
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMITATION GAME: TOWARD COMPREHENSIVE
EVALUATION ON PERSONALIZED ROLE-PLAYING
ON SOCIAL MEDIA

Anonymous authors
Paper under double-blind review

ABSTRACT

Social simulation observes the emergence of complex macro-scopic social pat-
terns from individual interactions within a virtual social environment. A common
practice in social simulation is to model individual as a statistical average of a
specific group, failing to capture individual heterogeneity. To model such hetero-
geneity, we propose a personalized role-playing task in the context of social media,
which provides environment for social simulation with massive authentic user in-
teractions. As no public social media dataset concentrates especially on historical
interactions of individual user for personalization, we collect data from reddit and
construct our own dataset, consisting of 67 users, 7K posts, and 21K comments.
And we introduce three key dimensions for personalized role-playing and conduct
comprehensive evaluation on feasible role-playing methods. The results yield the
following key findings:(1) existing methods struggle to achieve fine-grained per-
sonalized modeling; (2) merely scaling model parameters or applying reasoning
models is insufficient to substantially enhance the level of personalization; (3)
the evaluated methods exhibit significant vulnerability to noise within interaction
context.

1 INTRODUCTION

Large Language Models (LLMs) have made great progress in long-context comprehension (Zhao
et al., 2024a; Qiu et al., 2025), emotion perception (Chen et al., 2023; Zhao et al., 2024b) and
complex reasoning (Juneja et al., 2024; Cai et al., 2025), promoting their application in social sim-
ulation. In LLM-based social simulation, LLMs are usually endowed with various social identities
and characteristics to simulate individual reactions in specific scenarios. Precise simulation at the
individual level is fundamental to the credibility and effectiveness of social simulation. As a re-
sult, LLM role-playing, which aims for imitation with high-fidelity, is widely integrated into social
simulation. However, existing LLM role-playing (Shao et al., 2023; Wu et al., 2024) excels at simu-
lating archetypal figures, such as artistic characters and celebrities, as these figures typically possess
detailed profiles and abundant interaction records. However, its ability to simulate ordinary individ-
uals given limited observation remains to be explored. Since ordinary people’s behaviors are most
vividly reflected in social media interactions, it is very practical to investigate LLM role-playing in
such contexts.

Role-playing for social media users is non-trivial, as it involves three main challenges: 1) incom-
plete or missing profile: The majority of social media users refrain from uploading or displaying
genuine personal information for privacy concerns, rendering profile-driven role-playing methods
inapplicable; 2) interaction data sparsity: social media users tend to comment on a small number
of posts that interest them, and a significant proportion of social media users are passive observers,
rarely contributing to discussions; 3) language dependency: unlike artistic works where characters
can be portrayed through facial expressions and body language, accessible behavior of social media
user primarily consists of posts and comments in natural language form, which are typically concise,
emotional, and informal, making language modeling highly challenging.

In this paper, we propose a novel task called Personalized Role-playing on Social Media (PRISM).
The task requires LLMs to simulate ordinary social media users, mimicking their perspectives,
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stances, and linguistic habits to participate in discussions on specific topics. The task is designed
in utterance level, where a simulated comment is compared with the corresponding ground-truth
comment from target user for evaluation. To study this new task, we collect the most recent user
data and construct a high-quality benchmark called IDRole, since no public social media dataset fo-
cuses especially on historical interactions of individual user for personalization and data previously
collected from social media platform poses a potential risk of data contamination. We first select
topic communities with high popularity such as science and technology. Then we scan the most
popular posts within each community and identify active users from the posters and commenters of
these posts. After retrieving the historical posts and comments from each active users, we refine the
raw data and reorganize each sample into a free-form text completion problem with a given context.
Finally we obtain IDRole, containing 67 users and 21K samples refined from 7K posts and 21K
comments. Each sample consists of an original post, the conversational context, and a ground-truth
comment of the target user.

To promote further development, we conduct a comprehensive evaluation and analysis of role-
playing methods on IDRole, including few-shot prompting, SFT, DPO (Rafailov et al., 2023), and
GRPO (Shao et al., 2024). Our evaluation framework for role-playing methods integrates both clas-
sical similarity and LLM-as-Judge metrics that consider three key personalization dimensions. We
assess the performance of these methods on both open-source and commercial LLMs. Additionally,
we explore the potential of small language models in personalized role-playing, analyze the corre-
lation between personalized role-playing performance and length of target ground-truth comments,
and study the robustness of role-playing methods against noise injected into discussion context. The
key findings derived from the experimental results are as follows: (1) all evaluated role-playing
methods yield unsatisfactory performance in personalized role-playing on social media; (2) merely
scaling model parameters or applying reasoning models is insufficient to substantially enhance the
level of personalization; (3) the evaluated role-playing methods exhibit vulnerability to the noise in
the context.

