

000 BEYOND INSTANCE-LEVEL ALIGNMENT: DUAL- 001 002 LEVEL OPTIMAL TRANSPORT FOR AUDIO-TEXT RE- 003 TRIEVAL 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008
009
010

011 ABSTRACT 012

013 Cross-modal matching tasks have achieved significant progress, yet remain lim-
014 ited by mini-batch subsampling and scarce labelled data. Existing objectives, such
015 as contrastive losses, focus solely on instance-level alignment and implicitly as-
016 sume that all feature dimensions contribute equally. Under small batches, this
017 assumption amplifies noise, making alignment signals unstable and biased. We
018 propose DART (Dual-level Alignment via Robust Transport), a framework that
019 augments instance-level alignment with feature-level regularization based on the
020 Unbalanced Wasserstein Distance (UWD). DART constructs reliability-weighted
021 marginals that adaptively reweight channels according to their cross-modal con-
022 sistency and variance statistics, highlighting stable and informative dimensions
023 while down-weighting noisy or modality-specific ones. From a theoretical per-
024 spective, we establish concentration bounds showing that instance-level objectives
025 scale with the maximum distance across presumed aligned pairs, while feature-
026 level objectives are governed by the Frobenius norm of the transport plan. By
027 suppressing unmatched mass and sparsifying the transport plan, DART reduces
028 the effective transport diameter and tightens the bound, yielding greater robust-
029 ness under small batches. Empirically, DART achieves state-of-the-art retrieval
030 performance on three audio-text benchmarks, with particularly strong gains under
031 scarce labels and small batch sizes.

032 1 INTRODUCE 033

034
035 Audio-text retrieval is a fundamental cross-modal matching task that supports applications in mul-
036 timedia search (Elizalde et al., 2019) and content understanding (Oncescu et al., 2024). The key
037 challenge lies in learning aligned representations that capture semantic correspondences between
038 heterogeneous modalities, enabling the retrieval of audio clips given text queries and vice versa.
039 Existing approaches, including learn-to-match frameworks (Luong et al., 2024; Shi et al.; Li et al.,
040 2019), contrastive learning (Jia et al., 2021; Radford et al., 2021; Mei et al., 2022; Wu et al., 2023),
041 and triplet losses (Wei et al., 2021; Zeng et al., 2022), can be viewed under a unified inverse optimal
042 transport (IOT) perspective (Shi et al., 2023), where paired supervision is used to learn a shared
043 metric between audio and text features.

044 In practice, this metric is optimized from mini-batches. As batch size decreases, the variability
045 across samples increases, amplifying feature fluctuations and making the learned metric more sus-
046 ceptible to noise and bias. We attribute this vulnerability to the reliance on instance-level distances,
047 where similarities are computed with Euclidean or cosine measures that implicitly treat all embed-
048 ding dimensions as equally informative. However, audio and text embeddings are inherently het-
049 erogeneous: some dimensions encode stable semantic cues, while others capture modality-specific
050 noise or unstable patterns. When all dimensions are aggregated uniformly, noisy channels may dom-
051 inate the similarity measure, leading to unstable alignment signals and biased gradients even for se-
052 mantically matched pairs. **Prior channel-weighting methods** (e.g., Luong et al., 2024) partly address
053 this by rescaling feature dimensions, but their objectives remain purely instance-level: per-channel
coefficients only change how each dimension contributes to a single sample distance $d(x_i, y_j)$, with-
out altering the underlying instance-level IOT formulation or its sensitivity to worst-case pairs.

This observation motivates moving beyond purely instance-level alignment. To mitigate instability and bias, we propose DART (Dual-level Alignment via Robust Transport), which augments instance-level alignment with feature-level regularization. At the instance level, DART adopts an IOT objective to enforce tight alignment between paired audio and text samples. At the feature level, DART treats each embedding channel as a candidate unit for cross-modal matching and minimizes the Unbalanced Wasserstein Distance (UWD) between audio and text features. Noisy channels tend to incur large transport costs, which naturally leads UWD to assign little mass to them, thereby avoiding spurious alignment, while stable semantic channels with smaller costs are preferentially matched. Beyond this implicit filtering, DART introduces Reliability-Aware Marginals (RAM) as priors into UWD. For each channel, it computes a reliability score based on variance, kurtosis, and cross-modal correlation. These scores are normalized into probability distributions that serve as marginals in UWD, guiding the transport plan toward channels with higher reliability scores that are more likely to capture stable semantic information, while downweighting volatile or modality-specific ones. [This noisy-channel intuition is further supported by our empirical analysis in Appendix \(Fig. 2\), where injecting synthetic noise into feature channels leads to a monotonic increase in their standardized OT cost.](#)

From a theoretical perspective, we establish that instance-level alignment admits concentration bounds scaling with the maximum pairwise distance within a batch, whereas the proposed feature-level formulation yields bounds governed by the Frobenius norm of the transport plan. [This change of the controlling quantity from a worst-case distance \$D_{\max}\$ to an aggregate norm \$\|\mathbf{P}^*\|_F\$ explains why the added feature-level objective is less sensitive to outliers and noisy channels.](#) This shift of the controlling quantity from an extremal distance to an aggregate norm explains why feature-level regularization provides tighter guarantees and greater robustness under small batches or noisy labels. Overall, our contributions are threefold:

- We introduce DART, a dual-level alignment framework that augments instance-level IOT with feature-level regularization, enabling more robust cross-modal retrieval.
- We design reliability-aware marginals that incorporate statistical cues (variance, kurtosis, correlation) to reweight feature channels, suppressing noisy or modality-specific ones.
- We provide a theoretical analysis that connects DART’s feature-level formulation to tighter concentration bounds, and demonstrate state-of-the-art performance on three audio-text retrieval benchmarks, particularly under small-batch and limited-label conditions.

2 PRELIMINARIES

2.1 ENTROPIC OPTIMAL TRANSPORT AND INVERSE OPTIMAL TRANSPORT.

Entropic optimal transport (EOT) extends classical OT by adding an entropy regularization term, which improves computational efficiency and yields smooth couplings (Cuturi, 2013). Given empirical measures μ and ν , EOT solves

$$\min_{\Pi \in U(\mu, \nu)} \langle \mathbf{C}, \Pi \rangle - \epsilon H(\Pi), \quad (1)$$

where \mathbf{C} is the ground cost and $U(\mu, \nu) = \{\Pi \in \mathbb{R}_+^{m \times n} \mid \Pi \mathbf{1}_n = \mu, \Pi^T \mathbf{1}_m = \nu\}$ enforces marginal constraints. In practice, the true cost \mathbf{C} is unknown. Inverse optimal transport (IOT) (Dupuy et al., 2016; Li et al., 2019; Stuart & Wolfram, 2020) learns a parameterized cost \mathbf{C}^θ such that the induced coupling Π^θ aligns with observed matches $\tilde{\Pi}$:

$$\min_{\theta} KL(\tilde{\Pi} \parallel \Pi^\theta), \text{ where } \Pi^\theta = \arg \min_{\Pi \in U(\mu, \nu)} \langle \mathbf{C}^\theta, \Pi \rangle - \epsilon H(\Pi). \quad (2)$$

2.2 AUDIO-TEXT RETRIEVAL AS IOT.

Audio-text retrieval aims to align audio with corresponding text captions across modalities. Given audio and caption data pairs $D = \{(x_i, y_i)\}_{i=1}^n$, where x_i represents the i -th audio sample and y_i the associated text caption, the goal is to learn a mapping that enables retrieving the correct text caption for a given audio query, and vice versa. To achieve this, the audio samples are encoded via an audio encoder $f_\theta(\cdot)$, while the text captions are encoded via a text encoder $g_\phi(\cdot)$. A distance function

108 $d(\cdot, \cdot)$, such as Euclidean or cosine distance, is used to measure the similarity between the audio
 109 and text embeddings, denoted as $d(f_\theta(x_i), g_\phi(y_j))$. The network is then optimized to minimize the
 110 distance for paired embeddings while maximizing it for non-paired embeddings.

112 During retrieval, given a set of audio samples $X_{\text{test}} = \{x_i\}_{i=1}^{m'}$ and caption samples $Y_{\text{test}} = \{y_j\}_{j=1}^{n'}$,
 113 the distance function $d(\cdot, \cdot)$ is applied to compute pairwise similarities between audio and caption
 114 embeddings. For a specific audio sample x_i , its corresponding caption \hat{y} is determined by minimiz-
 115 ing the distance score over all captions in Y_{test} :

$$116 \hat{y} = \arg \min_{y_j \in Y_{\text{test}}} \frac{\exp(d(f_\theta(x_i), g_\phi(y_j)))}{\sum_{k=1}^{m'} \exp(d(f_\theta(x_i), g_\phi(y_k)))}. \quad (3)$$

119 The audio-text retrieval task can be framed as an IOT problem. Consider the ground cost matrix
 120 $\mathbf{C}_{ij}^\theta = d(f_\theta(x_i), g_\phi(y_j))$, which represents the alignment costs between the audio and text embed-
 121 dings produced by networks. The optimal transport solver then generates a coupling matrix Π^θ ,
 122 based on Eq.1, which encodes the inferred matching relationships between the audio and text pairs
 123 under the current model parameters. Let the observed coupling matrix $\tilde{\Pi}$ to encode all matching
 124 relationships in the dataset $D = \{(x_i, y_i)\}_{i=1}^n$, covering both paired and non-pair data. During
 125 training, the network updates the cost matrix \mathbf{C}^θ (and by extension, Π^θ), to better align with the
 126 label Π . This corresponds to minimizing the divergence between the observed coupling $\tilde{\Pi}$ and the
 127 coupling Π^θ induced by the parameterized cost matrix \mathbf{C}^θ .

129 2.3 LIMITATIONS OF INSTANCE-LEVEL IOT.

