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ABSTRACT

Untrained neural networks pioneered by Deep Image Prior have recently enabled
MRI reconstruction without requiring fully-sampled measurements for training.
Their success is widely attributed to the implicit regularization induced by suitable
network architectures. However, the lack of understanding of such architectural
priors results in superfluous design choices and sub-optimal outcomes. This work
aims to simplify the architectural design decisions for DIP-MRI to facilitate its
practical deployment. We observe that certain architectural components are more
prone to causing overfitting regardless of the number of parameters, incurring severe
reconstruction artifacts by hindering accurate extrapolation on the un-acquired
measurements. We interpret this phenomenon from a frequency perspective and find
that the architectural characteristics favoring low frequencies, i.e., deep and narrow
with unlearnt upsampling, can lead to enhanced generalization and hence better
reconstruction. Building on this insight, we propose two architecture-agnostic
remedies: one to constrain the frequency range of the white-noise input and the
other to penalize the Lipschitz constants of the network. We demonstrate that even
with just one extra line of code on the input, the performance gap between the
ill-designed models and the high-performing ones can be closed. These results
signify that for the first time, architectural biases on untrained MRI reconstruction
can be mitigated without architectural modifications.

1 INTRODUCTION

Magnetic resonance imaging (MRI) is a mainstream imaging tool for medical diagnosis. Reconstruct-
ing MR images from raw measurements refers to the transformation from Fourier spectrum of the
object in k-space to image space. Since acquiring full k-space measurements is time-consuming,
under-sampled k-space data are often collected to reduce scan times. Accelerated MRI is thus known
as an ill-posed inverse problem that conventionally requires handcrafted priors (Lustig et al., 2007;
Lingala et al., 2011) to mitigate the resulting aliasing artifacts in the output images. While supervised
learning methods based on convolutional neural networks (CNNs) demonstrate better reconstruction
quality with fewer measurements, their training relies on paired under-sampled and fully-sampled
measurements, which are expensive to acquire and raise issues on robustness and generalization when
the acquisition protocol or anatomy changes (Knoll et al., 2019; 2020a).

Instead of requiring large-scale datasets for capturing prior statistics, untrained networks pioneered
by deep image prior (DIP) (Ulyanov et al., 2018) require only the corrupted image itself or partial
measurements and regularize the reconstruction solely through its architecture. Concretely, DIP
parameterizes the unknown desired image via a neural network and optimizes the network parameters
such that the output image transformed by the degradation matrix matches the actual measurements.
This parameterization offers high impedance to noise and corruption, which acts as a form of implicit
regularization. Studies have attributed this property to CNN’s inherent spectral bias – the tendency to
fit the low-frequency image signals before the high-frequency signals (Shi et al., 2021; Chakrabarty &
Maji, 2019), where the choice of network architecture is shown to be critically relevant (Chakrabarty
& Maji, 2019; Liu et al., 2023; Arican et al., 2022).

A number of different architectures have been employed for untrained network priors. Compared to
the original encoder-decoder structure (Ulyanov et al., 2018), Deep Decoder, an under-parameterized
decoder-only network with 1 × 1 convolutions, is shown to represent images more concisely and
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Figure 1: Example results from underperforming architectures with 4× under-sampling. Turning
the left to the right simply by low-pass filtering the white-noise input via a Gaussian blur kernel,
which can be implemented as few as one or two lines of code. SSIM (↑) values are reported.

employed for denoising (Heckel & Hand, 2018). Its convolutional variant is employed for MRI
reconstruction and shows higher accuracy (Darestani & Heckel, 2021). Other representative untrained
networks include the transformer-based networks (Korkmaz et al., 2022) and the networks discovered
by neural architecture search (NAS) (Arican et al., 2022; Chen et al., 2020; Ho et al., 2021). These
network architectures vary substantially in terms of the number of parameters and topology. Yet,
there is generally a lack of consensus on architectural choices for a specific task. Particularly, it
remains unclear what kind of architectural prior is desired in medical imaging, making it challenging
to find an appropriate architecture.

In this work, we address the gap in studying the architectural influences of untrained networks in the
context of accelerated MRI and demonstrate that the influences can be minimized in an architecture-
agnostic manner. Without loss of generality, we focus on the typical design choices including depth,
width, cross-level skip connections, upsampling types and kernel sizes. Our investigation confirms
that the reconstruction outcome is sensitive to most of these basic architectural properties (Fig.1 Left).
In particular, we find that underperforming architectures tend to over-fit more easily, manifested in an
almost perfect fit to the available measurements but insufficient generalization to unacquired data;
this issue can mainly be attributable to certain architectural traits that lead to faster convergence for
high-frequency components, rather than the simple parameter count (Sec. 4).

Motivated by this analysis, we propose two efficient yet effective remedies, both with minimal
architectural modifications: (i) constraining the effective frequency bandwidth of the white-noise
input via low-pass filtering, and (ii) enforcing function smoothness via Lipschitz regularization.
These techniques effectively alleviate the over-fitting issue of ill-designed architectures at little
computational cost. They consistently improve the baseline models across various architectural
configurations, greatly reducing the need for extensive architectural tuning. More excitingly, the
architecture-agnostic nature of our methods leads to enhanced reconstruction efficiency: a smaller,
previously under-performing network can now achieve performance on par with or even surpass that
of a larger, heavily parameterized high-performing network.

Our contributions are three-fold:

• We provide systematic analysis on architectural sensitivity of untrained MRI reconstruction,
identifying the core architectural components that critically affect the outcome and revealing
the characteristics of well- and under-performing architectures.

• We alleviate the overfitting issue prevalent in under-performing architectures from a fre-
quency perspective and propose two efficient architecture-agnostic remedies.

• Extensive experiments demonstrate that the proposed methods effectively minimize the
influences due to architectural differences without requiring architectural modifications.

