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ABSTRACT

We investigate stochastic weight averaging (SWA) for private learning in the con-
text of generalization and model performance. Differentially private (DP) opti-
mizers are known to suffer from reduced performance and high variance in com-
parison to non-private learning. However, the generalization properties of DP op-
timizers have not been studied much, in particular for large-scale machine learn-
ing models. SWA is variant of stochastic gradient descent (SGD) which aver-
ages the weights along the SGD trajectory. We consider a DP adaptation of SWA
(DP-SWA) which incurs no additional privacy cost and has little computational
overhead. For quadratic objective functions, we show that DP-SWA converges to
the optimum at the same rate as non-private SGD, which implies convergence to
zero for the excess risk. For non-convex objective functions, we observe through-
out multiple experiments on standard benchmark datasets that averaging model
weights improves generalization, model accuracy, and performance variance.

1 INTRODUCTION

Machine learning models that provide guarantees against data leakage are critical for many appli-
cations as they can be more safely trained on sensitive data. Differential privacy (DP; Dwork et al.,
2014) offers formal privacy guarantees and protects information about individual training points.
Differentially private stochastic gradient descent (DP-SGD)), first introduced by |Abadi et al.|(2016),
is the state-of-the-art algorithm to privately train models using SGD. Models trained with DP-SGD,
however, suffer from a degradation of performance and often provide less stable solutions (Wang
et al.|[2021). Moreover, although DP is known to enjoy good generalization properties (Wang et al.,
2016)), prior work has shown that privately training larger models can be detrimental to generaliza-
tion (Papernot et al.,|2021). In non-private settings, [zmailov et al.| (2018) demonstrated empirically
that stochastic weight averaging (SWA), i.e., aggregating SGD iterates as originally proposed in
Polyak & Juditskyl| (1992), leads to wider optima, better generalization, and improved performance.
Only few research efforts have been made to analyze the impact of weight averaging in DP settings.
De et al.| (2022)) first consider it for large-scale vision tasks, and Shejwalkar et al.| (2022) explore
different weight averaging techniques for improving model accuracy. Albeit convergence guaran-
tees for averaging schemes for SGD have been previously analyzed (Shamir & Zhang, |2013)), there
is little theoretical investigation on the benefits of weight averaging for DP-SGD.

Motivated by the lack of theoretical and experimental results on SWA in a private setting, we in-
vestigate whether aggregating DP-SGD iterates with SWA (DP-SWA) improves generalization and
model performance. Specifically, we consider the wideness of solutions as a proxy for general-
ization (Cha et al} [2021), and study whether these effects can be observed across different scales
of models. We perform several case studies for the optimization of machine learning models with
DP-SWA: for quadratic objective functions, we show that DP-SWA converges to the optimum at
the same rate as standard SGD, thus showing that the excess risk converges to zero as 1/7" for T
iterations; for strongly convex functions, we empirically corroborate existing convergence bounds
for suffix averaging in DP-SGD (Shejwalkar et al. [2022) with logistic regression experiments on
Fashion-MNIST; for non-convex objective functions, we experiment with large-scale vision models
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on common benchmark datasets (Fashion-MNIST, CIFAR-10, CIFAR-100). We find that DP-SWA
yields wider and more stable solutions with higher accuracy at a negligible computational impact.

2 PRELIMINARIES

In this section we recall the definition of differential privacy (DP; |Dwork et al.l [2014) and present
DP-SWA, a DP adaptation of stochastic weight averaging (SWA; [zmailov et al.| 2018)).

Differential privacy DP offers formal privacy guarantees about individual training points and is
defined in terms of adjacent datasets. Two datasets are adjacent if they differ in a single point, that
is, if one point is present in one dataset but not in the other. In the following, we use the notion of
(e,0)-DP as introduced in Dwork et al|{(2006). Consider a randomized algorithm M : D — R with
domain D and range R. M satisfies (e, §)-DP if for any two adjacent datasets D, D’ € D and for
any subset S C R the following holds:

PIM(D) e S] < e PIM(D) € S|+ 36

We refer to € as the privacy budget of the algorithm. DP can be achieved by adding noise to a
function with bounded sensitivity, i.e., where the difference between function values on adjacent
inputs D and D’ is bounded. Following this approach, |Abadi et al.|(2016) propose DP-SGD, a DP
version of SGD, where the sensitivity of gradients is bounded by clipping them up to a maximum
norm C, which is referred to as the clipping norm. See[Appendix A|for more details on DP-SGD. It
is important to note that any operation performed on the outputs of a private algorithm M without
additional access to the private dataset does not worsen privacy guarantees of M (Dwork et al
2014])). We refer to this as the post-processing property of DP.

