

IMITATION GAME: TOWARD COMPREHENSIVE EVALUATION ON PERSONALIZED ROLE-PLAYING ON SOCIAL MEDIA

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Social simulation observes the emergence of complex macro-scopic social pat-
 014 terns from individual interactions within a virtual social environment. A common
 015 practice in social simulation is to model individual as a statistical average of a
 016 specific group, failing to capture individual heterogeneity. To model such hetero-
 017 geneity, we propose a personalized role-playing task in the context of social media,
 018 which provides environment for social simulation with massive authentic user in-
 019 teractions. As no public social media dataset concentrates especially on historical
 020 interactions of individual user for personalization, we collect data from reddit and
 021 construct our own dataset, consisting of 67 users, 7K posts, and 21K comments.
 022 And we introduce three key dimensions for personalized role-playing and conduct
 023 comprehensive evaluation on feasible role-playing methods. The results yield the
 024 following key findings:(1) existing methods struggle to achieve fine-grained per-
 025 sonalized modeling; (2) merely scaling model parameters or applying reasoning
 026 models is insufficient to substantially enhance the level of personalization; (3)
 027 the evaluated methods exhibit significant vulnerability to noise within interaction
 028 context.

1 INTRODUCTION

031 Large Language Models (LLMs) have made great progress in long-context comprehension (Zhao
 032 et al., 2024a; Qiu et al., 2025), emotion perception (Chen et al., 2023; Zhao et al., 2024b) and
 033 complex reasoning (Juneja et al., 2024; Cai et al., 2025), promoting their application in social sim-
 034 ulation. In LLM-based social simulation, LLMs are usually endowed with various social identities
 035 and characteristics to simulate individual reactions in specific scenarios. Precise simulation at the
 036 individual level is fundamental to the credibility and effectiveness of social simulation. As a re-
 037 sult, LLM role-playing, which aims for imitation with high-fidelity, is widely integrated into social
 038 simulation. However, existing LLM role-playing (Shao et al., 2023; Wu et al., 2024) excels at simu-
 039 lating archetypal figures, such as artistic characters and celebrities, as these figures typically possess
 040 detailed profiles and abundant interaction records. However, its ability to simulate ordinary individ-
 041 uals given limited observation remains to be explored. Since ordinary people’s behaviors are most
 042 vividly reflected in social media interactions, it is very practical to investigate LLM role-playing in
 043 such contexts.

044 Role-playing for social media users is non-trivial, as it involves three main challenges: 1) **incom-**
 045 **plete or missing profile**: The majority of social media users refrain from uploading or displaying
 046 genuine personal information for privacy concerns, rendering profile-driven role-playing methods
 047 inapplicable; 2) **interaction data sparsity**: social media users tend to comment on a small number
 048 of posts that interest them, and a significant proportion of social media users are passive observers,
 049 rarely contributing to discussions; 3) **language dependency**: unlike artistic works where characters
 050 can be portrayed through facial expressions and body language, accessible behavior of social media
 051 user primarily consists of posts and comments in natural language form, which are typically concise,
 052 emotional, and informal, making language modeling highly challenging.

053 In this paper, we propose a novel task called **Personalized Role-playing on Social Media (PRISM)**.
 The task requires LLMs to simulate ordinary social media users, mimicking their perspectives,

stances, and linguistic habits to participate in discussions on specific topics. The task is designed in utterance level, where a simulated comment is compared with the corresponding ground-truth comment from target user for evaluation. To study this new task, we collect the most recent user data and construct a high-quality benchmark called IDRole, since no public social media dataset focuses especially on historical interactions of individual user for personalization and data previously collected from social media platform poses a potential risk of data contamination. We first select topic communities with high popularity such as science and technology. Then we scan the most popular posts within each community and identify active users from the posters and commenters of these posts. After retrieving the historical posts and comments from each active users, we refine the raw data and reorganize each sample into a free-form text completion problem with a given context. Finally we obtain IDRole, containing 67 users and 21K samples refined from 7K posts and 21K comments. Each sample consists of an original post, the conversational context, and a ground-truth comment of the target user.

To promote further development, we conduct a comprehensive evaluation and analysis of role-playing methods on IDRole, including few-shot prompting, SFT, DPO (Rafailov et al., 2023), and GRPO (Shao et al., 2024). Our evaluation framework for role-playing methods integrates both classical similarity and LLM-as-Judge metrics that consider three key personalization dimensions. We assess the performance of these methods on both open-source and commercial LLMs. Additionally, we explore the potential of small language models in personalized role-playing, analyze the correlation between personalized role-playing performance and length of target ground-truth comments, and study the robustness of role-playing methods against noise injected into discussion context. The key findings derived from the experimental results are as follows: (1) all evaluated role-playing methods yield unsatisfactory performance in personalized role-playing on social media; (2) merely scaling model parameters or applying reasoning models is insufficient to substantially enhance the level of personalization; (3) the evaluated role-playing methods exhibit vulnerability to the noise in the context.

Overall, the main contributions of this work can be summarized as follows:

- We propose the personalized role-playing task on social media. To the best of our knowledge, we are the first to investigate the ability of role-playing methods to model general users from a generative perspective, based on real-world social media data.
- We construct a new benchmark called IDRole, considering the lack of readily available datasets for task evaluation and potential data contamination issue. IDRole contains 67 social media users and 21K samples at utterance-level refined from 7K posts and 21K comments.
- We conduct a comprehensive evaluation and analysis on role-playing methods. The experiment results demonstrate that existing role-playing methods struggle to perform well on IDRole and highlight the need to develop strong and robust personalized role-playing method on social media with sufficient attention to the potential of small language models.

2 RELATED WORK

2.1 SOCIAL SIMULATION

Social simulation is providing new tools and perspectives for sociological research. Based on simulation granularity, social simulation can be categorized into the simulation of individual behavior, local interactions, and society system.

Individual simulation utilizes LLM agents to simulate specific individuals, focusing on modeling the characteristics of a single person. In individual simulation, explicit characteristics of individuals typically derive from demographic information or known character-related knowledge, while implicit characteristics require mining from behavioral and psychological activities. Horton (2023) utilizes LLM to simulate individual behavior in a predefined economic scenario, which is assigned different social preferences such as fairness, total benefit, and personal benefit. Argyle et al. (2023) construct GPT-3 simulated samples matched to the demographic characteristics of participants in the American National Election Studies and instruct these samples to simulate human voting choices. Ge et al. (2024) incorporate character-specific attributes into the data synthesis prompt, which steer the LLM to generate unique synthetic data aligning with the designated persona’s perspective.

