
Instruction-Tuning LLMs for Event Extraction with Annotation Guidelines

Anonymous ACL submission

Abstract

In this work, we study the effect of annota-001
tion guidelines—textual descriptions of event002
types and arguments, when instruction-tuning003
large language models for event extraction. We004
conducted a series of experiments with both005
human-provided and machine-generated guide-006
lines in both full- and low-data settings. Our007
results demonstrate the promise of annotation008
guidelines when there is a decent amount of009
training data and highlight its effectiveness010
in improving cross-schema generalization and011
low-frequency event-type performance.012

1 Introduction013

Event Extraction (EE) aims to identify and struc-014

ture what, who, when, where, and how of real-015

world events from given textual resources (Dod-016

dington et al., 2004; Ji and Grishman, 2008; Li017

et al., 2022; Xu et al., 2024). Translating this ab-018

straction requires complex schema specifications019

that define event types, argument roles, and their020

interrelationships, yet being able to precisely cap-021

ture the language nuances and distinguish between022

event types and argument roles, which posits the023

task as an inherently challenging problem.024

Recently, large language models (LLMs) have025

transformed NLP research and practices dramati-026

cally, owing to the rich knowledge and other capa-027

bilities (e.g., reasoning) they have obtained from028

extensive pre-training (Wei et al., 2022; Chen et al.,029

2023; Shi and Lipani, 2023). This transformation030

has similarly impacted the broader research field of031

Information Extraction (IE). Existing applications032

of LLMs to IE can be categorized into two lines.033

The prompt engineering-based approaches, often034

based on proprietary LLMs, consider an LLM as035

a black box, querying it with task specifications036

via zero- or few-shot prompting and relying on037

its latent knowledge to extract interested informa-038

tion (Gao et al., 2023; Wang et al., 2023b; Li et al.,039

2023a; Srivastava et al., 2023). However, these 040

approaches not only lead to inferior performance 041

but also incur prohibitive costs, especially when 042

the task is complex. 043

Our work will thus focus on the second line of 044

approach, namely, instruction-tuning open-weight 045

LLMs. This line of approach adapts an LLM to 046

specific IE tasks and schemas by directly training 047

it to follow the task instructions, which offers a 048

promising yet cost-effective solution. For exam- 049

ple, Wang et al. (2023a) leverages natural language 050

instructions to guide large language models for 051

IE tasks; Li et al. (2024) proposed a two-phase 052

learning framework that enhances schema under- 053

standing and following ability via automatically 054

annotated data. More recently, Sainz et al. (2024) 055

instruction-tuned LLaMA (Touvron et al., 2023) 056

on multiple IE datasets and discovered annota- 057

tion guidelines—textual descriptions of an event 058

type and its argument roles used by human an- 059

notators when collecting the dataset, as effective 060

components of an IE task’s instruction. Despite the 061

promise of the existing explorations, however, most 062

of them have focused on the relatively simpler task 063

of Named Entity Recognition, yet how to properly 064

instruction-tune LLMs for the structured EE task 065

is still understudied. 066

To fill this gap, we study instruction-tuning 067

LLMs for EE, with a focus on the role of anno- 068

tation guidelines in task instructions (Fig. 1). We 069

conduct a systematic analysis using LLaMA-3.1- 070

8B-Instruct on two EE datasets (ACE05 (Dodding- 071

ton et al., 2004) and RichERE (Song et al., 2015)) 072

under varied training settings. Our key findings are 073

organized around four themes: 074

1) Effect of Annotation Guidelines on Event Ex- 075

traction — We found that annotation guidelines 076

improve performance by helping the model dis- 077

tinguish fine-grained event types. However, this 078

advantage may diminish when negative sampling 079

is introduced during training, which allows the 080

1

This is an event extraction task ...
The following lines describe the task definition
@dataclass
class Extradite(JusticeEvent):
 mention
 agent
 person
 destination

This is the text to analyze
After getting caught they were transferred to
the U.S. for trial.

text =

result = []

Event
Schema

Code Prompt

You are an expert in annotating NLP datasets for event extraction. Your task is to generate annotation guidelines for the event
type Extradite which is a child event type of super class JusticeEvent.
The event schema is as follows:

The following examples are negative examples, as they illustrate different event types provided for contrast and differentiation:

The below examples are positive examples, as they match the Event Type being annotated

Instructions
1. Identify and List All Unique Arguments.
2. Define the Event Type: Write 5 clear and specific definitions, starting with "The event is triggered by ...":
3. Define Each Argument:** For each argument, provide 5 definitions.

Guideline Generation Prompt (Guideline-PN)

10 Positive Event Samples

15 Negative Event Samples

Event

Trans
-port

Move-
ment

Extrad
-ite Convict

Justice
Event

...

Event
Ontology

@dataclass
class Extradite(JusticeEvent):
 mention
 (...)

This is an event extraction task ...
The following lines describe the task definition
@dataclass
class Extradite(JusticeEvent):

This is the text to analyze
After getting caught they were transferred to the U.S. for trial.text =

"""The event is triggered by the formal request and subsequent transfer of an individual from one state or country to another for legal reasons. Triggers such as 'extradition', 'transfer' are
indicative of this event type, not 'Transport' which involves general movement without legal context."""
 mention
 agent
 person
 destination

The text span that triggers the event.
The agent plays a crucial role in the extradition process, often being a legal or governmental body.
Examples are 'she', 'him', 'her'. The person is the individual being extradited.

Examples are 'jurisdiction', 'Hague', 'state'. The destination is the place to which the person is being extradited.

 result = [Extradite(mention="transferred"), person = ["they"], destination=["U.S."]]

Code Prompt
With Annotated Schema

More Task Instructions (...)

Figure 1: Overview of our exploration of automatically generating annotation guidelines to augment code-format
instruction tuning for EE. Prompt template for Guideline-PN and the example outputs are shown.