DP-SWA SWA takes averages of multiple weights along the SGD trajectory and has been shown to
improve performance and generalization of machine learning models optimized with SGD (Izmailov
et al, [2018). To adapt SWA for private learning, we consider DP-SWA, displayed in
where gradient steps are taken using DP-SGD. Thanks to the post-processing property of DP, DP-
SWA can aggregate intermediate DP-SGD weights withough additional privacy cost. Specifically,
DP-SWA averages intermediate weights every c steps; we refer to c as the cycle length of DP-SWA.
In practical applications, it is recommended to start averaging after a warm-up phase where the
optimization procedure approaches an optimum (Izmailov et al., 2018} |Panda et al., 2022]).

Algorithm 1 DP-SWA, DP adaptation of SWA from [Izmailov et al.[|(2018)

Input: initial weights 6y, cycle length ¢, number of iterations 7', learning rate «, loss function f,
clipping norm C, noise scale &
Output: 01

1: 9T — 90

2: foriel...Tdo

3: b1 ~ N(O, 0'2)

4: 0; < 0;_1 — Oé(ClipCVf<9i,1) + bl) (DP-SGD)
5: ifc =0 (mod ) then

6: Nmodels <— ¢/¢  (number of models)

7: O % (update average)

8: end if '

9: end for

10: return O

3 CONVERGENCE FOR QUADRATIC AND CONVEX OBJECTIVE FUNCTIONS

In this section, we theoretically investigate DP-SWA for (¢) quadratic and (i) convex objective
functions. For (i), we provide an upper bound on the convergence of the parameter estimates, for
(77) we discuss existing results for weight averaging in a private setting.
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Quadratic objective functions Consider DP-SWA with cycle length ¢ and T iterations for the
optimization of a quadratic objective function with d-dimensional parameters. We show that the
distance between the output of DP-SWA and the optimum goes to zero in expectation as O(cd/T'e?).

More formally, let f be a quadratic objective function of the form f(6) = (6 — 0*)T A(§ — 6*)/2
with A = pl € R¥? for some p > 0 and let §* be the optimum of f. Assume that the sample
gradients V f () are equal to the full gradient in expectation, i.e., E[V f(8)] = Vf(0) = A0 — 0*).
For simplicity, assume a compact domain for the parameters 6 and choose the clipping norm to be
the implied bound on the gradient norm, i.e., we perform no clipping. For the gradient updates, take

b ~ N(0,0%1y) with o> = 2°8125/% 14 suarantee DP (Dwork et al., 2014; |Abadi et al., 2016).
Finally, make the standard assumption that E||V f(8) — V f(6)||* < 2 for some ¢ > 0.

Theorem 1 Consider a cycle length c and a learning rate o with 0 < o < || A|/2. In expectation,
the squared distance of the output 1 of DP-SWA at iteration T with respect to the optimum 0* is
upper bounded as:

~ 0o — 0% c 2d log 1:25 cd
_ |2 < 60 5 2.2\ ca
Ellor —67[1" < T2a2p? + Ta?2p? €2 tate © Te2

See[Appendix A.2|for the proof, which is adapted from |Yang et al|(2019). According to[Theorem 1}

DP-SWA converges to the optimal solution for a given privacy budget e at the same convergence
rate as standard SGD (Varre et al., 2021). It should be noted that the privacy budget € is to be
interpreted as the budget for each descent step. As it is often useful to consider the distance to the
optimum after 7" iterations instead, we can also interpret our bound as a O(cd/€?) utility bound after
T iterations. In the following, we will consider linear regression as a case study to investigate the
empirical behavior in comparison with this bound. For a similar problem setting (linear regression
for bounded inputs and bounded moments), (Cai et al.| (2021) obtain an upper bound on the (non-
averaged) last iterate parameters as |67 —0*[|? < O(d?/€?). Varshney et al.|(2022) obtain a nearly
optimal utility bound on averaged iterates using an adaptive clipping technique, but do not consider
different cycle lengths. We refer the reader to, e.g.,[Wang| (2018) for a more detailed overview on
research efforts in DP linear regression.