131 While this IOT perspective provides a unifying view, it also reveals key limitations. In mini-batch
 132 training, the cost matrix is estimated from partial data and aggregates all embedding dimensions
 133 uniformly. This uniform pooling ignores the heterogeneity of audio and text embeddings: for ex-
 134 ample, in the caption “A drone is whirring,” certain dimensions may respond strongly to the noun
 135 “drone,” while others capture the acoustic pattern of “whirring.” In practice, many dimensions carry
 136 meaningful semantics, but others encode modality-specific noise or unstable variations. When all
 137 channels contribute equally, noisy ones can dominate the distance computation, distorting the esti-
 138 mated cost matrix and amplifying variance in small batches. **Concretely, the instance-level distance**
 $d(x_i, y_j)$ **pools all channels (e.g.,** $d(x_i, y_j) = \sum_d (x_{id} - y_{jd})^2$ **), so a few noisy or high-variance**
 $139 \mathbf{channels can substantially inflate } d(x_i, y_j) \mathbf{for specific matched pairs.}$ As a result, the learned metric
 140 is biased toward spurious fluctuations rather than true semantic alignment. **This intuition is for-**
 141 **malized in Section 4, where Theorem 1 shows that the concentration bound for the instance-level**
 142 **IOT loss is governed by the maximum alignment distance** $D_{\max} = \max_{(i,j): \tilde{\Pi}_{ij} > 0} d(x_i, y_j)$ **, and is**
 143 **therefore dominated by such inflated pairs.** This motivates our dual-level formulation.

145 3 DART: DUAL-LEVEL ALIGNMENT VIA ROBUST TRANSPORT

147 3.1 MINI-BATCH INSTANCE-LEVEL IOT

149 Given a mini-batch of k audio-text pairs (X^b, Y^b) , the encoders f_θ and g_ϕ produce embeddings
 150 $\mathbf{U}^b \in \mathbb{R}^{k \times d_u}$ and $\mathbf{V}^b \in \mathbb{R}^{k \times d_v}$. The cost matrix is defined as

$$151 \mathbf{C}_{\text{Sample}}^{(\theta, \phi)b}[i, j] = d(\mathbf{U}^b_{i,:}, \mathbf{V}^b_{j,:}), \quad (4)$$

153 where $d(\cdot, \cdot)$ is a distance metric (Euclidean in our implementation). An entropy-regularized OT
 154 solver (Sinkhorn) produces a coupling $\Pi^{(\theta, \phi)b}$, and the IOT objective minimizes the divergence to
 155 the ground-truth matching:

$$156 \mathcal{L}_{\text{IOT}}^b(\theta, \phi) = KL(\tilde{\Pi}^b \parallel \Pi^{(\theta, \phi)b}). \quad (5)$$

157 which reduces to $-\log \Pi_{ii}^{(\theta, \phi)b}$ under one-to-one alignment.

159 This mini-batch IOT formulation is widely used and provides a baseline for retrieval tasks. How-
 160 ever, it estimates costs from partial data and aggregates all embedding dimensions uniformly, which
 161 makes it sensitive to batch variance and noisy channels. We therefore extend IOT with feature-level
 optimization, as detailed next.

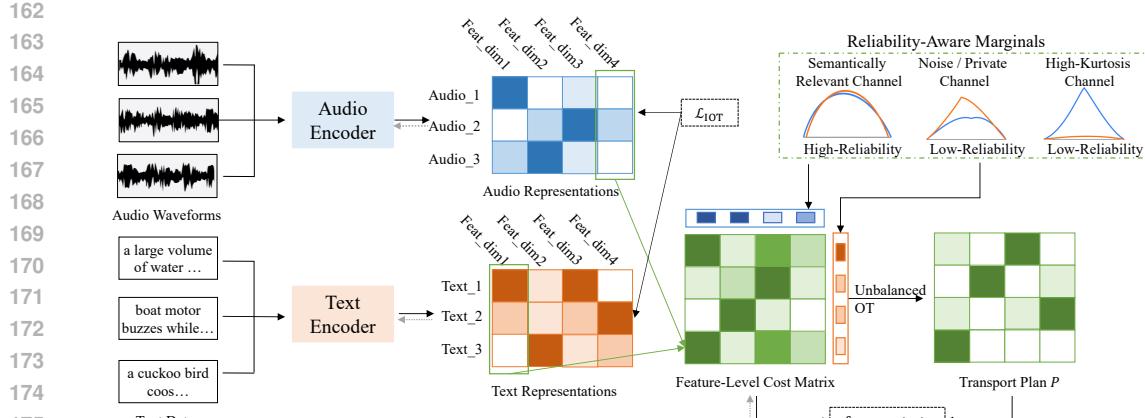


Figure 1: An overview of the proposed DART framework. DART aligns audio and text modalities through both instance-level optimization using the Inverse Optimal Transport (IOT) objective and feature-level optimization via channel-wise distribution alignment. The latter minimizes the Unbalanced Wasserstein Distance (UWD) with reliability-aware marginals to guide the transport plan toward stable semantic channels while suppressing noisy or modality-specific ones.

3.2 FEATURE-LEVEL DISTRIBUTION ALIGNMENT

Audio and Text Feature-Level Representations. In DART, each feature dimension is treated as an independent distribution across the mini-batch and aligned across the two modalities. Given the audio feature matrix \mathbf{U}^b and text feature matrix \mathbf{V}^b , the j -th column of these matrices is interpreted as a distribution of the j -th feature across the mini-batch samples. Specifically, for the audio and text modality:

$$\mathbf{U}^b(:, j) = \begin{bmatrix} f_\theta(x_1^b)_j \\ \vdots \\ f_\theta(x_k^b)_j \end{bmatrix}, \mathbf{V}^b(:, j) = \begin{bmatrix} g_\phi(y_1^b)_j \\ \vdots \\ g_\phi(y_k^b)_j \end{bmatrix}. \quad (6)$$

Here, $f_\theta(x_i^b)_j$ denotes the value of the j -th feature dimension for the i -th audio sample. Similarly, on the text side, each feature dimension j corresponds to a k -dimensional vector representing the distribution of this feature across the mini-batch samples.

Ground Metric (Feature-Level). The Wasserstein distance has become a widely adopted metric for measuring the discrepancy between probability distributions, as it considers both distributional shifts and underlying geometric structures Panaretos & Zemel (2019). Leveraging this property, DART promotes alignment at the feature level between audio and text modalities via optimal transport. Specifically, let $\mathbf{U}^b \in \mathbb{R}^{k \times d_u}$ and $\mathbf{V}^b \in \mathbb{R}^{k \times d_v}$ denote the audio and text feature matrices for the b -th mini-batch of size k , with d_u and d_v as their respective feature dimensions. DART constructs a feature cost matrix $\mathbf{C}_{\text{Feature}}^{(\theta, \phi)b} \in \mathbb{R}^{d_u \times d_v}$, whose (i, j) -th entry measures the Euclidean distance between the distributions of the i -th audio feature dimension and the j -th text feature dimension within that mini-batch:

$$\mathbf{C}_{\text{Feature}}^{(\theta, \phi)b}[i, j] = \|\mathbf{U}^b(:, i) - \mathbf{V}^b(:, j)\|_2. \quad (7)$$

Here, $\mathbf{U}^b(:, i)$ and $\mathbf{V}^b(:, j)$ are the k -dimensional vectors corresponding to the i -th and the j -th features of audio and text, respectively, across the samples in the b -th mini-batch.

(Unbalanced) Wasserstein Distance between Feature Distributions in a Mini-Batch. In many real-world scenarios, feature distributions across modalities (e.g., audio and text) are inherently misaligned due to noise, missing data, and variations in feature quality or scale. Such discrepancies become more pronounced in randomly sampled mini-batches, where the total “mass” and support of the distributions may differ across modalities. Consequently, as required by the traditional

216 Wasserstein distance, may result in suboptimal alignment. To alleviate this, DART utilizes the un-
 217 balanced Wasserstein distance (UWD), which relaxes the mass-conservation constraint by allowing
 218 mass “leakage”.

219 Formally, given the cost matrix $\mathbf{C}_{\text{Feature}}^{(\theta, \phi)b}$, the UWD is the optimal value of the following optimization
 220 problem, with \mathbf{P}^b as the transport plan:

$$222 \quad \mathbf{P}^b = \arg \min_{\mathbf{P}^b \in \mathbb{R}_+^{d_u \times d_v}} \left[\left\langle \mathbf{C}_{\text{Feature}}^{(\theta, \phi)b}, \mathbf{P}^b \right\rangle + \tau (KL(\mathbf{P}^b \mathbf{1}_{d_u} \| \mathbf{u}_{d_u}^b) + KL((\mathbf{P}^b)^T \mathbf{1}_{d_v} \| \mathbf{v}_{d_v}^b)) \right], \quad (8)$$

225 where $\langle \cdot, \cdot \rangle$ denotes the Frobenius inner product, and $\mathbf{1}_{d_u} (\mathbf{1}_{d_v})$ is a vector of ones of length $d_u (d_v)$.
 226 The first term, $\left\langle \mathbf{C}_{\text{Feature}}^{(\theta, \phi)b}, \mathbf{P}^b \right\rangle$, represents the overall transport cost, capturing how dissimilar the
 227 audio and text feature distributions are within the mini-batch. The second term adds a KL-based
 228 regularization that penalizes discrepancies between the marginals of the transport plan \mathbf{P}^b and the
 229 uniform distributions $\mathbf{u}_{d_u}^b$ and $\mathbf{v}_{d_v}^b$. The parameter τ controls the trade-off between minimizing the
 230 cost and maintaining mass consistency.

231 **Mini-Batch Feature-Level Loss.** Once \mathbf{P}^b is obtained, the feature-level UWD loss within the b -th
 232 mini-batch is defined by the total transport cost:

$$235 \quad \mathcal{L}_{\text{UWD}}^b(\theta, \phi) = \left\langle \mathbf{C}_{\text{Feature}}^{(\theta, \phi)b}, \mathbf{P}^b \right\rangle. \quad (9)$$

237 3.3 RELIABILITY-AWARE MARGINALS (RAM)

239 To further guide feature-level transport toward stable semantic channels and away from volatile or
 240 modality-specific ones, DART builds reliability-aware marginals that act as priors in the unbalanced
 241 OT objective, steering mass allocation toward informative features and reducing the influence of
 242 noisy or unstable dimensions.