2 RELATED WORK

Function Smoothness, Spectral Bias and Generalization. Function smoothness, also referred to
as function frequency, quantifies how much the output of a function varies with changes in its input
(Fridovich-Keil et al., 2022). Spectral bias (Rahaman et al., 2019; Xu et al., 2019) is an implicit
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bias that favors learning functions changing at a slow rate (low-frequency), e.g., functions with a
small Lipschitz constant. In visual domains, this is evident in the network’s output lacking subtle
details. Many regularization techniques shown to aid generalization encourage smoothness implicitly,
such as early stopping, ℓ2 regularizer (Rosca et al., 2020). Smoothness has been widely used as a
model complexity measure in place of model size to account for the well-known ”double-descent”
phenomenon associated with generalization (Nakkiran et al., 2021).

To explicitly promote smoothness, a natural way is to penalize the norm of the input-output Jacobian
(Novak et al., 2018; Hoffman et al., 2019). However, due to the high dimensionality of the output
such as in accelerated MRI, computation of the Jacobian matrix during training is often intractable.
Another efficient and prevalent solution is to constrain the network to be c-Lipschitz with a pre-defined
Lipschitz constant c (Miyato et al., 2018; Gouk et al., 2021). We develop a suitable form of Lipschitz
regularization for untrained networks by instead penalizing learned Lipschitz constants, with a novel
aim of achieving architecture-insensitive untrained medical image reconstruction.

Input Frequency and Generalization. Input has played an important role in helping neural networks
represent signals of various frequencies. As in neural radiance field (NeRF) (Mildenhall et al., 2021)
where coordinates are mapped to RGB values, naively training with raw coordinates as inputs results
in over-smoothing; encoding the input coordinates with sinusoidal functions of higher frequencies
enables the network to represent higher frequencies (Mildenhall et al., 2021; Tancik et al., 2020).
Rahaman et al. (2019) also shows theoretically and empirically that fitting becomes easier for the
network when the input itself contains high-frequency components. However, it has recently been
reported that the high-frequency positional input encodings lead to failure of NeRF in few-shot
settings due to over-fitting (Yang et al., 2023). Here, we show that this issue also applies to untrained
network priors and can be addressed efficiently by the proposed methods.

Avoid Overfitting in Untrained Networks. Another line of efforts has been exclusively devoted
to preventing overfitting to noisy images or measurements. Wang et al. (2021) propose to track the
running variance of the output for an early-stopping criterion, but it is found to be unstable in medical
image reconstruction (Barbano et al., 2023). Yaman et al. (2021) propose to split the available
measurements into a training and a validation subset and use the latter for self-validation. However,
this may result in inaccurate estimation, especially at a high under-sampling rate. Transfer-learning-
based untrained networks perform pre-training on synthetic data followed by fine-tuning (Barbano
et al., 2022; Nittscher et al., 2023) or subspace optimization (Barbano et al., 2023). These methods
aim to use fewer trainable parameters to avoid overfitting with little performance degradation. In
contrast, our methods alleviate overfitting from a frequency perspective and enable significantly better
performance while maintaining the same model-wise and computation-wise complexity.

3 PRELIMINARIES

Accelerated MRI The goal of accelerated MRI reconstruction is to recover a desired image x ∈ Cn

(n = nh × nw) from a set of under-sampled k-space measurements. We focus on a multi-coil scheme
in which the measurements are obtained as:

yi = Aix+ ϵ with Ai = MFSi, i = 1, . . . , c, (1)

where yi ∈ Cm denotes the k-space measurements from coil i, c denotes the number of coils,
Si ∈ Cn denotes the coil sensitivity map (CSM) that is applied to the image x through element-wise
multiplications, F ∈ Cn×n denotes the 2D discrete Fourier transform, M ∈ Cm×n denotes the
under-sampling mask, and ϵ ∈ Cm denotes the measurement noise. Compressed sensing solves such
inverse problems using Tikhonov formulation as follows (Lustig et al., 2007):

x∗ = argmin
x

L(y;Ax) + λR(x), (2)

where A =
[
AT

1 , . . . ,A
T
c

]T
, y =

[
yT
1 , . . . ,y

T
c

]T
, and L(· ;·) enforces consistency with the actual

measurements, R(·) is a handcrafted image regularizer (e.g., sparsity (Lustig et al., 2007).

Untrained MRI Reconstruction can often be framed as an inpainting problem where the net-
work recovers the unacquired k-space measurements (masked) based on the acquired k-space data
(observed). Compared to Eq.2, the untrained network drops the explicit image prior R(·) and
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parameterizes the image x via a neural network Gθ(z) with a fixed noise input vector z drawn from
a uniform distribution z ∼ U(0, 1):

θ∗ = argmin
θ

L(y;AGθ(z)), x∗ = Gθ∗(z). (3)

The parameterization allows novel image priors to be designed dependent on the network architecture
and the associated parameters, instead of in the image space as conventionally depicted by R(·).
Nevertheless, many studies augment the untrained networks with traditional image regularizers (Liu
et al., 2019), i.e., Total variation TV (x) :=

∑
i,j |xi+1,j − xi,j |+

∑
i,j |xi,j+1 − xi,j |, though it can

only partially alleviate over-fitting (Nittscher et al., 2023; Barbano et al., 2023). In our experimental
sections, we show that TV is not as effective as our methods or other common sparsity-inducing
regularizers in improving under-performing architectures.

4 ARCHITECTURAL INFLUENCES

We first pinpointed the core architecture components that have a critical impact on the performance
of untrained MRI reconstruction (Experiment I). Then, we investigated their relationships with other
architectural properties, assessing their combined influences on the final output (Experiment II).