Convex objective functions In the non-private stochastic setting,|[Rakhlin et al.[{(2012) and|Shamir
& Zhang (2013) show that averaging all iterates provides only sub-optimal convergence rates in
(strongly) convex optimization; however, the authors prove that optimal rates can be recovered by
averaging a suffix of the iterates only. This approach corresponds to running SWA with cycle length
¢ = 1 after a warm-up phase where no averages are collected. In a private setting and for convex
objective functions, Shejwalkar et al.|(2022) have recently shown a better upper bound on the excess
empirical risk for suffix averaging, when compared to the last, non-averaged iterate. The authors do
not, however, provide a lower bound on the excess risk, and thus no statement can be made about
whether the last iterate bound could match the suffix averaging bound. Nevertheless, their result
indicates that DP-SWA with ¢ = 1 may be beneficial for convex optimization. As the authors do
not perform experiments in the convex setting we empirically investigate this case with a logistic
regression task.

4 EXPERIMENTS

In this section, we empirically corroborate our theoretical findings, and investigate whether weight
averaging improves generalization in private learning for non-convex objective functions. Specifi-
cally, we (%) solve a linear regression task for quadratic optimization and validate )
experiment on logistic regression for convex optimization; and (:¢¢) conduct several experiments
with ResNet18, WRN-16-4, and ResNet50 on standard benchmark datasets. We focus on assessing
the impact of DP-SWA on (a) generalization, (b) accuracy, and (c) stability of the solutions in com-
parison to DP-SGD. We measure generalization (a) as the average accuracy resulting from moving
away from the weight vectors 67 and A7 obtained by DP-SGD and DP-SWA, respectively; larger
averages denote wider solutions. Specifically, we take steps along 10 random rays starting from 6
and 6. We report the signed percentage gain of DP-SWA over DP-SGD as %gaN, with positive
values favoring DP-SWA. We measure accuracy (b) by means of distance to the optimum for linear
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Figure 1: Visualizations for e = 8. (Left) Linear regression. DP-SWA is in agreement with
rem 1|and compatible with convergence to the optimum at a rate (at least as fast as) 1/7T (see also
Appendix C.1)). (Right) ResNet-18 on Fashion-MNIST. The solution output by DP-SWA is prefer-
able to DP-SGD with respect to wideness. The plot is obtained by computing the loss function on
points which lay on the line connecting the DP-SGD and DP-SWA weights.

regression, and classification accuracy for all other tasks. For a given algorithm ALG, we measure
stability (c) as the variance Varayg of the accuracy during the last 10 iterations, or all available
iterates if DP-SWA was run for less than 10 iterations. For all experimental settings, we use DP-
SGD with constant learning rate as an optimizer and start averaging weights after an initial warm-up
phase. We use the same values for the privacy parameters as|De et al.[(2022) and |Shejwalkar et al.
(2022): we run experiments with ¢ = {1,8} and § = 1075, unless noted otherwise. Details on the

experimental setup can be found in[Appendix B|

Quadratic objective functions We use DP-SWA to solve a linear regression task with mean
squared error loss on synthetic data and compare the empirical behavior with the bound we de-

rived in[Theorem T} refer to[Appendix B]for details on data generation. shows that DP-SWA

performs better than DP-SGD, both in terms of distance to the optimum and stability. In line with
our theoretical results, we experimentally observe the convergence of DP-SWA to the optimum in
O(1/T) in (Left). Additional results in show the O(1/¢€?) dependency and
faster convergence with more frequent averages (i.e., smaller c).

