and performing causal inference at scale, harnessing the vast
amounts of data available from diverse sources.

However, creating a suitable self-supervised learning
paradigm for causal foundation models with theoretical
guarantees remains an open question. Unlike existing foun-
dational models for natural language and vision (e.g., Devlin
et al. (2018); Radford et al. (2021)), causal foundation mod-
els generally lack clearly defined supervised signals since
most available machine learning datasets only contain ob-
servational data without intervention, rendering key causal
quantities, such as treatment effects, unknown. On top of
this, common datasets used in the causality community con-
tain complex relationships between variables that might be
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heterogeneous across dataset sources. These less-structured
heterogeneous relationships make it harder for the model to
capture compared to linguistic or perceptual patterns.

Contributions. In this paper, we take a first step towards
building causal foundation models, focusing on estimat-
ing average treatment effects with greater generalizability.
One of our primary contributions is a theoretically justified
method, dubbed Causal Inference with Attention (CInA),
that leverages multiple unlabeled observational datasets to
learn how to estimate treatment effects on various tasks, and
then generalize to perform zero-shot causal inference on
unseen tasks with new data.

• We theoretically establish the equivalence between opti-
mal covariate balancing and (regularized) self-attention
through a primal-dual argument. We prove that with an
appropriate self-supervised loss, a trained self-attention
is guaranteed to find the optimal balancing weights for
any given dataset under certain regularity conditions.
This serves as the theoretical foundation that enables
zero-shot causal inference on unseen data.

• Based on our theoretical results, we propose a gradient-
based, transformer-type practical algorithm for zero-
shot causal inference. In particular, this model uses
covariate balancing as self-supervised tasks. Once
trained on multiple data sources, it performs zero-shot
causal inference by simply extracting the key-value ten-
sors from the last layer of the model during a forward
pass on new data. This stands in contrast to traditional
per-dataset causal inference, which needs to re-fit and
re-optimize on new data.

• Empirically, we verify the correctness of our theory
and demonstrate the effectiveness of our algorithm on
both synthetic and real-world datasets. Importantly,
in the context of zero-shot causal inference on unseen
datasets, we observed competitive and in-certain-cases
better performance to traditional per-dataset causal in-
ference approaches, while achieving substantial reduc-
tions in inference time.

While the current work concentrates on estimating treatment
effects, it provides a new approach for addressing diverse
causal inference challenges, via effective in-context gener-
alization. These results show evidence that the proposed
method can serve as a first stepping stone in the develop-
ment of causally-aware foundation models that can tackle a
wide spectrum of causal tasks.

Organization. In Section 2, we discuss related works. In
Section 3, we state our theoretical results and provide the
derivation of our algorithm, which serves as a proof sketch.
We use these results to derive our methods for zero-shot

causal inference in Section 4. In Section 5, we perform em-
pirical studies of our proposed algorithms on both synthetic
and real-world datasets. We conclude and discuss future
directions and limitations in Section 6.

2. Related Works
Causal Inference via Optimal Balancing. Our work con-
cerns problems in causal inference, assuming that we are
provided with either the causal structure (Pearl, 2009) or
certain independence conditions between variables that im-
ply structural relationships (Imbens & Rubin, 2015). In
particular, we focus on estimation problems, e.g., estimat-
ing average treatment effect (ATE) and policy evaluation.
See Section 3.1 for a detailed problem formulation. Under
certain assumptions, one of the most common methods is
to use weighted (e.g., Li et al. (2018)) or doubly robust
estimators (e.g., Dudı́k et al. (2011)). Numerous weighted
estimators have been proposed to optimize covariate balance
(e.g., Hainmueller (2012); Imai & Ratkovic (2014)). Our
work extends this line of research by introducing an optimal
balancing approach that relies on training a transformer-
type model, which is the main architecture used by existing
foundation models (Bommasani et al., 2021).

It is worth noting that we also differ from prior work by con-
sidering multiple datasets simultaneously, where we show
that our proposed method can be generalized to produce
estimands on a new dataset in a zero-shot manner.

Neural Estimation Methods for Treatment Effects. Re-
search in this direction employs deep learning methods to
estimate treatment effects, typically relying on standard as-
sumptions that ensure identifiability, similar to our setting.
A prominent approach focuses on learning a representation
of the covariates that is predictive of the outcome (Johansson
et al., 2016; Shalit et al., 2017; Yao et al., 2018). Follow-
ing this, several methods have been proposed to combine
outcome models learned through neural networks with bal-
anced propensity weights (Alaa et al., 2017; Schwab et al.,
2018; Du et al., 2021). Semi-parameteric estimation theory
and doubly robust estimators have also been applied in neu-
ral estimation methods, e.g., using regularization (Shi et al.,
2019) or shared representations (Chernozhukov et al., 2018).
Another perspective of using neural network is to control
for complex relationships and covariates. Kallus (2020a) ex-
tends adversarial covariate balancing (Kallus, 2020b) using
flexible modeling with neural networks. Generative causal
models have also been proposed to leverage the expressivity
of neural networks to approximate structural causal models
(Louizos et al., 2017; Kocaoglu et al., 2017; Alaa & Van
Der Schaar, 2017; Yoon et al., 2018; Pawlowski et al., 2020;
Xia et al., 2021; 2022), which then allows for the estima-
tion of treatment effects. In addition, Xia et al. (2021) also
proved that their proposed method can be used to test the
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identifiability of causal effect in terms of do-interventions
(Pearl, 2009) in the general setting. Xia et al. (2022) ex-
tended such testing for counterfactual outcomes (Barein-
boim et al., 2022). In (Melnychuk et al., 2022), the attention
mechanism was employed to estimate treatment effect over
time for a given unit. Concurrent to our work, Nilforoshan
et al. (2023) proposed a meta-learning framework to learn
causal effects of various structured treatments on the same
population. Their method leverages information across dif-
ferent treatments, which allows for zero-shot learning on an
unseen treatment. Our work can be viewed as orthogonal, as
we focus on learning the causal effects of the same treatment
across different populations.

Causal Reasoning with Large Language Models (LLMs).
A prominent example of foundation models are LLMs
(Brown et al., 2020; OpenAI, 2023). Due to their remark-
able performance across various tasks, prior works have ex-
plored and exploited their capabilities in addressing causal
inquiries. For example, (Zhang et al., 2023a) assessed the
ability of LLMs for three types of causal questions: identi-
fying causal relationships using existing domain knowledge,
discovering new knowledge from data, and estimating quan-
titative treatment effects. They found that LLMs perform
well on the first question but are not yet to provide satisfac-
tory answers for the others. Similar limitations with formal
reasoning have also been noted in (Bubeck et al., 2023;
Mahowald et al., 2023; Wolfram, 2023). When probing
LLMs, Li et al. (2022); Park et al. (2023) found evidence of
emergent representations that are helpful for causal predic-
tions. However, it was observed that for causal discovery,
LLMs are not yet stable (Kıcıman et al., 2023) and might
produce different answers to the same question in two sepa-
rate queries (Tu et al., 2023). To enhance LLMs for causal
tasks, Ban et al. (2023) proposed to integrate LLM outputs
with constraint-based methods.

In this paper, we take a different path towards causally-
aware foundation models; namely, we explore the funda-
mentals of constructing these models from scratch to address
questions on a larger scale and with greater generalizability
than current statistical tools. It is important to note that,
apart from utilizing the attention architecture, this work has
no further connection with LLMs.

3. Establishing Duality Between Causality and
Attention

We present our main theoretical result on the primal-
dual connection between covariate balancing and self-
attention, which enables us to estimate treatment effects via
transformer-type architectures. In particular, in Section 3.1,
we describe the adversarial optimal balancing formulation
of causality and show how optimal balancing can be viewed
as a specific dual support vector machine (SVM) problem.

Then, in Section 3.2, we establish the equivalence between
the SVM expansion and self-attention. Detailed derivations
of this section can be found in Appendix B.

3.1. Adversarial Covariate Balancing as Dual SVM

To illustrate our approach, we focus on the task of aver-
age treatment effect estimation. In Appendix E, we extend
our method to other estimands, such as individual treat-
ment effect and policy evaluation. Consider a dataset of
N units D = {(Xi, Ti, Yi)}i∈[N ], where Xi is the ob-
served covariates, Ti is the observed treatment, and Yi is
the observed outcome. Suppose Ti ∈ {0, 1} for now; Ap-
pendix D generalizes these results for non-binary treatments.
Let Yi(t) be the potential outcome of assigning treatment
Ti = t. The sample average treatment effect is defined as
τSATE = 1

N

∑N
i=1

(
Yi(1)− Yi(0)

)
.