Overall, the main contributions of this work can be summarized as follows:

• We propose the personalized role-playing task on social media. To the best of our knowledge,
we are the first to investigate the ability of role-playing methods to model general users from a
generative perspective, based on real-world social media data.

• We construct a new benchmark called IDRole, considering the lack of readily available datasets
for task evaluation and potential data contamination issue. IDRole contains 67 social media users
and 21K samples at utterance-level refined from 7K posts and 21K comments.

• We conduct a comprehensive evaluation and analysis on role-playing methods. The experiment
results demonstrate that existing role-playing methods struggle to perform well on IDRole and
highlight the need to develop strong and robust personalized role-playing method on social media
with sufficient attention to the potential of small language models.

2 RELATED WORK

2.1 SOCIAL SIMULATION

Social simulation is providing new tools and perspectives for sociological research. Based on sim-
ulation granularity, social simulation can be categorized into the simulation of individual behavior,
local interactions, and society system.

Individual simulation utilizes LLM agents to simulate specific individuals, focusing on modeling
the characteristics of a single person. In individual simulation, explicit characteristics of individ-
uals typically derive from demographic information or known character-related knowledge, while
implicit characteristics require mining from behavioral and psychological activities. Horton (2023)
utilizes LLM to simulate individual behavior in a predefined economic scenario, which is assigned
different social preferences such as fairness, total benefit, and personal benefit. Argyle et al. (2023)
construct GPT-3 simulated samples matched to the demographic characteristics of participants in the
American National Election Studies and instruct these samples to simulate human voting choices.
Ge et al. (2024) incorporate character-specific attributes into the data synthesis prompt, which steer
the LLM to generate unique synthetic data aligning with the designated persona’s perspective.
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Simulation for local interactions involves multiple agents with designated roles within specific sce-
narios, focusing on both agent-agent and agent-environment interactions, with simulation processes
driven by character motivations or predefined tasks. Zhou et al. (2023) construct a social interaction
environment featuring diverse social scenarios, where agents attempt to achieve social goals such as
cooperation and competition through various forms of communication. Qian et al. (2024) simulate
the software development process, wherein software agents, embodying professional roles such as
programmers, code reviewers, and test engineers, engage in collaborative dialogue to accomplish
tasks specific to each development phase.

Social simulation constitutes a significant extension of local simulation in both spatiotemporal scale
and system complexity, aiming to capture and reproduce emergent macroscopic social dynamics
from microscopic interactions over a broader scope. Mou et al. (2024) simulate the reaction of
group to specific social movements on social media, with ordinary users modeled by mathematical
Agent-based models (ABMs). Zhang et al. (2025) construct a world model for social simulation
containing 10 million individuals and personalize each user with predicted demographic attributes.
During evaluation, the macro-level metrics are computed by aggregating individual questionnaire
responses.

While existing studies in social simulation have demonstrated considerable efficacy, they typically
parameterize individuals using a limited set of predefined attributes. Consequently, there is a gap
in research on the fine-grained simulation of individuals within more authentic and interactive envi-
ronments.

2.2 LLMS-BASED ROLE-PLAYING

The advancements in comprehension and generative capabilities of LLMs have laid the foundation
for role-playing. Existing role-playing methods can be categorized into nonparametric prompt en-
gineering and parametric fine-tuning. The subjects of role-playing are typically real celebrities or
fictional characters from literature and art.

In nonparametric prompt engineering, Xu et al. (2024) leverage character descriptions and mem-
ory retrieval enabling general LLMs to make persona-driven decisions. In parametric fine-tuning,
Wang et al. (2024) constructed 100 character profiles from public scripts, subsequently generat-
ing knowledge-infused question-answering pairs with GPT. Li et al. (2023) further broadened the
scope of character sources to novels, TV shows, and wiki, while enriching multi-turn dialogue data
by directly extracting and synthesizing. Zhou et al. (2024) developed Chinese role-playing models
allowing flexible configuration in attributes and styles of characters. Shao et al. (2023) extracted
and refined characters’ experiences with the assistance of GPT according to profiles collected from
wiki. Lu et al. (2024) proposed a self-alignment approach and construct fine-tuning data based on
the responses of target LLMs to role-specific and out-of-scope queries.