4.1 LOW-PASS SPATIAL KERNELS

Experimental setup i. Since a decoder is the minimum requirement for reconstruction, we exper-
imented with two types of 7-layered decoder-only architectures, i.e., ConvDecoder (Darestani &
Heckel, 2021) and Deep Decoder (Heckel & Hand, 2018). Experiments were performed on the 4×
under-sampled multi-coil knee MRI from fastMRI database (Knoll et al., 2020b).

Figure 2: Influences of architectural components. Results averaged across three different widths.

Upsampling. Fig. 2(a) suggests an interesting result: removing the unlearnt upsampling, e.g.,
bilinear, leads to either failure or unstable results (see gray curves). Unlike transposed convolution,
the unlearnt upsampler consists of a zero insertion step followed by a fixed low-pass interpolation
filter that attenuates the introduced high-frequency replica and also the signal. Frequency response of
bilinear interpolation filter ( sin

2 (πLk)
π2L2k2 ) decays more rapidly than that of nearest neighbor ( sin (πLk)

πLk ) as
the frequency k increases (Fig. 2 (b)), suggesting stronger attenuation and smoothing effects. Hence,
bilinear upsampling typically biases the network towards generating smoother outputs, as prevalent in
generative models (Schwarz et al., 2021). Transposed convolutions, however, are not guaranteed to be
low-passed as they are learnable. Due to the spectral bias of network layers, they may be low-passed
during early training to still enable reconstruction, but the results could be unstable (green curves).

Kernel size. When the unlearnt upsampling operations are absent, ConvDecoder (3× 3) still enables
reconstruction while Deep Decoder (1× 1) fails completely (Fig. 2(a)). A similar phenomenon is
also reported in image denoising (Chakrabarty & Maji, 2019; Liu et al., 2023). Although this may
again be attributed to CNN’s inherent spectral bias, the results suggest that the size of the kernel
also matters, which is further corroborated by the results shown in Tab. 2, where the reconstruction
accuracy becomes slightly higher as the kernel size increases to 5× 5.

Discussion. Results of this pilot experiment suggest that the spatial kernels with low-pass characteris-
tics, either learnable or unlearnt, are crucial to the success of untrained network priors. In particular,
bilinear upsampling with a fixed low-pass filter produces more stable and better results (blue curves).
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4.2 DEPTH, WIDTH AND SKIP CONNECTIONS

Here, we demonstrate that insights gained about the unlearnt upsampling can aid in understanding
the connection between architectural characteristics and the reconstruction task.

Experimental setup ii. For this large-scale validation, we experimented with an isotropic encoder-
decoder architecture used in the original DIP, i.e., equal width and kernel size for all layers throughout
the network. Design choices are detailed in Tab. 1. Experiments were performed on the publicly
available 4× under-sampled multi-coil knee MRI from fastMRI database (Knoll et al., 2020a).
Table 1: Test bed for studying the architectural influences of an encoder-decoder untrained networks.

Archi. Type Depth (d) # of Skips (s) Width (w) Kernel Size (k)

Ad s w k {2-L, 3-L, 4-L, 5-L, 8-L} {zero, half, full} {32, 64, 128, 256} {3× 3, 5× 5}

Table 2: Influences of typical architectural design choices. Deeper and Narrower architectures
tend to perform better; skip connections influence the deep architectures more; larger kernels perform
slightly better. A8 full 32 3 performs the best (in lime); A2 full 256 3 performs the worst (in red).

Width (↓)

Depth (↑)

Archi. PSNR SSIM Archi. PSNR SSIM Archi. PSNR SSIM Archi. PSNR SSIM

A2 full 256 3 26.67 0.530 A2 full 128 3 27.12 0.543 A2 full 64 3 27.70 0.583 A2 full 32 3 28.47 0.641
A3 full 256 3 28.22 0.590 A3 full 128 3 28.59 0.605 A3 full 64 3 28.55 0.616 A3 full 32 3 29.25 0.660
A4 full 256 3 28.68 0.617 A4 full 128 3 28.95 0.622 A4 full 64 3 28.87 0.624 A4 full 32 3 29.70 0.671
A5 full 256 3 28.61 0.613 A5 full 128 3 28.87 0.615 A5 full 64 3 29.33 0.648 A5 full 32 3 29.81 0.680
A8 full 256 3 28.98 0.625 A8 full 128 3 29.33 0.637 A8 full 64 3 29.45 0.651 A8 full 32 3 30.04 0.695

Skip Connections (−) Kernel Size (↑)
A2 half 256 3 26.91 0.535 A2 zero 256 3 26.83 0.535 A2 full 256 3 26.67 0.530 A2 full 256 5 26.98 0.550
A4 half 256 3 28.55 0.621 A4 zero 256 3 27.54 0.697 A5 full 256 3 28.61 0.613 A5 full 256 5 28.82 0.624
A8 half 256 3 29.12 0.669 A8 zero 256 3 28.51 0.609 A8 full 256 3 28.98 0.625 A8 full 256 5 29.12 0.634

Why deeper and narrower better (Tab. 2). Theoretically, as the number of layers (depth) or channels
(width) increases, the ability of the network to learn arbitrarily high frequencies (details, noise) is typ-
ically increased (Rahaman et al., 2019). While this is true for width, we have found that the effect on
depth turns out to be attenuated by unlearnt upsampling. As evidenced in Fig. 3, deeper architectures
typically generate smoother images, exhibiting a stronger preference for low-frequency information,
whereas shallower counterparts, even though they have fewer parameters, are more susceptible to
noise and overfitting (red arrows). This is more evident when comparing the same architectures with
just different upsamplers, where the architectures with bilinear upsampling (stronger attenuation)
are less prone to overfitting than the ones using nearest neighbor (NN) upsampling (cyan vs. blue).
Hence, it is not merely the number of parameters but the architectural characteristics promoting low
frequencies that seem to be the primary reason for the high performance. Note that all these results
are only achievable when unlearnt upsampling is involved (see gray dashed curves).