Assume Yi = Yi(Ti), i.e., consistency between observed
and potential outcomes and non-interference between units
(Rubin, 1990), and Yi(0), Yi(1) ⊥ Ti | Xi, i.e., no latent
confounders. We consider weighted estimators in the form
of

τ̂ =
∑
i∈T

αiYi(1)−
∑
i∈C

αiYi(0),

where T = {i ∈ [N ] : Ti = 1} is the treated group and
C = {i ∈ [N ] : Ti = 0} is the control group. We force
constraints on the weight by allowing α ∈ A = {0 ⪯ α ⪯
1,
∑

i∈T αi =
∑

i∈C αi = 1}. These constraints help with
obtaining robust estimators. For example,

∑
i∈T αi = 1

ensures that the bias remains unchanged if we add a constant
to the outcome model of the treated, whereas

∑
i∈C αi = 1

further ensures that the bias remains unchanged if we add
the same constant to the outcome model of the control.

A good estimator should minimize the absolute value of the
conditional bias that can be written as

E
(
τ̂ − τSATE | {Xi, Ti}Ni=1

)
=

N∑
i=1

αiWiE (Yi(0) |Xi)

+

N∑
i=1

(αiTi −
1

N
)E (Yi(1)− Yi(0) |Xi) ,

where we denote Wi = 1 if i ∈ T and Wi = −1 if
i ∈ C. As the outcome models are typically unknown
(Holland, 1986), we follow previous works (Tarr & Imai,
2021; Kallus, 2020b) by minimizing an upper bound on the
square of the first term.1 Namely, assuming the outcome
model E(Yi(0) | Xi) belongs to a hypothesis class F , we
solve for minα∈A supf∈F

(∑N
i=1 αiWif(Xi)

)2
. To sim-

plify this, consider F being a unit-ball reproducing kernel

1In Appendix C, we show how our method can generalize to
alternative balancing objectives, e.g., the square of both terms in
the conditional bias and the conditional mean square error.
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Hilbert space (RKHS) defined by some feature map ϕ. In
other words, it can be written as F = {f : X → R |
∃θ ∈ H, ∥θ∥ ≤ 1, s.t. f(x) = ⟨θ, ϕ(x)⟩,∀x ∈ X}. Here
H is the Hilbert space that contains the image of ϕ and is
equipped with inner product ⟨·, ·⟩ and norm ∥·∥. Note that in
the rest of the paper, we will not explicitly define ϕ, but only
demonstrate its existence in the context of self-attention
(Section 3.2). Then the supremum can be computed in
closed form, which reduces the optimization problem to

min
α∈A

α⊤Kϕα, (1)

where [Kϕ]ij = WiWj⟨ϕ(Xi), ϕ(Xj)⟩. Here ⟨·, ·⟩ de-
notes the inner product of the Hilbert space to which ϕ
projects. This is equivalent to solving the following dual
SVM problem for some λ ≥ 0 (Theorem 1 in Tarr & Imai
(2021)),

min
α

α⊤Kϕα− 2λ · 1⊤α,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1.
(2)

In other words, the optimal solution α∗ to Eq. (2) solves
Eq. (1). Thus we can obtain the optimal balancing weight
by solving the dual SVM. For the choice of the RKHS, we
will see in the next section that the feature function ϕ is also
learned from data.

3.2. Self-attention as Support Vector Expansion

SVM to Self-attention. The dual SVM problem for covari-
ate balancing (Eq. (2)) has the following primal form:

min
β,β0,ξ

λ

2
∥β∥2 +

N∑
i=1

ξi,

s.t. Wi

(〈
β, ϕ(Xi)

〉
+ β0

)
≥ 1− ξi,

ξi ≥ 0, ∀i ∈ [N ].

(3)

Intuitively, this optimization problem aims to classify the
treatment assignment Wi using a linear transformation of
the feature vector ϕ(Xi).

We can connect the primal solution to the dual coeffcients
α∗ by the Karush-Kuhn-Tucker (KKT) condition (Boyd &
Vandenberghe, 2004). The optimal β∗ that solves Eq. (3)
should satisfy λβ∗ =

∑N
j=1 α

∗
jWjϕ(Xj). Thus if λ > 0,

the optimal classifer will have the following support vector
expansion

⟨β∗, ϕ(Xi)⟩ =
N∑
j=1

(α∗
jWj/λ) · ⟨ϕ(Xj), ϕ(Xi)⟩. (4)

Note that we drop the constant intercept for simplicity. Next
we show how Eq. (4) relates to self-attention.

Consider input sequence as X = [X1, ...,XN ]⊤ ∈
RN×DX . We use a self-attention layer to attend to units

‘I’ ‘love’ ‘dogs’
unit 1(X1)

values(V)

unit 2(X2) unit 3(X3)

outputs

Figure 1: Attending to units instead of words. Values corre-
spond to covariate balancing weights.

in a dataset instead of words in a sentence (Vaswani et al.,
2017), as illustrated in Figure 1. This can be expressed as

softmax
(
QK⊤/

√
D
)
V ,

where Q = [q1, ..., qN ]⊤ ∈ RN×D, K = [k1, ...,kN ]⊤ ∈
RN×D, and V = [v1, ..., vN ]⊤ ∈ RN×1. Here we consider
output as a sequence of scalars; in general, V can be a
sequence of vectors. The query and key matrices Q,K can
be X itself or outputs of several neural network layers on
X .
Note that the softmax operation is with respect to per column
of QK⊤

/
√
D, i.e., the i-th output is

N∑
j=1

exp
(
q⊤
i kj/

√
D
)∑N

j′=1 exp
(
q⊤
i kj′/

√
D
)vj . (5)

Following Nguyen et al. (2022), if we set Q = K, then
there exists a feature map (exact form given in Appendix B)
such that for any i, j ∈ [N ], there is ⟨ϕ(Xj), ϕ(Xi)⟩ =
exp

(
k⊤
i kj/

√
D
)
. Let h(Xi) =

∑N
j′=1 exp(k

⊤
i kj′/

√
D).

We can rewrite the i-th output of attention layer in Eq. (5) as

N∑
j=1

vj
h(Xj)

⟨ϕ(Xj), ϕ(Xi)⟩. (6)

This recovers the support vector expansion in Eq. (4) by
setting λvj/h(Xj) = α∗

jWj . This shows that at optimum,
the SVM classifier takes the form of self-attention.

Self-attention to SVM. Conversely, under mild regulari-
ties, we can also read off the optimal balancing weight α∗

j

from λvj/h(Xj)Wj if the attention layer is globally opti-
mized with an appropriate loss function. In particular, with
a penalized hinge loss, the learned optimal self-attention
will solve the primal SVM problem in Eq. (3). Then by
the primal-dual relationship, we can equate Eq. (6) with
Eq. (4). This establishes the duality between self-attention
and the optimal balancing weights α∗, which is summarized
in Theorem 3.1. The details of Algorithm 1 can be found in
Section 4.1.
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Theorem 3.1 (Duality between covariate balancing and
self-attention). Under mild regularities on X , learning a
self-attention via gradient-based Algorithm 1 recovers the
optimal covariate balancing weight at the global minimum
of the penalized hinge loss in Eq. (7).

4. Practical Algorithms Towards Causal
Foundation Models

In this section, we show how our theoretical results can
lead to a gradient-based, transformer-type algorithm for
zero-shot optimal covariate balancing. Specifically, in Sec-
tion 4.1, we introduce a gradient-based solution for the
traditional single-dataset setting. We then show how it can
be extended to enable zero-shot inference on unseen datasets
through amortization in Section 4.2. Details of the model
architecture and preprocessing steps are provided in Ap-
pendix G.

4.1. Gradient-based Optimal Balancing via
Self-Attention

Comparing Eq. (6) and Eq. (4), we seek a training pro-
cedure such that

∑N
j=1

vj

h(Xj)
ϕ(Xj) recovers the optimal

β∗ that solves primal SVM in Eq. (3). Note that Eq. (3)
corresponds to a constrained optimization problem that is
unsuitable for gradient descent methods. However, it is
equivalent to an unconstrained optimization problem by
minimizing the penalized hinge loss (Hastie et al., 2009)
λ
2 ∥β∥

2 +
∑N

i=1

[
1−Wi

(
⟨β, ϕ(Xi)⟩+ β0

)]
+

. This moti-
vates the use of the following loss function:

Lθ(D) =
λ

2

∥∥∥∥∥∥
N∑
j=1

vj
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

+
[
1−W

(
softmax(KK⊤/

√
D)V + β0

)]
+
.

(7)

In other words, Eq. (7) follows from plugging β =∑N
j=1

vj
h(Xj)

ϕ(Xj) into the penalized hinge loss λ
2 ∥β∥

2 +∑N
i=1

[
1−Wi

(
⟨β, ϕ(Xi)⟩+ β0

)]
+

.

Here we use θ to subsume all the learned parameters, in-
cluding V and parameters of the layers (if any) to obtain K.
We learn θ via gradient descent on Eq. (7). Note that the
penalization can be computed exactly by using the formula
for inner products between features, i.e.,∥∥∥∥∥∥

N∑
j=1

vj
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

=

N∑
i,j=1

vivj exp
(
kik

⊤
j /
√
D
)

h(Xi)h(Xj)
.

