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Abstract

We present CHROMA, a human-in-the-loop system that turns natural language-
based requests into manufacturable multilayer thin-film designs for structural
coloration. CHROMA combines a frozen large language model encoder with a
compact, trainable Transformer decoder over a discrete material–thickness vocab-
ulary, and couples decoding with a differentiable transfer-matrix-method verifier.
Users write prompts like “teal reflection at 60◦, six layers, include ZnO, avoid Al
next to Mn.” Then, CHROMA proposes a stack, simulates the optical response, and
enforces hard constraints. We describe dataset construction from physics-generated
spectra paired with templated natural-language paraphrases, report scaling trends
over encoder size and decoder depth, and demonstrate angle-resolved analyses
of selected stacks. CHROMA’s conversational interface provides exceptional
flexibility for defining design targets.

1 Introduction

Structural coloration, which creates color from interference, diffraction, and scattering rather than
absorption, has reemerged as a compelling alternative to pigments and dyes [6, 11, 10, 3], inspired by
natural photonic systems such as butterfly wings, peacock feathers, and iridescent beetles [2, 12, 4].
Unlike organic colorants that can fade or impose environmental burdens, structural colors are
encoded in geometry and materials, often spanning a gamut beyond standard RGB spaces [1]. While
metasurfaces push the state of the art in gamut, multilayer thin films offer clear advantages in
manufacturability and robustness, making them ideal for many practical optical components. The
core challenge lies in inverse design: determining the precise sequence of materials and thicknesses
to achieve a target optical response.

Conventional multilayer design relies on iterative black-box optimization (e.g., genetic algorithms
and Bayesian optimization) [5, 7] or supervised inverse models [9]. These methods, however, face
significant challenges: optimization can be computationally expensive and struggle with complex,
non-convex landscapes, while supervised models often require vast, well-structured datasets. We
argue that a fundamental limitation is the interface itself. We pursue a different paradigm: let people
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Figure 1: CHROMA schematic. Natural-language prompt is translated by a frozen LLM encoder
and a compact decoder into a candidate design from a discrete vocabulary.

speak color. Our work, CHROMA, introduces a conversational system that translates free-form text,
rich with constraints and intent, into manufacturable stacks; see Figure 1.

2 Methodology

System Overview. CHROMA is designed as a multi-stage pipeline that bridges the gap between
high-level human language and low-level physical design. A user specifies a target color and viewing
geometry along with optional constraints (i.e., layer count, material inclusion/exclusion, forbidden
adjacencies, thickness bounds). This natural-language prompt is first embedded by a frozen Llama
encoder. Its latent representation is then passed to a compact, trainable Transformer decoder, which
autoregressively proposes a multilayer stack from a discrete material–thickness vocabulary. This
generated stack is immediately verified by a transfer-matrix method (TMM) module that simulates its
spectral response (R(λ) or T (λ)), converts the spectrum to standard RGB, and computes the color
error (∆E) against the target.

Figure 2: Visualizing Color Differ-
ence (∆E). Each subplot compares a
ground truth color (top) to a simulated
color (bottom). The ∆E value quanti-
fies their perceptual difference, which
becomes nearly indistinguishable as ∆E
approaches zero.

Model and Training. We formalize a design as a se-
quence S = [(m1, t1), . . . , (mL, tL)], where materials
mℓ are drawn from a library M of 25 popular optical ma-
terials and thicknesses tℓ are chosen from a quantized set
T = {5, 10, . . . , 200} nm (i.e., 40 values). This discretiza-
tion is key to ensuring manufacturability. Our model’s
vocabulary consists of all 1,000 material–thickness pairs,
plus special tokens for padding and sequence boundaries
(i.e., <PAD>, <BOS>, <EOS>), totaling 1,003 tokens.