Table 1: Squared distance to the optimum and squared distance variance over the last iterates for
linear regression. Mean and standard deviation across 5 runs. Results for § = 1/n? and n = 4096
data points.

e |or—10 *||(2DP—SGD) 107 — H*H(QDP-SWA) Varppsep  Varpp.swa

1 222 7.44+0.9 1.1£05 0.11+£0.08
8 2.6 £0.2 0.52 + 0.01 0.24+0.1 0.0340.03

Convex objective functions To empirically investigate the results of Shejwalkar et al.| (2022) for
convex objective functions, we use DP-SWA with logistic regression on Fashion-MNIST. We find
that DP-SWA offers significantly better accuracy and stability in comparison to DP-SGD (see
[ble 2); for instance, DP-SWA for € = 1 reaches an accuracy of 74.7%, which is not significantly
different to the DP-SGD result for € = 8 of 75.3%. That is, DP-SWA obtains an accuracy similar to
that of DP-SGD, but with stronger privacy guarantees. Additional results are in[Appendix C.2}

Table 2: Accuracy and accuracy variance over the last iterates for logistic regression. Mean and
standard deviation across 5 runs.
€ DP-SGD DP-SWA Vaer_SGD Vaer_SWA

1 684+03 74.74+0.6 10+02 0.6+0.1
8 753+0.7 789+03 04+03 0.3%+0.1
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Non-convex objective functions In order to assess the impact of weight averaging in private
learning for non-convex objectives, we experiment with ResNet-18, WRN-16-4 and ResNet-50 on
Fashion-MNIST (F-MNIST), CIFAR-10 and CIFAR-100. As we are mainly concerned with eval-
vating whether DP-SWA improves on DP-SGD, we do not perform data augmentation and choose
hyperparameters based on related work (De et al., [2022; Shejwalkar et al., 2022;|Panda et al., [2022).
Refer to for more details. We conduct experiments with ResNet-18 and WRN-16-4 on
Fashion-MNIST and CIFAR-10; see for mean and standard deviation over 5 random re-
peats. Additional results on CIFAR-10 and CIFAR-100 with ResNet-18 and Resnet-50 pre-trained

on ImageNet are available in[Appendix C|

Table 3: Accuracy, accuracy variance over the last iterates, and %gan for non-convex objective
functions. Mean and standard deviation across 5 runs. For compactness, we only report the order of
magnitude for some of the results.

Experiment ¢ DP-SGD  DP-SWA  VAIDPsGD  VaIpeswa g

(x1073) (x1073)
F-MNIST 1 79.1+08 79.94+0.1 1340.1 0.34+0.2 +2.4+0.4
ResNet-18 8 849402 85.64+0.1 15+0.5 0.1+0.1 +4.6 £0.9
F-MNIST 1 80.1+04 80.240.2 0.054+0.04 0.0240.02 +6.5+1.9
WRN-16-4 8 84.6+0.1 84.84+0.1 0.01+0.01 <102 +9.74+2.9
CIFAR-10 1 388+0.5 41.04+0.9 10+6 0.4+0.4 +6.2+£0.7
ResNet-18 8 60.8+0.5 62.14+05 3+3 0.2 4+0.1 +2.9+£0.5
CIFAR-10 1 44.7+12 46.54+0.3 0.04+001 <102 +4.3+£2.9
WRN-16-4 8 66.7+0.1 67.6+0.1 0.04+0.02 <1073 +1.6 £1.2

With reference to the results presented in DP-SWA performs better than DP-SGD, as it
achieves superior accuracy, stability, and wider solutions. Accuracy improvements for other av-
eraging schemes have also been recently observed in |Shejwalkar et al.[ (2022} and, for large-scale
models, De et al.| (2022)) were the first to achieve state-of-the-art accuracy with weight averaging.
In particular, training without data augmentation, |De et al.| (2022) achieve a (validation) accuracy
of ~ 70% on CIFAR-10 with ¢ = 8 and § = 10~°, which is comparable to our results. However,
previous work does not consider generalization and the stability of the solutions, which we therefore
investigate. In our experiments DP-SWA solutions are preferable because they are not only more
accurate, but also wider and thus provide better generalization. See[Figure I|(Right) for a visualiza-
tion. Wide minima are especially desirable in a DP setting as the noisy DP-SGD updates can favor
escaping sharp minima (Wang et al.l 2021). [Panda et al|(2022) briefly address weight averaging
for DP for fine-tuning pre-trained models and conclude that, in their experiments, it performs worse
than the last iterate. While we observe diminishing performance benefits for pre-trained tasks, we
nevertheless consider the DP-SWA solutions to be preferable also in these cases, for their stability
and wideness properties.