108 Simulation for local interactions involves multiple agents with designated roles within specific sce-
 109 narios, focusing on both agent-agent and agent-environment interactions, with simulation processes
 110 driven by character motivations or predefined tasks. Zhou et al. (2023) construct a social interaction
 111 environment featuring diverse social scenarios, where agents attempt to achieve social goals such as
 112 cooperation and competition through various forms of communication. Qian et al. (2024) simulate
 113 the software development process, wherein software agents, embodying professional roles such as
 114 programmers, code reviewers, and test engineers, engage in collaborative dialogue to accomplish
 115 tasks specific to each development phase.

116 Social simulation constitutes a significant extension of local simulation in both spatiotemporal scale
 117 and system complexity, aiming to capture and reproduce emergent macroscopic social dynamics
 118 from microscopic interactions over a broader scope. Mou et al. (2024) simulate the reaction of
 119 group to specific social movements on social media, with ordinary users modeled by mathematical
 120 Agent-based models (ABMs). Zhang et al. (2025) construct a world model for social simulation
 121 containing 10 million individuals and personalize each user with predicted demographic attributes.
 122 During evaluation, the macro-level metrics are computed by aggregating individual questionnaire
 123 responses.

124 While existing studies in social simulation have demonstrated considerable efficacy, they typically
 125 parameterize individuals using a limited set of predefined attributes. Consequently, there is a gap
 126 in research on the fine-grained simulation of individuals within more authentic and interactive envi-
 127 ronments.

128

129 2.2 LLMs-BASED ROLE-PLAYING

130 The advancements in comprehension and generative capabilities of LLMs have laid the foundation
 131 for role-playing. Existing role-playing methods can be categorized into nonparametric prompt en-
 132 gineering and parametric fine-tuning. The subjects of role-playing are typically real celebrities or
 133 fictional characters from literature and art.

134 In nonparametric prompt engineering, Xu et al. (2024) leverage character descriptions and mem-
 135 ory retrieval enabling general LLMs to make persona-driven decisions. In parametric fine-tuning,
 136 Wang et al. (2024) constructed 100 character profiles from public scripts, subsequently generat-
 137 ing knowledge-infused question-answering pairs with GPT. Li et al. (2023) further broadened the
 138 scope of character sources to novels, TV shows, and wiki, while enriching multi-turn dialogue data
 139 by directly extracting and synthesizing. Zhou et al. (2024) developed Chinese role-playing models
 140 allowing flexible configuration in attributes and styles of characters. Shao et al. (2023) extracted
 141 and refined characters’ experiences with the assistance of GPT according to profiles collected from
 142 wiki. Lu et al. (2024) proposed a self-alignment approach and construct fine-tuning data based on
 143 the responses of target LLMs to role-specific and out-of-scope queries.

144

145 Although existing work has made much progress, the profile of characters are often detailed and the
 146 behavioral data used for modeling is generally abundant. Role-playing for general users on social
 147 media with sparse data remains unexplored.

148

149 3 TASK DEFINITION

150

151 Conventional role-playing tasks often establish a predetermined scenario S where each agent a_i
 152 is assigned detailed character profile p_i , typically encompassing attributes such as identity, back-
 153 ground, objective, and personality. Agents need to interact with each other guided by their goals
 154 to advance the plot. In a complete interaction cycle, each agent’s response conditioned on profile
 155 p_i is shaped by the scenario and the preceding communicative acts of other agents, which can be
 156 formalized as:

157

$$o_i = G_i(p_i, S, o_1, o_2, \dots, o_{i-1}), i \in \{1, 2, \dots, N\}, \quad (1)$$

158

159 where G_i and o_i represent the generating function and the response of role r_i , respectively. The
 160 sampled responses are subsequently used to evaluate the character’s fidelity.

161

Considering the forms of user activity in social media contexts, modifications to the above task are
 required to ensure its suitability. Users on social media post and comment on specific events and

topics. User comments, as a form of personalized expression, can be used to achieve and evaluate personalized role-playing. Let P be a root post under which the target user u_o leaves a comment c_o . P comprises a title t and a body b . We define the interaction history H preceding c_o as $\{(u_i, c_i)\}_{i=1}^N$, where c_i is the i -th comment created by user u_i below the root post. We task LLMs to generate a simulated comment \hat{c}_0 in the context of P and H :

$$\hat{c}_0 = G(P, H), \quad (2)$$

$$H = [(u_1, c_1), (u_2, c_2), \dots, (u_N, c_N)] \quad (3)$$

Ideally, the personalized role-playing system would grasp the distinct linguistic patterns and semantic nuances within the target user's comments.

4 BENCHMARK CONSTRUCTION

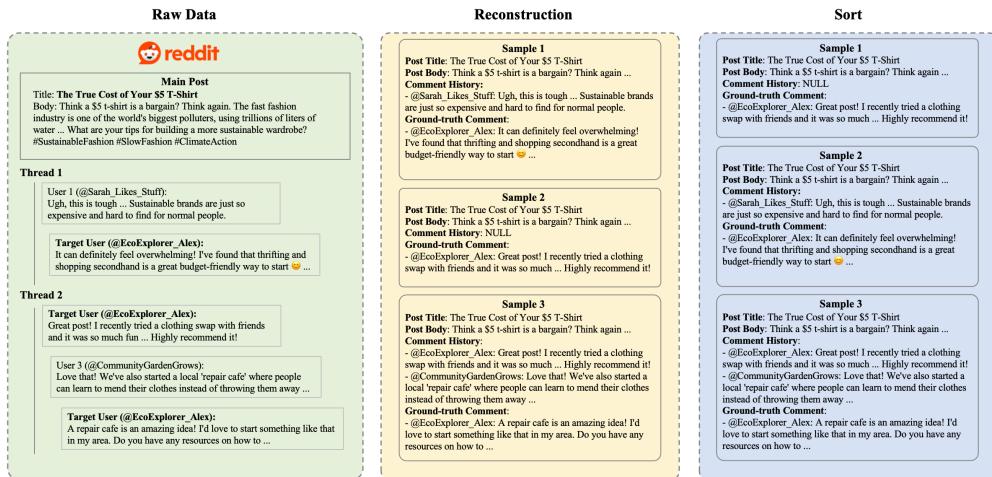


Figure 1: An overview of IDRole construction. The raw data from reddit consists of main posts and multiple comment threads. We reconstruct the raw data into samples containing post information, comment history, and ground-truth comments. The samples are sorted by the depth of the target comments to avoid possible data leakage.