243 **Channel Reliability Estimation.** Given audio and text embeddings $\mathbf{U}^b \in \mathbb{R}^{k \times d}$ and $\mathbf{V}^b \in \mathbb{R}^{k \times d}$
 244 for a mini-batch of size k , the reliability of the j -th channel is estimated from three complementary
 245 statistics:

$$247 \quad r_j = \sigma \left(\text{corr}(\mathbf{U}^b(:, j), \mathbf{V}^b(:, j)) - \text{var}(\mathbf{U}^b(:, j), \mathbf{V}^b(:, j)) - \text{kurt}(\mathbf{U}^b(:, j), \mathbf{V}^b(:, j)) \right), \quad (10)$$

249 where corr denotes normalized cross-modal correlation, var captures variance instability, and kurt
 250 measures heavy-tailedness. $\sigma(\cdot)$ is the sigmoid function. A higher score $r_j \in (0, 1)$ indicates
 251 that channel j is more likely to capture stable cross-modal semantics. Detailed definitions of these
 252 statistics and their computation are provided in Appendix C.

253 **Normalization into Marginals.** The reliability scores are normalized into probability distribu-
 254 tions:

$$256 \quad \mathbf{u}^b = \frac{\mathbf{r}}{\sum_j r_j}, \quad \mathbf{v}^b = \frac{\mathbf{r}}{\sum_j r_j}, \quad (11)$$

258 where $\mathbf{r} = (r_1, \dots, r_d)$ is the vector of channel reliabilities. These marginals replace the uniform
 259 ones in the UWD formulation, biasing the transport plan toward reliable channels.

261 **Reliability-Aware UWD Loss.** Substituting the marginals into the UWD formulation yields the
 262 reliability-aware feature-level loss:

$$264 \quad \mathcal{L}_{\text{UWD-R}}^b(\theta, \phi) = \min_{\mathbf{P}^b \geq 0} \left\langle \mathbf{C}_{\text{Feature}}^{(\theta, \phi)b}, \mathbf{P}^b \right\rangle + \tau \left[KL(\mathbf{P}^b \mathbf{1}_d \| \mathbf{u}^b) + KL((\mathbf{P}^b)^T \mathbf{1}_d \| \mathbf{v}^b) \right]. \quad (12)$$

266 Here the KL terms penalize deviations of the transport marginals from the reliability priors $(\mathbf{u}^b, \mathbf{v}^b)$.
 267 As a result, channels with higher reliability scores receive larger marginal mass, encouraging \mathbf{P}^b
 268 to allocate more transport to them. This reduces the overall cost term $\langle \mathbf{C}_{\text{Feature}}, \mathbf{P}^b \rangle$, effectively
 269 lowering the feature-level loss and constraining the solution toward semantically stable dimensions
 while suppressing noisy ones.

270 **Stabilization via EMA.** To prevent fluctuations in reliability estimation from small batches,
 271 DART aggregates per-channel scores across distributed workers and updates them using exponential
 272 moving average (EMA). Specifically, for each channel j , the global reliability score $r_j^{(t)}$ at step t is
 273 updated as

$$274 \quad r_j^{(t)} = \beta r_j^{(t-1)} + (1 - \beta) \hat{r}_j^{(t)}, \quad (13)$$

275 where $\hat{r}_j^{(t)}$ is the score from the current mini-batch and $\beta \in (0, 1)$ is the smoothing coefficient,
 276 which we set to 0.9 in all experiments. This EMA update ensures that transient spikes or drops in
 277 small batches do not immediately affect the marginals.

278 DART then integrates this reliability-aware UWD loss into the overall training objective to encourage
 279 cross-modal alignment. The total loss is given by:

$$280 \quad \mathcal{L}_{\text{total}} = \min_{\theta, \phi} \frac{1}{B} \sum_{b=1}^B (\mathcal{L}_{\text{IOT}}^b(\theta, \phi) + \lambda \mathcal{L}_{\text{UWD-R}}^b(\theta, \phi)), \quad (14)$$

285 where $\mathcal{L}_{\text{IOT}}^b(\theta, \phi)$ is the loss defined in 5, and λ is a hyperparameter that balances the two losses.

287 4 CONCENTRATION BOUNDS FOR \mathcal{L}_{IOT} AND \mathcal{L}_{UWD}

290 **Theorem 1** (Concentration of Instance-Level IOT Loss). *Let $\delta \in (0, 1)$ and m be the fixed mini-
 291 batch size. Suppose the log function is L -Lipschitz on $[\epsilon, 1]$ and the optimal transport plan $\mathbf{\Pi}$ satisfies
 292 $\mathbf{\Pi}_{ij} \in [\epsilon, 1]$. Define the maximum alignment distance over the ground-truth support $\tilde{\mathbf{\Pi}}$ as*

$$293 \quad D_{\max} = \max_{(i, j): \tilde{\mathbf{\Pi}}_{ij} > 0} d(x_i, y_j), \quad (15)$$

295 *namely the largest distance among audio-text pairs labeled as matches. Then, with probability at
 296 least $1 - \delta$:*

$$297 \quad |\mathcal{L}_{\text{IOT}}^B - \mathcal{L}_{\text{IOT}}^*|^2 \leq \frac{\epsilon L^2}{2} \left(D_{\max} + \epsilon(2 \log_2(m) + 1) \right) \sqrt{\frac{\log(2/\delta)}{2B}}, \quad (16)$$

300 *where B is the number of training batches.*

301 **Theorem 2** (Concentration of Feature-Level UWD Loss). *Let $\delta \in (0, 1)$ and consider the feature-
 302 level UWD loss \mathcal{L}_{UWD} in equation 9. Suppose the mini-batch cost matrix $\mathbf{C}_{\text{Feature}}^{(\theta, \phi)b} \in \mathbb{R}^{d_u \times d_v}$ is
 303 estimated from m i.i.d. paired samples, with variance bounded by σ^2 .*

304 *Then, with probability at least $1 - \delta$:*

$$306 \quad |\mathcal{L}_{\text{UWD}}^B - \mathcal{L}_{\text{UWD}}^*| \leq \|\mathbf{P}^*\|_F \cdot \epsilon_m + \frac{1}{2\tau} \epsilon_m^2, \quad (17)$$

308 *where $\epsilon_m = \sqrt{\frac{2\sigma^2 \log(2/\delta)}{m}}$, τ is the regularization parameter in equation 8, and \mathbf{P}^* is the optimal
 309 feature-level transport plan.*

311 The two bounds highlight a key distinction between instance-level and feature-level formulations.
 312 For the instance-level loss in Theorem 1, the deviation is controlled by the largest alignment distance
 313 D_{\max} among audio-text pairs labeled as matches. Because mini-batches only contain a restricted
 314 subset of samples, their feasible matching set is limited. When the correct partner of a sample is
 315 absent from the batch (e.g., due to label noise), the transport plan may be forced to assign mass to
 316 a higher-cost alternative. This inflates the effective D_{\max} in mini-batch training compared to the
 317 global dataset, leading to a looser concentration bound and larger variance in gradient estimates.

318 In contrast, the feature-level bound in Theorem 2 depends on the Frobenius norm of the transport
 319 plan $\|\mathbf{P}^*\|_F$. This term measures the squared sum of all transport assignments across channels,
 320 so the deviation is controlled by the overall mass distribution rather than dominated by a single
 321 worst-case pair. As a result, occasional noisy or high-cost channels contribute only marginally
 322 to the bound, while the majority of stable semantic channels reduce the effective variance. This
 323 aggregation effect makes the bound inherently tighter and less sensitive to outliers, thereby providing
 greater robustness under small batches or noisy labels.

324
 325 Table 1: Retrieval performance on AudioCaps (AuC) and Clotho (Clo) datasets. All methods are
 326 trained with a batch size of 256, consistent with the settings reported in the original papers, except
 327 for the models in the second block (rows with CNN/BPE encoders), where the batch size is reduced
 328 to 6 due to GPU memory constraints. For DART variants, *w/ RAM* denotes using reliability-aware
 329 marginals, while *w/o RAM* reduces to uniform marginals.

330	Method	Encoder	T → A (AuC)		A → T (AuC)		T → A (Clo)		A → T (Clo)	
			R@1	R@10	R@1	R@10	R@1	R@10	R@1	R@10
332	(Oncescu et al., 2021)	Audio: ResNet38	28.1	79.0	33.7	83.7	9.6	40.1	10.7	40.8
	(Mei et al., 2022)		33.9	82.6	39.4	83.9	14.4	49.9	16.2	50.2
	(Deshmukh et al., 2022)		33.1	80.3	39.8	84.6	15.8	49.9	17.4	54.3
	(Wu et al., 2023)		36.7	83.2	45.3	87.7	12.0	43.9	15.7	51.3
	(Luong et al., 2024)		39.10	85.78	49.94	90.49	16.65	52.84	22.10	56.74
	DART w/o RAM		40.20	85.45	54.44	90.59	17.30	53.35	22.48	57.03
337	DART w/ RAM		41.67	85.97	55.27	90.38	17.18	54.52	23.54	58.85
	(Wang et al., 2023)	A: CNN T: BPE	33.72	83.59	39.14	82.24	16.63	51.98	20.47	55.50
	DART w/o RAM		33.12	81.93	43.30	84.11	19.67	57.18	26.50	63.25
	DART w/ RAM		33.42	82.53	43.30	84.11	20.07	59.08	26.79	62.00
341	(Chen et al., 2023)	A: Beats T: BERT	54.2	91.2	66.9	96.7	36.7	74.4	25.9	64.7
	DART w/o RAM		56.2	93.2	71.1	97.3	37.0	75.9	27.5	68.9
	DART w/ RAM		56.9	93.2	72.1	97.0	37.5	75.9	27.9	69.5

344 345 5 EXPERIMENTS 346

347 We evaluate the effectiveness and generalization of DART on audio-text retrieval benchmarks and
 348 beyond. We compare DART against standard baselines including contrastive learning (Radford
 349 et al., 2021; Jia et al., 2021), triplet losses (Wei et al., 2021), and OT-based methods (Shi et al., 2023).
 350 All methods are trained under the same conditions unless otherwise noted. Detailed implementation
 351 settings are provided in Appendix E.