5 CONCLUSION

Motivated by the lack of theoretical and experimental results on SWA in a private setting, we in-
vestigated the effects of DP-SWA for quadratic, convex, and non-convex objective functions. We
(7) obtained a convergence bound for the quadratic case, (i7) showed empirical results for convex
objective functions which exhibit a similar behavior as indicated by existing upper bounds, and
(#47) found that DP-SWA achieves better generalization, accuracy, and more stable solutions
in comparison to DP-SGD for the non-convex setting on standard benchmark datasets. In future
work, we will consider a more extensive analysis of the benefits and limitations of DP-SWA and,
e.g., investigate whether DP-SWA can perform well on language tasks where SWA has previously
been shown to under-perform (Kaddour et al.| 2022). Additionally, theoretical understanding of the
effects of weight averaging in DP is currently lacking, particularly so for non-convex objective func-
tions and different cycle lengths. In this sense, obtaining a better understanding of the loss surface
for DP-SGD is a promising research direction.
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A ADDITIONAL PRELIMINARIES AND PROOF OF [THEOREM 1

A.1 DP-SGD

A DP version of SGD was introduced by |Abadi et al.[(2016). In comparison to standard SGD, in
DP-SGD, during the update step, gradients are clipped to a maximum norm C' to bound sensitivity
(as there is no a priori bound on the size of the gradients) and Gaussian noise b is added before the
descent step. For a loss function f with weights § and learning rate «, we can write the gradient
update (for a single data point to simplify notation) as

92‘ = 0,'_1 — a(clipCVf(Gi_l) + bb),

where gradients are clipped to a maximum norm of C and b; ~ N (0, o2).

A.2  PROOF OF[THEOREM 1]

Let f be a quadratic objective function of the form f(0) = (6 — 0*)TA(6 — 6*)/2 with A =
pl € R ;> 0, and let 6* be the optimum of f. Assume that the sample gradients V f () are,
in expectation, equal to the full gradient, i.e., E[Vf(8)] = Vf(§) = A( — 6*). For simplicity,
assume a compact domain for the parameters 6 to bound the gradient norm, and take this to be the
clipping norm, which will therefore be omitted. For the gradient updates, take b ~ N(0,021,)

with 02 = 210g€172'25/‘S to guarantee DP (Dwork et al., 2014} |/Abadi et al.| [2016)). Finally, make the
standard assumption that E||V £(6) — V£(8)]?> < <2 for some ¢ > 0.
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Theorem 1 (Adapted from Theorem 1 of|Yang et al.|(2019)) Consider a cycle length c and a learning

rate a with 0 < a < @. In expectation, the squared distance of the output 07 of DP-SWA at

iteration T with respect to the optimum 0* is upper bounded as:

- 0o — 0% ||? c 2d log 122 cd
_ 12 < 160 5 2.2\ ca
Ellfr — 67" < T2 a2 + Ta?p? €2 tate © Te?

Following a similar approach to that of Theorem 1 in|Yang et al.| (2019), let us consider the update
step

0t+1 = 9t — O[Vf(a) + bt
9t+1 = 9,5 - OéA(at - 9*) + ft
Ori1 — 0% =0, — 0" — aA(O, — 0) + &
= —ad)(O; —0") +&
where the term &; corresponds to

& = a(A(6, —6") = V[ (6,) + br.

Since sample gradients are, in expectation, equal to the full gradient and the Gaussian term b; has
mean zero, it follows that E[¢;] = 0. Additionally, the variance of &; can be bounded as

E[&:]1%] = Ella(A(8; — %) = VF(6:))IIP] + E[l[be|*] < @** + do?.