model to learn event distinctions from additional081

contrastive examples instead.082

2) Comparing Machine-Generated and Human-083

Written Guidelines — Prior work assumed access084

to human-authored guidelines, which may not hold085

in practice. We thus proposed 5 different ways to086

automatically generate annotation guidelines. We087

find that they outperform human-written ones by088

up to 11% and 7% in trigger and argument classifi-089

cations, respectively.090

3) Guidelines in Data-Scarce Scenarios — Our091

results show that with only 2000 training sam-092

ples, guidelines allow LLMs to reach performance093

levels comparable to full-data training. However,094

when data is extremely scarce (100 samples), mod-095

els tend to rely more on memorization than on096

guideline-driven schema constraints.097

4) Cross-Schema Generalization — We assess098

whether structured guidelines help models gen-099

eralize to different EE schemas. While models100

trained on RichERE transfer well to ACE (suggest-101

ing fine-to-coarse schema adaptation is feasible),102

the reverse scenario sees a performance drop due103

to RichERE’s more complex event structures and104

expanded argument roles.105

Finally, we confirmed a consistent effect of an-106

notation guidelines on the smaller LLaMA-3.2-1B-107

Instruct model and conducted an in-depth analysis 108

showing that the guidelines can help LLMs reduce 109

common types of EE errors and are beneficial to 110

event types with any frequency in the training set. 111

2 Approach 112

2.1 Task Formulation 113

Given an input sentence X , the goal of EE is to 114

extract the structured event information Y from 115

the sentence, adhering to predefined schema con- 116

straints E . The extraction task consists of (1) Trig- 117

ger Extraction, which localizes an event trigger 118

span and classifies its event type, and (2) Argu- 119

ment Extraction, where the task is to identify 120

spans in X that serve as argument roles within 121

the extracted event instance. 122

When an autoregressive LLM is tasked with 123

EE, the extraction of event instances is formulated 124

in a generative way, with the LLM generating a 125

sentence describing the extracted event instances. 126

Specifically, the prompt to the LLM is defined as 127

P = [I ⊕ Ee ⊕X], where ⊕ is the concatenation 128

operation, I represents the task instruction, which 129

specifies the structured output format and task defi- 130

nition, and Ee ∈ E denotes the event schema of an 131

interested type e from a predefined set E . 132

2

Let D = {(ei, Xi, Yi)}Ni=1 denote a dataset of133

annotated event examples, where each Xi cor-134

responds to a prompt instance Pi for the inter-135

ested event type ei. The objective function of in-136

struction tuning for EE is as follows: L(D; θ) =137

−
∑

i

∑
j log pθ(Yij | Pi, Yi,<j), where Yi,<j rep-138

resents previously generated tokens in the struc-139

tured output sequence, ensuring an autoregressive140

formulation.141

Existing work identified the structure of EE out-142

puts to be critical (Jiao et al., 2023; Wang et al.,143

2023b). In particular, Wang et al. (2023b) found144

that formulating the EE output in a code format can145

take advantage of Programming Language features146

such as inheritance and type annotation to intro-147

duce external knowledge or add constraints. In our148

work, we follow the same formatting strategy and149

represent the EE task as a code generation problem.150

Specifically, the event schema Ee is represented as151

a Python class; accordingly, every extracted event152

instance is represented as a Python object of the153

corresponding event class. When there are multiple154

event instances implied in the input X , a list of155

Python objects will be generated; when there is no156

event specified in X , we expect an empty Python157

list to be the model output. An example is shown158

in Figure 1.159

During training, we provide only the ground-160

truth event schema in the prompt; when the text161

input X does not include any event, a random event162

schema will be chosen. At inference time, given a163

test instance X , we pair the input with every possi-164

ble event type in the schema set E , prompt the LLM165

to extract any implied event instances, and perform166

model evaluation based on the aggregated extrac-167

tion outputs. As such, a well-performing LLM168

needs both extract the complete event instances169

and avoid events that are not indicated in X .170

2.2 Instruction-Tuning LLMs with171

Annotation Guidelines172

Recent work by Sainz et al. (2024) demon-173

strated the effectiveness of integrating annotation174

guidelines in the code-format instructions of IE175

tasks. Specifically, when describing the event type176

schema Ee, a textual description is added to the177

event type and each of its argument roles (Figure 1).178

As such, the LLM is expected to more easily un-179

derstand the meaning of the event type while be-180

ing instructed to extract any occurring events from181

the input X . While Sainz et al. (2024) evaluated182

annotation guidelines in the broad IE task, their183

main focus has been on Named Entity Recogni- 184

tion, rather than the complicated EE task. Further- 185

more, their approach assumed the availability of 186

pre-existing human-curated guidelines, an assump- 187

tion that may not always hold in real-world appli- 188

cations. To bridge this gap, we explore methods to 189

automatically generate annotation guidelines and 190

assess their effectiveness in comparison to human- 191

authored ones. 192

To develop a scalable and cost-effective ap- 193

proach for guideline generation, we employ a re- 194

verse engineering strategy, leveraging both anno- 195

tated event examples and the strong generative ca- 196

pabilities of LLMs. As illustrated in Figure X, 197

we construct a guideline generation prompt for 198

each event type e by providing a few annotated 199

examples {(Xi, Yi)} demonstrating the existence 200

or non-existence of event instance of type e, and 201

then prompt an LLM (GPT-4o in our experiment) 202

to generate annotation guidelines for e. In total, 203

we experimented with five variants of machine- 204

generated guidelines: (1) Guideline-P: We prompt 205

the LLM with 10 positive annotated examples of 206

type e to generate the annotation guidelines. In- 207

spired by Sainz et al. (2024), we sample 5 distinct 208

guidelines for each event type, which can be used 209

during the model training to ensure that the model 210

is exposed to multiple rephrasings of the guidelines 211

rather than memorizing and overfitting to a spe- 212

cific one. (2) Guideline-PN (Positive + Negative 213

Examples): In addition to 10 positive event anno- 214

tations, we also provide 15 negative annotations 215

where the input X does not imply event instances 216

of type e. Similarly, we prompt the LLM to gen- 217

erate 5 distinct guidelines for each event type. (3) 218

Guideline-PS (Positive + Sibling Events): Sim- 219

ilar to Guideline-PN, we prompt the LLM with 220

both positive and negative event annotations. How- 221

ever, the negative annotations are selected from 222

the sibling event types of the target type e (e.g., 223

Arrest vs. Jail), as defined by the event ontology. 224

We hypothesize that the critical challenge for EE 225

lies in distinguishing between sibling event types; 226

hence, an instructed LLM can benefit from follow- 227

ing annotation guidelines that particularly empha- 228

size the difference between sibling event types. As 229

in the earlier variants, we generate 5 guideline sam- 230

ples per event type. (4) Guideline-PN-Int and (5) 231

Guideline-PS-Int: Finally, we create two more 232

variants that Integrate the 5 diverse guideline sam- 233

ples from Guideline-PN and Guideline-PS into a 234

comprehensive one, respectively. Examples of the 235

3

Examples of Annotation Guidelines for Event Type: Extradite (ACE05)

GUIDELINE-H
Avg. Length - 107.67 tokens

Event Type: An EXTRADITE Event occurs whenever a PERSON is sent by a state actor from one PLACE to
another place for the purposes of legal proceedings there.
Arguments:
- AGENT: The extraditing agent.
- PERSON: The person being extradited.

GUIDELINE-P
Avg. Length - 163.87 tokens

Event Type: The Extradition event refers to the formal process where one jurisdiction delivers a person accused
(...) The event can be triggered by terms such as ‘extradition’ (...) Edge cases include situations where the term
‘extradition’ is used metaphorically or in a non-legal context.
Arguments:
- AGENT:(...) the agent is the organization or authority (...). Examples include ‘court’, ‘government’, (...)
- PERSON: (...) individual who is being transferred to another jurisdiction. Examples are ‘she’, (...)

GUIDELINE-PN
Avg. Length - 285.24 tokens

Event Type: The event is triggered by the formal request (...) for legal reasons. Triggers such as ‘extradition’
are indicative of this event type, not ‘Transport’ which involves general movement without legal context.
Arguments:
- AGENT: The agent is responsible for the legal and procedural aspects of the extradition,(...). An example is
‘the original court’ (...)
- PERSON: (...) one who is being moved from one place to another under legal authority. For example, ‘he’ (...)

GUIDELINE-PS
Avg. Length - 159.79 tokens

Event Type: (...) person being moved to a new jurisdiction (...). This differs from events like ‘TrialHearing’ or
‘Convict’, which focus on the legal proceedings and outcomes within a single jurisdiction.
Arguments:
- AGENT: (...) Edge cases may include international organizations or coalitions (...) such as the U.N. (...)
- PERSON: Unlike the ‘defendant’ in events like ‘TrialHearing’ or ‘Convict’, the person in the ‘Extradite’ event
is specifically being transferred for legal proceedings or punishment.

GUIDELINE-PN-INT
Avg. Length - 439.94 tokens

(...) Key triggers include terms like ‘extradite’, ‘extradition’, and ‘extraditing’. It is distinct from events like
‘ArrestJail’ and ‘ReleaseParole’, as it specifically involves (...)
Arguments:
- AGENT: The agent (...) typically a legal or governmental body. Examples include ‘court’, ‘government’(...)
- PERSON: The person is the individual being extradited, the subject of the legal transfer. Examples include
‘she’, ‘him’, and ‘her’.

GUIDELINE-PS-INT
Avg. Length - 434.64 tokens

The ’Extradite’ event involves the legal transfer of a person (...). It is distinct from events like ‘ArrestJail’, (...),
and ‘ReleaseParole’ or ‘Pardon’, (...)
Arguments:
- AGENT: The agent is the entity (...) such as a court, government, or police department. This entity ensures the
transfer is conducted according to legal protocols (...)
- PERSON: (...) They are the central figure in the extradition process, distinct from a ‘defendant’ in other legal
events, (...) This may include high-profile individuals or groups.

Table 1: Examples of annotation guidelines for the event type Extradite from ACE05. Due to space limits, only
agent and person were shown for arguments, and only 1 out of the 5 guideline samples were shown for P, PN, and
PS. We highlight distinctions from other event types, example mentions, and edge cases in guidelines.