352
 353 **DART consistently enhances overall audio-text retrieval performance.** We present DART on
 354 the AudioCaps and Clotho datasets, comparing them with state-of-the-art methods using the R@1
 355 and R@10 metrics. To ensure a fair comparison, we categorize the baselines based on their au-
 356 dio/text encoder architectures and adopt identical model settings, including batch sizes, for each
 357 group. As shown in Tab. 1, DART consistently superior or comparable performance across all en-
 358 coder settings. For instance, with ResNet38+BERT encoders on AudioCaps, DART outperforms
 359 the strongest baseline Luong et al. (2024) by 4.5% (A→T) and 1.1% (T→A) in R@1. Similar
 360 gains are observed on Clotho, where DART leads in both R@1 and R@10. Despite matching the
 361 ONE-PEACE’s Wang et al. (2023) constrained batch size of 2 (required due to model scale), DART
 362 achieves superior performance in 5 of 8 key metrics while maintaining comparable results in others.

363
 364 **DART remains robust under small batches and noisy or semi-supervised labels.** We first eval-
 365 uate DART’s performance under noisy and semi-supervised conditions on the AudioCaps dataset.
 366 Noise is introduced by randomly replacing text captions with unrelated ones at ratios of 20% and
 367 40%, while semi-supervised settings simulate scenarios where a portion of the data lacks labels
 368 entirely by randomly masking parts of the label information (in $\tilde{\Pi}$). In this experiment, we set a
 369 small batch size of 32 to test DART’s performance under limited negative samples and noisy data
 370 conditions. The results in 2 show that DART maintains stable retrieval performance even with re-
 371duced negative samples and noisy inputs, demonstrating its resilience to input perturbations. This
 372 robustness in challenging settings highlights DART’s capacity to generalize well even when faced
 373 with noisy data and limited label availability. These findings underscore DART’s suitability for
 374 large-scale, real-world applications where data quality and label availability may be limited, and
 375 computational resources are constrained.

376
 377 **Zero-Shot Sound Event Detection.** We evaluate DART’s generalization ability by conducting
 378 zero-shot sound event detection on the ESC-50 dataset. Models are pretrained on the AudioCaps
 379 dataset for the audio-caption matching task and applied directly to ESC-50 without additional fine-

378
 379 Table 2: Retrieval performance on the AudioCaps dataset under varying semi-supervised and noisy
 380 conditions. The top rows show semi-supervised settings with 20% and 40% unlabeled data, while
 381 the bottom rows represent noisy correspondence settings with 20% and 40% of captions replaced by
 382 unrelated ones. All methods use a batch size of 32.

Condition	Method	Text → Audio			Audio → Text		
		R@1	R@5	R@10	R@1	R@5	R@10
Semi-Supervised (20% Unlabeled)	Triplet loss	15.34	48.34	66.88	24.29	52.83	69.84
	Contrastive loss	28.58	65.55	81.50	35.63	68.42	80.36
	(Luong et al., 2024)	32.93	67.43	80.89	39.81	70.53	82.44
	DART	34.85	70.44	83.34	45.03	76.28	86.62
Semi-Supervised (40% Unlabeled)	Triplet loss	0.1	0.52	1.06	0.1	0.52	1.46
	Contrastive loss	20.58	53.96	70.72	27.37	58.72	75.21
	(Luong et al., 2024)	28.58	62.69	77.19	35.00	69.27	79.72
	DART	33.24	69.55	82.74	43.67	74.39	87.46
Noisy Labels (20% Noisy)	Triplet loss	16.82	46.39	62.71	19.64	46.39	59.77
	Contrastive loss	25.80	61.56	78.16	33.33	66.66	78.78
	(Luong et al., 2024)	31.32	67.11	80.48	38.35	73.77	84.85
	DART	32.87	67.77	81.06	43.57	73.98	86.72
Noisy Labels (40% Noisy)	Triplet loss	0.58	1.58	2.13	1.14	4.91	8.98
	Contrastive loss	22.23	55.90	72.76	26.95	59.03	73.24
	(Luong et al., 2024)	26.20	61.31	76.17	34.37	65.30	77.84
	DART	29.67	65.30	80.20	37.09	67.18	80.45

404 tuning. Following Luong et al. (2024), all classes in the test set are converted to template captions,
 405 such as “This is a sound of class.” As shown in 4, we report the R@1, R@5, R@10, and mAP scores
 406 for models trained with three types of IOT loss under different constraints: triplet loss, contrastive
 407 loss, matching loss (as used in Luong et al. (2024)), and our proposed DART, with a consistent batch
 408 size of 128 for all models. DART achieves the highest R@1 score of 80.75%, outperforming triplet
 409 loss (71.25%), contrastive loss (72.25%), and matching loss (79.25%). It also shows competitive
 410 performance in R@5 and R@10, closely matching the results of Luong et al. (2024). This demon-
 411 strates DART’s superior generalization to unseen sound events in a zero-shot setting. Notably, the
 412 matching loss in Luong et al. (2024) is similar to our \mathcal{L}_{IOT} in 5, and the improvements highlight how
 413 the feature-level \mathcal{L}_{UWD} in DART enhances alignment between audio and text distributions, boosting
 414 performance.

415
 416 **DART introduces negligible GPU memory overhead compared to instance-level baselines.** A
 417 potential concern is whether feature-level transport increases GPU memory consumption. For a
 418 batch size of k and feature dimension $d=512$, the feature-level cost matrix $\mathbf{C}_{\text{Feature}}^{(\theta, \phi)b}$ involves
 419 computing $d^2 = 512^2$ pairwise distances, each costing $O(k)$ operations. Storing all intermediate
 420 results in float32 requires only a few megabytes: the embedding matrices $\mathbf{U}^b, \mathbf{V}^b \in \mathbb{R}^{k \times 512}$ occupy
 421 about 64KB each when $k=32$, and both the cost matrix $\mathbf{C}_{\text{Feature}}$ and the transport plan \mathbf{P}^b require
 422 roughly 1MB each. The unbalanced Wasserstein loss \mathcal{L}_{UWD} in Eq. (16) is computed as a point-
 423 wise product $\langle \mathbf{C}_{\text{Feature}}, \mathbf{P}^b \rangle$, requiring no additional buffers. Importantly, \mathbf{P}^b in Eq. (15) can be
 424 computed on CPU via offloaded OT solvers and is detached from the gradient graph, so during
 425 backpropagation only $\mathbf{C}_{\text{Feature}}$ contributes gradients. In practice, this means DART introduces only
 426 $\sim 2\text{MB}$ of extra GPU memory with no additional GPU cost for optimizing \mathbf{P}^b . Moreover, reliability
 427 estimation (variance, kurtosis, and cross-modal correlation) can be precomputed or updated offline,
 428 further ensuring that DART fits within the same GPU memory budget as instance-level IOT methods.
 429 For extremely high-dimensional encoders (e.g., $d > 2048$), one can further ensure scalability by first
 430 projecting features to a lower dimension $d' \leq 1024$ with a lightweight linear layer before computing
 431 feature-level OT, or by applying low-rank approximations of the cost matrix (such as Nyström-type
 432 methods) to reduce the effective quadratic dependence on d .

432 **DART generalizes effectively to other cross-modal tasks such as image-text retrieval.** Beyond
 433 audio-text retrieval, we evaluate DART on the MSCOCO dataset for image-text matching. As
 434 shown in Tab. 3, DART consistently improves both image→text and text→image retrieval compared
 435 to strong baselines. This demonstrates that the proposed dual-level alignment and reliability-aware
 436 marginals are not tied to the audio-text domain, but transfer naturally to other heterogeneous modal-
 437 ities. The results highlight DART’s potential as a general solution for cross-modal matching tasks.
 438

439 **Ablation Study.** We conduct ablation studies
 440 to understand the contribution of each compo-
 441 nent in DART. First, the dual-level objective
 442 is necessary. As shown in Appendix 9, using
 443 only the feature-level loss \mathcal{L}_{UWD} leads to almost
 444 zero R@1, since feature-level OT alone cannot
 445 recover cross-modal correspondences. In con-
 446 trast, the instance-level IOT loss \mathcal{L}_{IOT} already
 447 provides a strong baseline, and jointly optimizing $\mathcal{L}_{\text{IOT}} + \mathcal{L}_{\text{UWD}}$ yields the best performance, with an
 448 absolute R@1 gain of about 12.3% over \mathcal{L}_{UWD} alone. This confirms that the two levels play com-
 449 plementary roles rather than being redundant: \mathcal{L}_{IOT} anchors sample-level alignment, while \mathcal{L}_{UWD}
 450 regularizes feature channels to suppress noisy directions.
 451

452 Second, reliability-aware marginals are both effective and interpretable. Replacing RAM with uni-
 453 form marginals (“DART w/o Reliability” in Tab. 1) consistently degrades retrieval accuracy across
 454 all encoder settings, indicating that treating all channels equally is suboptimal. A more fine-grained
 455 ablation in Appendix (Tabs. 12 and 13) further decomposes RAM into uniform, correlation-only,
 456 variance-only (emavar), kurtosis-only, and the full corr-var-kurt combination. These results show
 457 that (i) correlation alone is unstable and can even underperform the uniform baseline in mean R@1,
 458 (ii) variance and kurtosis each provide meaningful gains when used alone, acting as effective sta-
 459 bilizers against high-variance or heavy-tailed channels, and (iii) the full RAM achieves the highest
 460 mean R@1 among all variants. In other words, the non-linear corr-var-kurt design is not a cosmetic
 461 heuristic: all three statistics are needed to obtain both robustness and peak accuracy, while keeping
 462 the reliability module light-weight and easy to compute.
 463

464 Finally, additional experiments on batch size (Tab. 11), the loss-weighting parameter λ in Eq. 14
 465 (Tab. 6), and alternative marginal choices for the UWD formulation (Tab. 7) show that DART is
 466 robust to moderate changes of these hyperparameters.
 467

468 6 CONCLUSION

469 We presented DART, a dual-level alignment
 470 framework for audio-text retrieval that com-
 471 bines instance-level IOT with feature-level reg-
 472 ularization via unbalanced optimal transport.
 473 By treating each embedding channel as a can-
 474 didate unit and introducing reliability-aware
 475 marginals, DART guides transport toward sta-
 476 ble semantic dimensions while suppressing
 477 noisy ones. From a theoretical standpoint,
 478 we established concentration bounds showing
 479 that instance-level objectives are governed by
 480 the maximum alignment distance, whereas the
 481 feature-level formulation depends on the Frobenius norm of the transport plan, leading to tighter
 482 guarantees under small batches and noisy labels. Empirically, DART consistently improves retrieval
 483 accuracy across AudioCaps, Clotho, and ESC-50, and further generalizes to image-text retrieval.
 484 These results highlight its robustness, efficiency, and applicability to broader cross-modal matching
 485 tasks. This work marks an initial step toward feature-level alignment in cross-modal tasks. While
 486 our reliability scores are based on simple statistics, future work may design more flexible estimators
 487 and scale the approach to large multimodal models. We hope DART encourages further exploration
 488 of feature-level regularization as a complement to instance-level matching.
 489

Table 3: Image-text retrieval performance on
 MSCOCO dataset. Results are reported in R@1.

