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Abstract

The quality of self-supervised pre-trained embeddings on out-of-distribution (OOD)
data is poor without fine-tuning. A straightforward and simple approach to improv-
ing the generalization of pre-trained representation to OOD data is the use of deep
ensembles. However, obtaining an effective ensemble in the embedding space with
only unlabeled data remains an unsolved problem. We first perform a theoretical
analysis that reveals the relationship between individual hyperspherical embed-
ding spaces in an ensemble. We then design a principled method to align these
embedding spaces in an unsupervised manner. Experimental results on the MNIST
dataset show that our embedding-space ensemble method improves pre-trained
embedding quality on in-distribution and OOD data compared to single encoders.

1 Introduction

Self-supervised learning techniques enable the pre-training of deep neural network (DNN) encoders on
widely available unlabeled data. These pre-trained encoders, once fine-tuned, are highly transferable
to various downstream tasks [5, 3]. However, a key challenge remains: without fine-tuning, the
quality of pre-trained features is noticeably lower on out-of-distribution (OOD) data, impairing
the performance of pre-trained models on subsequent OOD downstream tasks [7]. This issue is
particularly critical when the downstream task has insufficient data for fine-tuning, making it essential
for the pre-trained encoders to generalize well to OOD data in a zero-shot manner without fine-tuning.

A straightforward approach to improve the generalizability of pre-trained representation quality to
OOD data is the use of deep ensembles. Deep ensembles (DEs) [9], consist of DNNs independently
trained with different initializations and data orders (e.g. seeds). DEs have been shown to improve
the predictive performance over single DNNs on both in-distribution (ID) and OOD data [14, 1].

Existing DE approaches typically aggregate models either in the predictive output space [1, 9, 14]
(e.g., logits for classification) or in the weight space [21, 15, 16]. Aggregating in the predictive
space confines the ensemble to a single task, e.g., classification with a fixed set of classes, and is
inapplicable for self-supervised pre-trained encoders. In contrast, aggregating models in the weight
space offers the flexibility to accommodate various tasks by discarding the predictive layer and
retaining only the ensembled encoder. However, this approach sacrifices the interpretability that
predictive-space ensembles provide, particularly in how individual model outputs are combined and
unified. In essence, existing DE techniques exhibit an undesirable trade-off between interpretability
and flexibility.

In this paper, we take a novel perspective to ensemble self-supervised pre-trained encoders for
improved zero-shot OOD generalization. Our approach offers both the flexibility of weight-space
ensembling and the interpretability of predictive-space ensembling. We propose an embedding-
space ensemble, called Ensemble-InfoNCE, in which we aggregate the ensemble mean in the

NeurIPS 2024 Workshop: Self-Supervised Learning - Theory and Practice.



Figure 1: Need for embedding alignment: The ensemble mean of two different embeddings (yellow,
blue) in misaligned embedding spaces Z1, Z2 collapses to the same vector in Z̄, although they have
different semantic meanings.

hyperspherical latent embedding space of encoders pre-trained using the widely used InfoNCE
contrastive loss [13, 3].

Obtaining the ensemble mean of embedding vectors is less straightforward compared to taking
the mean of predictive outputs or model weights. To take the ensemble mean of embeddings, the
embedding spaces must be aligned such that the embeddings (produced by the different encoders)
corresponding to semantically similar samples have a similar direction in the hyperspherical space.
Taking the mean of misaligned embeddings that point in different directions can harm the semantic
integrity of the embedding space (Figure 1). Existing approaches align embeddings using class labels
[22]. However, aligning embeddings without access to labels remains an unsolved problem. To
this end, we extend the theoretical results in [23], and use this to propose a principled unsupervised
approach (referred to as Ensemble-InfoNCE) to align the embeddings. Our theoretical results
demonstrate that an ensemble of encoders with aligned embedding spaces recovers the correct
(ground truth) embeddings. Finally, we experimentally show improved pre-trained embedding quality
on in-distribution (ID) and OOD data for Ensemble-InfoNCE compared to single InfoNCE encoders
on the MNIST dataset.