5 guideline variants are shown in Table 1. The236

prompt templates used for generating guidelines237

are provided in Appendix A.3.238

3 Experiments239

3.1 Experimental Setup240

Datasets. We perform experiments on two stan-241

dard EE datasets: ACE05 (Doddington et al.,242

2004) and RichERE (Song et al., 2015). Both243

of them exhibit fine-grained event distinctions, and244

RichERE includes sparser event annotations (i.e.,245

fewer event-labeled sentences), which makes it246

more challenging. Moreover, RichERE does not247

come with human-written annotation guidelines.248

Datasets were split following the TextEE bench-249

mark (Huang et al., 2024) and then converted to250

code format automatically by our scripts.251

Evaluation. Following prior work (Huang et al., 252

2024), we evaluate the model on four F1 met- 253

rics: (1) Trigger Identification (TI), which mea- 254

sures correct trigger span extraction, (2) Trigger 255

Classification (TC), which additionally requires 256

event-type correctness, (3) Argument Identifica- 257

tion (AI), which ensures correct argument role as- 258

sociation with the predicted trigger, and (4) Argu- 259

ment Classification (AC), which further requires 260

role-type correctness and is thus the most com- 261

prehensive metric on a model’s EE performance. 262

When evaluating the model on the Guideline-P, PN, 263

and PS variants, one guideline is randomly selected 264

each time. 265

As a side benefit of representing events in a struc- 266

tured code format, we can easily evaluate an ex- 267

tracted event instance by directly instantiating its 268

corresponding Python object based on the event 269

schema’s Python class definitions, checking if the 270

4

Experiments
ACE w/o NS ACE w/ NS RichERE w/o NS RichERE w/ NS

TI TC AI AC TI TC AI AC TI TC AI AC TI TC AI AC

NoGuideline 39.57 39.57 31.05 29.73 84.15 84.15 64.99 61.96 35.11 35.11 27.16 25.32 42.27 42.27 32.38 31.56
Guideline-H 40.71 40.71 30.76 28.64 56.30 56.30 44.82 43.13 – – – – – – – –
Guideline-P 51.46 51.46 37.82 35.20 72.86 72.86 55.01 53.73 34.38 34.38 28.04 26.35 67.92 67.92 52.29 44.93
Guideline-PN 49.60 49.60 35.80 32.81 80.77 80.77 63.20 60.34 40.89 40.89 30.04 27.18 75.35 75.35 60.85 57.10
Guideline-PS 47.93 47.93 37.19 34.88 79.23 79.23 59.00 56.88 32.41 32.41 24.63 22.78 76.45 76.45 60.42 56.26
Guideline-PN-Int 40.17 40.17 30.46 28.34 51.95 51.95 41.09 39.32 27.11 27.11 21.93 20.81 42.40 42.40 33.22 31.67
Guideline-PS-Int 39.51 39.51 31.27 30.26 53.70 53.70 42.62 41.10 31.61 31.61 26.70 24.96 52.60 52.60 41.06 39.46

Table 2: Evaluation results (%) for end-to-end EE tasks trained on complete train data. Models trained with
Negative Samples (w/ NS) include negative example augmentation. (Best and Second Best performances)

object is valid (e.g., missing arguments or including271

hallucinated arguments) and comparing it with the272

ground truth. This code-based evaluation thus pre-273

vents the tedious string-matching process adopted274

in prior work (Li et al., 2021).275

Model Training. We experimented with the276

LLaMA-3.1-8B-Instruct model (Grattafiori et al.,277

2024), selected for its demonstrated proficiency in278

processing structured code-based inputs and gen-279

erating coherent outputs. When instruction-tuning280

the model under the Guideline-P, PN, and PS vari-281

ants, we randomly sample one of the generated282

guidelines, a strategy found to prevent the model283

from memorizing specific guidelines in Sainz et al.284

(2024). For parameter-efficient training, we imple-285

mented rsLoRA (Kalajdzievski, 2023) using the286

Unsloth framework (Daniel Han and team, 2023).287

We include all details about datasets, evaluation,288

and model training in Appendix A-B.289

3.2 RQ1: Do the annotation guidelines allow290

an LLM to more precisely extract291

occurring events?292

To assess the impact of incorporating annotation293

guidelines in the EE instructions, we compare294

instruction-tuning an LLM with and without guide-295

lines. We hypothesize that including the annotation296

guidelines can help the LLM more easily distin-297

guish between similar event types. To understand298

its impact, we also compare this approach with a299

“negative sampling (NS)” approach. Specifically,300

we instruction-tune the LLM on an augmented301

training set, where each training example is supple-302

mented with 15 randomly selected negative sam-303

ples, i.e., triplets of (eneg, X, ϕ) with non-existing304

event type eneg yielding empty extraction output.305

We note that annotation guidelines and negative306

sampling are two complementary approaches for307

an LLM to learn to distinguish between event types. 308

In our experiments, we thus evaluated the effect of 309

annotation guidelines in two independent settings: 310

(1) training on the original training set (w/o NS) 311

and (2) training on the negative sample-augmented 312

training set (w/ NS). 313

Table 2 shows the results. In the w/o NS set- 314

ting, including annotation guidelines (Guideline-P, 315

PN, and PS) consistently improves performance 316

across both datasets. Our analysis in Section 3.6 317

further validated that the guidelines indeed enable 318

the LLM to understand the nuanced differences 319

between event types. On ACE w/o NS, Guideline- 320

P achieves the highest scores across all four met- 321

rics, leading to around 10% TC and 5% AC gains 322

over NoGuideline. Similarly, on RichERE w/o NS, 323

Guideline-PN outperforms NoGuideline by about 324

around 5% TC and 2% AC. 325

Training the LLM with augmented negative sam- 326

ples, as we expected, helps the model better distin- 327

guish between event types; for example, NoGuide- 328

line in the w/ NS setting achieves 30% higher AC 329

on ACE and 6% higher AC on RichERE, compared 330

to its counterparts in the w/o NS setting. However, 331

the effects of annotation guidelines in the w/ NS 332

setting diverge between the two datasets. For ACE, 333

adding the guidelines in the instruction does not 334

offer a further advantage, where NoGuideline and 335

Guideline-PN achieved a comparable, the best per- 336

formance, while all other guideline variants do not 337

show to help. On RichERE, however, the benefit 338

of annotation guidelines complements the negative 339

samples’, where Guideline-PN and Guideline-PS 340

achieve around 25% gain on AC over NoGuide- 341

line. We notice that RichERE is annotated with a 342

smaller training set but defines more fine-grained 343

event schemas than ACE; for example, the courser- 344

grained Transport event type in ACE is repre- 345

sented by two event types, i.e., TransportPerson 346

5

Experiments
ACE w/o NS ACE w/ NS RichERE w/o NS RichERE w/ NS

TI TC AI AC TI TC AI AC TI TC AI AC TI TC AI AC

NoGuideline 10.60 10.60 5.19 3.68 31.64 31.64 25.91 24.22 19.87 19.87 13.34 11.69 36.29 36.29 28.15 25.58
Guideline-H 29.01 29.01 16.37 14.78 32.62 32.62 25.35 22.87 – – – – – – – –
Guideline-P 36.91 36.91 24.17 21.24 56.99 56.99 43.44 40.51 40.28 40.28 21.97 18.33 62.04 62.04 46.33 42.03
Guideline-PN 30.94 30.94 19.27 17.64 60.29 60.29 42.88 39.95 31.23 31.23 19.48 17.51 67.16 67.16 47.85 43.39
Guideline-PS 40.53 40.53 28.03 26.12 55.1 55.1 41.57 38.91 26.16 26.16 16.64 15.19 58.95 58.95 42.79 38.1
Guideline-PN-Int 34.11 34.11 22.73 21.18 28.31 28.31 23.82 22.37 25.73 25.73 16.75 14.6 33.59 33.59 28.06 26.0
Guideline-PS-Int 30.04 30.04 19.69 16.9 27.96 27.96 21.55 20.37 23.33 23.33 15.35 13.38 34.92 34.92 27.31 25.04

Table 3: Evaluation results (%) on full test data, for end-to-end EE tasks, trained on 2000 train data samples.

ACE w/ NS RichERE w/ NS

TI TC AI AC TI TC AI AC

NoGuide 37.08 37.08 21.53 19.18 24.98 24.98 15.05 13.15
H 29.00 29.00 17.93 16.34 – – – –
P 27.95 27.95 15.94 14.21 23.93 23.93 13.56 12.71
PN 29.60 29.60 17.87 15.92 27.43 27.43 17.10 15.28
PS 29.85 29.85 19.49 17.04 19.61 19.61 11.77 10.48
PN-Int 24.34 24.34 14.08 12.56 27.59 27.59 16.21 14.47
PS-Int 22.51 22.51 13.59 12.48 18.99 18.99 10.67 9.56

Table 4: Evaluation results (%) for end-to-end EE tasks
on full test data, averaged over three runs using 100
training samples. We did not experiment with the “w/o
NS” setting because the model performance with 100
training samples is negligible for all variants.