Method	Image→Text	Text→Image
(Shi et al.)	19.15	20.90
DART (ours)	21.27	23.34

Table 4: The zero-shot sound event detection on
 the ESC50 test set, the $R@1$ score is equivalent to
 accuracy.

Loss	Audio → Sound			
	R@1	R@5	R@10	mAP
Triplet	71.25	91.75	95.75	80.09
Contrastive	72.25	93.00	96.75	80.84
IOT	79.25	97.5	99.25	87.09
DART	80.75	97.25	99.75	87.78

486 REFERENCES
487

488 Sihan Chen, Handong Li, Qunbo Wang, Zijia Zhao, Mingzhen Sun, Xinxin Zhu, and Jing Liu. Vast:
489 A vision-audio-subtitle-text omni-modality foundation model and dataset. *Advances in Neural*
490 *Information Processing Systems*, 36:72842–72866, 2023.

491 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural*
492 *information processing systems*, 26, 2013.

493 Soham Deshmukh, Benjamin Elizalde, and Huaming Wang. Audio retrieval with wavtext5k and
494 clap training. *arXiv preprint arXiv:2209.14275*, 2022.

495 Konstantinos Drossos, Samuel Lipping, and Tuomas Virtanen. Clotho: An audio captioning dataset.
496 In *ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Process-*
497 *ing (ICASSP)*, pp. 736–740. IEEE, 2020.

498 Arnaud Dupuy, Alfred Galichon, and Yifei Sun. Estimating matching affinity matrix under low-rank
499 constraints. *arXiv preprint arXiv:1612.09585*, 2016.

500 Benjamin Elizalde, Shuayb Zarar, and Bhiksha Raj. Cross modal audio search and retrieval with
501 joint embeddings based on text and audio. In *ICASSP 2019-2019 IEEE International Conference*
502 *on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 4095–4099. IEEE, 2019.

503 Kilian Fatras, Younes Zine, Rémi Flamary, Rémi Gribonval, and Nicolas Courty. Learning with
504 minibatch wasserstein: asymptotic and gradient properties. *arXiv preprint arXiv:1910.04091*,
505 2019.

506 Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
507 Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
508 audio events. In *2017 IEEE international conference on acoustics, speech and signal processing*
509 (*ICASSP*), pp. 776–780. IEEE, 2017.

510 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
511 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
512 with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916.
513 PMLR, 2021.

514 Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps: Generating
515 captions for audios in the wild. In *Proceedings of the 2019 Conference of the North American*
516 *Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-*
517 *ume 1 (Long and Short Papers)*, pp. 119–132, 2019.

518 Ruilin Li, Xiaojing Ye, Haomin Zhou, and Hongyuan Zha. Learning to match via inverse optimal
519 transport. *Journal of machine learning research*, 20(80):1–37, 2019.

520 Manh Luong, Khai Nguyen, Nhat Ho, Reza Haf, Dinh Phung, and Lizhen Qu. Revisiting deep
521 audio-text retrieval through the lens of transportation. *arXiv preprint arXiv:2405.10084*, 2024.

522 Xinhao Mei, Xubo Liu, Jianyuan Sun, Mark D Plumley, and Wenwu Wang. On metric learning for
523 audio-text cross-modal retrieval. *arXiv preprint arXiv:2203.15537*, 2022.

524 Andreea-Maria Oncescu, A Koepke, Joao F Henriques, Zeynep Akata, and Samuel Albanie. Audio
525 retrieval with natural language queries. *arXiv preprint arXiv:2105.02192*, 2021.

526 Andreea-Maria Oncescu, João F Henriques, and A Sophia Koepke. Dissecting temporal under-
527 standing in text-to-audio retrieval. In *Proceedings of the 32nd ACM International Conference on*
528 *Multimedia*, pp. 9535–9543, 2024.

529 Victor M Panaretos and Yoav Zemel. Statistical aspects of wasserstein distances. *Annual review of*
530 *statistics and its application*, 6(1):405–431, 2019.

531 Karol J Piczak. Esc: Dataset for environmental sound classification. In *Proceedings of the 23rd*
532 *ACM international conference on Multimedia*, pp. 1015–1018, 2015.

540 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 541 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 542 models from natural language supervision. In *International conference on machine learning*, pp.
 543 8748–8763. PMLR, 2021.

544 Liangliang Shi, Jack Fan, and Junchi Yan. Ot-clip: Understanding and generalizing clip via optimal
 545 transport. In *Forty-first International Conference on Machine Learning*.

546 Liangliang Shi, Gu Zhang, Haoyu Zhen, Jintao Fan, and Junchi Yan. Understanding and generalizing
 547 contrastive learning from the inverse optimal transport perspective. In *International conference*
 548 *on machine learning*, pp. 31408–31421. PMLR, 2023.

549 Andrew M Stuart and Marie-Therese Wolfram. Inverse optimal transport. *SIAM Journal on Applied*
 550 *Mathematics*, 80(1):599–619, 2020.

551 Peng Wang, Shijie Wang, Junyang Lin, Shuai Bai, Xiaohuan Zhou, Jingren Zhou, Xinggang Wang,
 552 and Chang Zhou. One-peace: Exploring one general representation model toward unlimited
 553 modalities. *arXiv preprint arXiv:2305.11172*, 2023.

554 Jiwei Wei, Xing Xu, Yang Yang, Yanli Ji, Zheng Wang, and Heng Tao Shen. Universal weighting
 555 metric learning for cross-modal matching. In *Proceedings of the IEEE/CVF conference on*
 556 *computer vision and pattern recognition*, pp. 13005–13014, 2020.

557 Jiwei Wei, Yang Yang, Xing Xu, Xiaofeng Zhu, and Heng Tao Shen. Universal weighting metric
 558 learning for cross-modal retrieval. *IEEE Transactions on Pattern Analysis and Machine Intelli-*
 559 *gence*, 44(10):6534–6545, 2021.

560 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
 561 Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption
 562 augmentation. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and*
 563 *Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.

564 Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul
 565 Chilimbi, and Junzhou Huang. Vision-language pre-training with triple contrastive learning.
 566 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 567 15671–15680, 2022.

568 Donghuo Zeng, Yanan Wang, Jianming Wu, and Kazushi Ikeda. Complete cross-triplet loss in
 569 label space for audio-visual cross-modal retrieval. In *2022 IEEE International Symposium on*
 570 *Multimedia (ISM)*, pp. 1–9. IEEE, 2022.

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594 **LLM USAGE STATEMENT**
595596 We used large language models (e.g., ChatGPT) as general-purpose writing assistants to improve
597 the readability and clarity of the manuscript. The research ideas, methodology, experimental design,
598 and analysis were conceived and carried out entirely by the authors.
599600 **APPENDIX OVERVIEW**
601602 The appendix is organized into the following sections with additional analysis, proofs, and imple-
603 mentation details:
604605

- 606 • In Section A, we provide related works.
607
- 608 • In Section B, we provide full training pseudocode of DART.
609
- 610 • In Section C, we detailed implementation of the reliability-aware marginal estimation mod-
611 ule.
612
- 613 • In Section D, we present theoretical analysis, including notation, mini-batch sampling
614 paradigms, and concentration bounds for \mathcal{L}_{IOT} and \mathcal{L}_{UWD} .
615
- 616 • In Section E, we describe implementation details such as hardware, software stack, and
617 training setup.
618
- 619 • In Section F, we summarize dataset statistics for AudioCaps, Clotho, and ESC-50.
620
- 621 • In Section G, we detail evaluation metrics and baselines.
622
- 623 • In Section H, we list the complete hyperparameter settings for all encoder configurations.
624
- 625 • In Section I, we analyze the effect of the weighting parameter λ in Eq. equation 14.
626
- 627 • In Section J, we study alternative marginal distributions for the feature-level loss.
628
- 629 • In Table 8, we evaluate the effect of temperature values on retrieval performance.
630
- 631 • In Table 9, we conduct ablation studies on the two loss components \mathcal{L}_{IOT} and \mathcal{L}_{UWD} .
632
- 633 • In Table 10, we show the effectiveness of \mathcal{L}_{UWD} as a complementary constraint under dif-
634 ferent sample-level objectives.
635
- 636 • In Table 11, we investigate the impact of varying mini-batch sizes on DART’s performance.
637

638 **A RELATED WORKS**
639640 Cross-modal matching is a fundamental challenge in multi-modal learning, aiming to establish
641 meaningful correspondences between two modalities, such as text-image (Jia et al., 2021; Rad-
642 ford et al., 2021; Wei et al., 2020), text-audio (Wu et al., 2023; Deshmukh et al., 2022), by align-
643 ing their underlying distributions. Recent advancements have focused on leveraging metric learn-
644 ing techniques to learn joint embedding spaces where semantically similar instances from different
645 modalities are mapped close to each other, using methods such as triplet loss (Mei et al., 2022; Wei
646 et al., 2020), contrastive learning (Radford et al., 2021; Yang et al., 2022), and matching loss (Shi
647 et al.). Despite their success, these approaches treat all embedding dimensions equally, implicitly
648 assuming that each channel contributes similarly to semantic alignment. In practice, however, many
649 dimensions may be noisy, redundant, or modality-specific, making uniform treatment suboptimal.
650 Although Luong et al. (2024) introduces per-channel coefficients that reweight feature dimensions,
651 their formulation only assigns weights to corresponding dimensions across modalities (e.g., audio
652 j -th dimension with text j -th dimension), which effectively assumes one-to-one channel alignment.
653 Such a constraint overlooks potential cross-channel correspondences (e.g., an audio rhythm dimen-
654 sion aligning better with a textual verb-related dimension), thereby limiting flexibility. Moreover,
655 their method still relies heavily on sample-level supervision, leaving it vulnerable to small-batch
656 variance and noisy labels.
657658 **B ALGORITHM**
659