2 Background and preliminaries

InfoNCE loss. We consider encoders pre-trained using the InfoNCE loss, a widely used contrastive
(self-supervised) learning objective [13, 2, 3, 5, 18, 20]. These encoders f map the input space X
to an L2-normalized unit-hyperspherical embedding space Z = SD−1. Encoders trained with the
InfoNCE loss (3) have the desirable property of mapping semantically similar pairs of samples close
together in the embedding space, while also ensuring that dissimilar samples are mapped far apart.

InfoNCE-trained encoders recover the correct latents. Zimmermann et al. [23] theoretically
demonstrate that an encoder f minizing the contrastive loss in (3) recovers the ground truth latents
z ∈ Z up to orthogonal transformations. Specifically, z⊤1 z2 = h(z1)

⊤h(z2), where z1, z2 are ground
truth latents, and h = f ◦ g composes of encoder f and a generative process g : Z 7→ X .1

3 Embedding-space ensembles via unsupervised alignment

In this section, we introduce, to the best of our knowledge, the first approach of ensembling self-
supervised pre-trained encoders in the embedding space, which offers the interpretability of predictive-
space ensembles and the flexibility of weight-space ensembles. Our embedding-space ensemble
approach, referred to as Ensemble-InfoNCE, produces mean embedding vectors z̄ = f̄(x) ∈ Z for
a given ensemble of M > 1 encoders {fi : X 7→ Zi}Mi=1 pre-trained using the InfoNCE loss (3).
Each Zi is a unit-hyperspherical embedding space Zi = SD−1. Before taking the ensemble mean,
we must first align the embedding spaces {Zi}Mi=1 so that each of the M embeddings {fi(x)}Mi=1 for
the same input x points in a similar direction on a hypersphere. However, aligning embedding spaces
without labels in an unsupervised manner remains a challenging problem.

To tackle the challenge of performing unsupervised embedding space alignment, we first conduct
a theoretical analysis and reveal a critical orthogonality relationship between different embedding
spaces (Section 3.1). This relationship allows us to extend the guarantees on the recovery of the
correct latents2 from single encoders to an ensemble. Furthermore, this relationship enables us to
align the embedding spaces by recovering the orthogonal transformation matrix and forms the basis of
our unsupervised embedding space alignment approach (Section 3.2). Finally, the aligned ensemble
embeddings are aggregated using the Karcher Mean algorithm [17] (Section 3.3).

1We refer interested readers to Theorem 2 of [23].
2In this paper, we use the terms "latents", "features", and "embeddings" interchangeably.
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3.1 Theoretical analysis

An encoder’s latent space is an orthogonal transformation of another encoder’s. Extending the
main theoretical result of [23] (Section 2) from single encoders to an ensemble of these encoders, we
reveal that an encoder’s embedding space is an orthogonal transformation of another encoder’s. This
is formally stated below in Proposition 1 with the corresponding proof in Appendix A.2.

Assumption. For an ensemble of encoders f1, f2 trained on the same data D = {xi}Ni=1 with
different random seeds, we assume that f1(x) = R1z and f2(x) = R2z. In other words, both f1 and
f2 recover the correct (ground truth) latents z up to different orthogonal transformations R1, R2.3

Proposition 1 (Orthogonal transformation relationship). Under the above assumption, f1 and f2
learn the same latents up to an orthogonal transformation R, that is, f1(x) = Rf2(x).

An ensemble of aligned embeddings recovers the correct latents. Based on Proposition 1, in
Proposition 2 we generalize the theoretical guarantee on the correctness of the learned latents for
each ensemble member to the ensemble as a whole. The proof is provided in Appendix A.2.

Proposition 2 (Ensemble recovers correct latents). The ensemble mean f̄(x) of aligned embeddings
f1(x) and Rf2(x) are the correct latents z up to orthogonal transformation R1, that is, f̄(x) = R1z.