Although existing work has made much progress, the profile of characters are often detailed and the
behavioral data used for modeling is generally abundant. Role-playing for general users on social
media with sparse data remains unexplored.

3 TASK DEFINITION

Conventional role-playing tasks often establish a predetermined scenario S where each agent ai
is assigned detailed character profile pi, typically encompassing attributes such as identity, back-
ground, objective, and personality. Agents need to interact with each other guided by their goals
to advance the plot. In a complete interaction cycle, each agent’s response conditioned on profile
pi is shaped by the scenario and the preceding communicative acts of other agents, which can be
formalized as:

oi = Gi(pi, S, o1, o2, ..., oi−1), i ∈ {1, 2, ..., N}, (1)

where Gi and oi represent the generating function and the response of role ri, respectively. The
sampled responses are subsequently used to evaluate the character’s fidelity.

Considering the forms of user activity in social media contexts, modifications to the above task are
required to ensure its suitability. Users on social media post and comment on specific events and
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topics. User comments, as a form of personalized expression, can be used to achieve and evaluate
personalized role-playing. Let P be a root post under which the target user uo leaves a comment c0.
P comprises a title t and a body b. We define the interaction history H preceding c0 as {(ui, ci)}Ni=1,
where ci is the i-th comment created by user ui below the root post. We task LLMs to generate a
simulated comment ĉ0 in the context of P and H:

ĉ0 = G(P,H), (2)
H = [(u1, c1), (u2, c2), ..., (uN , cN )] (3)

Ideally, the personalized role-playing system would grasp the distinct linguistic patterns and seman-
tic nuances within the target user’s comments.

4 BENCHMARK CONSTRUCTION

Figure 1: An overview of IDRole construction. The raw data from reddit consists of main posts and
multiple comment threads. We reconstruct the raw data into samples containing post information,
comment history, and ground-truth comments. The samples are sorted by the depth of the target
comments to avoid possible data leakage.

Considering personalized role-playing should be applicable to diverse target individuals, we collect
user data from a diverse range of interest-based communities instead of data of notable users. The
overview of IDRole construction is shown in Figure 5. We first select Reddit as data source since
it contains millions of communities of interest called subreddits and provides free and convenient
data access API. Then we obtain target users from selected influential subreddits such as science
and technology. Specifically, we scan the most recent top hot posts in each subreddit and record the
posters and commenters within the first two levels in comment thread. Active users are filtered out
according to the influence of posts and comments measured by karma value from Reddit. The scan
will terminate automatically once the number of active users reaches the preset threshold of 80. For
each active user, we request the API and retrieve the most recently delivered posts and comments up
to the API’s retrieval limit chronologically. We manually inspect the retrieved posts and comments,
excluding active users who had set the content to private and finally obtaining 67 valid active users.
Subsequently we reconstruct the entire comment thread for each retrieved comment by recursively
traversing upwards according to the parent pointer of each comment node. The traversal enables us
to gather all comments preceding the one of target user and the root post, along with their respective
authors. We totally obtain 27,585 raw posts and 21,399 raw comments with their context.

In processing the raw posts, we filter out posts containing multi-modal content including images and
videos and finally obtain 7,221 text-based posts. In processing the raw comments with their context,
we assign a “NULL” string to the comment history, post title, and post body fields when they are
found to be empty strings, obtaining the same number of processed comments. To adapt to the
personalized role-playing task on social media, we treat the combination of a main post, comment
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history, and a comment delivered by target users as a single sample. To avoid possible data leakage,
where the comment history of one sample might contain the target comment of another, we sort the
samples by the depth of the target comment within the comment thread in ascending order. Samples
with greater target comment depth are preferentially selected for the test set.

5 EXPERIMENTS

5.1 MODEL AND DATA PREPARATION

We conduct personalized role-playing evaluation based on LLaMA3-8B-Instruct and Qwen2.5-7B-
Instruct. In zero-shot setting, we also report the performance of reasoning model Qwen3-8B fine-
tuned on Chain-of-Thought(CoT) data of DeepSeek-R1, LLaMA3-70B-Instruct and closed-source
commercial model GPT-4.1. To analysis the potential of small language models in personalized
role-playing, we also conduct evaluation on LLaMA-3.2-3B-Instruct and Qwen2.5-3B-Instruct. For
data preparation, we sort the processed samples by the depth of target comment within comment
thread to avoid data contamination. We then split the dataset, with the first 60% of the samples as
the training set and the remaining part as the test set. GPT-4.1 is employed for LLM-as-Judge. The
prompt templates for model inference and LLM-as-Judge are provided in Appendix.