Considering personalized role-playing should be applicable to diverse target individuals, we collect user data from a diverse range of interest-based communities instead of data of notable users. The overview of IDRole construction is shown in Figure 5. We first select Reddit as data source since it contains millions of communities of interest called subreddits and provides free and convenient data access API. Then we obtain target users from selected influential subreddits such as science and technology. Specifically, we scan the most recent top hot posts in each subreddit and record the posters and commenters within the first two levels in comment thread. Active users are filtered out according to the influence of posts and comments measured by karma value from Reddit. The scan will terminate automatically once the number of active users reaches the preset threshold of 80. For each active user, we request the API and retrieve the most recently delivered posts and comments up to the API's retrieval limit chronologically. We manually inspect the retrieved posts and comments, excluding active users who had set the content to private and finally obtaining 67 valid active users. Subsequently we reconstruct the entire comment thread for each retrieved comment by recursively traversing upwards according to the parent pointer of each comment node. The traversal enables us to gather all comments preceding the one of target user and the root post, along with their respective authors. We totally obtain 27,585 raw posts and 21,399 raw comments with their context.

In processing the raw posts, we filter out posts containing multi-modal content including images and videos and finally obtain 7,221 text-based posts. In processing the raw comments with their context, we assign a "NULL" string to the comment history, post title, and post body fields when they are found to be empty strings, obtaining the same number of processed comments. To adapt to the personalized role-playing task on social media, we treat the combination of a main post, comment

216 history, and a comment delivered by target users as a single sample. To avoid possible data leakage,
 217 where the comment history of one sample might contain the target comment of another, we sort the
 218 samples by the depth of the target comment within the comment thread in ascending order. Samples
 219 with greater target comment depth are preferentially selected for the test set.
 220

221 5 EXPERIMENTS

223 5.1 MODEL AND DATA PREPARATION

225 We conduct personalized role-playing evaluation based on LLaMA3-8B-Instruct and Qwen2.5-7B-
 226 Instruct. In zero-shot setting, we also report the performance of reasoning model Qwen3-8B fine-
 227 tuned on Chain-of-Thought(CoT) data of DeepSeek-R1, LLaMA3-70B-Instruct and closed-source
 228 commercial model GPT-4.1. To analysis the potential of small language models in personalized
 229 role-playing, we also conduct evaluation on LLaMA-3.2-3B-Instruct and Qwen2.5-3B-Instruct. For
 230 data preparation, we sort the processed samples by the depth of target comment within comment
 231 thread to avoid data contamination. We then split the dataset, with the first 60% of the samples as
 232 the training set and the remaining part as the test set. GPT-4.1 is employed for LLM-as-Judge. The
 233 prompt templates for model inference and LLM-as-Judge are provided in Appendix.

235 5.2 EVALUATION

237 5.2.1 METRICS

238 We evaluate the quality of personalized role-playing from the prospective of generation. Given
 239 a simulated comment and the corresponding golden comment from the target user, we calculate
 240 the lexical and semantic similarity between the two above comments based on ROUGE score and
 241 BERTScore. To further evaluate the personalization of simulated comments, we introduce LLM-as-
 242 Judge and summarize three key dimensions, which are detailed as follows:
 243

- 244 • Semantic & Stance Fidelity (SS): Simulated comments are expected to not only preserve the core
 245 meaning of the golden comments, but also to faithfully reproduce the authors' attitude and stance.
- 246 • Contextual & Interactional Coherence (CI): Simulated comments are expected to be thematically
 247 relevant and engage proactively with the preceding comments within the comment thread.
- 248 • Linguistic & Stylistic Fidelity (LS): Simulated comments are expected to adopt the similar lin-
 249 guistic features such as grammatical structure and lexicon, while imitating the specific style and
 250 tone.

252 5.2.2 EVALUATED METHODS

254 We evaluate four methods applicable to personalized role-playing including few-shot prompt, SFT,
 255 DPO, and GRPO from the technical perspective of prompt engineering, fine-tuning, and reinforce-
 256 ment learning.

- 258 • Few-shot prompt (FS): Considering the scarcity of user data, we first evaluate LLMs under few-
 259 shot setting. Specifically, we select two comments with their context for each target user as
 260 demonstrations. LLMs are then prompted to infer persona, learn expressive patterns, and out-
 261 put personalized comments.
- 262 • Supervised Fine-Tuning (SFT): SFT is typically used to improve the task-solving and instruction-
 263 following capabilities of LLMs. We conduct SFT training on golden comments conditioned on
 264 their context. The conciseness and stylistic diversity inherent in social media comments motivate
 265 an investigation into the effectiveness of SFT within this challenging, data-limited domain.
- 266 • Direct Preference Optimization (DPO): DPO derives the analytical expression for the optimal
 267 reward function and constructs a loss function depending solely on the current policy, the reference
 268 policy and preference pair for direct optimization of model parameters, eliminating the need to
 269 train a reward model. We utilize DPO to model personalization from the nuances between golden
 comments of target users and general comments produced by general LLMs.

270 • Group Relative Policy Optimization (GRPO): GRPO samples a set of completions for each prompt
 271 and calculate the relative advantage of each completion within the group according to its reward.
 272 The loss function of GRPO encourages model to maximize the advantage while controlling the
 273 KL divergence between current and reference policy. We utilize Qwen2.5-32B-Instruct to score
 274 the completion and return rewards averaged from three LLM-as-Judge metrics for model update.
 275

276 The implementation details for the evaluated methods are provided in Appendix.
 277

278 5.3 EXPERIMENTAL RESULTS AND ANALYSIS

280 5.3.1 OVERALL RESULTS

281 Table 1: The average results across all target users for each evaluated role-playing method. In each
 282 group characterized by the original LLM, **bold** figures indicate the best result in each evaluation
 283 dimension, while the underlined figures denote the second best one.
 284