We now expand on the time steps
t—1

0, — 0% = (I—aA)t(e() _9*) +Z(I—OKA)t_i_1fi

=0

and consider the distance from the optimum and the average 6 of K terms:

| K
O — 0" = fZ@tfo*
K t=1
1 K ct—1
_ ct * ct—i—1¢.
—KZ<(I—0¢A) (60— 0")+ Y (I —ad) fz)

=0
K
(ZI ad) >90—9* 1221 ad)" g,

The first term of the right hand side is a constant which we denote by Xx. We now consider
expectation of the squared norm:

_ 1 E
E [0k —6*]*] =E HXK+ >

2

2

2

||XK||2+*]E Z Z I—ad)"™ g

i=0 t=|i/c|]+1
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Since the ¢; terms have mean zero and are independent, we can upper bound the variance as

2

cK—1 K
E (I — 1) = 1 X5l + 25 DI EPIRCELE i
t=|i/c|+1
K—-1 K 2
1 e ct—i—
<Xkl + 7 > U-aa ) E i)
=0 |[t=|i/c]+1
2
1 cK—1|| oo )
<IXl?+ 5 Y |- —ady| E[l&lf]-
=0 ||j=0

Y7201 — aA)i converges as 0 < o < 3| Al|2 and thus:

2
[eS)

ST —ady|| =~ -ad) = H;A‘l

Jj=0

Rewriting, we obtain

cK—1
5 1 c
*[12 2 2 2 2.2 2
E(18x - 6*11%] < 1 Xkl + Zrom ; Ell6i]] < 1Xxl” + Zpz5 (07" + do?).

We now analyze the constant term || X ¢ ||*:

K
I Xk ll? = E Z (6o — 6%)
1 I_( ’

S 52 Z I—ad)| |16y — 67
1 ;o ’

Sﬁ Z —ad)'| (60— 07|
1 —1 * 12
1|1, 4 i

=K2\QA1 160 — 0"
160 — %[

K202

If we run DP-SWA for T ~ O(K) iterations, we obtain the following bound:

_ 0o — 0% c 2dlog 122 cd
E _A*12 < || 0 4 2 2 ~
67 — 67* < T202,2 + Ta?)2 = + a’s @] T2

Note that the squared distance to the optimum and the objective gap f(07) — f(6*) can be directly
compared, as they differ at most by a factor of x since f(6r) — f(6*) > 4|67 — 6*|*. This
observation provides convergence to zero for the excess risk.
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B EXPERIMENTAL SETUP

We use PyTorch (Paszke et al., 2019) (version 1.13.1), Opacus (Yousefpour et al., 2021)) (version
1.3.0) and Weights & Biases (version 0.15.0) (Biewald, [2020) with Python 3.10.9 for all of our
experiments. With the exception of experiments with ResNet-50, we conduct experiments on a
single PC with an RTX-3080 GPU and Intel Core i9-11900KF CPU. For ResNet-50, we conduct
experiments on a node of the Vienna Scientific Cluster (VCS) equipped with an A100 Tensor Core
GPU and an AMD EPYC CPU.

For all our experiments, we rely on a conventional implementation of DP-SGD, using a constant
learning rate and no momentum. We use a clipping norm of 1.

We train linear regression for 100 epochs with a warm-up phase of 0.2, a constant learning rate of
10~* and a batch size of 1. The data generation follows that of [Yang et al. (2019). We use the mean
squared error loss. Data points x; are sampled as x; ~ N(0,02), initial weights 6, are sampled
uniformly from [0,1], labels are sampled as y; ~ N(0F z;,0,). We generate 256-dimensional
points, with variances of 1, and sample n = 4096 points.

For Fashion-MNIST, we train logistic regression for 20 epochs with a warm-up phase of 0.6, a
constant learning rate of 0.1 and a batch size of 8.

For all experiments with deep learning models (cf. [Section 4)), we replace batch normalization layers
with group normalization layers to allow for private training. For Fashion-MNIST, we train ResNet-
18 and WRN-16-4 for 20 epochs with a warm-up phase of 0.7, a constant learning rate of 2 and a
logical batch size of 512. For CIFAR-10, we use a constant learning rate of 4 and a logical batch
size of 4096, and train ResNet-18 for 100 epochs with a warm-up phase of 0.7, and WRN-16-4 for
300 epochs with a warm-up phase of 0.9. For all pre-trained models, we train for 50 epochs with a
warm-up phase of 0.9, a constant learning rate of 2 for ¢ = 1 and 4 for ¢ = 8, using a batch size
of 4096. For Fashion-MNIST, we replace the first convolutional layer of ResNet-18 and WRN-16-
4 to allow for grey-scale images as input (i.e., 1 channel instead of 3 channels). For the models
pre-trained on ImageNet, we replace the last (fully-connected) layer of ResNet-18 and ResNet-50
to allow for 10 and 100 classes, respectively for CIFAR-10 and CIFAR-100. We train only the last
layer and keep the weights of the remaining layers frozen.