Theorem 3.1 guarantees that under mild regularities, the
optimal parameters lead to the optimal balancing weights
in terms of the adversarial squared error. This adversarial

Algorithm 1 Causal Inference with Attention (CInA)

1: Input: Covariates X and treatments W .
2: Output: Optimal balancing weight α∗.
3: Hyper-parameter: penalty weight λ > 0.
4: Parameters: θ (including V ), step size η.
5: while not converged do
6: Compute K using forward pass.
7: Update θ ← θ − η∇Lθ.
8: end while
9: return λ · V /h(X)W .

squared error is computed using an unit-ball RKHS defined
by ϕ. The optimal balancing weights and ATEs can be
obtained via

α∗
j =

λvj
h(Xj)Wj

,

τ̂ = (α∗W )⊤Y .

For this to hold, arbitrary mappings can be used to obtain
ki from Xi, which allows for the incorporation of flexible
neural network architectures. We summarize our method in
Algorithm 1, which is later referred to as CInA (or Ours).

Intuition of Why CInA Works. CInA works by extracting
the causal information of how to infer optimal balancing
weights from covariates and treatments. As these weights
can balance the treated and control groups with respect to
the covariates, they isolate the causal effect of the treatment
on the outcome from other spurious factors which allows
for reliable treatment effect estimation. The self-attention in
this case attend to different units in a dataset by looking at
their covariates and treatments to produce the weights that
can balance the treated and control groups with respect to
the covariates.

4.2. Zero-shot Causal Inference under Multi-dataset
Setting

To enable zero-shot estimation of treatment effects,
we consider multiple datasets denoted as D(m) =
{(Xi, Ti, Yi)}i∈[Nm] = (X(m),T (m),Y (m)) for m ∈
[M ]. Each dataset D(m) contains Nm units following the
description in Section 3.1. We allow for datasets of different
sizes, mimicking real-world data gathering practices, where
a large consortium of datasets may exist. The setting en-
capsulates cases where individual datasets are created by
distinct causal mechanisms; however, different units within
a single dataset should be generated via the same causal
model. This presents a new challenge, which requires the
model to generalize to new datasets without supervision.

Algorithm 1 shows how one can read off the optimal weights
α∗ from a trained model with attention as its last layer in
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a single dataset. Note that the value vector V is encoded
as a set of parameters in this setting. On a new dataset
D(∗) = (X(∗),T (∗),Y (∗)), the values of X(∗) and W (∗)

are changed, and thus the optimal V (∗) that minimizes
Lθ(D(∗)) should also differ from the encoded parameters.
As indicated by the form of Lθ(D(∗)), the optimal V (∗)

only depends on X(∗) through K(∗). To see this, note that
the first term of Lθ(D∗) can be equivalently written accord-
ing to Eq. (7), where the numerator only depends on X
through K. The denominator also only depends on K since
by definition h(Xi) =

∑N
j′=1 exp(k

⊤
i kj′/

√
D). The sec-

ond term also only depends on X through K, which can
be seen by its form. Therefore we encode the value vector
V as a neural networ transformation of K and W . Details
can be found in Appendix G.1. Denote the parameters of
this transformation as ϕ and let θ subsumes ϕ. We learn ϕ
by minimizing ∑

m∈[M ]

Lθ(D(m))

on the training datasets in an end-to-end fashion. On a new
dataset not seen during training, we can directly infer its
optimal balancing weight α∗ via λ · V (∗)/h(X(∗))W (∗),
where V (∗) and h(X(∗)) are direct outputs using the for-
ward pass of the trained model. This procedure is summa-
rized in Algorithm 2 and Algorithm 3. We illustrate the
forward pass on the right. This multi-dataset version of our
method is later referred to as CInA (ZS) (or Ours (ZS)).

Intuition of What CInA (ZS) Learns. CInA (ZS) is trained
on multiple datasets and learns how to balance in an amor-
tized fashion via the SVM loss. During testing, it can infer
causal effects in a zero-shot manner, as it acquired the abil-
ity to directly infer the optimal balancing weights on a new
dataset. The transformation that encodes for V approxi-
mates the solution to the optimization problem in Eq. (3).
Thus Algorithm 2 can be seen as learning to debias an ob-
servational dataset by learning to how optimize (Bengio
et al., 2021), which enjoys fast inference on a new dataset.
It is worth noting that as our optimization problem is con-
tinuous and easier to solve than combinatorial optimization,
we do not need to employ techniques such as reinforcement

X

softmax 
kernel

W
V

matrix 
product

K
NNϕ

NNθ
outputs

Figure 2: CInA(multi-dataset) forward pass.

Algorithm 2 CInA (multi-dataset version).

1: Input: Training datasets D(1), ...,D(M).
2: Hyper-parameter: penalty weight λ > 0.
3: Parameters: θ (including ϕ), step size η.
4: while not converged do
5: for m ∈ [M ] do
6: Compute K,V using forward pass.
7: Update θ ← θ − η∇Lθ(D(m)).
8: end for
9: end while

Algorithm 3 Direct Inference with CInA.

1: Input: Test dataset D(∗), trained model, used penalty
weight λ.

2: Output: Estimated sample average treatment effect τ̂ .
3: Compute h(X(∗)),V (∗) using forward pass.
4: Compute α∗ = λ · V (∗)/h(X(∗))W (∗).
5: return τ̂ = (α∗W (∗))⊤Y (∗).

learning. We also do not require ground-truth labels to
any individual optimization problems as the parameters are
learned fully end-to-end.

4.3. Computational Complexity

We now discuss the computational complexity of our pro-
posed method with respect to the number of units N in
each dataset. Suppose the last attention layer uses keys
and queries of dimension D. Inside each iteration of every
epoch, since it needs to compute exp(kikj/

√
D) for each

pair of units i, j and h(Xi) for each i, the total complexity
of this layer is O(N2D). Based on the outputs of the for-
ward pass, the complexity to evaluate the loss function is
O(N2), as it evolves computing the penalty term. During
inference, the complexity relies on the complexity of the
forward pass, as computing α∗ and τ̂ are O(N).

5. Experiments
We study the performance of CInA on causal inference
tasks using both synthetic and real-world datasets 2. Our
objectives are twofold: to validate our theoretical findings
in a traditional single-dataset setting, and to evaluate the
feasibility of CInA in a causal foundation modeling con-
text, where the multi-dataset version of CInA will be used
for zero-shot causal inference across settings with different
levels of difficulty. The detailed implementations of this
section can be found in Appendix G. In Appendix H, we pro-
vide larger-scale, cross-domain generalization experiments,

2Code can be found at https://github.com/
microsoft/causica/tree/main/research_
experiments/cina.
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as well as comparisons to two neural baselines (Shi et al.,
2019; Chernozhukov et al., 2022).

5.1. Simulation Study A: fixed causal graph

Base Setting. We follow the simulation study setting in
Tarr & Imai (2021), Lee et al. (2010), and Setoguchi et al.
(2008) with some modifications. The main purpose of
this experiment is to validate our theoretical findings by
showing that CInA can perform competitively compared
to baselines in the traditional single-dataset setting. We
consider a synthetic dataset generated using a fixed causal
graph. The covariates of each unit, Xi, are drawn from
a 10-dimensional multivariate Gaussian distribution with
4 pairs of correlations introduced. Then the treatment is
modeled as a single binary variable generated via a logis-
tic model P (Ti = 1|Xi) = sigmoid(η⊤h(Xi)), where η
is a randomly sampled coefficient parameter, and h is a
moderately non-linear and non-additive function detailed
in Setoguchi et al. (2008). Finally, the outcome variable is
modeled as Y (T ) = γ0+γ⊤x+τT+ϵ with ϵ ∼ N (0, 0.1)
and τ = −0.4 (which defines the ATE). For this setting, we
generate 100 different datasets sharing the same parameters,
each containing 1024 units. We train all baselines, and the
single-dataset version of CInA in Section 4.1, on each of
these 100 datasets separately, and evaluate their overall per-
formance. We refer to this setting as the single-mechanism
setting. We also consider three harder variations to this base
setting, detailed below.

Variation 1. In this variation, we aim to evaluate how
the multi-dataset version of CInA performs in a zero-
shot inference setting with moderate difficulty. We gen-
erate 100 different datasets (split into 60/20/20 for train-
ing/validation/testing). For each dataset, we first sample a
new coefficient parameter η from a fixed random distribu-
tion p(η). We then generate 1024 units using the same form
of outcome model specified in the base setting but with a
different η for each dataset. Our multi-dataset model, CInA
(ZS), is trained on 60 training datasets, with hyperparame-
ters selected using 20 validation sets. The evaluation of its
zero-shot performance is based on 20 testing datasets. All
other baselines are still trained on a dataset-specific manner,
i.e., they will be fit to the 20 testing sets separately. We refer
to this setting as the multi-mechanism setting.