Unacquired meas. (Masked)Acquired meas. (Unmasked)

2levels-2skips
-256chns (NN)

2levels-2skips
-64chns (NN)

8levels-8skips
-256chns (NN)

8levels-8skips-
64chns (NN)

8levels-8skips-
256chns (Bilinear)

8levels-0skips-
256chns

(w/o. Upsamp.)

8levels-0skips-
256chns (Bilinear.)

Shallow w. Skips Deep w/o. Skips Deep w. Skips

Figure 3: Generalizability of different architectures on the masked regions.

Skip connections. Deep architectures with zero skip connection converge more slowly and may
lead to over-smoothing as shown in Fig. 3 (red curves). Skip connections greatly alleviate this issue
and introduce more details (cyan curves), which we speculate could be due to the ”reduced effective
up-sampling rate”. Yet, excessive skip connections make a deep architecture behave similarly as a
shallower one, generating more noise (Fig. 3 right). Overall, they exert a greater influence on deeper
architectures (A8 zero < A8 full < A8 half ) compared to shallower ones (A2 full ≈ A2 zero).

Discussion. Beyond the experiments here, the architecture empirically chosen for better results
in such untrained inpainting-like tasks also tends to be deeper and narrower with few or no skip
connections (Barbano et al., 2022; Darestani et al., 2022; Darestani & Heckel, 2021; Ulyanov et al.,
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2018), instead of the typical UNet-like model with full skip connections. Certainly, infinitely deeper
and narrower architectures are not always better as they may hardly represent sufficient information of
the images, leading to over-smoothness. Practitioners need to find a sweet spot. To alleviate manual
tuning, we introduce in the next section our methods that can promote the low-frequency bias of a
given architecture, especially those shallower and wider, without architectural modifications.

5 METHODOLOGY

Figure 4: Limiting the frequency range of the
noise input can improve underperforming architec-
tures, A2 full 256in this case. The output becomes
smoother as σ increases, up to a certain point.

Bandwidth-Constrained Input. An aspect
of untrained networks that can be easily
overlooked is their inputs. Conventionally,
the inputs are randomly sampled from U(0, 1)
and are then mapped to an image. From
a frequency perspective, such white-noise
input comprises all frequencies with uniform
intensities. With this view in mind, we draw
an analogy between untrained networks and
neural radiance fields (NeRFs) which map
fourier features to RGB values (Mildenhall
et al., 2021). Fourier features are sinusoid
functions of the input coordinates p, i.e.,
[sin(p), cos(p), ..., sin(2L−1p), cos(2L−1p)],
where a larger L can assist the network in
representing higher-frequency functions (Tancik et al., 2020) .

In this sense, an untrained network can be thought of as mapping a wide range of fourier features to a
target image. This enhances the network’s representation ability but likely incurs over-fitting due
to the faster convergence of high-frequency components. To validate this hypothesis, we applied a
Gaussian blur filter Gσ on the white-noise input z to remove a certain amount of high frequencies
before passing it to the network, defined as z ∗ Gσ, where ∗ denotes the convolution operation. The
sigma value σ controlling the bandwidth of the filter is the only hyperparameter. As exemplified in
Fig. 4, simple tuning of σ already brings significant gains on a shallow and wide architecture without
architectural changes. Similar in spirit, recent work by Yang et al. (2023) also shows that masking
the high-frequency Fourier features helps NeRFs generalize in few-shot settings.

Lipschitz Regularization. Spectral bias towards low frequencies favors functions that do not change
at a high rate, i.e., functions with small Lipschitz constants. A function f : X → Y is said to be
Lipschitz continuous if there is a constant k > 0 such that

∥f(x1)− f(x2)∥p ≤ k∥x1 − x2∥p ∀x1, x2 ∈ X , (4)
where k is the Lipschitz constant that bounds how fast f can change globally w.r.t. input perturbations.

Shi et al. (2021) upper bound the Lipschitz constants of the untrained network layers to pre-defined
and manually chosen values, as the optimal value may vary with tasks. Instead, we make the per-layer
Lipschitz bounds learnable and regularize their magnitudes during optimization.

The Lipschitz constant of a convolutional layer is bounded by the operator norm of its weight matrix
(Gouk et al., 2021). To bound a convolutional layer to a specific Lipschitz constant k, the layer
with m input channels, c output channels and kernels of size w × h is first reshaped to a 2-D matrix
W ℓ ∈ Rn×cwh, and then normalized as:

W̃ℓ =
Wℓ

max(1, ∥Wℓ∥p

SoftPlus(kℓ)
)
, (5)

where kℓ is a learnable Lipschitz constant for each layer, ∥ · ∥p is chosen as the ℓ∞ norm and
SoftPlus(cl) = ln(1 + exp(kℓ)) ensures the learned Lipschitz bounds are non-negative as in Liu et al.
(2022). Such formulation only normalizes Wℓ if its matrix norm is larger than the learned Lipschitz
constraint during training. The ultimate Lipschitz regularization is defined in a similar way as in
Yoshida & Miyato (2017) but with learned Lipschitz constants:

min
Θ,K

L(y;AGΘ(z)) + λ

L∑
l=1

SoftPlus(kℓ)
2 (6)
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Figure 5: Our methods significantly improve architectures with various widths and depths. A 2-level
architecture can now surpass the 8-level counterparts. denotes the average median values of
the results from the improved architectures. All compared architectures have full skip connections.

Table 3: Number of parameters of the compared architectures. M: million(s)

Archi. A2 64 A5 64 A8 64 A2 256 A5 256 A8 256

# of Param. 0.24 M 0.59 M 0.95 M 3.7 M 9.3 M 14.8 M

where K is a collection of learnable Lipschitz constant kℓ of each layer jointly optimized with the
network parameters, and λ controls the granularity of smoothness.