Algorithm 1 DART

Input: Initialize audio encoder f_θ , text encoder g_ϕ , training data pairs D , number of mini-batches B

repeat

for $b = 1$ **to** B **do**

Sample (X^b, Y^b) from D ;

Embeddings $\mathbf{U}^b = f_\theta(X^b)$, $\mathbf{V}^b = g_\phi(Y^b)$;

Compute cost matrices $\mathbf{C}_{\text{Sample}}^b$, $\mathbf{C}_{\text{Feature}}^b$ by ?? and 7;

Solve EOT that $\mathbf{\Pi}^b = \text{EOT}(\mathbf{C}_{\text{Sample}}^b)$ by 1;

$\mathcal{L}_{\text{IOT}} = \text{KL}(\tilde{\mathbf{\Pi}}^b \parallel \mathbf{\Pi}^b)$ with label $\tilde{\mathbf{\Pi}}^b = \text{eye}(\frac{1}{k})$;

Solve UOT that $\mathbf{P}^b = \text{UOT}(\mathbf{C}_{\text{Feature}}^b)$ by 8;

$\mathcal{L}_{\text{UWD}} = \langle \mathbf{C}_{\text{Feature}}^b, \mathbf{P}^b \rangle$

$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{IOT}} + \lambda \mathcal{L}_{\text{UWD}}$

$\theta, \phi \leftarrow \theta, \phi - \eta \nabla_{\theta, \phi} \mathcal{L}_{\text{total}}$;

end for

until converged

C RELIABILITY SCORE COMPUTATION

In this section, we provide the detailed implementation of the reliability-aware marginal estimation module described in Section 3.3. The procedure consists of three steps: computing channel-wise statistics, aggregating them into reliability scores, and stabilizing the estimates across training.

Channel-wise Statistics. For a mini-batch of size k , the audio and text embeddings are denoted as $\mathbf{U}^b, \mathbf{V}^b \in \mathbb{R}^{k \times d}$. For the j -th feature channel, we compute:

1. Cross-modal correlation:

$$\text{corr}(\mathbf{U}^b(:,j), \mathbf{V}^b(:,j)) = \frac{\langle \mathbf{U}^b(:,j) - \bar{u}_j, \mathbf{V}^b(:,j) - \bar{v}_j \rangle}{\|\mathbf{U}^b(:,j) - \bar{u}_j\|_2 \cdot \|\mathbf{V}^b(:,j) - \bar{v}_j\|_2}, \quad (18)$$

where \bar{u}_j and \bar{v}_j are the sample means of the j -th channel. This normalized correlation measures semantic consistency between modalities.

2. Variance instability:

$$\text{var}(\mathbf{U}^b(:, j), \mathbf{V}^b(:, j)) = \text{Var}(\mathbf{U}^b(:, j)) + \text{Var}(\mathbf{V}^b(:, j)). \quad (19)$$

Larger values indicate unstable or noisy activations across samples.

3. Kurtosis (heavy-tailedness):

$$\text{kurt}(\mathbf{U}^b(:, j), \mathbf{V}^b(:, j)) \equiv \text{Kurt}(\mathbf{U}^b(:, j)) + \text{Kurt}(\mathbf{V}^b(:, j)), \quad (20)$$

where $\text{Kurt}(z) = \frac{\mathbb{E}[(z-\mu)^4]}{\sigma^4}$ denotes standardized fourth-order moment. High kurtosis indicates outliers or bursty patterns.

Score Aggregation. The channel reliability score r_j is defined as:

$$r_j = \sigma \left(\text{corr}(\mathbf{U}^b(:,j), \mathbf{V}^b(:,j)) - \text{var}(\mathbf{U}^b(:,j), \mathbf{V}^b(:,j)) - \text{kurt}(\mathbf{U}^b(:,j), \mathbf{V}^b(:,j)) \right), \quad (21)$$

where $\sigma(\cdot)$ is the sigmoid function. Higher values indicate more stable and semantically reliable channels. The scores are normalized into probability marginals:

$$\mathbf{u}^b = \frac{r}{\sum_{i \neq j} r_i}, \quad \mathbf{v}^b = \frac{r}{\sum_{i \neq j} r_i}, \quad (22)$$

where $r = (r_1, \dots, r_d)$.

702 **Stabilization Across Training.** Since r_j is computed per mini-batch, it can fluctuate due to ran-
 703 domness in sampling. To stabilize the estimates, we adopt:
 704

- 705 • **EMA smoothing:** Reliability scores are updated across training iterations using exponen-
 706 tial moving average:

$$707 \quad r_j^{(t)} \leftarrow \beta \cdot r_j^{(t-1)} + (1 - \beta) \cdot r_j^{\text{batch}},$$

709 where $\beta \in [0, 1]$ is a smoothing coefficient.

- 710 • **Hysteresis rule:** Thresholds $\tau_{\text{hi}}, \tau_{\text{lo}}$ decide whether to activate or suppress a channel,
 711 avoiding oscillations.
- 712 • **Warm-up:** All channels are considered active during the first T_{warm} iterations.
- 713 • **Freeze:** After a fixed epoch, the selection of reliable channels can be frozen for stability.
- 715 • **Top- K filtering:** Optionally, only the K most reliable channels are retained to reduce noise
 716 further.

717 **Implementation Note.** All reliability statistics (correlation, variance, kurtosis) are computed in-
 718 dependently from the forward-backward graph and can be executed off-GPU. This avoids additional
 719 GPU memory usage and ensures minimal runtime overhead.

722 D THEORETICAL ANALYSIS

724 D.1 SYMBOL DEFINITIONS

726 Let the full-batch optimal coupling matrix be $\Pi^* \in \mathbb{R}^{n \times n}$ for n data pairs. For mini-batch stochastic
 727 optimization:

- 729 • Let $S_b, T_b \subset [n]$ denote the sample index sets of size m for batch b .
- 730 • Let $\alpha_b : [m] \rightarrow S_b$ and $\beta_b : [m] \rightarrow T_b$ be index mapping functions that link local mini-
 731 batch indices to global indices.
- 732 • Let $\Pi^b \in \mathbb{R}^{m \times m}$ denote the local coupling matrix for batch b , where $\Pi^b(p, q)$ correspond-
 733 ing to the pair $(\alpha_b(p), \beta_b(q))$ in the global coupling matrix.

735 Then we formalize two distinct mini-batch sampling paradigms:

736 **Definition 3** (Global coupling matrix under Non-overlapping Mini-Batch Sampling). *Let*
 737 $\Pi^B \in \mathbb{R}^{n \times n}$ *be the global coupling matrix constructed from B non-overlapping mini-batches*
 738 $\{(S_b, T_b)\}_{b=1}^B$:

$$740 \quad \Pi^B(i, j) = \begin{cases} \Pi^b(\alpha_b^{-1}(i), \beta_b^{-1}(j)), & \text{if } \exists b \text{ s.t. } i \in S_b \text{ and } j \in T_b, \\ 741 \quad 0, & \text{otherwise.} \end{cases} \quad (23)$$

743 **Proof Roadmap.** The theoretical analysis proceeds in three steps:

- 745 • **Inner Optimization (Coupling Matrix).** We first establish the ϵ -strong convexity of the
 746 entropy-regularized OT objective (Lemma 4), which allows bounding deviations between
 747 the mini-batch coupling Π^B and the full-batch optimum Π^* via the functional gap.
- 748 • **Mini-Batch Concentration.** Using Hoeffding’s inequality, we derive concentration
 749 bounds on the mini-batch OT objective (Lemma 5), showing how the deviation shrinks
 750 with the number of batches B and depends on the maximum alignment distance M .
- 751 • **Loss-Level Bounds.** Finally, we transfer these results to the loss functions: Theorem 1
 752 for the instance-level \mathcal{L}_{IOT} and Theorem 2 for the feature-level \mathcal{L}_{UWD} , highlighting their
 753 different dependence on D_{\max} versus $\|\mathbf{P}^*\|_F$.

754 Together, these steps show why feature-level regularization yields tighter bounds and better robust-
 755 ness under small batches or noisy data.

756 D.2 CONCENTRATION BOUNDS OF \mathcal{L}_{IOT} (5)
757

758 In this subsection, we analyze the deviation introduced by mini-batch optimization in solving the
759 original Inverse Optimal Transport (IOT) problem (5). The IOT problem comprises two sequential
760 stages: (1) an outer minimization stage for learning representations, and (2) an inner optimization
761 stage for computing the coupling (i.e., the probability matching matrix) between point sets. The
762 inner stage corresponds to a standard Entropy-Regularized Optimal Transport (EOT) problem. Our
763 analysis focuses on quantifying the discrepancy between the full-batch solution $\boldsymbol{\Pi}^*$ and the mini-
764 batch solution $\boldsymbol{\Pi}^B$.