286 Method	BERTScore	287 ROUGE			288 LLM-as-Judge			
		289 ROUGE-1	290 ROUGE-2	291 ROUGE-L	292 SS	293 CI	294 LS	295 Avg.
296 LLaMA-3.2-3B-Instruct								
Few-shot	0.836	0.124	0.011	0.091	1.404	1.998	1.555	1.652
RAG	0.832	<u>0.143</u>	0.018	0.099	1.529	<u>2.112</u>	1.640	1.760
SFT	0.837	0.117	<u>0.013</u>	0.088	1.309	1.828	1.441	1.526
DPO	0.833	0.095	0.010	0.075	1.310	1.825	1.410	1.515
GRPO	0.825	0.157	0.018	<u>0.096</u>	1.925	2.814	1.998	2.246
297 LLaMA-3-8B-Instruct								
Few-shot	0.828	0.155	<u>0.015</u>	0.096	1.863	2.764	1.906	2.178
RAG	0.834	0.147	0.020	0.102	1.720	2.501	1.851	2.024
SFT	0.838	0.113	0.013	0.087	1.361	1.974	1.473	1.603
DPO	0.830	0.098	0.010	0.074	1.355	1.951	1.485	1.597
GRPO	0.831	<u>0.152</u>	0.014	<u>0.097</u>	2.076	3.166	2.164	2.469
298 Qwen2.5-3B-Instruct								
Few-shot	0.834	0.132	0.012	0.088	1.821	<u>2.672</u>	<u>1.875</u>	<u>2.123</u>
RAG	0.833	<u>0.147</u>	0.020	0.097	<u>1.840</u>	2.637	1.859	2.112
SFT	0.838	0.118	0.014	0.088	1.434	2.044	1.579	1.686
DPO	0.837	0.112	0.011	0.082	1.542	2.258	1.651	1.817
GRPO	0.828	0.153	<u>0.016</u>	<u>0.092</u>	1.980	2.963	2.013	2.319
299 Qwen2.5-7B-Instruct								
Few-shot	0.834	0.127	0.010	0.086	1.782	2.622	1.844	2.083
RAG	0.834	<u>0.144</u>	0.016	<u>0.095</u>	<u>1.920</u>	<u>2.817</u>	<u>1.958</u>	<u>2.232</u>
SFT	0.837	0.139	0.013	0.096	1.709	2.528	1.856	2.031
DPO	0.833	0.097	0.007	0.073	1.668	2.455	1.779	1.967
GRPO	0.826	0.147	<u>0.014</u>	0.090	2.163	3.212	2.171	2.515
300 Qwen3-8B								
Few-shot	0.829	0.137	0.012	0.089	1.782	2.658	1.906	2.115
301 LLaMA-3-70B-Instruct								
Few-shot	0.831	0.152	0.014	0.097	2.076	3.166	2.164	2.469
302 GPT-4.1								
Few-shot	0.833	0.149	0.014	0.094	2.456	3.643	2.602	2.900

318 The average results across all target users for each evaluated role-playing method are shown in
 319 Table 1. We note the following key observations throughout our experiments:
 320

321 • All evaluated methods do not perform well in personalization for the group of target users: On
 322 BERTScore, the performance of the methods varies slightly, indicating that no significant semantic
 323 distortion occurs on the validation set. On ROUGE scores, the generally low values show that
 LLMs adhere to their own generative patterns rather than emulating the lexical habits of specific

324 users. According to the scores from LLM judge, maintaining semantic and stance fidelity, along
 325 with linguistic and stylistic fidelity, pose more challenges for LLM role-playing than achieving
 326 context and interaction coherence, which is supported by the inherent abilities of base LLMs to
 327 understand and generate text.

328 • GRPO consistently outperforms other methods across multiple evaluation metrics, and RAG per-
 329 forms relatively better in prompt-based methods. We can observe that performance differences
 330 between methods are primarily reflected in the LLM-as-Judge metrics. The SS, CI, and LS scores
 331 of GRPO are consistently higher than other methods, demonstrating that the point-wise person-
 332 alized rewards provided by an external reward model that compares simulated and ground-truth
 333 comments can effectively improve policy model’s personalization capabilities within a reinfor-
 334 cements learning framework. The performance degradation of other training-based methods may
 335 stem from the scarcity of user data and the discrepancies between individual values of users and
 336 alignment values of LLMs. RAG may introduce inconsistencies in performance by providing
 337 contextual knowledge that conflicts with the model’s internal parameter knowledge. Neverthe-
 338 less, the ROUGE scores and LLM-as-Judge scores demonstrate its effectiveness in improving the
 339 performance of personalization.

340 • Merely scaling model parameters or applying reasoning models is insufficient to substantially en-
 341 hance the level of personalization: To investigate the effect of scaling model parameters, we con-
 342 duct evaluation on LLaMA-3-70B-Instruct and compare the results with LLaMA-3-8B-Instruct.
 343 We can observe that there is almost no improvement in BERTScore and ROUGE scores. For
 344 LLM-as-Judge, scaling up model parameters has a more pronounced effect on the CI score than
 345 on the SS and LS scores, illustrating that merely scaling up models is insufficient to substantially
 346 promote the level of personalization. We also explore the performance of reasoning model under
 347 zero-shot setting. Compared with LLaMA-3-8B-Instruct and Qwen2.5-7B-Instruct, Qwen3-8B
 348 finetuned with Chain-of-Thought data distilled from DeepSeek-R1-0528 does not exhibit per-
 349 formance advantages considering the inference-time computing, with only linguistic style fidelity
 350 score achieves the best among them.

351 5.3.2 ANALYSIS OF SMALL LANGUAGE MODELS

352 Small language models feature in low latency, low computational costs, and on-device deployment,
 353 exhibiting potential in large-scale social simulation, extensive character customization, and privacy-
 354 concerned scenarios. To explore the personalized role-playing performance of small language mod-
 355 els, we also conduct evaluation based on LLaMA-3.2-3B-Instruct and Qwen2.5-3B-Instruct. Sep-
 356 arated results on small language models are shown in Table 2. The results shown in Table 1 demon-
 357 strate that the performance gap between small models and larger models in personalized role-playing
 358 task is not significant and under specific methods, small models even perform better than larger mod-
 359 els. Specifically, for LLaMA-3.2-3B-Instruct, BERTScore and ROUGE scores are close to those of
 360 LLaMA-3-8B-Instruct, and the mean gap of Avg scores in LLM-as-Judge compared with LLaMA-
 361 3-8B-Instruct is 0.234. For Qwen2.5-3B-Instruct, we can observe that BERTScore and ROUGE
 362 scores surpass those of Qwen2.5-7B-Instruct, and under zero-shot setting, Qwen2.5-3B-Instruct
 363 outperform Qwen2.5-7B-Instruct across all LLM-as-Judge metrics, while the average gap of Avg
 364 scores in LLM-as-Judge under the other settings is 0.154. The surpass may be because Qwen2.5-
 365 3B-Instruct tend to generate concise responses which align more closely with the characteristics of
 366 social media comments. These findings highlight the value of developing methods for personalized
 367 adaptation on small language models.