and TransportArtifact. As the guideline pro-347

vides not only a detailed description of an event348

type but also a comparison with similar ones (Ta-349

ble 1), the LLM can leverage this information for350

better EE performance.351

3.3 RQ2: Are machine-generated annotation352

guidelines effective?353

Interestingly, from Table 2, we noticed that the354

guidelines provided by the ACE annotators do not355

yield a performance gain and that the machine-356

generated guideline variants are not equally effec-357

tive. Specifically, Guideline-H achieves a com-358

parable performance in w/o NS and an inferior359

one in w/ NS on ACE; Guideline-PN-Int and360

Guideline-PS-Int provide either no or limited per-361

formance gain in both w/o NS and w/ NS settings,362

while Guideline-P and Guideline-PS are not con-363

sistently better than NoGuideline. Guideline-PN364

shows to be the most stable, outperforming NoGu-365

ideline on RichERE and performing comparably366

to the best model on ACE.367

Qualitatively, as shown in Table 1, the human-368

written guidelines (Guideline-H) lack explicit con-369

trasts, making event boundaries ambiguous—for370

instance, Transport (a movement event) and371

Extradite (a justice event) both involve reloca- 372

tion, yet the fact that only the latter is legally en- 373

forced is not clarified in the guidelines. Guideline- 374

P provides examples and edge cases of the tar- 375

get event, but these may not be sufficient for the 376

model to distinguish between similar event types. 377

While both Guideline-PS and Guideline-PN have 378

supplied this comparison, -PS shows to be lim- 379

ited by focusing on only sibling differentiations 380

(e.g., Extradite vs. Convict). Finally, surpris- 381

ingly, the two -Int variants, despite being compre- 382

hensive, lead to mixed results. We observed that 383

models tend to overfit to these comprehensive in- 384

structions. In contrast, training the models with 5 385

diverse guidelines per event type as in -PN and -PS 386

avoids this issue, which shares a similar finding as 387

Cai et al. (2024); Sainz et al. (2024). 388

3.4 RQ3: Are the annotation guidelines 389

helpful when there is only a small amount 390

of training data? 391

With 2000 samples (Table 3), Guideline-P, 392

Guideline-PN and Guideline-P improve NoGu- 393

ideline on ACE and RichERE w/o NS by up to 30% 394

TC and 20% AC. Unlike our observation on the full- 395

training setting, this trend also holds in ACE w/ 396

NS, where guidelines provide a similar advantage. 397

Excitingly, the results also show that annotation 398

guidelines can compensate for limited training data, 399

enabling models trained with only 2000 samples to 400

achieve performance comparable to full-data train- 401

ing. For example, on ACE, Guideline-P w/ NS 402

(2k) outperforms NoGuideline w/o NS (full) by 403

10% AC; on RichERE, Guideline-PN w/ NS (2k) 404

outperforms NoGuideline (full) by 18% AC in 405

“w/o NS ” and 12% AC in “w/ NS”. 406

However, when training data is reduced to 100 407

samples (Table 4), the benefits become dataset- 408

dependent. In ACE w/ NS, NoGuideline slightly 409

outperforms guideline-based models, suggesting 410

6

Experiments
RichERE w/o NS → ACE RichERE w/ NS → ACE ACE w/o NS → RichERE ACE w/ NS → RichERE

TI TC AI AC TI TC AI AC TI TC AI AC TI TC AI AC

NoGuideline 29.55 29.55 21.34 16.60 44.10 44.10 33.91 25.17 33.41 33.41 24.34 22.68 37.19 37.19 27.74 25.87
Guideline-P 31.78 31.78 22.51 15.90 61.69 61.69 39.83 27.93 42.95 42.95 31.61 27.79 54.72 54.72 38.63 35.00
Guideline-PN 40.12 40.12 27.78 19.77 63.97 63.97 48.74 36.24 41.72 41.72 29.54 26.10 64.87 64.87 48.25 44.51
Guideline-PS 29.28 29.28 20.13 15.38 64.23 64.23 44.12 32.84 42.33 42.33 29.93 26.73 65.54 65.54 45.57 41.68
Guideline-PN-Int 27.00 27.00 18.91 14.66 35.35 35.35 28.07 21.82 28.65 28.65 22.13 19.87 38.60 38.60 27.46 26.02
Guideline-PS-Int 31.96 31.96 23.60 19.00 51.71 51.71 39.36 31.34 34.33 34.33 26.65 24.24 36.85 36.85 27.69 26.19

In-Distribution 39.57 39.57 31.05 29.73 84.15 84.15 64.99 61.96 35.11 35.11 27.16 25.32 42.27 42.27 32.38 31.56

Table 5: Evaluation of models (%) in cross-schema generalization. In-Distribution represents the NoGuideline
performance when trained and tested on the same dataset and the same setting (w/o or w/ NS). We did not experiment
with Guideline-H as RichERE does not come with human-annotated guidelines.

that with extremely limited data, the model resorts411

to memorization rather than learning schema con-412

straints. In contrast, in RichERE w/ NS, which413

has more diverse and fine-grained event structures,414

guidelines remain beneficial—Guideline-PN sur-415

passes NoGuideline by 2% AC, indicating that416

guidelines help in settings where direct memoriza-417

tion is insufficient.418

3.5 RQ4: Do annotation guidelines improve419

cross-schema generalization?420

In Table 5, we evaluate different variants’ gen-421

eralizability to a new schema in EE. Notably,422

while ACE and RichERE share the same domain,423

RichERE has a finer schema design. In RichERE424

w/o NS → ACE, performance remains below425

the in-distribution baseline. While Guideline-426

PN achieves 40% TC, nearly matching the in-427

distribution score, its AC drops by nearly 10%,428

likely due to RichERE’s expanded argument roles429

that do not always align well with ACE’s simpler430

schema. This suggests that fine-to-coarse schema431

migration is partially feasible but still faces chal-432

lenges in argument mapping. Contrastive learn-433

ing helps mitigate some of this gap, as seen in434

Guideline-PS (w/ NS), which improves TC to 64%435

and AC to 32%, highlighting the benefits of struc-436

tured alignment. In contrast, ACE → RichERE437

generalizes even better, with Guideline-PN (w/438

NS) achieving 64% TC and 44% AC, surpass-439

ing the in-distribution baseline by over 22% TC440

and 12% AC. This suggests that training on ACE,441

which has well-defined event boundaries, provides442

a stronger foundation for adapting to RichERE’s443

more detailed schema. Since RichERE introduces444

additional argument roles for certain events in ACE,445

structured guidelines play a key role in prevent-446

ACE RichERE

TI TC AI AC TI TC AI AC

NoGuide w/o NS 29.90 29.90 20.70 19.44 32.74 32.74 24.18 22.35
PN w/o NS 30.88 30.88 21.82 20.15 33.72 33.72 25.24 24.48
NoGuide w/ NS 79.81 79.81 56.41 53.85 45.70 45.70 35.68 32.69
PN w/ NS 77.95 77.95 57.30 54.21 69.10 69.10 49.26 44.10

Table 6: Evaluation results (%) of LLaMA-3.2-1B-
Instruct trained on full ACE and RichERE.

CA

PEMAE

AE

TTE LN

10 20 30 40

ACE

CA

PEMAE

AE

TTE LN

10 20 30 40

RichERE

No Guideline w/o NS
No Guideline w/ NS

Guideline-P w/o NS
Guideline-PN w/NS

Figure 2: Error categorization: CA (Context Am-
biguity), PE (Parsing Errors), MAE (Missing Argu-
ments/Events), AE (Argument Errors), TTE (Type/Trig-
ger Errors), and LN (Label Noise).

ing role confusion and ensuring more consistent 447

schema adaptation. 448

3.6 Further Analysis 449

Generalization to a Smaller LLM We experi- 450

mented with LLaMA-3.2-1B-Instruct for NoGu- 451

ideline and the best-performing guideline variant 452

Guideline-PN. Results in Table 6 display a con- 453

sistent observation compared to experiments with 454

the larger LLaMA-3.1-8B model (Table 2). That 455

is, Guideline-PN achieves a comparable or better 456

result than NoGuideline and shows the advantage 457

of guidelines, particularly on RichERE w/ NS. 458

Error Analysis We randomly selected 100 ex- 459

amples on each dataset where NoGuideline w/o 460

NS made mistakes and compared them with errors 461

7

made by other variants. The results in Figure 2462

show that, on ACE w/o NS, including the annota-463

tion guidelines leads to increasing ungrammatical464

code outputs and parsing errors (PE), although it465

dramatically reduces the event type and trigger er-466

rors (TTE). In the case of w/ NS, guidelines help467

in almost all aspects, with the majority of remain-468

ing errors being caused by missing arguments or469

events (MAE) and label noise (LN). On RichERE,470

however, we observe that for both w/o and w/ NS471

cases, the annotation guidelines enhance the model472

performance in all dimensions.473

Effectiveness of Guidelines per Event Type Fre-474

quency As shown in Figure 3, frequent event475

types show consistent improvements with anno-476

tation guidelines, as indicated by the green bars,477

suggesting that even well-represented events bene-478

fit from enhanced annotations. Only a few declines479

(red bars) occurred with mid- to low-frequency480

event types, whereas most event types still bene-481

fit from the guidelines. In fact, these event types,482

especially the very rare ones (top of the figure),483

generally present larger gains (i.e., longer green484

bars) than the more frequent types, which demon-485

strates a unique advantage of annotation guidelines486

in low-resource settings.487

4 Related Work488

LLMs for IE and EE With the growing ca-489

pabilities of LLMs, recent efforts have explored490

their potential in IE (Xu et al., 2024) and stud-491

ied EE as an auxiliary task. Existing LLM-based492

IE methods generally fall into two categories:493

In-Context Learning (ICL) and Supervised Fine-494

Tuning (SFT). ICL-based approaches (Li et al.,495

2023b; Guo et al., 2023; Ashok and Lipton, 2023;496

Wang et al., 2023b) rely on providing a few-shot497

context within prompts, enabling LLMs to infer498

structured information without explicit parameter499

updates. While being data-efficient, they were500

found to misinterpret the task specifications (Gao501

et al., 2024) and suffer from brittle sensitivity to502

prompt phrasing and example ordering (Gao et al.,503

2023). In addition, they also incur prohibitive costs504

due to the lengthy reasoning chains especially for505

complex tasks. In contrast, SFT-based methods (Lu506

et al., 2023; Wang et al., 2023a; Gui et al., 2024;507

Zhou et al., 2024) fine-tune LLMs on annotated508

datasets, which can significantly improve their EE509

performance. Our work deepens this line of re-510

search and particularly explores the inclusion of511

0 20 40 60 80 100
F-Score (%)