Variation 2. In the second variation, similar to variation 1,
We generate 100 different datasets, each using a different
coefficient parameter η from some prior distribution p(η).
However, instead of sharing the same prior distribution for η,
we force the training/validation datasets and testing datasets
to have different supports for η, i.e., supp(ptraining(η)) =
supp(pvalidation(η)) ̸= supp(ptesting(η)). We refer to this
setting as multi+OOD.

Variation 3. The third variation is the same as variation

Figure 3: MAE for Simulation A. CINA matches the best
learning-based method DML; CINA (ZS) generalizes well in
moderate settings.

2, except that the 100 datasets have different numbers of
units, ranging from (512, 1024). This setting is referred to
as Multi+OOD+diff size.

Baselines (references) and Metrics. As previous methods
are designed for a single dataset, we used them as refer-
ence for evaluating our zero-shot method. We consider
the following baselines: the naive estimator, that performs
covariate balancing with uniform weights in A; the IPW
estimator (Rosenbaum & Rubin, 1983; Rosenbaum, 1987),
which performs classical inverse probability weighting with
logistic models; the self-normalized IPW estimator (Busso
et al., 2014; Robins et al., 2007; Imbens, 2004) that nor-
malizes the IPW weights to be in A; the double machine
learning (DML) estimator (Chernozhukov et al., 2018) with
a linear final stage model; and finally, the SVM approach
which directly solves Eq. (2) as quadratic programming on
a per-dataset basis. Among those baselines, the parameter λ
for SVM was selected using validation datasets, whenever
available. When λ is selected properly, the SVM solution
should give the exact solution and serve as the ground truth
reference for the gradient-based methods, CInA and CInA-
(ZS). To quantify the accuracy of causal inference, we use
mean absolute error (MAE) between true ATE and predicted
ATE as the main evaluation metric.

Results. Figure 3 shows the results for 4 different settings
of simulation A. We observed that across all settings, the
single dataset version of CInA consistently give on-par per-
formance with DML, despite the unfair advantage of DML
since it utilizes the outcome variables during training. CInA
outperforms all other re-weighting based methods except
for the ground truth reference, SVM. This further confirms
the validity of our theoretical findings. Furthermore, in the
multi-dataset settings (Multi-mechanism, Multi+OOD and

7



Duality between Optimal Balancing and Attention

Figure 4: MAEs for ER-5000. CINA and CINA (ZS) match
the best reference method, where CINA (ZS-S) improves
upon CINA (ZS) with additional supervised signals.

Multi+OOD+diff size), CInA (ZS) shows good zero-shot
generalization capabilities under moderate causal mecha-
nism shifts, and performs competitively against other base-
lines that are trained on the testing datasets themselves on a
per-dataset basis.

5.2. Simulation Study B: Multiple Causal Graphs

In Section 5.1, we validated our methods in both traditional
single-dataset setting and moderate zero-shot settings un-
der the assumption that all tasks/datasets share the same
causal graph. Nevetheless, in an ideal context of causal
foundational modeling, a good model should be able to per-
form zero-shot causal inference on datasets coming from
both different graphs and different functional relationships.
Therefore, in this section, we generate a large number of
random synthetic datasets with randomly sampled causal
graphs to further evaluate the capability of CInA.

Datasets. Following Lachapelle et al. (2019), we generate
5000 datasets (referred to as the ER-5000 dataset) each
using a different random Erdős-Rényi DAG (Erdős & Rényi,
1960). A detailed description is given in Appendix F. All
datasets are pre-standardized and split into a 60/20/20 ratio
for training/validation/testing. Similar to above, CInA (ZS)
and CInA (ZS-S) (described below) are trained on training
datasets, with hyperparameters selected based on validation
sets. Reported statistics are based on testing datasets. All
baselines are trained on each testing dataset individually.

Baselines (references) and Metrics. The baselines consid-
ered in this experiment are the same as Section 5.1, with
the exception that the DML baseline performs additional
model selection from linear DML, kernel DML(Nie & Wa-
ger, 2021), and causal forest DML (Wager & Athey, 2018;
Athey et al., 2019). We add another baseline designed for
ER-5000, dubbed as mean prediction, which uses the mean

ATE across all training datasets as the prediction for testing
datasets. This helps us examine whether CInA is simply
memorizing the ATEs from the training set. In addition
to the evaluation metric used Section 5.1, we evaluate the
computational run-time of all methods on testing datasets.

Supervised Training of CInA. Unlike Section 5.1, all
datasets in ER-5000 have different average treatment
effects. This allows us to utilize the ground truth
ATEs of training datasets as additional supervised sig-
nals. We incorporate this via simultaneously minimizing∑

m∈[M ] ∥(V (m)/h(X(m)))⊤Y (m) − τ (m)∥2. The new
loss function hence becomes∑

m∈[M ]

Lθ(D(m))

+µ
∑

m∈[M ]

∥∥(V (m)/h(X(m)))⊤Y (m) − τ (m)
∥∥2, (8)

where µ is the adjustable coefficient with default value 1.
We refer to this supervised variation of our method as CInA
(ZS-S) (or Ours (ZS-S)).

Results. Figure 4 summarizes the results on ER-5000
datasets. We observe that the unsupervised version of CInA
(ZS) already reached the performance of DML, while being
able to significantly accelerate the inference computational
time by a magnitude of ∼ 102 (Figure 6). With additional
supervised signals, CInA (ZS-S) is able to significantly out-
performs all per-dataset baselines.

5.3. Empirical Studies on Real-world Datasets

Datasets and Baselines (references). We evaluate treat-
ment effect estimation performances on real-world datasets
including: Twins (Almond et al., 2005), IHDP (Hill,
2011), IHDP-resampled (Chernozhukov et al., 2022),
ACIC (Shimoni et al., 2018; MacDorman & Atkinson,
1998), LaLonde CPS and LaLonde PSID (LaLonde, 1986).
Among them, IHDP-resampled and ACIC naturally come
with multiple datasets, hence can be used to evaluate the
zero-shot causal inference for CInA (ZS). For other datasets,
only the single dataset version of CInA is evaluated due to
their single-causal mechanism nature. A detailed description
of these datasets can be found in Appendix F. All baselines
and cross-validation settings are the same as Section 5.2.

Results. Figure 5 summarizes our results. We observe
that the experimental findings in simulation studies also
hold in real-world settings. In single-dataset experiments,
CInA is able to outperform the majority of per-dataset base-
lines in most cases (except for DML in LaLonde PSID and
IPW in Twins, etc). In multi-dataset experiments, namely,
IHDP-resampled and ACIC, CInA (ZS) outperforms the
majority of baselines including CInA. Furthermore, we no-
ticed that unlike in simulations, SVM is not working well
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Figure 5: MAE for real-world datasets. CInA outperforms the majority of
baselines in most cases: it achieves the best average ranking of 1.83, whereas
the second-best is DML with an average ranking of 3. CInA (ZS) generalizes
well and returns the best result for ACIC.

Figure 6: Elapsed time (seconds). CInA
(ZS) produces estimands instantaneously.

in IHDP-resampled and ACIC. This is potentially be-
cause the hyper-parameter selection is performed on val-
idation datasets, which by construction, do not represent the
causal graphs/functional relationships of the IHDP/ACIC
test datasets well (Appendix F). However, our results show
that CInA (ZS) and CInA (ZS-S) are able to robustly per-
form zero-shot causal inference on unseen datasets in this
case. In Appendix H, we provide additional generalization
results, where the model is trained on simulation dataset and
generalize to real-world datasets. In summary, CInA and
its variations generally perform well in real-world settings,
however its performance may be limited by the availability
of dataset resources.

6. Discussion
In this work, we take a first step towards building causally-
aware foundation models for complex tasks, with a par-
ticular focus on the duality between causal inference and
attention mechanisms in transformer-based architectures. In
theory, we show that covariate balancing can be solved via
training any neural network with self-attention as its last
layer. Our proposed approach, Causal Inference with At-
tention (CInA), leverages multiple unlabeled datasets and is
capable of performing zero-shot causal inference on unseen
data. This stands in contrast to previous approaches, which
need to re-optimize on new data. Empirical results show that
CInA generalizes well to out-of-distribution datasets and
various real-world datasets, reaching and even surpassing
the performance of traditional per-dataset causal inference
approaches. Therefore, we believe that our methods can
serve as a promising stepping stone towards causally-aware
foundation models.

Going forward, we view it as an important future step to ex-
tend the scope of empirical efforts for obtaining a fully pre-
trained causal foundation model. First, much work remains
to be done to build large (public) datasets incorporating
large-scale real-world/semi-synthetic data. Second, it would
be crucial to improve the efficiency of our method, poten-
tially incorporating techniques from efficient transformers
(Child et al., 2019; Kitaev et al., 2020; Katharopoulos et al.,
2020; Sun et al., 2023).
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A. Discussion on the Definition of (Causal) Foundation Models
In this paper, we focus on treatment effect estimation tasks (defined in Section 3.1). Our model is then tailored for general-
izable zero-shot estimating average treatment effects. That is, given unseen datasets/contexts that contains observational
records of covariates, treatments, and effects, we aim to estimate the underlying treatment effects using a forward pass of the
underlying model.