The architecture balances linguistic understanding with
specialized, efficient learning. The encoder (i.e., 1B, 3B,
or 8B Llama variant) is kept frozen. This strategic choice
leverages its powerful, pre-trained understanding of lan-
guage for stability and sample efficiency, avoiding catas-
trophic forgetting. Its outputs are projected to a fixed
dimension (d = 512) and consumed by a compact Trans-
former decoder (d = 512, 8 heads, N ∈ {2, 4, 8} blocks),
which is trained from scratch. Training employs a standard
teacher-forcing scheme with the cross-entropy. Unless oth-
erwise stated, we use batch size 560, learning rate 10−4,
and train for 20 epochs.
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Color Metric (CIE76). Color evaluation follows the standard CIE pipeline: (i) convert reflectance
R(λ) to tristimulus values (X,Y, Z) using 1931 color-matching functions and a D65 illuminant; (ii)
transform (X,Y, Z) to the perceptually more uniform CIE L∗a∗b∗ space; and (iii) calculate color
difference using the CIE76 formula:

∆E =
√
(L∗

2 − L∗
1)

2 + (a∗2 − a∗1)
2 + (b∗2 − b∗1)

2. (1)

This metric represents the Euclidean distance in CIELAB space, where a common just-noticeable-
difference (JND) threshold is ∆E ≈ 2. This is visualized in Figure 2.

Dataset and Evaluation Splits. Our dataset is synthesized through a physics-first workflow: (i)
generate random multilayer stacks; (ii) simulate their optical spectra with JaxLayerLumos; (iii)
generate corresponding natural-language descriptions using a set of templates and paraphrasing
techniques. This ensures every text prompt is paired with a physically valid structure. In addition, we
simulate spectra using JaxLayerLumos [8] on a 128-point grid from 380–780 nm.

We evaluate the model on two distinct splits to test different capabilities:

• Training-paraphrase (TP): Rephrasings of prompts for structures seen during training. This split
probes the model’s ability to generalize to varied linguistic expressions for known designs.

• Validation (held-out structures): A set of 900 base stacks not used in training, each with 8
paraphrases. This split tests the model’s ability to perform inverse design for new optical targets.

The training set contains 72,000 prompts (i.e., 9,000 base structures × 8 templates), and the validation
set has 7,200 prompts (i.e., 900× 8).

3 Results and Discussion

Figure 3: Scaling Analysis. Mean ∆E versus
trainable parameters for decoder depths (2, 4, and
8 layers) and encoder sizes (1B, 3B, and 8B param-
eters). Solid lines represent TP performance, while
dashed lines show validation on held-out structures.
The dotted line marks the JND threshold.

Our experiments investigate how model perfor-
mance scales with the size of the frozen encoder
and the depth of the trainable decoder. Figure 3
plots the mean CIE76 ∆E against the number
of trainable parameters, which is primarily a
function of decoder depth; see Tables 1 and 2.

Two clear patterns emerge. First, decoder depth
is the dominant factor in performance. A shal-
low decoder (N = 2) struggles, saturating at
a high ∆E ≈ 60 on both splits, indicating it
lacks the capacity to map complex linguistic
and physical constraints to the correct token se-
quence. Increasing depth to N = 4 causes a dra-
matic performance jump, with TP error falling
to ∆E ≈ 20 and validation error dropping to
∼ 50. A deep decoder (N = 8) achieves sub-
JND accuracy on the TP split (∆E < 2) and
further improves validation error to ∆E ≈ 34.
This indicates the bottleneck lies in mapping a
compact semantic representation to a constrained, combinatorial token sequence; deeper decoders
provide longer effective receptive fields and greater capacity for constraint-aware sequence planning,
which the shallow model lacks.

Second, increasing the frozen encoder’s size provides only marginal benefits. Moving from a 1B
to an 8B parameters encoder yields small but consistent reductions in ∆E and slightly tighter
variance bands. This suggests larger encoders help normalize linguistic variation, but the fixed
(d = 512) projection creates an information bottleneck that limits gains from scaling the frozen
encoder; performance is thus governed primarily by decoder capacity under constraints.