The code used to perform the experiments and obtain the results presented in this work is available
at https://github.com/pindri/dp-swa.

C ADDITIONAL RESULTS

In the following sections we provide additional results and visualizations from our experiments.

C.1 LINEAR REGRESSION

—— = O(1/T) convergence

Squared distance
I~ N N ~
© o N ES

Squared distance

g
o

30 40 50 60 70 80 90 100 1 2 3 4 5 6 7
Epoch Cycle length

Figure 2: Results for linear regression with € = 8. (Left) Squared distance to the optimum, in agree-
ment with convergence faster than 1/7". (Right) Dependency of squared distance to the optimum on
cycle length, compatible with a decrease in performance for larger cycle lengths; aggregate results
for 3 runs.
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C.2 LOGISTIC REGRESSION
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Figure 3: Results for logistic regression. (Left) DP-SWA achieves better test accuracy and lower
solution variance in comparison to DP-SGD; aggregate results for 5 runs. (Right) Dependency of
test accuracy on cycle length. Results for ¢ = 1, compatible with a decrease in performance for
larger cycle lengths; aggregate results for 3 runs.

C.3 NON-CONVEX OBJECTIVE FUNCTIONS
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Figure 4: Results for CIFAR-10. (Left) Accuracy as a function of the distance to the optimum for
WRN-16-4, obtained by considering a single run and taking steps along 10 random rays starting
from the DP-SGD and the DP-SWA solutions. The solid line indicates the mean across the 10 rays.
DP-SWA consistently maintains a higher accuracy compared to DP-SGD as we move away from
the respective solutions. (Right) Variance across 5 runs with ResNet-18. DP-SWA has a smaller
variance across runs and better accuracy in comparison to DP-SGD.

C.4 PRE-TRAINED ResNet-18 AND ResNet-50

Table 4: Accuracy, accuracy variance over the last iterates, and %gamn for non-convex objective
functions with pre-trained models. Mean and standard deviation across 3 runs.

Dataset e DP-SGD DP-SWA Varpp.sgp  Varpp.swa  GAIN
CIFAR-10 1 839+0.3 84.0+0.3 10~ 10~7 +6.8+2.5
ResNet-18 8 85240.1 85.34+0.1 10-6 106 +0.7+2
CIFAR-10 1 855+0.3 85.6+0.3 107 1077 +1.5+5.9
ResNet-50 8 87.1+0.1 87.10+0.01 1077 10-7 +2.0+2.7
CIFAR-100 1 54.4+0.2 54.54+0.1 1075 105 +3.9+29
ResNet-18 8 63.3+0.2 63.3+0.2 106 10~7 +27+1.0
CIFAR-100 1 584+0.1 584+0.1 106 106 —1.7+21
ResNet-50 8  66.64+0.2 66.5+0.2 10-6 10~7 —2.1+5.9
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We report additional results on CIFAR-10 and CIFAR-100 with ResNet-18 and Resnet-50 pre-trained
on ImageNet. For compactness, we only report the order of magnitude for the accuracy variance
over the last iterates, as accuracy variance is generally very low for the pre-trained models and
comparable between DP-SGD and DP-SWA.

We can observe in that DP-SWA offers no substantial improvement in terms of accuracy
for pre-trained models, with some experiments providing identical accuracy. It should however be
noted that our results are in contrast with the ones from[Panda et al.|(2022), who observe that weight
averaging performs worse than the last iterate. On the contrary, we find DP-SWA solutions to be
preferable as they are generally wider and more stable. ResNet-50 on CIFAR-100 is the only case
where we observe no benefit in terms of solution wideness.
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