This approach is inline with the definition of foundation models discussed in Bommasani et al. (2021): “any model that is
trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of
downstream tasks”. Note that such task-universality of foundation models does not necessarily imply adaptability across
different machine learning formulations (e.g., prediction, imputation, ATE, CATE, counterfactuals); instead, it can refer to
adaptability across different contexts for a given task. This perspective is widely embraced by recent studies, such as those
focusing on foundation models for tabular datasets (Zhang et al., 2023b), time series (Garza & Mergenthaler-Canseco, 2023;
Das et al., 2023), and knowledge graphs (Galkin et al., 2023). These studies concentrate exclusively on a single type of task,
but assess in-context generalization across datasets.

B. Omitted Proofs
B.1. Derivations of Eq. (1) and Eq. (2)

We first establish the conditional bias decomposition:

E
(
τ̂ − τSATE | {Xi, Ti}Ni=1

)
= E

(
N∑
i=1

αiWiYi −
N∑
i=1

1

N

(
Yi(1)− Yi(0)

)
| {Xi, Ti}Ni=1

)

=

N∑
i=1

αiWiE (Yi(Ti) |Xi, Ti) +

N∑
i=1

1

N
E (Yi(1)− Yi(0) |Xi, Ti)

=

N∑
i=1

(αiWiE (Yi(0) |Xi) + αiTiE (Yi(1)− Yi(0) |Xi)) +

N∑
i=1

1

N
E (Yi(1)− Yi(0) |Xi)

=

N∑
i=1

(αiTi −
1

N
)E (Yi(1)− Yi(0) |Xi) +

N∑
i=1

αiWiE (Yi(0) |Xi) ,

where we use the assumption of consistency between observed and potential outcomes and non- interference between unit
(SUTVA, Rubin (1990)) in the second equation and unconfoundedness in the third equation.

Formally, define a feature map ϕ : X → Hϕ, where X is the support of covariates and Hϕ is some Hilbert space. The
unit-ball RKHS is given by Fϕ = {f : X→ R | ∃θ ∈ Hϕ, s.t. f(x) = ⟨θ, ϕ(x)⟩, ∀x ∈ X and ∥θ∥ ≤ 1}. Recall that ⟨·, ·⟩
denotes the inner product of Hilbert spaceHϕ and ∥ · ∥ denotes the associated norm. The adversarial upper bound of the
square of the second term in the conditional bias can be calculated via

sup
f∈Fϕ

(
N∑
i=1

αiWif(Xi)

)2

= sup
θ∈Hϕ,∥θ∥≤1

(
N∑
i=1

αiWi

〈
θ, ϕ(Xi)

〉)2

= sup
θ∈Hϕ,∥θ∥≤1

(〈
θ,

N∑
i=1

αiWiϕ(Xi)
〉)2

≤

∥∥∥∥∥
N∑
i=1

αiWiϕ(Xi)

∥∥∥∥∥
2

= α⊤Kϕα.

Recall that [Kϕ]ij = WiWj⟨ϕ(Xi), ϕ(Xj)⟩. Therefore minimizing this adversarial loss subject to α ∈ A reduces to
Eq. (1).
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By evoking Theorem 1 in Tarr & Imai (2021), we have that Eq. (1) is equivalent to Eq. (2) for some λ ≥ 0. However, the
exact value of λ depends on Kϕ. For example, if Kϕ is such that the minimum value of Eq. (1) is 0, then λ = 0. This is
because the minimizer of Eq. (1) would also be the minimizer under the unnormalized constraint (Eq. (2) with λ = 0), as
α⊤Kϕα ≥ 0 for any α ∈ RN .

Conversely, we can also show that λ > 0 if Kϕ is of full rank.

Lemma B.1. If Kϕ if of full rank, then λ > 0.

Proof. From the proof of Theorem 1 in Tarr & Imai (2021), we know that λ = 0 only if

q∗ = min
W⊤α=0,0⪯α⪯1,α ̸=0

√
α⊤Kϕα

1⊤α/2

is zero. However, since Kϕ is of full rank, it is positive definite. Thus for any α ̸= 0, there is α⊤Kϕα > 0. Therefore
q∗ > 0. Consequently, λ > 0.

B.2. Derivations of Eq. (3) and Eq. (4)

The dual form of Eq. (3) can be derived using its Lagrangian

L(β, β0, ξ,α, ᾱ) =
λ

2
∥β∥2 +

N∑
i=1

ξi +

N∑
i=1

αi

(
1− ξi −Wi

(〈
β, ϕ(Xi)

〉
+ β0

))
−

N∑
i=1

ᾱiξi,

where α ⪰ 0 and ᾱ ⪰ 0. The primal form in Eq. (3) can be obtained by minβ,β0,ξi maxα⪰0,ᾱ⪰0 L(β, β0, ξ,α, ᾱ). If we
exchange minmax with maxmin, solving minβ,β0,ξi by setting the derivatives to zero leads to

∇βL(β, β0, ξ,α, ᾱ) = λβ −
N∑
i=1

αiWiϕ(Xi) = 0,

∇β0L(β, β0, ξ,α, ᾱ) = −
N∑
i=1

αiWi = 0,

∇ξiL(β, β0, ξ,α, ᾱ) = 1− αi − ᾱi = 0, ∀ i ∈ [N ].

Plugging these in L(β, β0, ξ,α, ᾱ), we can reduce maxα⪰0,ᾱ⪰0 minβ,β0,ξi L(β, β0, ξ,α, ᾱ) to Eq. (2). Thus it is the dual
form of Eq. (3).

In addition, we can also derive Eq. (4). It is easy to check that Slater’s condition holds for the primal SVM problem in
Eq. (3). Thus it satisfies strong duality. Therefore any optimal solutions to the primal-dual problems must satisfy the KKT
condition λβ∗ =

∑N
j=1 α

∗
jWjϕ(Xj).

B.3. Derivations of Eq. (6)

From the Taylor expansion

exp(k⊤
i kj/

√
D) =

+∞∑
l=0

1

l!
(k⊤

i kj/
√
D)l

=

+∞∑
l=0

∑
N1+...+ND=l

(
[ki]

N1
1 ...[ki]

ND

D

)(
[kj ]

N1
1 ...[kj ]

ND

D

)
Dl/2N1!...ND!

,

we have that exp(k⊤
i kj/

√
D) = ⟨ϕ(Xi), ϕ(Xj)⟩ if

ϕ(x) =

(
[k]N1

1 ...[k]ND

D

Dl/2(N1!...ND!)1/2

)
N1+...+ND=l, l∈N

. (9)
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Here k denotes the key embedding of x following the same transformation that ki is obtained from Xi. Note that we allow
the transformation to depend on X , which corresponds to a data-dependent kernel.

Using this expression, the i-th output of the self-attention layer when Q = K can be equivalently written as

N∑
j=1

exp
(
k⊤
i kj/

√
D
)∑N

j′=1 exp
(
k⊤
i kj′/

√
D
)vj = N∑

j=1

⟨ϕ(Xi), ϕ(Xj)⟩
h(Xi)

vi =

N∑
j=1

vj
h(Xj)

⟨ϕ(Xj), ϕ(Xi)⟩.

B.4. Proof of Theorem 3.1

We first state its formal version:

Theorem 1. If the covariates X satisfy that ϕ(X1), ..., ϕ(XN ) are linearly independent, then Algorithm 1 recovers the
optimal balancing weight at the global minimum of the penalized hinge loss in Eq. (7).

In particular, the optimal solution α∗ to Eq. (1), in which the feature function ϕ is defined using the optimal neural
network parameters via Eq. (9), can be obtained using the optimal neural network parameters that minimize Eq. (7) via
α∗
j = λvj/h(Xj)Wj .

Proof. Denote β =
∑N

j=1
vj

h(Xj)
ϕ(Xj), then using Eq. (6), we can rewrite the loss function in Eq. (7) as

Lθ(D) =
λ

2
∥β∥2 +

N∑
i=1

[
1−Wi

(
⟨β, ϕ(Xi)⟩+ β0

)]
+
.

Denote ξi =
[
1−Wi

(
⟨β, ϕ(Xi)⟩+ β0

)]
+

, then minimizing Lθ(D) can be equivalently written as

min
θ

λ

2
∥β∥2 +

N∑
i=1

ξi,

s.t. Wi

(〈
β, ϕ(Xi)

〉
+ β0

)
≥ 1− ξi, ξi ≥ 0, ∀i ∈ [N ].

Thus at the optimal θ, the corresponding β is also the optimal solution to

min
β,β0,ξ

λ

2
∥β∥2 +

N∑
i=1

ξi,

s.t. Wi

(〈
β, ϕ(Xi)

〉
+ β0

)
≥ 1− ξi, ξi ≥ 0, ∀i ∈ [N ],

where ϕ is defined using the optimal θ. This recovers the primal SVM problem. By the primal-dual connection proven in
Appendix B.2, if we denote the optimal solution to the dual problem (which is Eq. (2)) as α∗, we have

λβ =

N∑
j=1

α∗
jWjϕ(Xj).