Approximate orthogonal relationship on real-world data. With real-world data, there may not
exist an orthogonal transformation that perfectly aligns all corresponding embedding vectors of the
same input between different embedding spaces. This discrepancy arises due to violations of the
data generation and modeling assumptions. Under such violated conditions, Zimmermann et al.
[23] demonstrated that these encoders still recover the true latents to a moderate to high degree. By
extending this result to our problem setting, we infer that the relationship between encoders fi and
fj can be approximated as fi(x) ≈ Rfj(x) for all x ∈ X . In deep ensembles, this approximate
orthogonal transformation relationship preserves some degree of diversity between embedding spaces,
preventing the ensemble from collapsing into a single model.

3.2 Unsupervised embedding space alignment via learning orthogonal matrices

Our goal is to align the M hyperspherical embedding spaces Z1, ..., ZM induced by encoders {fi}Mi=1
so that the same in-distribution pre-training sample is mapped to embeddings that have a similar
direction across {Zi}Mi=1. From Section 3.1, we know that fi(x) ≈ Rfj(x) for all x ∈ X , which
means that learning the orthogonal transformation matrix R would naturally align fj(x) with fi(x).
We note that R does not need to be strictly orthogonal for aligning the embedding spaces. To learn R
in a D-dimensional embedding space, we use a single-layer neural network with D input and output
nodes. The D ×D weight matrix within this single layer neural network represents the orthogonal
transformation matrix R that we want to learn.

To align the embedding spaces, we randomly select one anchor encoder from the set of M encoders
to align the remaining M − 1 encoders. To align each Zj with the anchor embedding space Zi, we
propose an objective function that enforces R to be as close to orthogonal as possible by imposing
orthogonality as a soft constraint, while simultaneously maximizing the alignment between pairs of
embeddings:

Lalign = argmin
R∈RD×D

1

N

N∑
n=1

d(fi(xn), Rfj(xn)) + λ∥RTR− ID∥2F (1)

where N denotes the number of samples, λ is a hyperparameter that controls the strength of the
orthogonality constraint, and d(., .) is a function that quantifies the discrepancy between pairs of
vectors. Given that the embedding vectors reside on the surface of a unit sphere, we use the geodesic
distance, which measures the shortest path between two points on a Riemannian manifold and
accounts for the spherical geometry. The objective function then becomes:

Lalign = argmin
R∈RD×D

1

N

N∑
n=1

arccos(fi(xn), Rfj(xn)) + λ∥RTR− ID∥2F (2)

3For our theoretical analysis, we consider the case of an ensemble of M = 2 encoders for simplicity. The
results can be extended to M > 2 encoders.
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Figure 2: Comparing embedding qualities of single models (blue), an ensemble of unaligned embed-
ding spaces (orange), and an ensemble of aligned embedding spaces (purple) in the ID and OOD
settings. Recall@1 and MAP@R are presented. Higher values indicate better performance. The
mean and standard deviation (error bars) of the performance metrics are reported for the 5 single
models. The ensembles do not have standard deviation since all 5 models are combined into one.

3.3 Embedding mean in an ensemble

An ensemble of M pre-trained encoders with aligned embedding spaces produces a mean embed-
ding vector for each sample, i.e., z̄ = f̄(x) = mean(f1(x), R2f2(x), ..., RMfM (x)). Given the
hyperspherical nature of the embedding spaces, we apply the Karcher Mean algorithm from [17] to
compute meaningful mean vectors on the surface of a sphere. The algorithm projects hyperspherical
data points onto a linear tangent space, calculates the mean in this tangent space, and then projects
the result back onto the sphere. This process iterates until the mean in the tangent space approaches a
near-zero norm, indicating that the mean has converged.4

4 Experiments
Dataset and training setup We use the MNIST dataset [10]. For ID evaluation, the test set is
used as is. For OOD evaluation, each test sample is randomly colored. Since random coloring
was not applied during pre-training, colored versions of the images are considered OOD. A total of
M = 5 encoders are trained for the ensemble, as this ensemble size has been shown to be sufficient
to produce good results [14]. Details of the dataset, model architecture and training are provided in
Appendix A.3 and A.4.
Evaluation metrics In line with the representation learning literature, we assess the quality of
embeddings using the Recall at 1 (R@1) and Mean Average Precision at R (MAP@R) metrics
[7, 11]. R@1 measures the semantic quality of the embedding space by verifying if each embedding’s
nearest neighbor belongs to the same class. MAP@R evaluates the proportion of each embedding’s R
nearest neighbors that belong to the same class, while accounting for the ranking of correct retrievals
[11]. R is set to the total number of samples in a class [11].