The persistent gap between TP and validation performance (∆E ≈ 1 vs. ≈ 34 for the best model)
reveals the core challenge of generalization in this domain. Several factors contribute: (i) quantization
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Figure 4: Successful validation examples. Examples of successful predictions on the held-out
validation set, demonstrating CHROMA’s ability to generate novel, high-fidelity designs with low
∆E across different angles and layer counts.

error from the discrete thickness vocabulary; (ii) a mismatch between the training objective (token-
level cross-entropy) and the final evaluation metric (spectrally-derived ∆E); (iii) the combinatorial
complexity introduced by hard constraints in the prompts; and (iv) the high sensitivity of optical
spectra to small changes in the layer stack, especially at non-normal incidence angles. These insights
suggest clear avenues for future work, such as incorporating sequence-level, physics-informed losses
and developing more continuous parameterizations for layer thicknesses.

4 Conclusion

We have introduced CHROMA, a conversational framework that successfully bridges the gap between
natural language and the inverse design of optical structures. By integrating a frozen LLM encoder
with a compact, trainable decoder, CHROMA translates complex, language-based requirements into
physically-valid and constraint-aware designs. This approach moves beyond traditional optimization
by offering an intuitive and flexible interface, empowering users to embed practical manufacturing
considerations directly into prompts. To support reproducibility, we have detailed our dataset
construction, model parameters, and evaluation protocols.

Reproducibility Notes. Our implementation employs JaxLayerLumos [8] for spectral modeling,
incorporates natural-language templates for labeling, and adopts the training configuration shown in
the appendices.

Limitations. CHROMA currently operates in a discrete design space, which introduces quantization
error. Its TMM assumes ideal, planar layers, omitting real-world effects like surface roughness and
process variability. We report CIE76 ∆E, which is a simplified perceptual metric. Also, the template-
based prompts and frozen encoder limit the scope of language understanding, and a generalization gap
remains between seen and unseen structures. Future work will explore continuous parameterizations,
richer physical models, and advanced training strategies to address these limitations.
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A Model and Training Details

This section provides a detailed breakdown of the model’s architecture and the hyperparameters used
during training, intended to ensure full reproducibility of our results.

Table 1: Trainable parameter components.

Component #Parameters

Custom token embedding 513,536
Classifier head 514,539
Encoder projection 1,049,088
One decoder block ≈ 4,204,032

Architectural Components. Table 1 itemizes the sources of trainable parameters in our model.
The majority of parameters reside within the Transformer decoder blocks, with a fixed overhead for
the token embedding, the projection layer (which maps the frozen encoder’s output to the decoder’s
dimension), and the final classifier head.

Table 2: Parameter scaling vs. decoder depth (frozen encoder).

#Decoder Layers Decoder Parameters Total Trainable Parameters

2 8.4M 10.5M
4 16.8M 18.9M
8 33.6M 35.7M

Scaling of Trainable Parameters. Table 2 shows the total number of trainable parameters for each
of the decoder depths (N = 2, 4, and 8) explored in our scaling analysis; see Figure 3. Since the
LLM encoder is frozen, the model’s trainable capacity is determined almost entirely by the number
of decoder layers.

Table 3: Default training configuration.

Parameter Value Parameter Value

batch_size 560 learning_rate 1× 10−4

max_text_len 256 max_custom_seq_len 20
custom_embed_dim 512 decoder_hidden_dim 512
decoder_ff_dim 2048 num_decoder_heads 8
dropout_rate 0.1 num_decoder_layers 8
freeze_llama_base true num_epochs 20

Hyperparameters. Table 3 lists the default hyperparameters used for training our models, unless
otherwise specified in the main text. These settings were chosen to ensure stable training and effective
learning within our computational budget.
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B Dataset Generation and Material Properties

The foundation of CHROMA is a dataset that reliably links natural language to physical structures.
This section details how prompts are generated and the optical properties of the materials used.

Rephrase the following description of a multi-layer thin-film structure used for structural coloration.
The content must remain unchanged, but the wording should be revised. Additionally, replace
<COLOR_NAME> with a natural-language color name corresponding to the RGB value [211, 219,
181].