Consequently, by the definition of β, we have

N∑
j=1

λvj
h(Xj)

ϕ(Xj) =

N∑
j=1

α∗
jWjϕ(Xj).

By the assumption that ϕ(X1), ..., ϕ(XN ) are linearly independent, we must have λvj

h(Xj)
= α∗

jWj for all j ∈ [N ]. Therefore
α∗
j = λvj/h(Xj)Wj .

Remark B.2. Note that when ϕ(X1), ..., ϕ(XN ) are linearly independent, the matrix Kϕ =
[W1ϕ(X1), ...,WNϕ(XN )]⊤[W1ϕ(X1), ...,WNϕ(XN )] is of full rank. Thus by Lemma B.1, there is λ > 0.
Conversely, using a similar decomposition, we know that if K̂ϕ = [ϕ(X1), ..., ϕ(XN )]⊤[ϕ(X1), ..., ϕ(XN )] is of full rank,
then ϕ(X1), ..., ϕ(XN ) are linearly independent. Since K̂ϕ = exp(KK⊤/

√
D), we have ϕ(X1), ..., ϕ(XN ) linearly

independent if K is of row rank N . Thus the assumption on X in Theorem 3.1 is satisfied when K is of row rank N .
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We also remark here that there are different theories relating attentions to SVMs. Our work rewrites self-attention via an
SVM expansion and explicitly designs the loss function to make sure self-attention recovers the SVM that solves optimal
covariate balancing for causal inference. Tarzanagh et al. (2023) showed that the optimization geometry of self-attention
converges in direction to an SVM solution.

C. Alternative Objectives
There are different approaches to balance covariates in order to estimate treatment effects. In the main text, we resort to
bounding the first term in the conditional bias, i.e., the terms involving the potential outcome under control. This corresponds
to minimizing the bias induced by the imbalance of prognostic score (Hansen, 2008; Tarr & Imai, 2021). It was shown
in (Hansen, 2008) that this estimation is valid and unbiased as long as there is no effect modification. Therefore in these
scenarios, the conditional bias vanishes as long as the first term converges to zero. On the contrary, when there is effect
modification, we now provide an alternative balancing objective that minimizes for both terms.

Consider minimizing the square of both terms in the conditional bias, which we decompose into the following form(
E
(
τ̂ − τSATE | {Xi, Ti}Ni=1

))2
=

(
N∑
i=1

αiWiE
(
Yi(Ti)|Xi, Ti

)
− 1

N

N∑
i=1

(
E
(
Yi(1)|Xi

)
− E

(
Yi(0)|Xi

)))2

.
(10)

Denote the outcome models E(Yi(1)|Xi) = f1(Xi) and E(Yi(0)|Xi) = f0(Xi). We choose to minimize the above term
in worst case over all possible potential outcome models (f0, f1) ∈ F2

ϕ. Here the space F2
ϕ is defined as F2

ϕ = {(f0, f1) |
f0 ∈ Fϕ, f1 ∈ Fϕ}.

Suppose f0(x) = ⟨ϕ(x), θ0⟩ and f1(x) = ⟨ϕ(x), θ1⟩ for θ0, θ1 ∈ Hϕ, ∥θ0∥ ≤ 1, ∥θ1∥ ≤ 1. We can bound Eq. (10) with
respect to all outcome models in F2

ϕ as

(
N∑
i=1

αiWifTi
(Xi)−

1

N

N∑
i=1

(
f1(Xi)− f0(Xi)

))2

=

〈∑
i∈T

αiWiϕ(Xi)−
1

N

∑
i∈[N ]

ϕ(Xi), θ1

〉
+

〈∑
i∈C

αiWiϕ(Xi) +
1

N

∑
i∈[N ]

ϕ(Xi), θ0

〉2

≤ 2

∑
i∈T

αiWiϕ(Xi)−
1

N

∑
i∈[N ]

ϕ(Xi)

2

+ 2

∑
i∈C

αiWiϕ(Xi) +
1

N

∑
i∈[N ]

ϕ(Xi)

2

where the inequality uses Cauchy-Schwartz inequality. Minimizing this upper bound subject to α ∈ A is equivalent to
solving

min
α

α⊤Gϕα+α⊤gϕ,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1.
(11)

Here

[Gϕ]i,j = δWi=Wj ⟨ϕ(Xi), ϕ(Xj)⟩,

[gϕ]i = −
2

N

N∑
j=1

⟨ϕ(Xi), ϕ(Xi)⟩.

It is easy to show that Gϕ ⪰ 0 as it can be decomposed into two submatrixes which are positive semi-definite. In addition,
as ⟨ϕ(Xi), ϕ(Xj)⟩ = exp(k⊤

i kj/
√
D) > 0, we know that gϕ ≺ 0.

To come up with a consistent gradient-based solver, notice first that Eq. (11) is equivalent to the following unnormalized
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problem for some λ, µ ≥ 0

min
α

α⊤Gϕα+ 2µ · g⊤
ϕ α− 2λ · 1⊤α,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1.
(12)

This can be shown similarly to the proof of Theorem 1 in Tarr & Imai (2021). We escape the details but provide the following
main steps:

1. We first show that for some ϵλ, ϵµ ≥ 0, Eq. (12) is equivalent to

min
α

α⊤Gϕα,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1, −g⊤
ϕ α ≥ ϵµ, 1⊤α ≥ ϵλ.

2. Next, we show that the above problem is equivalent to

min
α

√
α⊤Gϕα,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1, −g⊤
ϕ α ≥ ϵµ, 1⊤α ≥ ϵλ,

which is equivalent to

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α− νλ1
⊤α,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1.

for some νλ, νµ ≥ 0.

3. For some λ ≥ 0, the above problem is equivalent to

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α

1⊤α
,

s.t. W⊤α = 0, 0 ⪯ α ⪯ 1.

Since this problem is scale-free, it is equivalent to

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α

1⊤α
,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1,

i.e.,

min
α

√
α⊤Gϕα+ νµ · g⊤

ϕ α,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1,

4. Using similar arguments as above, one can show the above problem is equivalent to

min
α

α⊤Gϕα+ g⊤
ϕ α,

s.t.
∑
i∈T

αi =
∑
i∈C

αi = 1, 0 ⪯ α ⪯ 1,

for some µ ≥ 0.
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The primal form of Eq. (12) can be written as

min
β1,β2,β0,ξ

1

2
∥β1∥2 +

1

2
∥β2∥2 +

N∑
i=1

ξi,

s.t.
(〈
β1, ϕ(Xi)

〉
+ β0

)
≥ λ− µ[gϕ]i − ξi, ∀i ∈ T(〈

β2, ϕ(Xi)
〉
− β0

)
≥ λ− µ[gϕ]i − ξi, ∀i ∈ C

ξi ≥ 0, ∀i ∈ [N ].

Following similar derivations in Appendix B, we can write out an unconstrained loss function

Lθ(D) =
1

2

∥∥∥∥∥∥
∑
j∈T

vj
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

+
1

2

∥∥∥∥∥∥
∑
j∈C

vj
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

+
[
λ− µ[gϕ]T −

(
softmax(KTK

⊤
T /
√
D)VT + β0

)]
+

+
[
λ− µ[gϕ]C −

(
softmax(KCK

⊤
C /
√
D)VC − β0

)]
+
,

where the optimal α∗ solving Eq. (11) can be read off as αi =
vi

h(Xi)
.

For the conditional mean square error, under regularity constraints in Bennett & Kallus (2019), we can also use the same
upper bound as above (up to an additive O(1/N) gap). Therefore the same derivation holds. However, as this loss function
separates the treated group from the control group aside from sharing the constant intercept β0, it might not be preferable
than the objective proposed in the main text.

D. Non-binary Treatments
Consider a generalization to the setting in Section 3.1, where the dataset D = {(Xi,Ti, Yi)}i∈[N ] in which Ti is a
S-dimensional vector of multiple binary treatments. Let Y s

i (t) be the potential outcome of assigning treatment [Ti]s = t.

Assuming SUTVA (Yi = Y s
i ([Ti]s)) and unconfoundedness. Denote Ts = {i ∈ [N ] : [Ti]s = 1} and Cs = {i ∈ [N ] :

[Ti]s = 0}. We consider weighted estimators in the form of

τ̂s =
∑
i∈Ts

αiY
s
i (1)−

∑
i∈Cs

αiY
s
i (0)

for the sample average treatment of the s-th treatment

τsSATE =
1

N

N∑
i=1

(
Y s
i (1)− Y s

i (0)
)
.