5.2 EVALUATION

5.2.1 METRICS

We evaluate the quality of personalized role-playing from the prospective of generation. Given
a simulated comment and the corresponding golden comment from the target user, we calculate
the lexical and semantic similarity between the two above comments based on ROUGE score and
BERTScore. To further evaluate the personalization of simulated comments, we introduce LLM-as-
Judge and summarize three key dimensions, which are detailed as follows:

• Semantic & Stance Fidelity (SS): Simulated comments are expected to not only preserve the core
meaning of the golden comments, but also to faithfully reproduce the authors’ attitude and stance.

• Contextual & Interactional Coherence (CI): Simulated comments are expected to be thematically
relevant and engage proactively with the preceding comments within the comment thread.

• Linguistic & Stylistic Fidelity (LS): Simulated comments are expected to adopt the similar lin-
guistic features such as grammatical structure and lexicon, while imitating the specific style and
tone.

5.2.2 EVALUATED METHODS

We evaluate four methods applicable to personalized role-playing including few-shot prompt, SFT,
DPO, and GRPO from the technical perspective of prompt engineering, fine-tuning, and reinforce-
ment learning.

• Few-shot prompt (FS): Considering the scarcity of user data, we first evaluate LLMs under few-
shot setting. Specifically, we select two comments with their context for each target user as
demonstrations. LLMs are then prompted to infer persona, learn expressive patterns, and out-
put personalized comments.

• Supervised Fine-Tuning (SFT): SFT is typically used to improve the task-solving and instruction-
following capabilities of LLMs. We conduct SFT training on golden comments conditioned on
their context. The conciseness and stylistic diversity inherent in social media comments motivate
an investigation into the effectiveness of SFT within this challenging, data-limited domain.

• Direct Preference Optimization (DPO): DPO derives the analytical expression for the optimal
reward function and constructs a loss function depending solely on the current policy, the reference
policy and preference pair for direct optimization of model parameters, eliminating the need to
train a reward model. We utilize DPO to model personalization from the nuances between golden
comments of target users and general comments produced by general LLMs.
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• Group Relative Policy Optimization (GRPO): GRPO samples a set of completions for each prompt
and calculate the relative advantage of each completion within the group according to its reward.
The loss function of GRPO encourages model to maximize the advantage while controlling the
KL divergence between current and reference policy. We utilize Qwen2.5-32B-Instruct to score
the completion and return rewards averaged from three LLM-as-Judge metrics for model update.

The implementation details for the evaluated methods are provided in Appendix.

5.3 EXPERIMENTAL RESULTS AND ANALYSIS

5.3.1 OVERALL RESULTS

Table 1: The average results across all target users for each evaluated role-playing method. In each
group characterized by the original LLM, bold figures indicate the best result in each evaluation
dimension, while the underlined figures denote the second best one.

Method BERTScore
ROUGE LLM-as-Judge

ROUGE-1 ROUGE-2 ROUGE-L SS CI LS Avg.

LLaMA-3.2-3B-Instruct
Few-shot 0.836 0.124 0.011 0.091 1.404 1.998 1.555 1.652
RAG 0.832 0.143 0.018 0.099 1.529 2.112 1.640 1.760
SFT 0.837 0.117 0.013 0.088 1.309 1.828 1.441 1.526
DPO 0.833 0.095 0.010 0.075 1.310 1.825 1.410 1.515
GRPO 0.825 0.157 0.018 0.096 1.925 2.814 1.998 2.246

LLaMA-3-8B-Instruct
Few-shot 0.828 0.155 0.015 0.096 1.863 2.764 1.906 2.178
RAG 0.834 0.147 0.020 0.102 1.720 2.501 1.851 2.024
SFT 0.838 0.113 0.013 0.087 1.361 1.974 1.473 1.603
DPO 0.830 0.098 0.010 0.074 1.355 1.951 1.485 1.597
GRPO 0.831 0.152 0.014 0.097 2.076 3.166 2.164 2.469