0

5

10

15

20

25

E
ve

nt
 In

de
x

+8.6%
+7.7%

+7.3%
+9.8%

+6.2%
+13.2%
-2.3%

+10.0%
+16.7%

+2.9%
+30.5%

+9.3%
+4.7%
+16.2%

-3.0%
+10.2%

+30.9%
+16.7%

+40.0%
+1.7%

+42.9%
-28.6%

0.0%
0.0%

+30.0%
-33.3%
+100.0%

0.0%
0.0%

0.0%29.73% 35.2%
ACE w/o NS

0 20 40 60 80 100
F-Score (%)

0

5

10

15

20

25

E
ve

nt
 In

de
x

+4.0%
-3.1%

+6.6%
+2.8%

+15.5%
+14.3%

+9.1%
-5.9%

-5.5%
-1.7%

+1.7%
-3.3%

+7.9%
+33.3%

+27.0%
0.0%

+14.2%
-16.5%

+13.3%
0.0%

-4.8%
0.0%

-19.0%
+33.3%

-7.3%
+33.3%

0.0%
0.0%
-20.0%
+100.0%25.32% 27.18%

RichERE w/o NS

Figure 3: Impact of guidelines on AC scores per ET,
sorted by frequency in the full training set. Smaller
index indicate a higher frequency. Green/red bars indi-
cate improvements/declines. Dashed/solid lines denote
average AC scores without/with guidelines.

annotation guidelines in instructions. While there 512

have been existing works on similar topics, they did 513

not focus on EE (Sainz et al., 2024) or instruction 514

tuning (Pang et al., 2023). 515

Code Prompts for EE While EE tasks are typ- 516

ically represented in texts, code-based prompting 517

has emerged as a promising alternative, leverag- 518

ing structured representations to enhance schema 519

adherence. Early works have applied code-style 520

prompts to event argument extraction (Wang et al., 521

2023b) and other IE tasks (Li et al., 2023b), demon- 522

strating potential but often underperforming com- 523

pared to SFT-based models due to the absence of 524

fine-tuning. EventRL (Gao et al., 2024) utilizes out- 525

come supervision with specific reward functions 526

to reduce information mismatch and hallucination. 527

KnowCoder (Sainz et al., 2024; Li et al., 2024) 528

addresses this limitation by introducing a compre- 529

hensive schema representation in code format, in- 530

tegrating taxonomies, constraints, and structured 531

definitions. Complementary to these works, we 532

study generating annotation guidelines to enhance 533

the instruction tuning of LLMs for code-formatted 534

EE and demonstrate their effectiveness. 535

5 Conclusion 536

We demonstrate that incorporating structured anno- 537

tation guidelines improves the instruction-tuning 538

of LLMs for EE, bridges the data gap when only 539

a limited amount of training data is available, and 540

enhances the model’s cross-schema generalization. 541

Our explorations of guideline generation also high- 542

light the promise of automatically generating effec- 543

tive instructions. 544

8

6 Limitations545

While our study demonstrates the benefits of struc-546

tured annotation guidelines for event extraction,547

several limitations remain. First, our evaluation is548

limited to two datasets (ACE and RichERE), both549

within the news domain, which may not fully cap-550

ture how guidelines generalize to other domains551

such as biomedical or legal text. Future work552

should assess whether schema differences in other553

domains exhibit similar trends. Second, while we554

analyze guideline length and diversity, we do not555

explicitly optimize guideline generation, leaving556

open the question of how to best balance concise-557

ness and informativeness. Exploring adaptive meth-558

ods that retrieve or refine guidelines dynamically559

during training and inference could further improve560

efficiency. Lastly, our study primarily focuses on561

instruction-tuning an LLM with predefined event562

schemas; however, real-world applications often563

require handling previously unseen event types. In-564

vestigating how structured guidelines can aid zero-565

shot or few-shot event extraction remains an impor-566

tant avenue for future research.567

References568

Dhananjay Ashok and Zachary C. Lipton. 2023.569
Promptner: Prompting for named entity recognition.570
Preprint, arXiv:2305.15444.571

Zefan Cai, Po-Nien Kung, Ashima Suvarna, Mingyu572
Ma, Hritik Bansal, Baobao Chang, P. Jeffrey Brant-573
ingham, Wei Wang, and Nanyun Peng. 2024. Improv-574
ing event definition following for zero-shot event de-575
tection. In Proceedings of the 62nd Annual Meeting576
of the Association for Computational Linguistics (Vol-577
ume 1: Long Papers), pages 2842–2863, Bangkok,578
Thailand. Association for Computational Linguistics.579

Wenhu Chen, Xueguang Ma, Xinyi Wang, and580
William W. Cohen. 2023. Program of thoughts581
prompting: Disentangling computation from reason-582
ing for numerical reasoning tasks. Transactions on583
Machine Learning Research.584

Michael Han Daniel Han and Unsloth team. 2023. Un-585
sloth.586

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and587
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning588
of quantized llms. Advances in Neural Information589
Processing Systems, 36.590

George Doddington, Alexis Mitchell, Mark Przybocki,591
Lance Ramshaw, Stephanie Strassel, and Ralph592
Weischedel. 2004. The automatic content extrac-593
tion (ACE) program – tasks, data, and evaluation. In594
Proceedings of the Fourth International Conference595

on Language Resources and Evaluation (LREC‘04), 596
Lisbon, Portugal. European Language Resources As- 597
sociation (ELRA). 598

Jun Gao, Huan Zhao, Wei Wang, Changlong Yu, and 599
Ruifeng Xu. 2024. Eventrl: Enhancing event ex- 600
traction with outcome supervision for large language 601
models. Preprint, arXiv:2402.11430. 602

Jun Gao, Huan Zhao, Changlong Yu, and Ruifeng Xu. 603
2023. Exploring the feasibility of chatgpt for event 604
extraction. Preprint, arXiv:2303.03836. 605

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 606
Abhinav Pandey, Abhishek Kadian, et al. 2024. The 607
llama 3 herd of models. Preprint, arXiv:2407.21783. 608

Honghao Gui, Shuofei Qiao, Jintian Zhang, Hongbin 609
Ye, Mengshu Sun, Lei Liang, Jeff Z. Pan, Huajun 610
Chen, and Ningyu Zhang. 2024. Instructie: A bilin- 611
gual instruction-based information extraction dataset. 612
Preprint, arXiv:2305.11527. 613

Yucan Guo, Zixuan Li, Xiaolong Jin, Yantao Liu, Yutao 614
Zeng, Wenxuan Liu, Xiang Li, Pan Yang, Long Bai, 615
Jiafeng Guo, and Xueqi Cheng. 2023. Retrieval- 616
augmented code generation for universal information 617
extraction. Preprint, arXiv:2311.02962. 618

Kuan-Hao Huang, I-Hung Hsu, Tanmay Parekh, Zhiyu 619
Xie, Zixuan Zhang, Prem Natarajan, Kai-Wei Chang, 620
Nanyun Peng, and Heng Ji. 2024. Textee: Bench- 621
mark, reevaluation, reflections, and future challenges 622
in event extraction. In Findings of the Association for 623
Computational Linguistics ACL 2024, pages 12804– 624
12825. 625

Heng Ji and Ralph Grishman. 2008. Refining event 626
extraction through cross-document inference. In Pro- 627
ceedings of ACL-08: HLT, pages 254–262, Colum- 628
bus, Ohio. Association for Computational Linguis- 629
tics. 630

Yizhu Jiao, Ming Zhong, Sha Li, Ruining Zhao, Siru 631
Ouyang, Heng Ji, and Jiawei Han. 2023. Instruct 632
and extract: Instruction tuning for on-demand in- 633
formation extraction. In Proceedings of the 2023 634
Conference on Empirical Methods in Natural Lan- 635
guage Processing, pages 10030–10051, Singapore. 636
Association for Computational Linguistics. 637