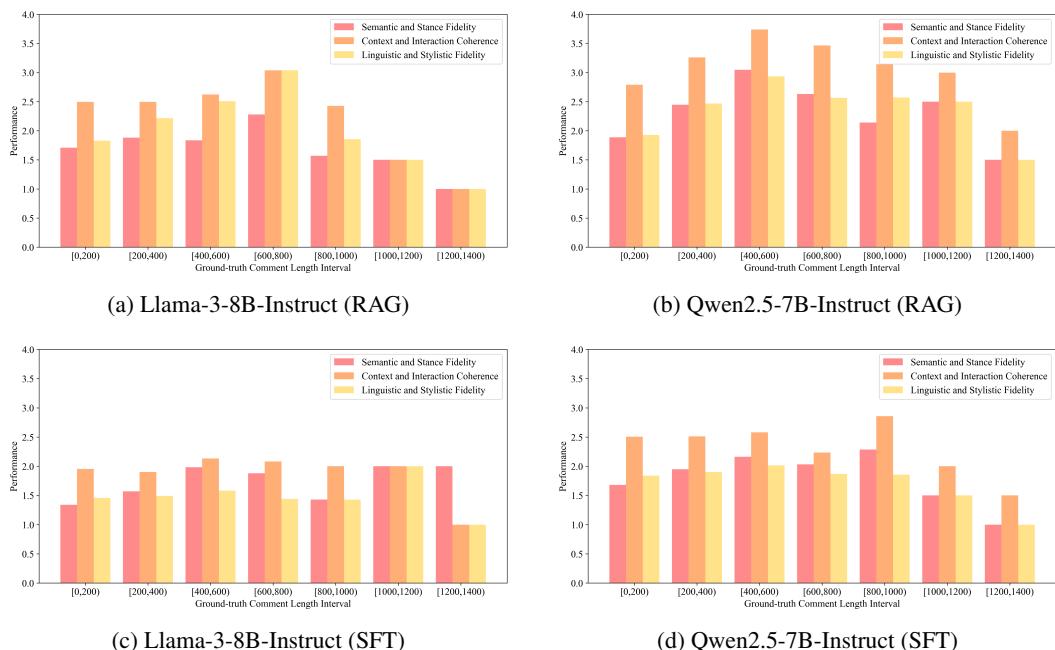
368 5.3.3 CHALLENGE ANALYSIS: LENGTH OF TARGET COMMENTS

369 In this section, we investigate the relation between personalized role-playing performance and se-
 370 quence length of ground-truth comments under RAG and SFT settings. Specifically, we partition
 371 the test samples of all users into bins based on the sequence length of ground-truth comments, and
 372 then compute the average score within each bin. The result is shown in Figure 2. We can observe
 373 that under the RAG setting, personalization scores exhibit a trend of initially rising then declining as
 374 target comment length increases, illustrating that for users accustomed to posting concise comments,
 375 the model may struggle to extract effective personalization information from historical interactions,
 376 thereby hindering personalization modeling. Conversely, for users accustomed to posting long com-
 377 ments, the personalization information provided by RAG proves insufficient to support long-context

378
379
380
381
382
383
384 Table 2: The average results across all target users for each evaluated role-playing method on
385 LLaMA-3.2-3B-Instruct and Qwen2.5-3B-Instruct. In each group characterized by the original
386 LLM, **bold** figures indicate the best result in each evaluation dimension, while the underlined figures
387 denote the second best one.

Method	BERTScore	ROUGE			LLM-as-Judge			
		ROUGE-1	ROUGE-2	ROUGE-L	SS	CI	LS	Avg.
LLaMA-3.2-3B-Instruct								
few-shot	<u>0.836</u>	0.124	0.011	0.091	1.404	1.998	1.555	1.652
RAG	0.832	<u>0.143</u>	0.018	0.099	<u>1.529</u>	<u>2.112</u>	<u>1.640</u>	<u>1.760</u>
SFT	0.837	0.117	<u>0.013</u>	0.088	1.309	1.828	1.441	1.526
DPO	0.833	0.095	0.010	0.075	1.310	1.825	1.410	1.515
GRPO	0.825	0.157	0.018	<u>0.096</u>	1.925	2.814	1.998	2.246
Qwen2.5-3B-Instruct								
few-shot	0.834	0.132	0.012	0.088	1.821	<u>2.672</u>	<u>1.875</u>	<u>2.123</u>
RAG	0.833	<u>0.147</u>	0.020	0.097	<u>1.840</u>	2.637	1.859	2.112
SFT	0.838	0.118	0.014	0.088	1.434	2.044	1.579	1.686
DPO	<u>0.837</u>	0.112	0.011	0.082	1.542	2.258	1.651	1.817
GRPO	0.828	0.153	<u>0.016</u>	<u>0.092</u>	1.980	2.963	2.013	2.319

397
398
399 personalized generation. Meanwhile, under the SFT setting, personalization scores exhibit a similar
400 trend to RAG, which demonstrates that SFT also struggles to tackle the personalization modeling
401 challenges posed by user interactions that are either excessively brief or excessively long. The results
402 highlight the need to develop methods for mining, refining, and efficiently utilizing personalized in-
403 formation.



425 Figure 2: Average LLM-as-Judge scores of length bins under RAG and SFT settings.
426
427

428 5.3.4 CHALLENGE ANALYSIS: NOISE IN CONTEXT 429

430 Noise is ubiquitous on social media. In this section, we focus on the persuasive noise in the context
431 of target comments created by malicious attackers posing as genuine participants in topic discussion.
432 Such persuasive noise attempts to reverse the original polarity of target comments, thereby

432 Table 3: The attack success rate towards training-based methods including SFT and DPO.
433

Method	N_1	N_2	$N_2/N_1(\%)$
Llama-3-8B-Instruct (SFT)	2,073	777	37.48
Qwen2.5-7B-Instruct (SFT)	1,931	997	51.63
Llama-3-8B-Instruct (DPO)	2,179	653	29.97
Qwen2.5-7B-Instruct (DPO)	1,665	959	57.60

442 compromising the fidelity of personalized role-playing approaches. The process of attack can be
443 formalized as follows:

$$\hat{c}_0' = G(P, H') \quad (4)$$

$$H' = [(u_1, c_1), \dots (u_N, c_N), (u'_{N+1}, c'_{N+1})] \quad (5)$$

444 where the noise c'_{N+1} in the disturbed comment history H' is introduced by the attacker u'_{N+1} . We
445 define three polarities for the ground-truth comment c_0 , the normal simulated comment \hat{c}_0 , and the
446 attacked simulated comment \hat{c}_0' : positive, neutral, and negative. We consider an attack successful
447 when the polarity of \hat{c}_0 matches that of c_0 , while the polarity of \hat{c}_0' differs from that of c_0 :

$$ASR = \frac{N_2}{N_1} \quad (6)$$

$$N_1 = |\{(c_0^{(j)}, \hat{c}_0^{(j)}, \hat{c}_0'^{(j)}) | plr(\hat{c}_0^{(j)}) = plr(c_0^{(j)}), j \in \{1, 2, \dots, M\}\}| \quad (7)$$

$$N_2 = |\{(c_0^{(j)}, \hat{c}_0^{(j)}, \hat{c}_0'^{(j)}) | plr(\hat{c}_0^{(j)}) \neq plr(\hat{c}_0'^{(j)}), j \in \{1, 2, \dots, M\}\}| \quad (8)$$

451 where j is the sample index and M is the total number of samples, and plr represents the polarity
452 of the comment.