Qwen2.5-3B-Instruct
Few-shot 0.834 0.132 0.012 0.088 1.821 2.672 1.875 2.123
RAG 0.833 0.147 0.020 0.097 1.840 2.637 1.859 2.112
SFT 0.838 0.118 0.014 0.088 1.434 2.044 1.579 1.686
DPO 0.837 0.112 0.011 0.082 1.542 2.258 1.651 1.817
GRPO 0.828 0.153 0.016 0.092 1.980 2.963 2.013 2.319

Qwen2.5-7B-Instruct
Few-shot 0.834 0.127 0.010 0.086 1.782 2.622 1.844 2.083
RAG 0.834 0.144 0.016 0.095 1.920 2.817 1.958 2.232
SFT 0.837 0.139 0.013 0.096 1.709 2.528 1.856 2.031
DPO 0.833 0.097 0.007 0.073 1.668 2.455 1.779 1.967
GRPO 0.826 0.147 0.014 0.090 2.163 3.212 2.171 2.515

Qwen3-8B
Few-shot 0.829 0.137 0.012 0.089 1.782 2.658 1.906 2.115

LLaMA-3-70B-Instruct
Few-shot 0.831 0.152 0.014 0.097 2.076 3.166 2.164 2.469

GPT-4.1
Few-shot 0.833 0.149 0.014 0.094 2.456 3.643 2.602 2.900

The average results across all target users for each evaluated role-playing method are shown in
Table 1. We note the following key observations throughout our experiments:

• All evaluated methods do not perform well in personalization for the group of target users: On
BERTScore, the performance of the methods varies slightly, indicating that no significant semantic
distortion occurs on the validation set. On ROUGE scores, the generally low values show that
LLMs adhere to their own generative patterns rather than emulating the lexical habits of specific
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users. According to the scores from LLM judge, maintaining semantic and stance fidelity, along
with linguistic and stylistic fidelity, pose more challenges for LLM role-playing than achieving
context and interaction coherence, which is supported by the inherent abilities of base LLMs to
understand and generate text.

• GRPO consistently outperforms other methods across multiple evaluation metrics, and RAG per-
forms relatively better in prompt-based methods. We can observe that performance differences
between methods are primarily reflected in the LLM-as-Judge metrics. The SS, CI, and LS scores
of GRPO are consistently higher than other methods, demonstrating that the point-wise person-
alized rewards provided by an external reward model that compares simulated and ground-truth
comments can effectively improve policy model’s personalization capabilities within a reinforce-
ment learning framework. The performance degradation of other training-based methods may
stem from the scarcity of user data and the discrepancies between individual values of users and
alignment values of LLMs. RAG may introduce inconsistencies in performance by providing
contextual knowledge that conflicts with the model’s internal parameter knowledge. Neverthe-
less, the ROUGE scores and LLM-as-Judge scores demonstrate its effectiveness in improving the
performance of personalization.

• Merely scaling model parameters or applying reasoning models is insufficient to substantially en-
hance the level of personalization: To investigate the effect of scaling model parameters, we con-
duct evaluation on LLaMA-3-70B-Instruct and compare the results with LLaMA-3-8B-Instruct.
We can observe that there is almost no improvement in BERTScore and ROUGE scores. For
LLM-as-Judge, scaling up model parameters has a more pronounced effect on the CI score than
on the SS and LS scores, illustrating that merely scaling up models is insufficient to substantially
promote the level of personalization. We also explore the performance of reasoning model under
zero-shot setting. Compared with LLaMA-3-8B-Instruct and Qwen2.5-7B-Instruct, Qwen3-8B
finetued with Chain-of-Thought data distilled from DeepSeek-R1-0528 does not exhibit perfor-
mance advantages considering the inference-time computing, with only linguistic style fidelity
score achieves the best among them.