4.1 Experimental results
Figure 2 shows that our Ensemble-InfoNCE model with aligned embedding spaces (shown in
purple) improves the quality of embeddings over single models and unaligned ensembles in both the
in-distribution (ID) and out-of-distribution (OOD) settings. The embedding quality improvement
achieved by our method is more pronounced in the OOD setting, with a 6.99% improvement over the
mean R@1 of the M = 5 single models and a 17.38% improvement over the mean MAP@R of single
models. Our results also highlight the importance of aligned embedding spaces for ensembles. Taking
an ensemble of misaligned embedding spaces consistently hurts the embedding quality, achieving
lower values of R@1 and MAP@R than a single model for both ID and OOD settings. Table 1
provides the numerical values for Figure 2, and additional results are provided in Appendix A.5.

5 Conclusion
We improved the generalizability of pre-trained encoders to OOD data by taking an ensemble of
encoders in the embedding space. We constructed embedding-space ensembles by effectively aligning
the individual embedding spaces. Preliminary experiments on the MNIST dataset demonstrate that
our aligned embedding-space ensemble significantly enhances the OOD embedding quality compared
to individual models. In the future, we will focus on scaling our method to larger datasets, such as
ImageNet, and incorporating OOD data from real datasets [4, 8, 19, 12].

4Details of the Karcher Mean algorithm can be found in [17].
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A Appendix / supplemental material

A.1 The InfoNCE contrastive loss

The InfoNCE loss is defined as

Lcontr(f ; τ,M) := E
(x, x+)∼ppos

{x−
i }M

i=1
i.i.d.∼ pdata

− log
ef(x)

Tf(x+)/τ

ef(x)Tf(x+)/τ +
M∑
i=1

ef(x)
Tf(x−

i )/τ

 , (3)

where pairs (x, x+) are drawn of the distribution of positive samples ppos, and M > 0 negative
samples are drawn from the distribution of all observations pdata.

A.2 Proofs for Section 3.1

Proposition 1 Under the above assumption, f1 and f2 learn the same latents up to an orthogonal
transformation R, that is, f1(x) = Rf2(x).

Proof. Let f1(x) = R1z and f2(x) = R2z where R1, R2 are orthogonal matrices, i.e., RT
1 =

R−1
1 , RT

2 = R−1
2 , we have

⇒ R−1
1 f1(x) = z and R−1

2 f2(x) = z

⇒ R−1
1 f1(x) = R−1

2 f2(x)

⇒ R1R
−1
1 f1(x) = R1R

−1
2 f2(x)

⇒ f1(x) = Rf2(x) (Letting R = R1R
−1
2 )

Since R1 and R−1
2 are both orthogonal matrices, their product R is also an orthogonal matrix, i.e.,

RT = R−1. Therefore, f1 and f2 learns the same latents up to an orthogonal transformation R.

Proposition 2 (The ensemble also recovers the correct latents). The ensemble mean f̄(x) of aligned
embeddings f1(x) and Rf2(x) are the correct latents z up to orthogonal rotation R1, that is,
f̄(x) = R1z.

Proof. Let us denote the ensemble mean as f̄(x) = mean(f1(x), Rf2(x)), where mean(.) is a
general notion of the mean, which can be the arithmetic mean in Euclidean spaces or the Karcher
Mean in Reimmanian manifolds. For the simplicity of this proof, we will use the arithmetic mean,
but the results also apply to the Karcher Mean.