453 To explore the robustness of role-playing methods to the noise, we conduct an adversarial evaluation
454 experiment, where GPT-4.1 is utilized as the attack model to analyze the views in the ground-truth
455 comments and generate the persuasive noise. We show the attack results towards SFT-based and
456 DPO-based personalized role-playing in Table 3. We can observe that all tested methods exhibit vul-
457 nerability to persuasion injected into context, with the lowest attack success rate reaching 29.97%.
458 Meanwhile, the finetuned Qwen2.5-7B-Instruct is more susceptible to persuasive noise than the fine-
459 tuned Llama-3-8B-Instruct. The results call for more research efforts into secure and controllable
460 personalized role-playing.

461 6 CONCLUSION

462 In this paper, we propose the task of personalized role-playing on social media by reconstruc-
463 tions under specific topics into utterance-level comment simulations to assist more fine-
464 grained individual simulation. Considering the lack of readily available public datasets for task
465 evaluation and the potential issue of data contamination, we construct a user-centered and newly
466 collected dataset for evaluating existing role-playing methods. To comprehensively evaluate the per-
467 formance of personalized role-playing, we introduce both classic text similarity metrics and LLM-
468 as-Judge metrics across three key dimensions, referring to the comparison between the simulated
469 comments and ground-truth comments. We classify existing role-playing methods into prompt-
470 based and training-based categories and evaluate their performance on personalization. Evaluation
471 results reveal that RAG and GRPO are the two methods that perform relatively better among the two
472 categories. However, the generally low personalization scores indicate that existing role-playing
473 methods struggle to achieve realistic personalized modeling. We also observe that merely scaling
474 model parameters or utilizing reasoning models yields limited gains in personalization. The ad-
475 versarial attack experiment uncovers the vulnerability of evaluated methods to persuasive noise injected
476 into context. In future work, we will dedicate more efforts to developing role-playing methods ca-
477 pable of mining and efficiently utilizing personalized information from social media users, while
478 simultaneously striving to enhance their security and robustness.

486 7 ETHICS STATEMENT
487488 The data used in this study was collected from publicly available sources. We acknowledge that the
489 dataset may contain societal biases. We release our code and model with a responsible AI license.
490491 REFERENCES
492493 Lisa P Argyle, Ethan C Busby, Nancy Fulda, Joshua R Gubler, Christopher Rytting, and David
494 Wingate. Out of one, many: Using language models to simulate human samples. *Political Analysis*,
495 31(3):337–351, 2023.496 Chengkun Cai, Xu Zhao, Haoliang Liu, Zhongyu Jiang, Tianfang Zhang, Zongkai Wu, Jenq-Neng
497 Hwang, and Lei Li. The role of deductive and inductive reasoning in large language models. In
498 Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Pro-
499 ceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
500 1: Long Papers)*, pp. 16780–16790, Vienna, Austria, July 2025. Association for Computational
501 Linguistics.502 Yirong Chen, Xiaofen Xing, Jingkai Lin, Huimin Zheng, Zhenyu Wang, Qi Liu, and Xiangmin Xu.
503 SoulChat: Improving LLMs’ empathy, listening, and comfort abilities through fine-tuning with
504 multi-turn empathy conversations. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Find-
505 ings of the Association for Computational Linguistics: EMNLP 2023*, pp. 1170–1183, Singapore,
506 December 2023. Association for Computational Linguistics.507 Tao Ge, Xin Chan, Xiaoyang Wang, Dian Yu, Haitao Mi, and Dong Yu. Scaling synthetic data
508 creation with 1,000,000,000 personas. *arXiv preprint arXiv:2406.20094*, 2024.510 John J Horton. Large language models as simulated economic agents: What can we learn from
511 homo silicus? Technical report, National Bureau of Economic Research, 2023.512 Gurusha Juneja, Subhabrata Dutta, and Tanmoy Chakraborty. LM2: A simple society of language
513 models solves complex reasoning. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
514 (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Process-
515 ing*, pp. 16473–16484, Miami, Florida, USA, November 2024. Association for Computational
516 Linguistics.517 Cheng Li, Ziang Leng, Chenxi Yan, Junyi Shen, Hao Wang, Weishi Mi, Yaying Fei, Xiaoyang Feng,
518 Song Yan, HaoSheng Wang, et al. Chatharuhi: Reviving anime character in reality via large
519 language model. *arXiv preprint arXiv:2308.09597*, 2023.520 Keming Lu, Bowen Yu, Chang Zhou, and Jingren Zhou. Large language models are superpositions
521 of all characters: Attaining arbitrary role-play via self-alignment. In Lun-Wei Ku, Andre Mart-
522 ins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for
523 Computational Linguistics (Volume 1: Long Papers)*, pp. 7828–7840, Bangkok, Thailand, August
524 2024. Association for Computational Linguistics.525 Xinyi Mou, Zhongyu Wei, and Xuanjing Huang. Unveiling the truth and facilitating change: To-
526 wards agent-based large-scale social movement simulation. *arXiv preprint arXiv:2402.16333*,
527 2024.528 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
529 Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. ChatDev: Com-
530 municative agents for software development. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
531 (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
532 (Volume 1: Long Papers)*, pp. 15174–15186, Bangkok, Thailand, August 2024. Association for
533 Computational Linguistics.534 Yifu Qiu, Varun R. Embar, Yizhe Zhang, Navdeep Jaitly, Shay B Cohen, and Benjamin Han. Elicit-
535 ing in-context retrieval and reasoning for long-context large language models. In Wanxiang Che,
536 Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Asso-
537 ciation for Computational Linguistics: ACL 2025*, pp. 3176–3192, Vienna, Austria, July 2025.
538 Association for Computational Linguistics.