Following the same derivations in Section 3 and Appendix B, we can obtain a dual-SVM formulation to optimize α in the
adversarial case. This dual-SVM formulation can then be transformed into its primal problem. As self-attention is implicitly
implementing the predictor in the primal problem, we can then read off the optimal α∗ by training this self-attention-based
neural network with a penalized hinge loss.

However, as we would like to evaluate the sample average treatment for multiple treatments, we can actually aggregate S
SVM problems together using the flexibility of self-attention layers. Namely, instead of consider a one-dimensional value
vector V in Section 3.2, we use V ∈ RN×S , where the s-th dimension corresponds to the s-th treatment. By minimizing
the following loss function

Lθ(D) =
λ

2

S∑
s=1

∥∥∥∥∥∥
N∑
j=1

[V ]js
h(Xj)

ϕ(Xj)

∥∥∥∥∥∥
2

+

S∑
s=1

[
1−W:,s

(
softmax(KK⊤/

√
D)V:,s + β0

)]
+
,

we can read off the optimal balancing weight α for the s-th treatment via λ · V:,s/h(X)W:,s
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E. Individual Treatment Effect Estimation
In this section, we further consider the problem of estimating individual treatment effect (ITE) in the binary treatment setup
of Section 3. Here we present one possible algorithmic approach to approximate ITEs with CInA. Without loss of generality,
suppose T1 = 1 and we would like to estimate ITE on the first unit E(Y1(1)− Y1(0) |X1).

Denote the “counterfactual dataset” by replacing the first sample with (X1, 0, Ŷ1(0)) as D̂, where Ŷ1(0) is a realization of
Y1(0). Note that we do not have access to the value of Ŷ1(0). However, we do have access to the covariates and treatments of
D̂. As these are all the required inputs to Algorithm 1, we can compute the optimal balancing weight for this counterfactual
dataset D, which we denote as α̂.

Notice that the sample average treatments of D are D̂ should be the same, as they are defined for the same set of units.
Therefore the two weighted estimators are approximating the same τSATE (or ATE when N increases) and thus∑

i∈T
αiE(Yi(1) |Xi)−

∑
i∈C

αiE(Yi(0) |Xi)

≈
∑

i∈T\{1}

α̂iE(Yi(1) |Xi)−
∑
i∈C

α̂iE(Yi(0) |Xi)− α̂0E(Ŷ1(0) |X1).

Therefore we have the following approximation

α̂1E(Ŷ1(0) |X1) ≈ −α1Y1(1) +
∑

i∈T\{1}

(α̂i − αi)Yi(1)−
∑
i∈C

(α̂i − αi)Yi(0).

As we have access to all individual terms on the right, we can compute an approximation of E(Y1(0) | X1), using this
formula as long as α̂0 ̸= 0.3

To enhance the robustness of this estimation, we can also compute this for units with covariates closed to X1, e.g., using
KNNs (Devroye et al., 1994; Li & Tran, 2009), which would give consistent estimations for conditional expectations.
Algorithm 4 summarizes this procedure, where Algorithm 3 can be used instead of Algoritm 1 to estimate ITE in a zero-shot
fashion.

Algorithm 4 CInA for ITE.

1: Input: Covariates X and treatments W .
2: Output: Estimation of E(Y1(1)− Y1(0) |X1).
3: Hyper-parameter: penalty weight λ > 0.
4: Initialize τ = ∅.
5: for unit i with Xi ≈X1 do
6: Run Algorithm 1 on X,W to obtain α.
7: Set Ŵ to be W except Ŵi = −Wi.
8: Run Algorithm 1 on X, Ŵ to obtain α̂.
9: Let α̂iE(Ŷi(1− Ti) |Xi) = −αiYi(Ti) +

∑
j ̸=i,Tj=Ti

(α̂j − αj)Yj(Tj)−
∑

Tj ̸=Ti
(α̂j − αj)Yj(Tj).

10: Append Wi · (E(Ŷi(1− Ti) |Xi)− Yi(Ti)) to τ if α̂i ̸= 0.
11: end for
12: return Average of τ .

F. Dataset Details
The details of the datasets for simulation A are provided in Section 5.1. We now provide the details of ER-5000 and the
real-world datasets. Code for downloading and pre-processing these datasets will be provided upon publication.

ER-5000. Each of the ER-5000 datasets is generated following the structural causal model (SCM) framework. The detailed
procedure is as follows. First, we sample a random directed acyclic graph (DAG) from the Erdős-Rényi random graph
model (Erdős & Rényi, 1960) with edge probability sampled from 0.25 to 0.5. Then, Based on the sampled DAG, we sample

3Once we have these estimands, policy evaluation can done via plug-in estimations.
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the corresponding functional relationships using a linear weight sampler, with random weights sampled from a uniform
distribution between 0 and 3. Next, a treatment node and effect node is randomly chosen. For each non-treatment node, we
use additive gaussian random noise with standard deviation randomly sampled uniformly between 0.2 and 2. For treatment
node, we specify a Bernoulli distribution with logit equal to the functional output of the corresponding node. Finally, we
simulate each variable (in X , T and Y ) using the sampled DAG, functional relationships, and noises.

IHDP and IHDP-resampled. The Infant Health and Development Program (IHDP) dataset is a semi-dataset complied
by Hill (2011). We use the existing versions from Chernozhukov et al. (2022), which are sampled using the outcome
model implemented as setting A in (Dorie, 2016). Each dataset comprises of 747 units and 25 covaraites measuring the
aspects of children and their mothers. For IHDP, the treatment group (139 out of 747 units) has been made imbalanced by
removing a biased subset of the treated population. A total of 1000 datasets are used (following (Shi et al., 2019)), where
different datasets only differ in terms of outcome values. For IHDP-resampled, 100 datasets are used where the treatments
are resampled by setting the propensity score to “True” in the (Dorie, 2016).

Twins. Introduced by Louizos et al. (2017), this is a semi-synthetic dataset based on the real data on twin births and twin
mortality rates in the US from 1989 to 1991 (Almond et al., 2005). The treatment is “born the heavier twin”, which is
simulated as a function of the GESTAT10 covariates. Therefore this dataset is confounded. After assigning the treatment for
each pair of twins, the dataset is constructed by hiding the other twin. We downloaded the dataset and processed it following
Neal et al. (2020).

LaLonde CPS and PSID. We also use the datasets from LaLonde (1986), in which the treatment is job training and the
outcomes are income and employment status after training. The ground-truth average treatment effect is computed using a
randomized study, where we use the observational data to estimate it. The observational data has multiple versions. We use
both the PSID-1 and CPS-1 versions for our experiments (Dehejia & Wahba, 1999).

ACIC. The data for the 2018 Atlantic Causal Inference Conference competition (ACIC) (Shimoni et al., 2018) comprises of
serveral semi-synthetic datasets derived from the linked birth and infant death (LBIDD) data (MacDorman & Atkinson,
1998). The data-generating process is described in (Shimoni et al., 2018). In our experiment, we use datasets containing 1k
or 10k samples.4 In the experiments in Section 5, a total of 293 datasets (each of size 1k) were used, where 93 were left out
for testing. In Appendix H, we extend this to datasets of size 10k, where a total of 288 datasets were used and 88 among
these were left out for testing. We use datasets with polynomial link function for training and validation. For testing, we use
datasets with exponential link functions thus creating a harder task for evaluating our methods.

G. Implementation Details
Code for our method can be found at https://github.com/microsoft/causica/tree/main/research_
experiments/cina. Below we describe the architecture, hyper-parameters, training procedures and other details of our
method. We also provide the implementation details of the baselines. Finally, we discuss a new data augmentation technique
that we observe to be helpful on certain datasets.

G.1. CInA

Pre-processing and Padding. For Algorithm 2, we might encounter multiple datasets with different number of samples. We
wish them to share the same transformation from W ,K to V ∈ RN×1, where N is the number of units in the corresponding
dataset. For this, we adopt similar pre-processing steps as in natural language. We pad all datasets to the same size (i.e.,
adding dumy units to smaller datasets) and save the masks that indicate these paddings. During back-propagation, we use
this mask to make sure that the loss function is only computed using actual units.

Model Configurations. We describe the architecture used in Algorithm 2, as the single-dataset version uses the same
components aside from parametrizing the values V directly as learnable parameters. An illustration of the forward pass is
provided in Figure 2.

For the transformation from covariates X to keys K, we implemented two versions: (1) an identical mapping followed by
a batch-norm layer K = bn(X), (2) a projected mapping followed by a batch-norm layer ki = bn ◦ relu ◦ linear(Xi).
In our first simulation study in Section 5.1, we observe that the projection to be marginally helpful and thus report all the

4In datasets with large sample sizes, techniques for efficient transformers (Child et al., 2019; Kitaev et al., 2020; Katharopoulos et al.,
2020; Sun et al., 2023) can be applied to accelerate our method.
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results based on the identical mapping.