Defining f̄(x) using the arithmetic mean, we have:

f̄(x) =
1

2
[f1(x) +Rf2(x)] (4)

Since f1(x) = Rf2(x), we have:

f̄(x) =
1

2
[f1(x) + f1(x)] = f1(x) = R1z (5)

A.3 Additional implementation and training details

Contrastive pre-training architecture For contrastive pre-trained encoders, two convolution
blocks with max-pooling and ReLU activations are used, with a linear layer attached at the end to
project the embeddings down to D = 8 dimensions. The first convolution block consists of (1) a
Conv2d with 3 input channels, 16 output channels, a kernel size of 5, stride of 1, and padding of
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2; (2) max-pooling with kernel size 2; (3) a ReLU activation; and finally (4) a dropout layer with
dropout rate p (we used p = 0 in our experiments). Similarly, the second convolution block consists
of identical components, except with a Conv2d that consists of 16 input channels and 32 output
channels.

Supervised contrastive pre-training For part of our experiments (Figures 4 and 5), we follow [6]
and use class labels to generate positive and negative pairs, which better preserves the theoretical
assumptions and guarantees for encoders trained with the InfoNCE loss [23]. Positive pairs consist
of samples from the same class, while negative pairs are from different classes. We refer to this
approach as supervised contrastive pre-training. Each encoder is contrastive trained for 2000 epochs
using different random seeds (10, 11, 12, 13, 14) and weight initializations. A batch size of 128 is
used, and each sample is paired with 16 negative samples, following [6]. The learning rate is set to
0.01 and the AdamW optimizer is used.

Unsupervised contrastive pre-training For unsupervised contrastive pre-training, which is the
conventional contrastive pre-training approach (also used for Figures 2 and 6 and Table 1), we apply
random rotations (±30 degrees) to generate positive pairs. Positive pairs are created by taking
two randomly rotated views of the same sample, while negative pairs are formed from randomly
rotated views of different samples. We also experimented with using random cropping to generate
positive pairs, but found that this resulted in unstable model training. This instability is likely due
to the nature of the MNIST images, which consist of white digits on a black background. Images
that are cropped to include too much background and insufficient detail of the digit can result in
distinct samples being mistakenly identified as similar. Each encoder is trained for 20 epochs using
different random seeds (10, 11, 12, 13, 14) and weight initializations. We use a batch size of 1024
and a learning rate of 0.1 with the LAMB optimizer, which is better suited for larger batch sizes.

Unsupervised embedding space alignment For unsupervised embedding space alignment, a linear
layer with D input and output dimensions is used. To align the supervised contrastive pre-trained
encoders, the linear alignment layer layer is trained for 20 epochs with a learning rate of 0.1, and
an orthogonality regularization factor λ = 0.5 is applied. To align the unsupervised contrastive
pre-trained encoders, which exhibit lower degrees of orthogonality compared to the supervised ones
(as expected due to the violation of theoretical assumptions regarding the conditional distribution
used to generate positive pairs [23]), the linear layer is trained for 20 epochs with a learning rate of 0.1
and λ ∈ {0.1, 0.3, 0.5} was applied. A lower λ relaxes the orthogonality constraint for encoders that
have slightly weaker orthogonal relationships. In both cases, the linear layer weights were optimized
using stochastic gradient descent (SGD).

Computing resources We used a single RTX 3090 GPU for our experiments. For MNIST scale
experiments, any GPU with more than 8GB of VRAM would be sufficient.

A.4 Additional dataset details

We converted single-channel grayscale MNIST images to three-channel black-and-white images. The
training set is used to perform contrastive pre-training of the encoders and to align the embedding
spaces. The test set is used for ID and OOD evaluation of the pre-trained encoders.

A.4.1 Data for OOD evaluation

Colored version We randomly colored the images in the MNIST test set to create an OOD
evaluation set. Since only black-and-white images were used during pre-training, colored versions of
the images are considered OOD compared to the original images. Colored versions of the images are
illustrated in Figure 3b.

Cropped version For further OOD evaluation, each test sample is randomly cropped to crop_size
∼ Unif([0.25, 1]) percent of their original size, following [6, 7]. Since no random cropping was
applied during pre-training, cropped versions of the images are considered OOD compared to the
original images.
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(a) Original (ID) MNIST (b) Colored (OOD) MNIST

Figure 3: For in-distribution (ID) evaluation, images like those in (a) were used. For out-of-
distribution (OOD) evaluation, images like those in (b) were used.