765 **Lemma 4** (ϵ -Strongly Convexity of EOT Objective). *Consider the objective function $f(\cdot) : \mathcal{U}(\mu, \nu) \rightarrow \mathbb{R}$ for the Entropy-Regularized Optimal Transport (EOT) problem, defined as:*

$$767 \quad f(\boldsymbol{\Pi}) = \langle \boldsymbol{\Pi}, \mathbf{C} \rangle - \epsilon H(\boldsymbol{\Pi}), \\ 768$$

769 where $\mathcal{U}(\mu, \nu)$ denotes the set of coupling matrices with marginals μ and ν , \mathbf{C} is the cost func-
770 tion, and $H(\boldsymbol{\Pi})$ is the entropy term. Then f is ϵ -strongly convex over the relative interior of
771 $\mathcal{U}(\mu, \nu)$. Specifically, for any feasible coupling matrix $\boldsymbol{\Pi}_1 \in \mathcal{U}(\mu, \nu)$ and the EOT optimizer
772 $\boldsymbol{\Pi}^* := \arg \min_{\boldsymbol{\Pi} \in \mathcal{U}(\mu, \nu)} f(\boldsymbol{\Pi})$, it holds that:

$$773 \quad \frac{\epsilon}{2} \|\boldsymbol{\Pi}_1 - \boldsymbol{\Pi}^*\|_F^2 \leq f(\boldsymbol{\Pi}_1) - f(\boldsymbol{\Pi}^*). \quad (24)$$

775 *Proof.* For any coupling matrix $\boldsymbol{\Pi} \in \text{relint}(\mathcal{U}(\mu, \nu))$ (where $\Pi_{ij} > 0$), the Hessian operator of f is
776 given by:

$$777 \quad \nabla^2 f(\boldsymbol{\Pi}) = \epsilon \cdot \text{diag}(1/\Pi_{ij})_{i,j},$$

778 where the diagonal operator acts on the vectorized matrix. For any tangent direction $\mathbf{D} \in T_{\mathcal{U}(\mu, \nu)}$,
779 we have:

$$780 \quad \langle \mathbf{D}, \nabla^2 f(\boldsymbol{\Pi}) \mathbf{D} \rangle_F = \epsilon \sum_{i,j} \frac{\mathbf{D}_{ij}^2}{\Pi_{ij}} \geq \epsilon \|\mathbf{D}\|_F^2,$$

781 where the inequality follows from $\Pi_{ij} \leq 1$ in the probability simplex. This establishes the ϵ -strong
782 convexity. \square

783 According to 4, the Frobenius norm deviation between $\boldsymbol{\Pi}^*$ and $\boldsymbol{\Pi}^B$ is upper-bounded by the
784 functional value difference, which allows us to analyze the convergence through the functional gap that:
785 $|\boldsymbol{\Pi}^B - \boldsymbol{\Pi}^*|_F^2 \leq \frac{2}{\epsilon} (f(\boldsymbol{\Pi}^B) - f(\boldsymbol{\Pi}^*))$.

786 **Lemma 5** (Concentration Bound of Mini-Batch EOT Objective). *Let $\delta \in (0, 1)$ and $B \geq 1$, we
787 have a bound between $f(\boldsymbol{\Pi}^B)$ and $f(\boldsymbol{\Pi}^*)$ depending on the number of batches B that*

$$788 \quad |f(\boldsymbol{\Pi}^B) - f(\boldsymbol{\Pi}^*)| \leq M \sqrt{\frac{\log(2/\delta)}{2B}}, \quad (25)$$

789 with probability at least $1 - \delta$. Here, $M = D + \epsilon(2 \log_2(m) + 1)$.

790 *Proof.* The proof can be found in [Fatras et al. (2019), Lemma 3], and we restate it here for better
791 understanding.

792 To simplify the problem, we first derive an upper bound for the function value $f(\boldsymbol{\Pi}^b)$ of any fea-
793 sible coupling matrix $\boldsymbol{\Pi}^b \in \mathbb{R}^{m \times m}$ within a mini-batch. For any $X_i \sim \mu$ and $Y_j \sim \nu$, we
794 have $\|X_i - Y_j\| \leq M$, implying $\mathbf{C}_{ij}^b \leq M$ for all (i, j) . The Shannon entropy $E(\boldsymbol{\Pi}^b) =$
795 $-\sum_{1 \leq i, j \leq m} \boldsymbol{\Pi}_{ij}^b \log \boldsymbol{\Pi}_{ij}^b$ satisfies $0 \leq E(\boldsymbol{\Pi}^b) \leq \log_2(m^2)$ where the maximum entropy occurs
796 when $\boldsymbol{\Pi}^b$ is uniform. Applying the triangle inequality, we have

$$797 \quad |f(\boldsymbol{\Pi}^b)| = \left| \langle \boldsymbol{\Pi}^b, \mathbf{C}^b \rangle - \epsilon H(\boldsymbol{\Pi}^b) \right| \leq \left| \sum_{1 \leq i, j \leq m} \mathbf{C}_{ij}^b \boldsymbol{\Pi}_{ij}^b \right| + \left| \epsilon \left(- \sum_{1 \leq i, j \leq m} \boldsymbol{\Pi}_{ij}^b \log \boldsymbol{\Pi}_{ij}^b + 1 \right) \right| \\ 800 \quad \leq D \sum_{1 \leq i, j \leq m} \boldsymbol{\Pi}_{ij}^b + \epsilon(\log_2(m^2) + 1) \\ 803 \quad \leq D + \epsilon(2 \log_2(m) + 1) = M. \quad (26)$$

The mini-batch sampling process can be modeled as a sequence of independent trials over all possible mini-batch configurations. For each trial $b \in [B]$, let $\mathbf{1}_b \in \{0, 1\}$, be a Bernoulli random variable indicating whether a specific mini-batch configuration (among the total $\binom{n}{m}^2$ possible configurations) is selected. Therefore, we then have

$$f(\mathbf{\Pi}^B) - f(\mathbf{\Pi}^*) = \frac{1}{B} \sum_{b=1}^B w_b, \quad (27)$$

where $w_b = (\mathbf{1}_b - 1/\binom{n}{m}^2) f(\mathbf{\Pi}^b)$. Here, $\mathbf{1}_b - 1/\binom{n}{m}^2$ represents the deviation between the actual selection status of the mini-batch pair (S_b, T_b) in trial b and its expected selection probability. $f(\mathbf{\Pi}^b)$ denotes the objective function value corresponding to the selected mini-batch configuration, and w_b reflects the contribution of trial b to the overall deviation from the expected value. Since the variables $\{w_b\}_{b=1}^B$ are independent, centered ($\mathbb{E}[w_b] = 0$) and bounded by M , we can apply Hoeffding's inequality, which gives:

$$\mathbb{P}(|f(\mathbf{\Pi}^B) - f(\mathbf{\Pi}^*)| > t) = \mathbb{P}\left(\left|\frac{1}{B} \sum_{b=1}^B w_b\right| > t\right) \leq 2 \exp\left(-\frac{2t^2}{BM^2}\right), \quad (28)$$

To derive a high-probability bound, set the right-hand side equal to a confidence parameter δ : $2 \exp(-\frac{2t^2}{BM^2}) = \delta$, solving for t yields:

$$t = M \sqrt{\frac{\log(2/\delta)}{2B}}. \quad (29)$$

□

Theorem 6 (Maximal Deviation Bound in the Inner Optimization Stage of \mathcal{L}_{IOT} (5)). *Let $\delta \in (0, 1)$, $B \geq 1$ and the mini-batch size m be fixed, we have a maximal deviation bound between $\mathbf{\Pi}^B$ and $\mathbf{\Pi}^*$ that*

$$\begin{aligned} |\mathbf{\Pi}^B - \mathbf{\Pi}^*|_F^2 &\leq \frac{\epsilon}{2} |f(\mathbf{\Pi}^B) - f(\mathbf{\Pi}^*)| \\ &\leq \frac{\epsilon M}{2} \left(\sqrt{\frac{\log(2/\delta)}{2B}} \right), \end{aligned} \quad (30)$$

with probability at least $1 - \delta$. Here, $M = D + \epsilon(2 \log_2(m) + 1)$.

Proof. Here, the first inequality is obtained by the strong convexity of EOT (24). The second inequality follows from the triangle inequality by introducing the intermediate solution $\mathbf{\Pi}^{\text{exh}}$. Applying 5 to bound the mini-batch estimation error, we derive the final result. □

Before deriving the deviation bound in the outer optimization stage of \mathcal{L}_{IOT} , recall that the mini-batch objective function is defined as

$$\mathcal{L}_{\text{IOT}}^B = - \sum_{b=1}^B \sum_{i=1}^k \tilde{\mathbf{\Pi}}_{ii}^b \log(\mathbf{\Pi}_{ii}^{(\theta, \phi)b}), \quad (31)$$

where $\tilde{\mathbf{\Pi}}$ is a permutation matrix representing the ground-truth matching, with $\tilde{\mathbf{\Pi}}_{ii} = 1$ indicating correctly paired audio and text instances.

The full-batch loss function is then given by:

$$\mathcal{L}_{\text{IOT}}^* = - \iint_{X \times Y} \tilde{\pi}(x, y) \log_{\pi_{\theta, \phi}}(x, y) d\mu(x) d\nu(y). \quad (32)$$

Here, μ and ν are discrete measures defined on the finite sets $X = \{x_1, x_2, \dots, x_m\}$ and $Y = \{y_1, y_2, \dots, y_n\}$, respectively: $\mu = \frac{1}{m} \sum_{i=1}^m \delta_{x_i}$, $\nu = \frac{1}{n} \sum_{j=1}^n \delta_{y_j}$. The function $\tilde{\pi}(x, y)$ represents the probabilistic coupling between the elements of X and Y .

Theorem 7 (Concentration Bound of $\mathcal{L}_{\text{IOT}}^B$ (5)). *Let $\delta \in (0, 1)$, $B \geq 1$ and the mini-batch size m be fixed. Suppose the log function is L -Lipschitz over $[\epsilon, 1]$ for some $\epsilon > 0$, where $\Pi \in [\epsilon, 1]$ for all batches. Then, with probability at least $1 - \delta$, the maximal deviation between the mini-batch loss $\mathcal{L}_{\text{IOT}}^B$ and the full-batch loss $\mathcal{L}_{\text{IOT}}^*$ satisfies:*

$$|\mathcal{L}_{\text{IOT}}^B - \mathcal{L}_{\text{IOT}}^*|^2 = L^2 |\Pi^B - \Pi^*|_F^2 \quad (33)$$

$$\leq \frac{\epsilon M L^2}{2} \left(\sqrt{\frac{\log(2/\delta)}{2B}} \right). \quad (34)$$

Here, $M = D + \epsilon(2 \log_2(m) + 1)$.