6 EXPERIMENTS

6.1 DATASETS

Experiments were performed on the publicly available multi-coil knee and brain datasets of fastMRI
(Knoll et al., 2020b). Data acquisition used a conventional Cartesian 2D TSE protocol with a
15-channel coil array and a matrix size of 320 × 320. The knee dataset includes 798 cases of proton-
density weighting with fat suppression (PDFS) and 796 cases without fat suppression (PD). 50 knee
slices and 50 AXT1PRE axial brain slices sampled from the knee and brain validation datasets were
used for evaluating all compared methods, respectively. Ground truth was obtained by computing the
root-sum-of- squares (RSS) reconstruction method applied to the fully sampled k-space data. The
k-space data used for reconstruction was retrospectively masked by selecting 25 central k-space lines
along with an uniform undersampling at outer k-space, achieving a total of 4× acceleration.

6.2 IMPLEMENTATION DETAILS

The base architecture we evaluated on are N-level encoder-decoder architectures as used in the original
DIP, with each level consisting of two consecutive convolutions, nearest neighbor up-sampling, ReLU
activation function, batch normalization (Ioffe & Szegedy, 2015) and zero padding. Skip connections
are implemented via concatenation. The architectures are isotropic with the same width and kernel
size throughout the layers. All evaluated architectures are trained for 3000 iterations using mean
absolute error (MAE) and Adam optimizer with a learning rate of 0.008. The results from the last
iteration are reported. We additionally evaluated two commonly used regularizers for combating
overfitting: TV and L2. Hyperparameters are carefully chosen for each regularization method. λ is
set to 1 for Lipschitz regularizer, 0.001 for TV regularizer, and 1e−5 for ℓ2 regularizers. The noise
input is drawn from a uniform distribution z ∼ U(0, 1). The filter size of the Gaussian blur was set
to 3 and the sigma value was uniformly chosen from [0.5, 2.0] for every slice in all the experiments.
Peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) are used for quantitative
evaluation. The training was conducted with one GPU (TITAN X, 12GB).

6.3 IMPROVING UNDER-PERFORMING ARCHITECTURES

Fig. 5 quantitatively demonstrates the substantial improvement using our methods on architectures
of various widths and depths evaluated on both knee and brain datasets. As discussed in Sec. 4,
originally, shallower architectures tend to perform the worst, i.e., A2 64 and A2 256. A2 64 even
has the least number of parameters (Tab. 3). This again shows that the model size itself does not
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Figure 6: Our methods enable the underperforming architectures to perform similarly to or even better
than the well-performing architectures (i.e., Deep, Narrow). Full skip connections in all architectures.

Table 4: Quantitative evaluation of different regularization methods on knee datasets. The best and
the second-best are highlighted. Results from the last iteration (3000th) are reported.

Regularizers A2 256 A2 64 A5 256 A5 64 A8 256 A8 64 A2 256 A2 64 A5 256 A5 64 A8 256 A8 64

PSNR ↑ SSIM ↑
TV 28.25 27.85 29.33 29.57 29.54 30.01 0.588 0.592 0.635 0.651 0.645 0.687
L2 29.80 30.16 29.64 29.78 30.03 31.30 0.694 0.678 0.686 0.690 0.693 0.715
Lips. Reg. (Ours) 28.41 29.21 29.17 29.79 29.43 30.14 0.601 0.600 0.629 0.651 0.636 0.666
Bandw.Const. Input (Ours) 30.87 30.89 30.02 31.24 29.31 30.89 0.739 0.768 0.694 0.748 0.698 0.727
Bandw.Const. Input + Lips. Reg. (Ours) 31.61 31.93 29.40 31.67 29.82 31.58 0.750 0.776 0.702 0.727 0.697 0.732

w/o. Reg. (Baseline) 27.18 27.62 29.16 29.23 28.98 29.35 0.541 0.575 0.628 0.640 0.625 0.644

Table 5: Quantitative evaluation of different regularization methods on brain datasets.

Regularizers A2 256 A2 64 A5 256 A5 64 A8 256 A8 64 A2 256 A2 64 A5 256 A5 64 A8 256 A8 64

PSNR ↑ SSIM ↑
TV 29.22 29.61 31.26 31.37 31.32 31.64 0.735 0.764 0.785 0.802 0.787 0.807
L2 30.51 31.26 31.64 32.67 31.61 32.38 0.805 0.813 0.811 0.847 0.819 0.827
Lips. Reg. (Ours) 30.92 29.73 31.47 32.11 31.50 32.03 0.795 0.766 0.792 0.812 0.800 0.820
Bandw.Const. Input (Ours) 33.34 32.67 32.14 32.66 32.03 32.92 0.870 0.866 0.811 0.849 0.825 0.849
Bandw.Const. Input + Lips. Reg. (Ours) 32.90 33.12 32.08 32.83 31.70 33.14 0.855 0.870 0.815 0.851 0.805 0.849

w/o. Reg. (Baseline) 29.08 29.41 31.15 31.42 31.27 31.68 0.729 0.761 0.782 0.801 0.784 0.807

fully explain the problem of overfitting. Our method brings the most significant improvements to
these two types of architectures, allowing them to perform on par with or even surpass the much
larger architectures, e.g.,A8 256. Particularly, as shown in Tab. 4 and Tab. 5, limiting the frequency
spectrum of the input alone already brings dramatic improvement; better results are achieved when
combined with the proposed Lipschitz regularization. These results align with our hypothesis that
promoting low-frequency bias for underperforming architectures could help minimize architectural
influences. Fig. 6 shows qualitatively that our methods can improve a shallow and wide architecture
as well as a deep architecture with full skip connections, both of which are susceptible to overfitting.
Meanwhile, we also evaluated the efficacy of the commonly-used TV regularizer (Barbano et al.,
2023) and L2 regularizer. Both quantitative and qualitative results demonstrate that TV is not as
effective as ours or L2 in improving the underperforming architectures and alleviating overfitting.
Additionally, we find that it seems to be more sensitive to the choice of hyper-parameter, which might
partially explain its suboptimal performance. However, tuning the regularization granularity on a
case-by-case basis is unrealistic. In contrast, our method only requires minimal hyper-parameter
tuning. Especially, the sigma value of the Gaussian kernel is uniformly drawn at random from [0.5,
2.0] for each reconstruction. Evaluations on the sensitivity of the proposed Lipschitz regularization
to choices of hyperparameters are given in Suppl.
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Table 6: Quantitative comparisons with classic untrained network architectures. A small and
compact model with our modifications outcompetes the much larger models, achieving higher
efficiency.