Create an optical structure that consists of a four-layer stack composed of GaAs, InP, Pd, TiN.
At 0 degrees, the reflected color observed from this multilayer configuration corresponds to
<COLOR_NAME>.

Figure 5: Example template used for generating paraphrased natural language prompts. A base
description is programmatically varied to create a diverse set of prompts for each physically simulated
structure.

Figure 6: Optical-constant library. Wavelength-dependent refractive index n(λ) and extinction
coefficient k(λ) for the 25 materials in our library, spanning the visible spectrum (380–780 nm).
These data are the basis for all physical simulations.

Prompt Generation and Optical Constants. Figure 5 shows an example of the templates used to
generate varied natural language prompts for a given structure, ensuring linguistic diversity in our
dataset. Figure 6 plots the complex refractive index (n and k) data for the 25 materials available to
the model. Accurate optical constants are critical for the physics-in-the-loop verification step.
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C Qualitative Performance Analysis

To provide a more concrete understanding of the model’s behavior, we present representative examples
of its successes and failures on the held-out validation set.

Table 4: Representative validation cases with low ∆E. Each row reports the viewing angle, layer
count, and both the ground-truth and generated stacks. Visual RGB comparisons and ∆E are shown
in Figure 4. Bracket notation: [material, thickness nm; . . . ].

Angle Layers Ground-truth Stack Generated Stack

0° 4 [Mn,10; SiO2,200; Ge,125; InP,160] [SiO2,200; Ge,25; Mn,190; InP,195]
0° 6 [ZnO,85; SiO2,155; Cr,165; AZO,5; TiN,165; ITO,70] [ZnO,40; AZO,155; Cr,175; ZnO,35; AZO,10; Cr,195]
0° 8 [GaInP,35; Al2O3,15; Cr,150; GaAs,155; Ge,70; AZO,45;

W,40; Si3N4,175]
[Si3N4,115; GaAs,80; GaInP,35; GaAs,70; W,70;
Al2O3,30; Cr,195]

30° 4 [SiO2,95; aSi,65; ZnO,85; TiN,180] [ZnO,160; TiO2,65; aSi,15; aSi,85]
30° 6 [ZnO,180; Mn,175; GaAs,40; Ag,185; W,200; Ge,190] [ZnO,175; W,85; Ag,120; W,45; Ag,25; Al,105]
30° 8 [cSi,95; Al2O3,5; SiO2,120; TiN,145; InP,85; W,40; Au,20;

ZnO,60]
[cSi,110; W,95; InP,40; W,50; ZnO,20; Al2O3,150; W,155]

60° 4 [GaP,85; Au,200; GaAs,135; Ti,25] [GaP,85; Ti,150; Au,70; GaP,30]
60° 6 [InP,185; AZO,105; Ag,110; GaInP,165; GaP,135; TiN,195] [GaInP,35; InP,160; TiO2,30; GaP,85; Ag,25; GaP,160]
60° 8 [GaInP,90; W,10; Ge,190; cSi,150; Cr,150; Al,60; GaP,160;

aSi,165]
[cSi,150; Mn,100; GaAs,50; W,100; Ge,200; GaInP,15;
W,35; Al,45]

Table 5: Prompts for the rows in Table 4. Each prompt corresponds to the same (Angle, Layers)
entry; see Figure 4 for visual comparisons.

Angle Layers Prompt

0° 4 Design an optical multilayer structure made up of four layers arranged in the sequence SiO2, InP, Mn, and Ge.
When viewed at normal incidence (0 degrees), the reflected hue from this stack appears as a muted gold. The
thickness of the Mn layer must be less than that of the InP layer, while the SiO2 layer should have a greater
thickness than the Mn layer.

0° 6 Design an optical multilayer structure made up of six layers: SiO2, AZO, Cr, ZnO, TiN, and ITO. When viewed
at a 0-degree angle, the reflected color from this stack appears as a soft pink. The thickness of each individual
layer should be kept at or below 165 nm.