Damjan Kalajdzievski. 2023. A rank stabilization 638
scaling factor for fine-tuning with lora. Preprint, 639
arXiv:2312.03732. 640

Bo Li, Gexiang Fang, Yang Yang, Quansen Wang, Wei 641
Ye, Wen Zhao, and Shikun Zhang. 2023a. Evaluating 642
chatgpt’s information extraction capabilities: An as- 643
sessment of performance, explainability, calibration, 644
and faithfulness. arXiv preprint arXiv:2304.11633. 645

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan- 646
bin Wu, Xuanjing Huang, and Xipeng Qiu. 2023b. 647
CodeIE: Large code generation models are better 648
few-shot information extractors. In Proceedings 649
of the 61st Annual Meeting of the Association for 650

9

https://arxiv.org/abs/2305.15444
https://doi.org/10.18653/v1/2024.acl-long.157
https://doi.org/10.18653/v1/2024.acl-long.157
https://doi.org/10.18653/v1/2024.acl-long.157
https://doi.org/10.18653/v1/2024.acl-long.157
https://doi.org/10.18653/v1/2024.acl-long.157
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth
https://aclanthology.org/L04-1011/
https://aclanthology.org/L04-1011/
https://aclanthology.org/L04-1011/
https://arxiv.org/abs/2402.11430
https://arxiv.org/abs/2402.11430
https://arxiv.org/abs/2402.11430
https://arxiv.org/abs/2402.11430
https://arxiv.org/abs/2402.11430
https://arxiv.org/abs/2303.03836
https://arxiv.org/abs/2303.03836
https://arxiv.org/abs/2303.03836
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2305.11527
https://arxiv.org/abs/2305.11527
https://arxiv.org/abs/2305.11527
https://arxiv.org/abs/2311.02962
https://arxiv.org/abs/2311.02962
https://arxiv.org/abs/2311.02962
https://arxiv.org/abs/2311.02962
https://arxiv.org/abs/2311.02962
https://aclanthology.org/P08-1030/
https://aclanthology.org/P08-1030/
https://aclanthology.org/P08-1030/
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://doi.org/10.18653/v1/2023.emnlp-main.620
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2312.03732
https://arxiv.org/abs/2312.03732
https://doi.org/10.18653/v1/2023.acl-long.855
https://doi.org/10.18653/v1/2023.acl-long.855
https://doi.org/10.18653/v1/2023.acl-long.855

Computational Linguistics (Volume 1: Long Papers),651
pages 15339–15353, Toronto, Canada. Association652
for Computational Linguistics.653

Qian Li, Jianxin Li, Jiawei Sheng, Shiyao Cui, Jia Wu,654
Yiming Hei, Hao Peng, Shu Guo, Lihong Wang,655
Amin Beheshti, et al. 2022. A survey on deep learn-656
ing event extraction: Approaches and applications.657
IEEE Transactions on Neural Networks and Learning658
Systems.659

Sha Li, Heng Ji, and Jiawei Han. 2021. Document-level660
event argument extraction by conditional generation.661
In Proceedings of the 2021 Conference of the North662
American Chapter of the Association for Computa-663
tional Linguistics: Human Language Technologies,664
pages 894–908, Online. Association for Computa-665
tional Linguistics.666

Zixuan Li, Yutao Zeng, Yuxin Zuo, Weicheng Ren,667
Wenxuan Liu, Miao Su, Yucan Guo, Yantao Liu, Lix-668
iang Lixiang, Zhilei Hu, Long Bai, Wei Li, Yidan669
Liu, Pan Yang, Xiaolong Jin, Jiafeng Guo, and Xueqi670
Cheng. 2024. KnowCoder: Coding structured knowl-671
edge into LLMs for universal information extraction.672
In Proceedings of the 62nd Annual Meeting of the673
Association for Computational Linguistics (Volume 1:674
Long Papers), pages 8758–8779, Bangkok, Thailand.675
Association for Computational Linguistics.676

Keming Lu, Xiaoman Pan, Kaiqiang Song, Hongming677
Zhang, Dong Yu, and Jianshu Chen. 2023. PIVOINE:678
Instruction tuning for open-world entity profiling. In679
Findings of the Association for Computational Lin-680
guistics: EMNLP 2023, pages 15108–15127, Singa-681
pore. Association for Computational Linguistics.682

Chaoxu Pang, Yixuan Cao, Qiang Ding, and Ping Luo.683
2023. Guideline learning for in-context information684
extraction. In Proceedings of the 2023 Conference685
on Empirical Methods in Natural Language Process-686
ing, pages 15372–15389, Singapore. Association for687
Computational Linguistics.688

Oscar Sainz, Iker García-Ferrero, Rodrigo Agerri,689
Oier Lopez de Lacalle, German Rigau, and Eneko690
Agirre. 2024. GoLLIE: Annotation guidelines im-691
prove zero-shot information-extraction. In The692
Twelfth International Conference on Learning Repre-693
sentations.694

Zhengxiang Shi and Aldo Lipani. 2023. Don’t stop695
pretraining? make prompt-based fine-tuning power-696
ful learner. In Thirty-seventh Conference on Neural697
Information Processing Systems.698

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,699
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,700
Neville Ryant, and Xiaoyi Ma. 2015. From light701
to rich ERE: Annotation of entities, relations, and702
events. In Proceedings of the 3rd Workshop on703
EVENTS: Definition, Detection, Coreference, and704
Representation, pages 89–98, Denver, Colorado. As-705
sociation for Computational Linguistics.706

Saurabh Srivastava, Gaurav Singh, Shou Matsumoto, 707
Ali Raz, Paulo Costa, Joshua Poore, and Ziyu Yao. 708
2023. MailEx: Email event and argument extraction. 709
In Proceedings of the 2023 Conference on Empiri- 710
cal Methods in Natural Language Processing, pages 711
12964–12987, Singapore. Association for Computa- 712
tional Linguistics. 713

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 714
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 715
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 716
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 717
Grave, and Guillaume Lample. 2023. Llama: Open 718
and efficient foundation language models. Preprint, 719
arXiv:2302.13971. 720

Xiao Wang, Weikang Zhou, Can Zu, Han Xia, Tianze 721
Chen, Yuansen Zhang, Rui Zheng, Junjie Ye, 722
Qi Zhang, Tao Gui, Jihua Kang, Jingsheng Yang, 723
Siyuan Li, and Chunsai Du. 2023a. Instructuie: 724
Multi-task instruction tuning for unified information 725
extraction. Preprint, arXiv:2304.08085. 726

Xingyao Wang, Sha Li, and Heng Ji. 2023b. 727
Code4struct: Code generation for few-shot event 728
structure prediction. In Proceedings of the 61st An- 729
nual Meeting of the Association for Computational 730
Linguistics (Volume 1: Long Papers), pages 3640– 731
3663. 732

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 733
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 734
et al. 2022. Chain-of-thought prompting elicits rea- 735
soning in large language models. Advances in neural 736
information processing systems, 35:24824–24837. 737

Derong Xu, Wei Chen, Wenjun Peng, Chao Zhang, Tong 738
Xu, Xiangyu Zhao, Xian Wu, Yefeng Zheng, Yang 739
Wang, and Enhong Chen. 2024. Large language mod- 740
els for generative information extraction: A survey. 741
Frontiers of Computer Science, 18(6):186357. 742

Wenxuan Zhou, Sheng Zhang, Yu Gu, Muhao Chen, 743
and Hoifung Poon. 2024. Universalner: Targeted dis- 744
tillation from large language models for open named 745
entity recognition. Preprint, arXiv:2308.03279. 746

10

https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2024.acl-long.475
https://doi.org/10.18653/v1/2024.acl-long.475
https://doi.org/10.18653/v1/2024.acl-long.475
https://doi.org/10.18653/v1/2023.findings-emnlp.1009
https://doi.org/10.18653/v1/2023.findings-emnlp.1009
https://doi.org/10.18653/v1/2023.findings-emnlp.1009
https://doi.org/10.18653/v1/2023.emnlp-main.950
https://doi.org/10.18653/v1/2023.emnlp-main.950
https://doi.org/10.18653/v1/2023.emnlp-main.950
https://openreview.net/forum?id=Y3wpuxd7u9
https://openreview.net/forum?id=Y3wpuxd7u9
https://openreview.net/forum?id=Y3wpuxd7u9
https://openreview.net/forum?id=s7xWeJQACI
https://openreview.net/forum?id=s7xWeJQACI
https://openreview.net/forum?id=s7xWeJQACI
https://openreview.net/forum?id=s7xWeJQACI
https://openreview.net/forum?id=s7xWeJQACI
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.18653/v1/2023.emnlp-main.801
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2304.08085
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279

A Preprocessing and Data Sampling747

For both datasets, ACE and RichERE, we follow748

the TextEE standardization (Huang et al., 2024) and749

formulate them as sentence-level EE tasks. We use750

the “split 1” data split of TextEE, but only sample a751

subset of 100 examples from its development (dev)752

set for better training efficiency. Specifically, we753

ensure that for each event type, two event instances754

will be included in our dev set, prioritizing those755

with larger coverages of arguments, with the re-756

maining being examples with no event occurrences.757

The datasets are then converted to the code format758

shown in Figure 1. Table 7 summarizes dataset759

statistics.