Datasets DIP Deep Decoder ConvDecoder A2 64 (Plain) A2 64 (Ours)

Knee PSNR 29.16 27.21 29.59 27.62 31.93
SSIM 0.628 0.687 0.655 0.575 0.776

Brain PSNR 31.23 26.97 31.81 29.42 33.12
SSIM 0.784 0.747 0.800 0.761 0.870

# of Params.(Millions) 9.3 M 0.47 M 4.1 M 0.24 M 0.24 M

Acquired meas. (Unmasked)

A2-64 (Plain)

A2-64 (Ours)
ConvDecoder
Deep Decoder
DIP

Unacquired meas. (Masked)

A2-64 (Plain)

A2-64 (Ours)
ConvDecoder
Deep Decoder
DIP

Figure 7: Most architectures more or less suffer from over-fitting. Our method significantly alleviates
the overfitting issue of A2 64 and improves its extrapolation ability on the masked regions.

6.4 COMPARISONS WITH CLASSIC UNTRAINED NETWORK ARCHITECTURES

One major benefit of achieving architecture-insensitive reconstruction is that one may employ a
smaller architecture for higher efficiency without sacrificing accuracy. Here we compared our
improved A2 64 with other classic architectures, especially ConvDecoder, which was successfully
applied to MRI reconstruction (Darestani & Heckel, 2021). Quantitative results are in Tab. 6.
Qualitative results are in Suppl. Following their original setups, Deep Decoder and ConvDecoder
contain 7 layers with no skip connections, but Deep Decoder does not have spatial kernels except for
the unlearnt upsampling. Fig. 7 shows that compared with Deep Decoder, ConvDecoder is less prone
to over-fitting and more advantageous in such inpainting-like tasks, which aligns with our analysis
in Sec. 4. DIP is a 5-level hourglass architecture with full skip connections, i.e., A5 full 256 3. As
expected, both DIP and the original A2 64 (with full skip connections) suffer from over-fitting, fitting
the acquired measurements more readily while extrapolating poorly on the masked regions (Fig. 7).
Our method greatly alleviates the overfitting issue and allows it to surpass the other models by a large
margin, despite its smaller size.

7 CONCLUSION

This work aims to tackle the challenge of simplifying architectural decisions for untrained networks
in the context of accelerated MRI reconstruction, which has been an open question. Through a series
of experiments, we have identified the roles of common architectural properties – namely, depth,
width, and skip connections, and uncovered that the shallower and/or wider architectures are more
prone to overfitting due to the architectural configurations that cause faster convergence of high
frequencies instead of the number of parameters. Importantly, this empirical evidence may unveil the
profound link between frequency bias and overfitting. Based on these insights, we propose to use
bandlimited inputs and Lipschitz regularization to alleviate overfitting. Both techniques are easy to
implement but can dramatically improve the underperforming architectures. Besides the architectural
challenge, our method could also reduce the runtime – another challenge of the untrained networks –
by employing efficient compact models. Moreover, the effectiveness of our method also suggests a
connection between untrained networks and NeRF, which we consider worthy of future investigation.
We believe that our work not only improves the practicality of untrained networks but also contributes
to a deeper understanding of their working mechanisms.
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A SUPPLEMENTARY MATERIALS

A.1 CODE AVAILABILITY

The implementation of our methods along with the datasets used will be made publicly available.

A.2 COMPARISON TO SELF-VALIDATION

Self-validation, which uses a subset of measurements for validation, is popular in single-instance
MRI reconstruction for preventing overfitting (Yaman et al., 2021; Darestani et al., 2022). It works by
detecting the timing for stopping as near to the peak PSNR as possible. Our method differs in that it
can generally enhance the peak PSNR of the architecture while also alleviating overfitting. This can
be seen from the results of A2 256, A2 64, and Fig. 7. We show below that they can be combined to
achieve much better performance.

Table 7: Quantitative evaluation on 4× multi-coil knee datasets. The best and the second-best
are highlighted. 5% of the measurements are held out for validation. ’ws’ denotes the duration (#
iterations) of a sliding window that monitors the self-validation error for automatic early stopping.

Methods A2 256 A2 64 A5 256 A5 64 A2 256 A2 64 A5 256 A5 64

PSNR (↑) SSIM (↑)

Self-Val. (ws=30) 29.59 29.59 31.18 31.05 0.682 0.695 0.746 0.744
Self-Val. (ws=50) 29.04 29.62 31.07 30.94 0.642 0.684 0.738 0.737

Ours (3000 iters) 31.61 31.93 29.40 31.67 0.750 0.776 0.702 0.727
Ours w. Self-Val (ws=30) 31.49 31.09 31.74 31.73 0.762 0.762 0.769 0.772
Ours. w. Self-Val (ws=50) 31.60 31.41 31.78 31.63 0.762 0.767 0.771 0.771

Baseline (3000 iters) 27.18 27.62 29.16 29.23 0.541 0.575 0.625 0.640

Table 8: Quantitative evaluation on 4× multi-coil brain datasets.