0° 8 Design an optical multilayer structure featuring an eight-layer stack made up of GaInP, GaAs, Ge, W, Al2O3,
Si3N4, AZO, and Cr. When viewed at a 0-degree angle, the color reflected by this multilayer arrangement
appears as a sky blue hue.

30° 4 Design an optical multilayer structure made up of four layers arranged as SiO2, ZnO, aSi, and TiN. When viewed
at a 30-degree angle, the reflected color produced by this multilayer assembly matches the shade of deep blue. In
the layer stack, the thickness of aSi must be less than that of TiN, while the SiO2 layer should be thicker than the
ZnO layer.

30° 6 Design an optical structure made up of a six-layer stack including Mn, GaAs, W, Ge, Ag, and ZnO. When viewed
at a 30-degree angle, the color reflected from this multilayer arrangement appears as goldenrod. The Mn layer
must be thinner than the Ge layer, and the Ge layer should be thicker than the ZnO layer.

30° 8 Design an optical multilayer structure made up of eight layers arranged in the following sequence: cSi, ZnO, InP,
Al2O3, W, TiN, Au, and SiO2. When viewed at an angle of 30 degrees, the reflected color produced by this
multilayer assembly appears as a soft green.

60° 4 Design an optical structure featuring a four-layer stack made up of GaP, Ti, Au, and GaAs. When viewed at
a 60-degree angle, the reflected color produced by this multilayer arrangement appears as a soft peach. It is
essential to ensure that Au is not positioned directly next to Ti.

60° 6 Design an optical multilayer structure featuring a six-layer assembly of GaP, InP, AZO, Ag, TiN, and GaInP.
When viewed at an angle of 60 degrees, the reflected color produced by this stack appears as teal. It is essential
to ensure that Ag is not positioned directly next to InP.

60° 8 Design an optical multilayer structure made up of eight sequential layers: GaP, cSi, aSi, W, Cr, Al, Ge, and
GaInP. When viewed at a 60-degree angle, the reflection from this stack exhibits a muted mauve hue. The layer
of W must be positioned directly next to the GaInP layer.

Successful Cases. Tables 4 and 5 detail several successful predictions on the validation set, cor-
responding to the visuals in Figure 4. These examples show that even when the generated stack
differs significantly from the ground-truth stack in materials and thicknesses, CHROMA can often
find alternative solutions that produce a very similar optical response, demonstrating a capacity for
creative, non-obvious design.

8



Figure 7: Worst-case validation examples. Cases from the held-out validation set where predicted
spectra deviate significantly from ground truth, resulting in large ∆E. These highlight challenging
regions of the design space and provide insight into model failure modes.

Table 6: Representative validation cases with high ∆E. Each row reports the viewing angle, layer
count, and both the ground-truth and generated stacks. Visual RGB comparisons and ∆E are shown
in Figure 7. Bracket notation: [material, thickness nm; . . . ].

Angle Layers Ground-truth Stack Generated Stack

0° 4 [ITO,80; InP,105; W,35; Al2O3,85] [ITO,145; InP,70; Al2O3,115; W,155; InP,185]
0° 6 [ZnO,65; TiO2,5; AZO,130; Si3N4,65; Au,90; cSi,75] [TiO2,120; cSi,75; Au,30; AZO,35; cSi,75; TiO2,70]
0° 8 [TiO2,190; Ge,90; Ti,195; Mn,130; ZnO,185; Pd,30;

InP,105; GaAs,5]
[TiO2,55; Ge,160; Pd,135; Ge,25; Pd,130; GaAs,100;
GaP,50; ZnO,115; GaP,125]

30° 4 [SiO2,80; GaInP,35; ITO,125; Pt,130] [SiO2,125; ITO,200; GaInP,135; Pt,110; Ag,50]
30° 6 [Al,5; SiO2,30; Si3N4,200; Ag,105; Ti,15; aSi,85] [Si3N4,160; aSi,90; Ag,40; Al,185; Ag,200; Si3N4,25]
30° 8 [AZO,100; aSi,160; GaP,105; TiN,105; Ti,50; Si3N4,30;