540 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 541 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 542 *in neural information processing systems*, 36:53728–53741, 2023.

543 Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-LLM: A trainable agent for role-
 544 playing. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Con-
 545 ference on Empirical Methods in Natural Language Processing*, pp. 13153–13187, Singapore,
 546 December 2023. Association for Computational Linguistics.

547 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 548 Mingchuan Zhang, YK Li, et al. Deepseekmath: Pushing the limits of mathematical reasoning in
 549 open language models. *arXiv preprint arXiv:2402.03300*, 2024.

550 Noah Wang, Z.y. Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu, Hongcheng
 551 Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang Zhang, Wanli Ouyang, Ke Xu,
 552 Wenhao Huang, Jie Fu, and Junran Peng. RoleLLM: Benchmarking, eliciting, and enhancing role-
 553 playing abilities of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
 554 (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 14743–14777,
 555 Bangkok, Thailand, August 2024. Association for Computational Linguistics.

556 Weiqi Wu, Hongqiu Wu, Lai Jiang, Xingyuan Liu, Hai Zhao, and Min Zhang. From role-play to
 557 drama-interaction: An LLM solution. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 558 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 3271–3290, Bangkok,
 559 Thailand, August 2024. Association for Computational Linguistics.

560 Rui Xu, Xintao Wang, Jiangjie Chen, Siyu Yuan, Xinfeng Yuan, Jiaqing Liang, Zulong Chen, Xi-
 561 aoqing Dong, and Yanghua Xiao. Character is destiny: Can large language models simulate
 562 persona-driven decisions in role-playing? *CoRR*, 2024.

563 Xinnong Zhang, Jiayu Lin, Xinyi Mou, Shiyue Yang, Xiawei Liu, Libo Sun, Hanjia Lyu, Yihang
 564 Yang, Weihong Qi, Yue Chen, et al. Socioverse: A world model for social simulation powered by
 565 llm agents and a pool of 10 million real-world users. *arXiv preprint arXiv:2504.10157*, 2025.

566 Qingfei Zhao, Ruobing Wang, Yukuo Cen, Daren Zha, Shicheng Tan, Yuxiao Dong, and Jie Tang.
 567 LongRAG: A dual-perspective retrieval-augmented generation paradigm for long-context ques-
 568 tion answering. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of
 569 the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 22600–22632,
 570 Miami, Florida, USA, November 2024a. Association for Computational Linguistics.

571 Weixiang Zhao, Zhuojun Li, Shilong Wang, Yang Wang, Yulin Hu, Yanyan Zhao, Chen Wei, and
 572 Bing Qin. Both matter: Enhancing the emotional intelligence of large language models without
 573 compromising the general intelligence. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
 574 (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 11157–11176,
 575 Bangkok, Thailand, August 2024b. Association for Computational Linguistics.

576 Jinfeng Zhou, Zhuang Chen, Dazhen Wan, Bosi Wen, Yi Song, Jifan Yu, Yongkang Huang, Pei Ke,
 577 Guanqun Bi, Libiao Peng, JiaMing Yang, Xiyao Xiao, Sahand Sabour, Xiaohan Zhang, Wen-
 578 jing Hou, Yijia Zhang, Yuxiao Dong, Hongning Wang, Jie Tang, and Minlie Huang. Character-
 579 GLM: Customizing social characters with large language models. In Franck Dernoncourt, Daniel
 580 Preoříuc-Pietro, and Anastasia Shimorina (eds.), *Proceedings of the 2024 Conference on Empir-
 581 ical Methods in Natural Language Processing: Industry Track*, pp. 1457–1476, Miami, Florida,
 582 US, November 2024. Association for Computational Linguistics.

583 Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
 584 Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, et al. Sotopia: Interactive evaluation for
 585 social intelligence in language agents. *arXiv preprint arXiv:2310.11667*, 2023.

586
 587 **A APPENDIX**

588
 589 **A.1 USE OF LLMs**

590
 591 We only use LLMs to refine the textual sections of the paper and selectively adopt the optimization
 592 suggestions provided by LLMs.

594
595

A.2 IMPLEMENTATION DETAILS

596
597
598
599
600
601
602
603
604
605
606
607

In our evaluation, the loading and inference of open-source LLMs are implemented based on the HuggingFace’s Transformers Library. Under RAG setting, the construction of index and retrieval of relevant interactions are implemented with faiss library using bge-m3 embedding model and inner-product similarity. The LoRA training for SFT and DPO is performed using LLaMA-Factory framework. Training and evaluation within GRPO are implemented with verl and vilm. For SFT and DPO, we set the number of training epoch to 3, with learning rate set to 1e-4, LoRA rank set to 8, and LoRA alpha set to 16. Experiments of SFT and DPO are conducted on 8 NVIDIA RTX 3090 GPUs. We enable length truncation during the training process, with the maximum input sequence length set to 2048 for SFT and 768 for DPO. For GRPO, we set the number of training epoch to 1 considering the time cost, with learning rate set to 1e-6, maximum prompt length set to 512, and maximum response length set to 1024. Experiments of GRPO are conducted on 4 NVIDIA A100 GPUs. We do not observe model collapse during the training of the above methods.

608
609

A.3 PROMPT TEMPLATES

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

Assume you are a social media user. Write a highly realistic comment based on the content of the post and the existing comment thread.
****CRITICAL INSTRUCTIONS:****
- Analyze the context from the post title, body, and existing dialogue.
- Your entire response MUST BE the text of the comment itself.
- DO NOT include any prefixes(e.g. "Here is the comment:"), introductions, explanations, or quotation marks(i.e. "").
****Example**:**
Post Title: {post_title_example}\n\nPost Body: {post_body_example}\n\nDialogue History:
{dialogue_history_example}\n\nGenerated Comment:
{ground_truth_comment_example}\n\n****Your Task**:**
Post Title: {post_title_test}\n\nPost Body: {post_body_test}\n\nDialogue History: {dialogue_history_test}\n\nGenerated Comment:

627
628
629

Figure 3: The prompt used to generate simulated comments under few-shot setting

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Assume you are a social media user. Write a highly realistic comment based on the content of the post and the existing comment thread.
****CRITICAL INSTRUCTIONS:****
- Analyze the context from the post title, body, and existing dialogue.
- Your entire response MUST BE the text of the comment itself.
- DO NOT include any prefixes(e.g. "Here is the comment:"), introductions, explanations, or quotation marks(i.e. "").
****Relevant Comments You Made**:**
Post Title: {post_title_retrieved}\n\nPost Body: {post_body_retrieved}\n\nDialogue History:
{dialogue_history_retrieved}\n\nGenerated Comment:
{ground_truth_comment_retrieved}\n\n****Your Task**:**
Post Title: {post_title_test}\n\nPost Body: {post_body_test}\n\nDialogue History: {dialogue_history_test}\n\nGenerated Comment:

Figure 4: The prompt used to generate simulated comments under RAG setting

648
649
650
651

652 You are a judge responsible for scoring a simulated social media comment given the topic post, comment thread and ground truth user
comment.
653 The evaluation dimensions include Semantic & Stance Fidelity, Contextual & Interactional Coherence and Linguistic & Stylistic
Fidelity.
654 The core evaluation point of Semantic & Stance Fidelity is how accurately the simulated comment reproduces the core idea, sentiment,
and stance of the real comment.
655 The core evaluation point of Contextual & Interactional Coherence is how logical and interactive the simulated comment is within the
context.
656 The core evaluation point of Linguistic & Stylistic Fidelity is how similar the word choice, tone, emoji use, and sentence structure of
the simulated comment is to the real comment.
657 The evaluation utilizes a 5-point Likert scale with 5 representing strongly agree, i.e. the highest simulation quality.
658 Here are examples for each dimension:
659 **Semantic & Stance Fidelity**
660 Post Title: My Verdict on the New Orbit X1: A Battery Champ with One Major Flaw\n
661 Post Body: I've spent the last week with the Orbit X1, and the battery life is a game-changer. I'm consistently getting two full days of
use, which is incredible. However, I can't ignore the screen's color calibration. It's far too saturated, and colors look almost cartoonish,
making it a poor choice for anyone who does photo editing on their phone.\n
662 Comment Thread: \n
663 User A: Just finished watching your video, this generation feels like a huge improvement!\n
664 Ground Truth Comment: I agree with you, the battery is top-notch, but I'm personally not a fan of the screen color either, it's too
vivid.\n
665 Positive Example (Rating: 5/5): True, the battery life is really impressive. The screen's color profile is a bit too rich for my taste,
though. Something to watch out for if you're serious about color accuracy.\n
666 Analysis: This comment correctly captures both the positive stance on the battery and the negative stance on the screen, perfectly
matching the semantics and opinion of the real comment.\n
667 Negative Example (Rating: 1/5): The battery and the screen on this phone are both amazing, it's a perfect all-rounder!\n
668 Analysis: This comment misinterprets the explicit criticism of the screen, completely contradicting the real comment's stance. It fails
the semantic fidelity test.\n
669 **Contextual & Interactional Coherence**
670 Post Title: I Tried to Make a 3-Day "Buddha Jumps Over the Wall" Soup At Home...\n
671 Post Body: This was by far the most ambitious recipe I've ever attempted. From sourcing two dozen ingredients (some of which were
very hard to find!) to the multi-day prep and simmering process, it was an absolute marathon. The final result was incredible, but was
it worth it? Check out the video to see the full journey!\n
672 Comment Thread: \n
673 User A: OMG, just prepping the ingredients must take two days, right? So impressive!\n
674 User B: I know, right? I got hungry just watching, but I would never have the guts to make it myself.\n
675 Ground Truth Comment: Don't even start, I don't even have the courage to buy the ingredients 😱\n
676 Positive Example (Rating: 5/5): Hahaha, same here. I basically gave up just by looking at the shopping list.\n
677 Analysis: This comment perfectly understands the conversational context. It logically follows User B's sentiment about the difficulty
and responds with relevant humor, demonstrating strong interactional coherence.\n
678 Negative Example (Rating: 1/5): Buddha Jumps Over the Wall' is a variety of shark fin soup in Fujian cuisine, a specialty of Fuzhou,
China.\n
679 Analysis: This comment completely ignores the conversation's flow about the effort of cooking. It drops a random, encyclopedic fact,
failing to interact with the previous comments and breaking the context.\n
680 **Linguistic & Stylistic Fidelity**
681 Post Title: CYBERPUNK: VENGEANCE - OFFICIAL TRAILER 1\n
682 Post Body: The wait is over. Witness the first official look at CYBERPUNK: VENGEANCE. Coming to theaters this December.
#CyberpunkVengeance #MovieTrailer\n
683 Comment Thread: \n
684 User A: OMG! That CGI! It's insane!!\n
685 User B: You can just feel the budget burninggggg, already booked my IMAX tickets!\n
686 Ground Truth Comment: That was so cool it gave me goosebumps!!! Watching this 3 times minimum, seriously!!! LETS GOOOO!!\n
687 Positive Example (Rating: 5/5): OMG I'm literally getting goosebumps it's so hype! LFG! Definitely rushing to see this on day one!!\n
688 Analysis: The style is a perfect match. It uses authentic internet slang ("hype", "LFG"), captures the excited tone with punctuation,
and mimics the sentence structure of a genuinely thrilled fan.\n
689 Negative Example (Rating: 1/5): Upon observation, the visual effects presented in this trailer are quite impressive. The fluid
choreography and high-quality rendering are commendable. I recommend releasing it soon.\n
690 Analysis: This comment sounds like a formal report, not a fan. The stiff, academic language is completely out of place with the
energetic and informal style of the real comments, failing the stylistic test.\n
691 Now here is the case to be evaluated:\n
692 Post Title: {post_title}\n
693 Post Body: {post_body}\n
694 Comment Thread: {dialogue_history}\n
695 Ground Truth Comment: {gt_reply}\n
696 Simulated Comment: {test_reply}\n
697 You are required to output evaluation in JSON format like below:\n
698

```
{"Semantic & Stance Fidelity": [{"score": "5", "analysis": "True, the battery life is really impressive. The screen's color profile is a bit too rich for my taste, though. Something to watch out for if you're serious about color accuracy."}, {"score": "1", "analysis": "The battery and the screen on this phone are both amazing, it's a perfect all-rounder!"}], "Contextual & Interactional Coherence": [{"score": "5", "analysis": "Hahaha, same here. I basically gave up just by looking at the shopping list."}, {"score": "1", "analysis": "Buddha Jumps Over the Wall' is a variety of shark fin soup in Fujian cuisine, a specialty of Fuzhou, China."}], "Linguistic & Stylistic Fidelity": [{"score": "5", "analysis": "OMG! That CGI! It's insane!!"}, {"score": "1", "analysis": "You can just feel the budget burninggggg, already booked my IMAX tickets!"}]}
```

Figure 5: The prompt used to evaluate simulated comments and provide rewards for GRPO training

698
699
700
701