Dataset #Event
Types

#Role
Types

Instances
(train/dev/test)

ACE05 (Dodding-
ton et al., 2004)

33 22 16531/1870/2519

RichERE (Song
et al., 2015)

38 35 9105/973/1163

Table 7: Dataset statistics. For efficiency purposes, in
our experiments, we curated a subset of 100 examples
as our development (dev) set.

760

To perform the low-data experiments (RQ3), we761

additionally create the following subsets of the full762

training set for each dataset. Train2k includes763

uniformly sampled 2,000 examples from the full764

training set. Train100-1/2/3 are three distinct sub-765

sets including 100 examples from the full training766

set, each of which was selected following the same767

procedure as how we prepare the dev set, ensur-768

ing all event types are included and prioritizing769

instances covering more arguments.770

B Evaluation Methodology and Metrics771

Evaluation Methodology. Our methodology772

contrasts with GoLLIE (Sainz et al., 2024), which773

follows a pipeline-based structure and selectively774

includes only parent event types in its prompts, lim-775

iting granularity in event representation. For argu-776

ment extraction, GoLLIE further restricts schema777

inclusion to sibling event types, introducing man-778

ual design choices that reduce automation and scal-779

ability. To ensure fair and comprehensive evalu-780

ation, we adopt a methodology that enumerates781

all possible event types for each test and develop-782

ment sample during prompt construction. Unlike783

setups where only the gold-standard event schema784

is included in the prompt, we avoid implicit event785

detection bias—if the correct event type were pro-786

vided, the model would not need to identify the 787

event type itself and could directly extract argu- 788

ments, which would not reflect its real performance 789

on real-world data. Due to these fundamental dif- 790

ferences in methodology, we do not compare our 791

results with GoLLIE. 792

C Prompt Design and Model Training 793

Model. We conducted experiments on an 794

instruction-tuned LLaMA-3-8B model, selected 795

for its demonstrated proficiency in processing struc- 796

tured code-based inputs and generating coherent 797

outputs. For parameter-efficient adaptation, we 798

implement RSLoRA (Kalajdzievski, 2023), apply- 799

ing LoRA transformations to all linear layers in 800

the transformer blocks following the methodol- 801

ogy of Dettmers et al. (2024). Key hyperparam- 802

eters—including LoRA rank (64), scaling factor 803

α (128), and batch size (32)—were determined 804

through preliminary experiments to balance com- 805

putational efficiency with model performance. The 806

models were trained for 10 epochs using a single 807

NVIDIA A100 GPU (80GB VRAM), with early 808

stopping triggered after three consecutive valida- 809

tion steps without improvement. We adopt a co- 810

sine learning rate scheduler with an initial rate of 811

1e-5 and a warmup period of 350 steps. Input se- 812

quences are padded to 3,000 tokens to maintain 813

consistency while accommodating long-form code 814

structures. To ensure reproducibility and minimize 815

memory fragmentation, we implement determinis- 816

tic padding and truncation strategies. 817

Prompt Design. We adopt a structured prompt 818

format consisting of four components: (i) task in- 819

struction,(ii) event schema, (iii) input text, and (iv) 820

expected output, formatted as a structured event 821

representation. Our approach follows a schema- 822

first prompting strategy, where event definitions are 823

explicitly encoded in a structured format to enhance 824

model comprehension of event relations and argu- 825

ment constraints. For each input instance, a ran- 826

domly sampled guideline definition is used to anno- 827

tate the event schema, ensuring that the model is ex- 828

posed to multiple rephrasings rather than memoriz- 829

ing and overfitting on a static definition. Formally, 830

we prepare the input sequence as follows: “[BoS] 831

$-task_instruction (I) $-annotated event 832

schema (Ee) $-input_sample (Xi) [EoS]” 833

where the event schema Ee for an event e is an- 834

notated with one of the generated guideline defini- 835

tions. 836

11

837
You are an expert in annotating NLP datasets for event extraction. Your task is to838

generate "detailed" annotation guidelines for the event type Acquit which is a839
child event type of super class JusticeEvent.840

841
Input Format will be as following842
```843
Event Schema:844
Event Name and its parent class845
Arguments:846
Arguments separated by new lines. If there are no arguments None will be given.847

848
Examples849
```850
Instructions:851
1) Identify and list all unique arguments related to the event type.852
2) Define the event type and each argument. You can take help of examples below to853

understand the events and their arguments.854
3) Please remember that the examples may not cover all the arguments in the list. In855

some cases , you may not have arguments at all , in such cases , you can have an856
empty list for arguments.857

4) For each definition , provide 5 illustrative definitions in JSON format. For858
events you can add example triggers and the explanation of the events such as859
edge cases and other critical details starting with "The event can be triggered860
by ... ". Similarly for arguments also you can add examples , and detailed861
information for them including any edge case or domain knowledge starting with "862
Examples are ... ".863

5) Remember to not generate any additional information such as examples , etc. and864
strictly follow the output format shown below.865

6) Remember also to add detailed information for the events and arguments so that866
the annotators who are not familiar with machine learning and NLP can still867
solve the task. Remember to add required domain knowledge and please cover the868
edge cases when possible.869

7) Remember that while generating examples for the event or attributes you should870
generate diverse set of triggers or argument values rather than picking them871
from the examples I have provided for each of the 5 generated guidelines.872

873
Output Format:874
{875

"Event Definition": [876
"Definition 1",877
"Definition 2",878
"Definition 3",879
"Definition 4",880
"Definition 5"881

],882
"Arguments Definitions": {883

"Argument1": [884
"Definition 1",885
"Definition 2",886
"Definition 3",887
"Definition 4",888
"Definition 5"889

],890
"Argument2": [891

"Definition 1",892
"Definition 2",893
"Definition 3",894
"Definition 4",895
"Definition 5"896

]897
// Add additional arguments as necessary898

}899
}900

901
Event Schema:902
Acquit which is a child event type of super class JusticeEvent903
Arguments:904
Argument 1 -> adjudicator905
Argument 2 -> defendant906

12

907
Example 1 908
Input Text ### 909
Sentence 1. 910
Event Trigger ### 911
[event trigger] 912
Event Arguments ### 913
For argument "defendant" extracted spans ['x'] 914
For argument "adjudicator" extracted spans ['y'] 915

916
Example 2 917
Input Text ### 918
Sentence 2. 919
Event Trigger ### 920
[event trigger] 921
Event Arguments ### 922
For argument "defendant" extracted spans ['a'] 923

924
(...) 925926

Listing 1: Prompt example for generating Guideline-P, Guideline-PN, and Guideline-PS.

Prompt for generating consolidated guidelines. The exact prompts used for generating consolidated 927

guidelines - Guideline-PN-Int, and Guideline-PS-Int is shared below 928

929
You are an expert in summarizing NLP event extraction guidelines. Your goal is to 930

consolidate multiple detailed descriptions into a single concise , comprehensive 931
"Intergrated" guideline. 932

933
Input Format ### 934
Event Type: Event Type Name 935
```json 936
{ 937

"Event Definition": [ 938
"Definition 1", 939
"Definition 2", 940
"Definition 3", 941
"Definition 4", 942
"Definition 5" 943

], 944
"Arguments Definitions": { 945

"mention": [ 946
"Definition 1", 947
"Definition 2", 948
"Definition 3", 949
"Definition 4", 950
"Definition 5" 951

], 952
"Argument1": [ 953

"Definition 1", 954
"Definition 2", 955
"Definition 3", 956
"Definition 4", 957
"Definition 5" 958

], 959
// Add additional arguments as necessary 960

} 961
} 962
``` 963

964
Task ### 965
1. Integrated the 5 definitions under "Event Definition" into a single definition: 966

- Highlight all critical points and examples from the five definitions. 967
- Ensure the description is concise , comprehensive , and clear , using formal 968

language that non -experts can understand. 969
970

2. Do the same for each argument under "Arguments Definitions ," producing a single 971
intergrated definition for each. 972

13

973
Output Format ###974
```json975
{976

"Event Definition": "Consolidated intergrated guideline for the event type.",977
"Arguments Definitions": {978

"mention": "Consolidated intergrated guideline for the mention argument.",979
"Argument1": "Consolidated intergrated guideline for Argument1.",980
"Argument2": "Consolidated intergrated guideline for Argument2."981
// Add additional arguments as necessary982

}983
}984
```985

986
Guidelines to Summarize ###987
Event Type: prompt_Acquit(JusticeEvent)988
```json989
{990

"Acquit(JusticeEvent)": {991
"description": [992

"Definition 1",993
"Definition 2",994
"Definition 3",995
"Definition 4",996
"Definition 5"997

]998
},999
"attributes": {1000

"mention": "The text span that triggers the event."1001
"adjudicator": [1002

"Definition 1",1003
"Definition 2",1004
"Definition 3",1005
"Definition 4",1006
"Definition 5"1007

],1008
"defendant": [1009

"Definition 1",1010
"Definition 2",1011
"Definition 3",1012
"Definition 4",1013
"Definition 5"1014

]1015
}1016

}1017
```10181019

Listing 2: Prompt example for generating consolidated guidelines: Guideline-PN-Int, and Guideline-PS-Int.