For the transformation from W ,K to V , we first embed Wi,ki into a 32-dimensional space using one layer of relu ◦
linear(·). These two 32-dimensional vectors are then concatenated into a 64-dimensional vector following by a batch-norm
layer. Denote these 64-dimensional embedding for each unit as E = [e1, ..., eN ]⊤. We encode them into N×1-dimensional
outputs O using a scaled product attention with value, key, query being linear transformations of E. Notice that we read off
the balancing weights via V /h(X)W and h(X) ≻ 0. As the optimal weights α∗ ⪰ 0, the values V should have the same
sign as W in an element-wise fashion. Therefore to enforce this, we include another multiplier layer to obtain V from the
outputs O, namely, V = relu(OW ).

Normalization. As the optimal balancing weights is in A = {0 ⪯ α ⪯ 1,
∑

i∈T αi =
∑

i∈C αi = 1}, we normalize the
read-off balancing weights during inference. In particular, in Algorithm 1 and Algorithm 3, after setting α∗ = λ·V /h(X)W ,
we project it into A by taking max(α∗,0) and normalizing the treated and control group to sum up to 1.

Hyper-parameters. For both Algorithm 1 and Algorithm 2, we search for the optimal penalty λ > 0 from range [λmin, λmax]
by exponentially increasing it from λmin to λmax. On the same dataset, this range remains the same for both algorithms
(and all variations, if applicable). The following table summarizes the values of λmin to λmax for different datasets.

Table 1: Search range for λ in different datasets.

Dataset λmin λmax

Simulation A 1e-6 1e-2
Simulation B 1e-6 1e-2

IHDP 1 1000
IHDP-resmapled 1e-5 1000

Twins 1e-8 1e-2
LaLonde CPS 1e-10 5e-6

LaLonde PSID 1e-10 5e-6
ACIC 1e-6 100

Training and Evaluations. For all the experiments, we use a cosine annealing schedule for the learning rate from lmax to
lmin during the first half of the training epochs. Then the learning rate is fixed to lmin for the second half of the training
epochs. The exact values of lmax and lmin for different datasets can be found in the codebase. For Algorithm 1, we train for
20, 000 epochs on all datasets. For Algorithm 2, we train for 4, 000 epochs on all datasets.

For evaluating the results of Algorithm 2, we choose the best hyper-parameters based on the mean absolute error on the
validation sets of datasets and report the results on the testing sets of datasets. For evaluating the results of Algorithm 1, if
the setting contains multiple datasets (Simulation A, Simulation B, IHDP-resampled, ACIC), we choose the best hyper-
parameters based on the mean absolute error on the validation sets of datasets and report the results on the testing sets of
datasets. Note that even though IHDP contains multiple datasets, they all share the same sets of covariates and treatments.
Therefore we treat it the same as settings with one dataset for Algorithm 1. On these datasets (IHDP, Twins, LaLonde CPS,
LaLonde PSID), we choose the best hyper-parameters based on the reported results.

G.2. Baselines

IPW and Self-Normalized IPW. For both IPW and self-normalized IPW, we first standardized the covariates X . Then we
fit a random forest classifier on the data to predict propensity scores. The depth of the random forest classifier is chosen in
the same way as the hyper-parameter λ is chosen in CInA, which we described above.

DML. For DML, we use the implementation of Battocchi et al. (2019). In particular, we consider three models: LinearDML,
CausalForestDML, KernelDML. Similar as above, when a validation set of datasets is present, we report the results
based on the best of these three models in terms of validation MAE. Otherwise we report based on the best performance on
the reported dataset. However, in simulation A, we only use LinearDML as the outcome model is linear.

SVM. For this baseline, we first standardized the covariates X . Then we solve the dual SVM problem in Eq. (2), where the
kernel is defined using ϕ given in Eq. (9) on the standardized data. We use the support vector classifier (Pedregosa et al.,
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2011) with a precomputed kernel. The maximum number of iterations is capped with a hard limit of 50, 000. The reported
results are based on λ choosen in the same way as CInA described above.

G.3. Dataset Augmentation

In our experiments in Section 5.1 and certain datasets in Section 5.3 using the multi-dataset version of CInA, we implemented
a new type of data augmentation. As we observe that the network can learn how to balance on a set of datasets using very
few training steps, we propose to reshuffle amongst different datasets in every epoch. This essentially creates a “new” set of
datasets by combining units from different datasets. Intuitively, this augments the number of covariate balancing problems
that the model has to learn to solve without actually needing to acquire more data. However, we note that this technique is
only applied if different datasets from the same experiment share the same causal graph. If different datasets contain very
different causal structures such as ER-5000 in Section 5.2 and ACIC in Section 5.3, this shuffling is not used as it would
create covariate balancing problem that does not aid learning. The main intuition is that if we reshuffle units among these
datasets, units in a reshuffled dataset could follow different causal graphs, which means there is potentially no underlying
causal structure that can explain the data.

H. Additional Empirical Results
H.1. Comparison to DragonNet and RieszNet

Table 2: ATE MAE comparison of different methods on the ”Simulation-A”, ”ER-5000”, and ”IHDP” datasets.

Method Simulation-A ER-5000 IHDP
Naive 0.172 ± 0.03 50.27 ± 5.97 0.259 ± 0.01
IPW 0.304 ± 0.03 27.42 ± 3.19 0.766 ± 0.02
Self-normalized IPW 0.158 ± 0.03 49.99 ± 5.88 0.141 ± 0.00
DML 0.094 ± 0.01 11.13 ± 3.17 0.585 ± 0.03
DragonNet 0.386 ± 0.01 11.21 ± 3.17 0.146 ± 0.01
RieszNet 0.045 ± 0.01 12.90 ± 4.54 0.110 ± 0.01
SVM 0.015 ± 0.00 11.09 ± 3.13 1.202 ± 0.05
Ours 0.126 ± 0.02 N/A 0.114 ± 0.01
Ours (ZS) 0.147 ± 0.01 11.50 ± 1.85 N/A
Ours (ZS-S) N/A 2.66 ± 0.33 N/A
Mean N/A 17.88 ± 1.83 N/A

In this section, we further compare two additional baselines, DragonNet (Shi et al., 2019) and RieszNet (Chernozhukov
et al., 2022), both of which were considered strong neural estimation methods for per-dataset causal inference. Results
for IHDP dataset were directly cited from (Shi et al., 2019; Chernozhukov et al., 2022), following their best performing
models. Furthermore, we also compare to Simulation-A-Multi+OOD+diff size, and ER-5000, both are the most general
synthetic settings in Section 5. On Simulation-A-Multi+OOD+diff size, CINA (ZS) outperforms DragonNet, while
RieszNet outperforms both DragonNet and CINA (ZS) method. On both ER-5000 and IHDP, CINA (ZS) is on par with or
outperforms DragonNet and RieszNet, while CINA (ZS-S) massively outperforms the other methods on ER-5000.

H.2. Larger scale experiments on 10k ACIC 2018, with cross-dataset generalization

To demonstrate the performance of our method on larger version of ACIC 2018, we produce additional experiment using
the 10k-size datasets of ACIC (Shimoni et al., 2018), which is a commonly used scale considered in the literature (Shi et al.,
2019; Mahajan et al., 2022). Note that instead of only selecting a subset of datasets in ACIC 2018 as in (Shi et al., 2019;
Mahajan et al., 2022), we make use of all datasets of size 10k generated by (Shimoni et al., 2018) that has polynomial link
functions as training datasets, and all datasets of size 10k with exponential link functions as test datasets.

In this setting, we also compare two new variants of our method, CINA (ZS-ER) and CINA (ZS-S-ER), that are fully trained on
a larger-scale, 200-dimensional ER-5000 dataset Section 5.2 under both unsupervised and supervised settings, respectively.
After pre-training, CINA (ZS-ER) and CINA (ZS-S-ER) are applied directly to all ACIC 2018 test sets. This will help us to
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Table 3: Comparison of different methods on the 10k ACIC 2018 dataset.

Method ATE MAE Inference time on new data (s) Pretraining time (s)
Naive 13.07 ± 8.25 0.005 N/A
IPW 10.29 ± 5.94 48.927 N/A
Self-normalized IPW 10.30 ± 5.90 49.322 N/A
DML 8.572 ± 8.96 7391.743 N/A
RieszNet 69.39 ± 31.9 8157.498 N/A
Ours (ZS) 1.460 ± 0.48 78.503 1800
Ours (ZS-S) 1.361 ± 0.42 77.546 1800
Ours (ZS-ER) 1.718 ± 0.74 78.085 1800
Ours (ZS-S-ER) 1.702 ± 0.74 77.947 1800

demonstrate whether the model can show generalization ability across datasets. All CINA-related methods are trained for a
fixed time budget (1800 seconds), which is significantly shorter than the full training time of DML and RieszNet. As shown
in Table 2, both CINA (ZS) and CINA (ZS-S) significantly outperforms all baselines. The CINA (ZS-ER) and CINA (ZS-S-ER)
methods give marginally worse performance than CINA (ZS) and CINA (ZS-S), but still out-performs the other baselines by
a clear margin.
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