Figure 4: Supervised contrastive pre-training with Colored MNIST as OOD evaluation data. Com-
paring embedding qualities of single models (blue), an ensemble of unaligned embedding spaces
(orange), and an ensemble of aligned embedding spaces (purple) in the ID and OOD settings. Re-
call@1 and MAP@R are presented. Higher values indicate better performance. The mean and
standard deviation (error bars) of the performance metrics are reported for the 5 single models. The
ensembles do not have standard deviation since all 5 models are combined into one.

A.5 Additional results

Supervised contrastive pre-training with colored OOD images Figure 4 compares the embedding
qualities of single models and ensembles of aligned and unaligned embedding spaces. The M = 5
models are trained using the supervised contrastive pre-training procedure discussed in Appendix A.3.
OOD evaluation is performed on Colored MNIST images (Appendix A.4.1).

Supervised contrastive pre-training with cropped OOD images Figure 5 compares the embed-
ding qualities of single models and ensembles of aligned and unaligned embedding spaces. The
M = 5 models are trained using the supervised contrastive pre-training procedure discussed in
Appendix A.3. Cropped MNIST (A.4.1) images are used as OOD evaluation data.

Unsupervised contrastive pre-training with cropped OOD images Figure 6 compares the
embedding qualities of single models and ensembles of aligned and unaligned embedding spaces.
The M = 5 models are trained using the unsupervised contrastive pre-training procedure discussed
in A.3. Cropped MNIST (A.4.1) images are used as OOD evaluation data.
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Figure 5: Supervised contrastive pre-training with Cropped MNIST as OOD evaluation data. Com-
paring embedding qualities of single models (blue), an ensemble of unaligned embedding spaces
(orange), and an ensemble of aligned embedding spaces (purple) in the ID and OOD settings. Re-
call@1 and MAP@R are presented. Higher values indicate better performance. The mean and
standard deviation (error bars) of the performance metrics are reported for the 5 single models. The
ensembles do not have standard deviation since all 5 models are combined into one.

Figure 6: Unsupervised contrastive pre-training with Cropped MNIST as OOD evaluation data.
Comparing embedding qualities of single models (blue), an ensemble of unaligned embedding
spaces (orange), and an ensemble of aligned embedding spaces (purple) in the ID and OOD settings.
Recall@1 and MAP@R are presented. Higher values indicate better performance. The mean and
standard deviation (error bars) of the performance metrics are reported for the 5 single models. The
ensembles do not have standard deviation since all 5 models are combined into one.

Table 1: Comparison of the embedding qualities of M = 5 single models, unaligned embedding-
space ensemble (Unaligned Encoders), and aligned embedding-space ensemble (Aligned Encoders)
in both in-distribution (ID) and out-of-distribution (OOD) settings. The mean and standard deviation
of performance metrics (Recall@1, MAP@R) are reported for the single models. Standard deviation
is not shown for the ensembles since all 5 models are combined into one. The top three rows represent
Recall@1 performance, and the bottom three rows represent MAP@R performance. The %∆ column
shows the percentage change in performance for each ensemble type relative to single models. All
models are trained on the MNIST dataset using the InfoNCE contrastive loss, where positive pairs
are created by applying random rotations to the same input image.

Single Models Unaligned Encoders Aligned Encoders
Mean ± Std Ensemble % ∆ Ensemble % ∆

Recall@1 (↑)
ID 0.900 ± 0.006 0.806 -10.48% 0.911 +1.18%

OOD (Color) 0.769 ± 0.029 0.664 -13.68% 0.823 +6.99%
OOD (Crop) 0.616 ± 0.011 0.525 -14.80% 0.649 +5.32%

MAP@R (↑)
ID 0.405 ± 0.017 0.271 -33.12% 0.432 +6.61%

OOD (Color) 0.174 ± 0.012 0.128 -26.35% 0.204 +17.38%
OOD (Crop) 0.119 ± 0.009 0.068 -42.95% 0.126 +5.71%
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