D Dataset examples across multiple guideline settings1020

The below JSON example illustrates an event extraction task from the ACE dataset under the No1021

Guideline setting. It defines how structured events are extracted from text, specifying event triggers, types,1022

arguments, and roles. The instruction explains the task, the input provides a natural language sentence and1023

its conversion into a structured Python-style format. The output presents the extracted event, including its1024

trigger ("extradited") and associated arguments (e.g., "government" as the agent, "him" as the person).1025

1026
{1027

"doc_id": "APW_ENG_20030306 .0191",1028
"wnd_id": "APW_ENG_20030306 .0191 -6",1029
"instance_id": "821",1030
"dataset_name": "ace05 -en",1031
"task_type": "E2E",1032
"is_auth": "0",1033
"instruction": "# This is an event extraction task where the goal is to extract1034

structured events from the text. A structured event contains an event trigger1035
word , an event type , the arguments participating in the event , and their roles1036

14

in the event. For each different event type , please output the extracted 1037
information from the text into python -style dictionaries where the first key 1038
will be 'mention ' with the value of the event trigger. Next , please output the 1039
arguments and their roles following the same format. The event type 1040

definitions and their argument roles are defined next.", 1041
"input": "# The following lines describe the task definition\n\n@dataclass\nclass 1042

Extradite(JusticeEvent):\n mention: str\n agent: List\n destination: 1043
List\n origin: List\n person: List\n\n# This is the text to analyze\ 1044
ntext = \"The post -Milosevic government later extradited him to the U.N. war 1045
crimes tribunal in The Hague , the Netherlands .\"\n\n# The list called result 1046
should contain the instances for the following events according to the 1047
guidelines above:\ nresult = \n", 1048

"output": "[Extradite (\n mention =\" extradited \",\n person =[\" him\"], \n 1049
destination =[\" Hague\"], \n agent =[\" government \"],\n origin =[]\n)]" 1050

} 10511052

Listing 3: Prompt example for generating consolidated guidelines: Guideline-PN-Int, and Guideline-PS-Int.

NoGuideline Shown below is an example from the NoGuideline setting in python code format with no 1053

doc string and argument definitions. 1054
1055

#Task Instruction 1056
This is an event extraction task where the goal is to extract structured events 1057

from the text. A structured event contains an event trigger word , an event type , 1058
the arguments participating in the event , and their roles in the event. For 1059

each different event type , please output the extracted information from the text 1060
into python -style dictionaries where the first key will be 'mention ' with the 1061

value of the event trigger. Next , please output the arguments and their roles 1062
following the same format. The event type definitions and their argument roles 1063
are defined next. 1064

1065
#Input 1066
The following lines describe the task definition 1067

1068
@dataclass 1069
class Extradite(JusticeEvent): 1070

mention: str 1071
agent: List 1072
destination: List 1073
origin: List 1074
person: List 1075

1076
This is the text to analyze 1077
text = "The post -Milosevic government later extradited him to the U.N. war crimes 1078

tribunal in The Hague , the Netherlands." 1079
1080

The list called result should contain the instances for the following events 1081
according to the guidelines above: 1082

result = 1083
1084

#Output 1085
[Extradite(1086

mention="extradited", 1087
person =["him"], 1088
destination =["Hague"], 1089
agent=["government"], 1090
origin =[] 1091

)] 10921093

Guideline-PN Shown below is an example from the Guideline-PN setting in python code format. 1094
1095

#Task Instruction 1096
This is an event extraction task where the goal is to extract structured events 1097

from the text. A structured event contains an event trigger word , an event type , 1098
the arguments participating in the event , and their roles in the event. For 1099

each different event type , please output the extracted information from the text 1100
into python -style dictionaries where the first key will be 'mention ' with the 1101

value of the event trigger. Next , please output the arguments and their roles 1102
following the same format. The event type definitions and their argument roles 1103

15

are defined next.1104
1105

#Input1106
The following lines describe the task definition1107

1108
@dataclass1109
class Extradite(JusticeEvent):1110

"""The event is triggered by the act of transferring a person from one1111
jurisdiction to another for legal proceedings. Example triggers include '1112
extradite ', 'extradition ', and 'extraditing '."""1113

mention: str # The text span that triggers the event.1114
agent: List # Examples are 'court ', 'government ', 'police department '. The1115

agent is the authority or entity responsible for initiating or carrying out1116
the extradition process.1117

destination: List # Examples are 'jurisdiction ', 'Hague ', 'state '. The1118
destination is the place to which the person is being extradited.1119

origin: List # Examples are 'state ', 'headquarters '. The origin is the place1120
from which the person is being extradited.1121

person: List # Examples are 'she ', 'him ', 'her '. The person is the individual1122
being extradited.1123

1124
This is the text to analyze1125
text = "The post -Milosevic government later extradited him to the U.N. war crimes1126

tribunal in The Hague , the Netherlands."1127
1128

The list called result should contain the instances for the following events1129
according to the guidelines above:1130

result =1131
1132

#Output1133
[Extradite(1134

mention="extradited",1135
person =["him"],1136
destination =["Hague"],1137
agent=["government"],1138
origin =[]1139

)]11401141

Guideline-PN-Int Similarly, shown below is an example from the Guideline-PN-Int setting in python1142

code format.1143
1144

The following lines describe the task definition1145
1146

@dataclass1147
class Extradite(JusticeEvent):1148

"""The Extradite event is triggered by the legal process of transferring a1149
person from one jurisdiction to another for legal proceedings , such as1150
facing charges or serving a sentence. This event involves formal actions by1151
legal authorities and the movement of the individual across jurisdictions.1152
Key triggers include terms like 'extradite ', 'extradition ', and 'extraditing1153
'. It is distinct from events like 'ArrestJail ' and 'ReleaseParole ', as it1154
specifically involves cross -jurisdictional transfer rather than initial1155
detention or release from custody."""1156

mention: str # The text span that triggers the event.1157
agent: List # The agent is the authority or entity responsible for initiating1158

or carrying out the extradition process , typically a legal or governmental1159
body. Examples include 'court ', 'government ', and 'police department '.1160

destination: List # The destination is the place to which the person is being1161
extradited , where they will face legal proceedings or serve a sentence.1162
Examples include 'jurisdiction ', 'Hague ', and 'state '.1163

origin: List # The origin is the place from which the person is being1164
extradited , where they are currently held or from where they are being1165
transferred. Examples include 'state ' and 'headquarters '.1166

person: List # The person is the individual being extradited , the subject of1167
the legal transfer. Examples include 'she ', 'him ', and 'her '.1168

1169
This is the text to analyze1170
text = "The post -Milosevic government later extradited him to the U.N. war crimes1171

tribunal in The Hague , the Netherlands."1172
1173

16

The list called result should contain the instances for the following events 1174
according to the guidelines above: 1175

result = 1176
1177

#Output 1178
[Extradite(1179

mention="extradited", 1180
person =["him"], 1181
destination =["Hague"], 1182
agent=["government"], 1183
origin =[] 1184

)] 11851186

17

	Introduction
	Approach
	Task Formulation
	Instruction-Tuning LLMs with Annotation Guidelines

	Experiments
	Experimental Setup
	RQ1: Do the annotation guidelines allow an LLM to more precisely extract occurring events?
	RQ2: Are machine-generated annotation guidelines effective?
	RQ3: Are the annotation guidelines helpful when there is only a small amount of training data?
	RQ4: Do annotation guidelines improve cross-schema generalization?
	Further Analysis

	Related Work
	Conclusion
	Limitations
	Preprocessing and Data Sampling
	Evaluation Methodology and Metrics
	Prompt Design and Model Training
	Dataset examples across multiple guideline settings