5.3.2 ANALYSIS OF SMALL LANGUAGE MODELS

Small language models feature in low latency, low computational costs, and on-device deployment,
exhibiting potential in large-scale social simulation, extensive character customization, and privacy-
concerned scenarios. To explore the personalized role-playing performance of small language mod-
els, we also conduct evaluation based on LLaMA-3.2-3B-Instruct and Qwen2.5-3B-Instruct. Sepa-
rated results on small language models are shown in Table 2. The results shown in Table 1 demon-
strate that the performance gap between small models and larger models in personalized role-playing
task is not significant and under specific methods, small models even perform better than larger mod-
els. Specifically, for LLaMA-3.2-3B-Instruct, BERTScore and ROUGE scores are close to those of
LLaMA-3-8B-Instruct, and the mean gap of Avg scores in LLM-as-Judge compared with LLaMA-
3-8B-Instruct is 0.234. For Qwen2.5-3B-Instruct, we can observe that BERTScore and ROUGE
scores surpass those of Qwen2.5-7B-Instruct, and under zero-shot setting, Qwen2.5-3B-Instruct
outperform Qwen2.5-7B-Instruct across all LLM-as-Judge metrics, while the average gap of Avg
scores in LLM-as-Judge under the other settings is 0.154. The surpass may be because Qwen2.5-
3B-Instruct tend to generate concise responses which align more closely with the characteristics of
social media comments. These findings highlight the value of developing methods for personalized
adaptation on small language models.

5.3.3 CHALLENGE ANALYSIS: LENGTH OF TARGET COMMENTS

In this section, we investigate the relation between personalized role-playing performance and se-
quence length of ground-truth comments under RAG and SFT settings. Specifically, we partition
the test samples of all users into bins based on the sequence length of ground-truth comments, and
then compute the average score within each bin. The result is shown in Figure 2. We can observe
that under the RAG setting, personalization scores exhibit a trend of initially rising then declining as
target comment length increases, illustrating that for users accustomed to posting concise comments,
the model may struggle to extract effective personalization information from historical interactions,
thereby hindering personalization modeling. Conversely, for users accustomed to posting long com-
ments, the personalization information provided by RAG proves insufficient to support long-context
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Table 2: The average results across all target users for each evaluated role-playing method on
LLaMA-3.2-3B-Instruct and Qwen2.5-3B-Instruct. In each group characterized by the original
LLM, bold figures indicate the best result in each evaluation dimension, while the underlined figures
denote the second best one.

Method BERTScore
ROUGE LLM-as-Judge

ROUGE-1 ROUGE-2 ROUGE-L SS CI LS Avg.

LLaMA-3.2-3B-Instruct
few-shot 0.836 0.124 0.011 0.091 1.404 1.998 1.555 1.652
RAG 0.832 0.143 0.018 0.099 1.529 2.112 1.640 1.760
SFT 0.837 0.117 0.013 0.088 1.309 1.828 1.441 1.526
DPO 0.833 0.095 0.010 0.075 1.310 1.825 1.410 1.515
GRPO 0.825 0.157 0.018 0.096 1.925 2.814 1.998 2.246

Qwen2.5-3B-Instruct
few-shot 0.834 0.132 0.012 0.088 1.821 2.672 1.875 2.123
RAG 0.833 0.147 0.020 0.097 1.840 2.637 1.859 2.112
SFT 0.838 0.118 0.014 0.088 1.434 2.044 1.579 1.686
DPO 0.837 0.112 0.011 0.082 1.542 2.258 1.651 1.817
GRPO 0.828 0.153 0.016 0.092 1.980 2.963 2.013 2.319

personalized generation. Meanwhile, under the SFT setting, personalization scores exhibit a similar
trend to RAG, which demonstrates that SFT also struggles to tackle the personalization modeling
challenges posed by user interactions that are either excessively brief or excessively long. The results
highlight the need to develop methods for mining, refining, and efficiently utilizing personalized in-
formation.

(a) Llama-3-8B-Instruct (RAG) (b) Qwen2.5-7B-Instruct (RAG)

(c) Llama-3-8B-Instruct (SFT) (d) Qwen2.5-7B-Instruct (SFT)

Figure 2: Average LLM-as-Judge scores of length bins under RAG and SFT settings.

5.3.4 CHALLENGE ANALYSIS: NOISE IN CONTEXT

Noise is ubiquitous on social media. In this section, we focus on the persuasive noise in the context
of target comments created by malicious attackers posing as genuine participants in topic discus-
sion. Such persuasive noise attempts to reverse the original polarity of target comments, thereby
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Table 3: The attack success rate towards training-based methods including SFT and DPO.