Methods A2 256 A2 64 A5 256 A5 64 A2 256 A2 64 A5 256 A5 64

PSNR ↑ SSIM ↑
Self-Val. (ws=30) 30.39 30.06 32.78 32.48 0.822 0.832 0.872 0.868
Self-Val. (ws=50) 30.21 30.15 32.77 32.44 0.813 0.829 0.870 0.867

Ours (3000 iters) 32.90 33.12 32.08 32.83 0.855 0.870 0.815 0.851
Ours w. Self-Val (ws=30) 32.94 32.56 33.06 33.04 0.874 0.873 0.880 0.879
Ours. w. Self-Val (ws=50) 32.99 32.72 33.06 32.52 0.874 0.874 0.880 0.870

Baseline (3000 iters) 29.08 29.41 31.15 31.42 0.729 0.761 0.782 0.801

A.3 COMPARISONS TO SUPERVISED METHODS

Supervised methods shine when test data are within the training distribution. DIP-like methods are
more advantageous on out-of-distribution data as they are agnostic to changes in acquisition protocols
and anatomy shift, etc.(Yaman et al., 2021). Our method accelerates DIP by allowing a more compact
network to be employed, and when combined with self-validation, its runtime is further reduced.

Table 9: Robustness and runtime comparisons with U-Net on the 4× multi-coil brain validation
dataset. In-domain dataset: 50 AXT1PRE slices. Out-domain dataset: 30 AXFLAIR slices.
Runtime is computed as the per-slice average for every slice of size 20× 640× 320. The DIP A2 64

is trained for 3000 iterations when self-validation is not used.

Methods In-domain Out-domain Runtime (mean±std)

PSNR SSIM PSNR SSIM Train Inference

Trained U-Net 34.11 0.910 28.25 0.785 ≥ 3 days 0.1± 0.003 sec

Untrained
A2 64 (baseline) 29.41 0.761 29.77 0.715 – 26.5± 8.1 mins
A2 64 (ours) 33.12 0.870 32.45 0.832 – 26.8± 8.3 mins

A2 64 (ours) w. Self-Val. 32.56 0.873 32.11 0.840 – 4.8± 2.7 mins
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Deep Decoder (1×1) ConvDecoder (3×3)(a) MLP-Decoder (b) Conv-Decoder

Noisy (baseline) 5 Layers w. Transposed Conv. 5 Layers w. Bilinear Up.

5 Layers w/o. Upsampling 4 Layers w/o. Upsampling 3 Layers w/o. Upsampling

Figure 8: Denoising experiments. (Left) In non-convolutional networks, removing the upsampling
hampers the denoising capability, which cannot be compensated by merely adjusting the network to
be more under-parameterized. Transposed convolutions result in a more rapid decline in performance
than bilinear upsampling. (Right) Convolutional layers alone exhibit certain denoising effects but
necessitate early stopping. The showcased image is from the classic dataset Set9 (Dabov et al., 2007).

A.4 THE ”DEVIL” IS IN THE UPSAMPLING

Here we provide additional evidence demonstrated on brain datasets as well as natural images to
support our findings about the unlearnt upsampling and its relationships with other architectural
properties in DIP. These findings critically motivate our methods and lead us to conclude that the
underperformance in DIP is not primarily attributed to the number of parameters.

A.4.1 ADDITIONAL MRI EXPERIMENTS

As stated in Sec. 4.1, an unlearnt upsampler can be seen as a zero insertion step which increases the
output sampling rate, followed by a non-ideal low-pass filter (LPF, shortened as L) that attenuates both
the introduced high-frequency replica and signals. Bilinear and nearest neighbor (NN) upsamplers
differ only in the LPFs used. We additionally constructed a customized upsampler that has a greater
attenuation ability than bilinear upsampling. This was done by first interleaving the feature maps of
every layer with zeros and then convolving them with a handcrafted LPF: L−100, with the subscript
denoting the decayed dB. The Details of construction are specified in A.7.

Table 10: Importance of upsampling. Evaluated on the 4× multi-coil brain dataset. From the left
to the right, the attenuation extent of the LPF increases. PSNR values at 3000th iteration are reported.

Methods w/o. Upsampling. NN Bilinear L−100 # of Params. (Millions)

ConvDecoder 28.69 ± 1.6 31.78 ± 1.2 32.31 ± 1.3 32.48 ± 1.2 4.1 M
Deep Decoder 24.55 ± 1.1 27.10 ± 0.9 31.36 ± 1.4 32.68 ± 1.1 0.47 M

Tab. 10 shows that simply varying the upsampling type substantially influences the network perfor-
mance such that the performance gap between the two networks can even be closed without requiring
architecture scaling. Overall, the presence of unlearnt upsampling is vital to the non-convolutional
Deep Decoder and enhances both the accuracy and stability of ConvDecoder: the peak PSNR is
reached more slowly when the attenuation is stronger, alleviating overfitting (Fig. 9).

ConvDecoder

No Upsamp.
NN
Bilinear
ℒ!"##

Deep Decoder

ℒ!"##
Bilinear
NN
No Upsamp.

Figure 9: Results evaluated on the masked regions averaged across 30 slices. The unlearnt upsampler
critically influences both the peak PSNR and the susceptibility to overfitting.
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Noisy Ground TruthDeep w/o. Skip Connections Shallow w/o. Skip Connections

Figure 10: Denoising experiments. Deeper architectures with few or no skip connections tend to
generate smoother outputs compared to the shallower ones.

Corrupted

Ground Truth

Shallow w. Skip Connections Shallow w/o. Skip Connections

Deep w. Skip Connections Deep w/o. Skip Connections

Figure 11: Inpainting experiments. Deeper architectures with few or no skip connections tend
to generate smoother predictions for the masked regions than the shallower architectures. Skip
connections make deep architectures perform similarly as the shallower ones.