Mn,140; Pd,75]
[AZO,170; GaAs,70; Mn,80; Mn,85; aSi,85; TiO2,30;
AZO,20]

60° 4 [GaP,85; Al2O3,165; Ti,135; SiO2,150] [GaAs,10; TiN,85; Al2O3,5; TiO2,70]
60° 6 [Si3N4,45; ITO,140; TiN,85; cSi,165; SiO2,75; aSi,25] [ITO,140; Si3N4,35; ITO,140; aSi,25; Ti,135; SiO2,160;

TiO2,60]
60° 8 [GaP,65; TiO2,95; TiN,185; Pt,170; Ge,55; AZO,110;

Al,195; Ti,30]
[AZO,55; Ti,155; Ge,140; AZO,55; Ti,40; TiO2,105;
GaAs,10; W,50]

9



Table 7: Prompts for the rows in Table 6. Each prompt corresponds to the same (Angle, Layers)
entry; see Figure 7 for visual comparisons.

Angle Layers Prompt

0° 4 Design an optical assembly featuring a four-layer stack made up of Al2O3, ITO, W, and InP. When viewed at 0
degrees, the reflected color exhibited by this multilayer setup is a deep indigo. The tungsten (W) layer must be
positioned next to the Al2O3 layer.

0° 6 Design an optical structure featuring a six-layer assembly made up of Si3N4, TiO2, Au, ZnO, AZO, and cSi.
When viewed at 0 degrees, the reflected color produced by this multilayer arrangement appears as golden yellow.
The Au layer must be positioned next to the Si3N4 layer.

0° 8 Design an optical multilayer structure made up of eight layers arranged in the following sequence: TiO2, InP,
GaAs, Pd, Ge, Ti, ZnO, and Mn. When viewed at normal incidence (0 degrees), the reflected color produced by
this stack appears as teal. The outermost (final) layer should be GaAs.

30° 4 Design an optical multilayer structure made up of four layers arranged in the following order: SiO2, ITO, Pt, and
GaInP. When viewed at an angle of 30 degrees, the reflected color from this stack appears as a vivid pink.

30° 6 Design an optical multilayer structure comprising six layers arranged as Si3N4, Ti, aSi, Al, Ag, and SiO2. When
viewed at an angle of 30 degrees, the reflected color produced by this stack appears as a light lavender. The
Si3N4 layer must be positioned directly next to the Ag layer.

30° 8 Design an optical stack made up of eight layers arranged in the following order: Ti, Pd, aSi, GaP, Si3N4, AZO,
Mn, and TiN. When viewed at an angle of 30 degrees, the reflected color produced by this multilayer structure
appears as deep sky blue.

60° 4 Design an optical configuration featuring a four-layer stack made up of GaP, SiO2, Al2O3, and Ti. When
viewed at a 60-degree angle, the reflected color produced by this multilayer assembly appears as pale gold. The
combined optical thickness must be limited to no more than 540 nm.

60° 6 Design an optical structure featuring a six-layer stack made up of Si3N4, ITO, cSi, TiN, SiO2, and aSi. When
viewed at a 60-degree angle, the color reflected by this multilayer arrangement appears as a soft coral.

60° 8 Design an optical system featuring an eight-layer stack arranged from the first layer as GaP, followed by TiN, Ge,
Al, TiO2, AZO, Ti, and Pt. When viewed at a 60-degree angle, the color reflected from this multilayer assembly
appears as a soft green.

Failure Cases. In contrast, Tables 6 and 7 document failure modes, visually represented in Figure 7.
These high-∆E cases often occur when prompts involve complex constraints (e.g., specific adja-
cencies or layer ordering) that are difficult to satisfy simultaneously with the color target. In some
instances, the model generates sequences of incorrect length or repeats materials in unphysical ways.
Analyzing these failures is crucial for identifying weaknesses and guiding future improvements to the
model architecture and training process.
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