Method N1 N2 N2/N1(%)

Llama-3-8B-Instruct (SFT) 2,073 777 37.48
Qwen2.5-7B-Instruct (SFT) 1,931 997 51.63
Llama-3-8B-Instruct (DPO) 2,179 653 29.97
Qwen2.5-7B-Instruct (DPO) 1,665 959 57.60

compromising the fidelity of personalized role-playing approaches. The process of attack can be
formalized as follows:

ĉ0
′ = G(P,H ′) (4)

H ′ = [(u1, c1), ...(uN , cN ), (u′
N+1, c

′
N+1)] (5)

where the noise c′N+1 in the disturbed comment history H ′ is introduced by the attacker u′
N+1. We

define three polarities for the ground-truth comment c0, the normal simulated comment ĉ0, and the
attacked simulated comment ĉ0′: positive, neutral, and negative. We consider an attack successful
when the polarity of ĉ0 matches that of c0, while the polarity of ĉ0′ differs from that of c0:

ASR =
N2

N1
(6)

N1 = |{(c(j)0 , ĉ0
(j), ĉ0

′(j))|plr(ĉ0(j)) = plr(c
(j)
0 ), j ∈ {1, 2, ...,M}}| (7)

N2 = |{(c(j)0 , ĉ0
(j), ĉ0

′(j))|plr(ĉ0(j)) ̸= plr(ĉ0
′(j)), j ∈ {1, 2, ...M}}| (8)

where j is the sample index and M is the total number of samples, and plr represents the polarity
of the comment.

To explore the robustness of role-playing methods to the noise, we conduct an adversarial evaluation
experiment, where GPT-4.1 is utilized as the attack model to analyze the views in the ground-truth
comments and generate the persuasive noise. We show the attack results towards SFT-based and
DPO-based personalized role-playing in Table 3. We can observe that all tested methods exhibit vul-
nerability to persuasion injected into context, with the lowest attack success rate reaching 29.97%.
Meanwhile, the finetuned Qwen2.5-7B-Instruct is more susceptible to persuasive noise than the fine-
tuned Llama-3-8B-Instruct. The results call for more research efforts into secure and controllable
personalized role-playing.

6 CONCLUSION

In this paper, we propose the task of personalized role-playing on social media by reconstruct-
ing discussions under specific topics into utterance-level comment simulations to assist more fine-
grained individual simulation. Considering the lack of readily available public datasets for task
evaluation and the potential issue of data contamination, we construct a user-centered and newly
collected dataset for evaluating existing role-playing methods. To comprehensively evaluate the per-
formance of personalized role-playing, we introduce both classic text similarity metrics and LLM-
as-Judge metrics across three key dimensions, referring to the comparison between the simulated
comments and ground-truth comments. We classify existing role-playing methods into prompt-
based and training-based categories and evaluate their performance on personalization. Evaluation
results reveal that RAG and GRPO are the two methods that perform relatively better among the two
categories. However, the generally low personalization scores indicate that existing role-playing
methods struggle to achieve realistic personalized modeling. We also observe that merely scaling
model parameters or utilizing reasoning models yields limited gains in personalization. The adver-
sarial attack experiment uncovers the vulnerability of evaluated methods to persuasive noise injected
into context. In future work, we will dedicate more efforts to developing role-playing methods ca-
pable of mining and efficiently utilizing personalized information from social media users, while
simultaneously striving to enhance their security and robustness.
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A APPENDIX

A.1 USE OF LLMS

We only use LLMs to refine the textual sections of the paper and selectively adopt the optimization
suggestions provided by LLMs.
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A.2 IMPLEMENTATION DETAILS

In our evaluation, the loading and inference of open-source LLMs are implemented based on the
HuggingFace’s Transformers Library. Under RAG setting, the construction of index and retrieval
of relevant interactions are implemented with faiss library using bge-m3 embedding model and
inner-product similarity. The LoRA training for SFT and DPO is performed using LLaMA-Factory
framework. Training and evaluation within GRPO are implemented with verl and vllm. For SFT
and DPO, we set the number of training epoch to 3, with learning rate set to 1e-4, LoRA rank set to
8, and LoRA alpha set to 16. Experiments of SFT and DPO are conducted on 8 NVIDIA RTX 3090
GPUs. We enable length truncation during the training process, with the maximum input sequence
length set to 2048 for SFT and 768 for DPO. For GRPO, we set the number of training epoch to 1
considering the time cost, with learning rate set to 1e-6, maximum prompt length set to 512, and
maximum response length set to 1024. Experiments of GRPO are conducted on 4 NVIDIA A100
GPUs. We do not observe model collapse during the training of the above methods.

A.3 PROMPT TEMPLATES

Figure 3: The prompt used to generate simulated comments under few-shot setting

Figure 4: The prompt used to generate simulated comments under RAG setting

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 5: The prompt used to evaluate simulated comments and provide rewards for GRPO training
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