A.4.2 NATURAL IMAGE EXPERIMENTS

We reaffirmed our observations above on image denoising, which is a natural application of DIP.
The results in Fig. 8 show a very similar trend as in MRI reconstruction. We further validated on a
challenging image inpainting task that inherently resembles the case in MRI reconstruction. The
results are shown in Fig. 11 and Fig. 12

A2-full-256
A2-zero-256
A8-full-256
A8-zero-256

InpaintingInpainting

Figure 12: Deep architectures with zero
skip connection converge more slowly, i.e.,
A8 zero 256

We argue that the understanding about the upsam-
pling and its interactions with other architecture el-
ements can help explain why deeper networks with
fewer skip connections converge more slowly, gener-
ate smoother outputs and are less prone to overfitting
(Sec. 4). Concretely, the upsampling operation in-
serted in-between the decoder layer slows down the
generation of high frequencies required for transform-
ing the lower-resolution feature maps into the higher-
resolution target image, primarily due to its role as
a fixed low-pass filter. As the network depth in-
creases, the degree of smoothness increases (Fig. 10).
Skip connections notably accelerate the convergence
(Fig. 12) and ameliorate the over-smoothing issue,
likely due to the reduced ”effective” upsampling rate.
All these observations are consistent with our MRI experiments in Sec. 4.
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A.5 EXAMPLE RESULTS ON 8× UNDERSAMPLING

DIP with an inappropriately chosen architecture exhibits even more severe reconstruction artifacts
in 8× undersampling, which may not be remedied by early stopping as even the peak PSNR could
be low (see metric curves). Nevertheless, our method substantially alleviates the artifacts while
employing the same architecture. Particularly, we found that scaling up not only the sigma but also
the kernel size of the Gaussian blur improves the visual quality in such a high undersampling rate.

8× Undersampled A2-64 w. Self-Validation
(3000th iter) (Early-stopped)

Ours, ks = 3, 𝜎 = 1.5 Ours, ks = 7, 𝜎 = 2.5 Ground Truth(3000th iter) (3000th iter)

A2-64
Early-stopped
Ours (ks=3, 𝜎=1.5)
Ours (ks=7, 𝜎=2.5)

Figure 13: Qualitative results of 8× undersampling. All methods were evaluated on A2 64.

8× Undersampled A2-64 w. Self-Validation
(3000th iter) (Early-stopped)

Ours, ks = 3, 𝜎 = 1.5 Ours, ks = 7, 𝜎 = 2.5 Ground Truth(3000th iter) (3000th iter)

Ours (ks=7, 𝜎=2.5)
Ours (ks=3, 𝜎=1.5)
Early-stopped
A2-64

Figure 14: Qualitative results of 8× undersampling. All methods were evaluated on A2 64.

A.6 ANALYSIS ON SENSITIVITY TO HYPERPARAMETERS

As stated in the ”implementation details” section, we set the filter size of the Gaussian blur to a fixed
value, i.e., 3, and chose the sigma uniformly from a fixed range, i.e., [0.5, 2.0]. The substantially
improved performance demonstrates that the method exhibits robustness to a certain range of hy-
perparameters. For the undersampling rate higher than 4×, a larger kernel size and sigma value are
generally beneficial for better visual quality (see qualitative examples in Sec. A.5). We then test the
sensitivity of the proposed Lipschitz regularization to its only hyperparameter - the regularization
coefficient λ. The experiments were performed on the multi-coil knee validation dataset (Tab. 11).

A.7 DETAILS OF THE CUSTOMIZED UPSAMPLER

The upsamplers experimented in Tab. 10 is constructed by first inserting zeros into the input (or feature
maps) in an interleaved fashion, and then convolving with the filter with the following coefficients:
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Algorithm 1: PyTorch-style pseudocode for customized upsampling
# upx: the upsampling scaling factor in the x direction
# upy: the upsampling scaling factor in the y direction
# x: the input to be upsampled
def InsertZeros(x, upx, upy, gain=1.0):

b,c,h,w = x.size()
x = x.reshape([b, c, h, 1, w, 1])
x = F.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
x = x.reshape([b, c, h * upx, w * upy])
x = x * gain
return x

# LPF construction
# w: the coefficients
def lowpass conv(num chns, w, pad size=’same’, pad mode=’zeros’):

# filter size
k size = len(w)
# Convert 1D LPF coefficients to 2D
f 2d coeff = torch.outer(w,w)
f weights = torch.broadcast to(f 2d coeff, [num chns, 1, k size,
k size])
conv = nn.Conv2d(num chns, num chns, kernel size=k size,
stride=1, padding=pad size, padding mode=pad mode, bias=False,
groups=num chns)
conv.weight.data = f weights
conv.weight.requires grad = False
return conv

Table 11: Evaluation on hyperparameter sensitivity of the Lipschitz regularization. PSNR values
(↑) are reported. The chosen is underlined.

Matrix norm Hyper-param. A2 256 A2 64 A5 256 A5 64 A8 256 A8 64

ℓ∞
λ = 1 28.41 29.21 29.17 29.79 29.43 30.14
λ = 1.5 27.89 28.98 28.68 30.11 29.13 29.42
λ = 2 28.36 29.25 28.51 29.60 28.98 29.52

Figure 15: Example results of a transformer (i.e., Swin U-Net Cao et al. (2022)). The original Swin
U-Net consists of only Swin Transformer blocks and skip connections, without upsampling layers.
Our method substantially alleviates the overfitting and enhances the peak PSNR.

Nearest neighbor (NN): [0.5, 0.5]

Bilinear: [0.25, 0.5, 0.25]

L−100: [0.000015, 0.000541, 0.003707, 0.014130, 0.037396, 0.075367, 0.121291,
0.159962, 0.175182, 0.159962, 0.121291, 0.075367, 0.037396, 0.014130, 0.003707, 0.000541, 0.000015]

L−100 is designed using the Kaiser window, with the cutoff frequency as 0.1 and the Beta of the
Kaiser window as 10.
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Specifically, the customized filter can be constructed using the following code and can then be used
as a plug-in module for any network architecture.
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