Proof. Step 1: Lipschitz continuity of loss difference. Since $\tilde{\Pi}$ is a permutation matrix, it satisfies $\tilde{\pi}_{ii} = 1$ for correctly paired instances and 0 otherwise. Thus, the loss function simplifies to:

$$\mathcal{L}_{\text{IOT}}^B = -\frac{1}{B} \sum_{b=1}^B \log \Pi_{ii}^b = -\log \Pi_{ii}^B, \quad \mathcal{L}_{\text{IOT}}^* = -\log \Pi_{ii}^*. \quad (35)$$

Both Π_{ii}^B and Π^* correspond to the predicted probabilities of correct matches, their values tend to be close to 1. Therefore, assuming that the logarithm function is L -Lipschitz over the domain of Π_{ii} is reasonable. This implies the following bound:

$$|\mathcal{L}_{\text{IOT}}^B - \mathcal{L}_{\text{IOT}}^*| = |\log \Pi_{ii}^* - \log \Pi_{ii}^B| \quad (36)$$

$$\leq L \cdot |\Pi_{ii}^* - \Pi_{ii}^B| \quad (\text{Lipschitz condition}) \quad (37)$$

$$\leq L \cdot \sqrt{\sum_{i=1}^m (\Pi_{ii}^* - \Pi_{ii}^B)^2} \quad (\text{Element-wise difference to vector 2-norm}) \quad (38)$$

$$\leq L \cdot \|\Pi^* - \Pi^B\|_F \quad (\text{Vector 2-norm to matrix Frobenius norm}). \quad (39)$$

Step 2: Concentration via pre-established bound. By applying the concentration result in 6, we directly obtain the 33. \square

D.3 CONCENTRATION BOUND OF \mathcal{L}_{UWD} (9)

Assumption 8 (Statistical Model of Feature Extractors). *The feature encoders f_θ and g_ϕ satisfy:*

$$f_\theta(x)_i = \mu_{f,i} + \delta_{f,i}(x), \quad \mathbb{E}_{x \sim \mathcal{X}}[\delta_{f,i}(x)] = 0, \quad \text{Var}_{x \sim \mathcal{X}}(\delta_{f,i}(x)) = \sigma_{f,i}^2, \quad (40)$$

$$g_\phi(y)_j = \mu_{g,j} + \delta_{g,j}(y), \quad \mathbb{E}_{y \sim \mathcal{Y}}[\delta_{g,j}(y)] = 0, \quad \text{Var}_{y \sim \mathcal{Y}}(\delta_{g,j}(y)) = \sigma_{g,j}^2, \quad (41)$$

where $\mu_{f,i}, \mu_{g,j}$ are expected feature values, and $\delta_{f,i}(x), \delta_{g,j}(y)$ are zero-mean noise terms.

Lemma 9 (Concentration of Feature-Level Cost Matrix). *Let $Z_k := f_\theta(x_k)_i - g_\phi(y_k)_j$ denote the difference in the i -th and j -th feature dimensions of paired embeddings, where $\{(x_k, y_k)\}_{k=1}^m$ are sampled i.i.d., and suppose each Z_k is sub-Gaussian with zero mean and bounded variance proxy σ^2 (i.e., $\mathbb{E}[Z_k] = 0, \mathbb{E}[Z_k^2] \leq \sigma^2$). Given the empirical cost entry as:*

$$\mathbf{C}_{ij}^{(\text{Feat})B} := \left\| f^{(i)} - g^{(j)} \right\|_2 = \sqrt{\sum_{k=1}^m Z_k^2},$$

and let the full-batch cost be: $\mathbf{C}_{ij}^{(\text{Feat})*} := \sqrt{m} \cdot |\mathbb{E}[f_\theta(x)_i] - \mathbb{E}[g_\phi(y)_j]|$. Then, with probability at least $1 - \delta$, the deviation between empirical and expected feature-level cost satisfies:

$$\left| \mathbf{C}_{ij}^{(\text{Feat})B} - \mathbf{C}_{ij}^{(\text{Feat})*} \right| \leq \sqrt{\frac{2\sigma^2 \log(2/\delta)}{m}}.$$

918 *Proof.* We begin by computing the expectation of $\mathbf{C}_{ij}^{(\text{Feat})B}$:
919

$$\begin{aligned}
920 \quad \mathbb{E} \left[\mathbf{C}_{ij}^{(\text{Feat})B} \right] &= \mathbb{E} \left[\sum_{k=1}^m (f_\theta(x_k)_i - g_\phi(y_k)_j)^2 \right] = \sum_{k=1}^m \mathbb{E} [((\mu_{f,i} + \delta_{f,k}) - (\mu_{g,j} + \delta_{g,k}))^2] \\
921 &= \sum_{k=1}^m \mathbb{E} [((\mu_{f,i} - \mu_{g,j}) + (\delta_{f,k} - \delta_{g,k}))^2] \\
922 &= \sum_{k=1}^m \mathbb{E} [(D_{ij} + \delta_k)^2] = \sum_{k=1}^m (D_{ij}^2 + 2D_{ij}\mathbb{E}[\delta_k] + \mathbb{E}[\delta_k^2]) \\
923 &= m(\sigma^2 + D_{ij}^2). \tag{42}
\end{aligned}$$

930 To simply, we set $C_{ij}^{(\text{Feat})B} = \sqrt{\sum_{k=1}^m Z_k^2}$, where $Z_k := f_\theta(x_k)_i - g_\phi(y_k)_j$. Since Z_k are sub-
931 Gaussian, and the squared terms Z_k^2 are sub-exponential. According to the concentration inequality
932 for sub-exponential variables, we have:
933

$$\mathbb{P} \left(\left| \frac{1}{m} \sum_{k=1}^m Z_k^2 - \mathbb{E}[Z_k^2] \right| \geq t \right) \leq 2 \exp \left(-c \cdot m \cdot \min \left(\frac{t^2}{\sigma^4}, \frac{t}{\sigma^2} \right) \right). \tag{43}$$

934 According 42, we substitute $\mathbb{E}[Z_k^2] = D_{ij}^2 + \sigma^2$ and $S = \sum_{k=1}^m Z_k^2$, for $t = \epsilon\sqrt{m}$ and obtain:
935

$$\mathbb{P} (|S - m(D_{ij}^2 + \sigma^2)| \geq \epsilon m) \leq 2 \exp \left(-\frac{c\epsilon^2 m}{\sigma^4} \right). \tag{44}$$

936 Using the inequality

$$\left| \sqrt{S} - \sqrt{\mathbb{E}[S]} \right| \leq \frac{|S - \mathbb{E}[S]|}{2\sqrt{\mathbb{E}[S]}}, \quad \text{with } \mathbb{E}[S] = m(D_{ij}^2 + \sigma^2),$$

937 we derive:

$$\mathbb{P} \left(\left| \mathbf{C}_{ij}^{(\text{Feat})B} - \sqrt{m(D_{ij}^2 + \sigma^2)} \right| \geq \epsilon \right) \leq \mathbb{P} (|S - m(D_{ij}^2 + \sigma^2)| \geq 2\epsilon\sqrt{m(D_{ij}^2 + \sigma^2)}). \tag{45}$$

938 Combining with the result, we obtain:
939

$$\mathbb{P} \left(\left| \mathbf{C}_{ij}^{(\text{Feat})B} - \sqrt{m(D_{ij}^2 + \sigma^2)} \right| \geq \epsilon \right) \leq 2 \exp \left(-\frac{2\epsilon^2 m(D_{ij}^2 + \sigma^2)}{\sigma^4} \right). \tag{46}$$

940 Recall that $\mathbf{C}_{ij}^{(\text{Feat})*} = \sqrt{m}D_{ij}$, and that $\sqrt{m(D_{ij}^2 + \sigma^2)} \leq \sqrt{m}D_{ij} + \frac{\sigma^2}{2D_{ij}}$ (via Taylor expansion), we can write:
941

$$\left| \mathbf{C}_{ij}^{(\text{Feat})B} - \mathbf{C}_{ij}^{(\text{Feat})*} \right| \approx \left| \sqrt{S} - \sqrt{m}D_{ij} \right| \leq \epsilon + \frac{\sigma^2}{2D_{ij}}. \tag{47}$$

942 \square

943 **Theorem 10** (Feature-level Loss \mathcal{L}_{UWD} (9) Concentration). *Assume the feature-level cost matrix*
944 $\mathbf{C}_{ij}^{(\text{Feat})B} \in \mathbb{R}^{d \times d}$ *is computed from m i.i.d. paired samples, and each entry satisfies the deviation*
945 *bound:*

$$\left| \mathbf{C}_{ij}^{(\text{Feat})B} - \mathbf{C}_{ij}^{(\text{Feat})*} \right| \leq \epsilon_m \quad \text{with probability at least } 1 - \delta,$$

946 where $\epsilon_m = \sqrt{\frac{2\sigma^2 \log(2/\delta)}{m}}$. Then the unbalanced OT loss satisfies the deviation bound:
947

$$\left| \mathcal{L}_{\text{UOT}}(\mathbf{C}_{ij}^{(\text{Feat})B}) - \mathcal{L}_{\text{UOT}}(\mathbf{C}_{ij}^{(\text{Feat})*}) \right| \leq \|\mathbf{P}^*\|_F \cdot \epsilon_m + \frac{1}{2\lambda} \cdot \epsilon_m^2,$$

948 with probability at least $1 - \delta$, where $\lambda = \epsilon + \text{reg}_m$ is the strong convexity constant of the UOT
949 objective.
950

972 *Proof.* Leveraging the strong convexity of unbalanced optimal transport (with coefficient $\lambda = \epsilon +$
 973 reg_m):
 974

$$975 \quad \left| \mathcal{L}_{\text{UOT}}(\mathbf{C}_{ij}^{(\text{Feat})B}) - \mathcal{L}_{\text{UOT}}(\mathbf{C}_{ij}^{(\text{Feat})*}) \right| \leq \|\mathbf{P}^*\|_F \cdot \|\mathbf{C}^{(\text{Feat})B} - \mathbf{C}^{(\text{Feat})*}\|_F + \frac{1}{2\lambda} \|\mathbf{C}^{(\text{Feat})B} - \mathbf{C}^{(\text{Feat})*}\|_F^2. \quad (48)$$

$$976$$

$$977$$

978 Based on Lemma 9, the theorem follows. \square
 979

981 E IMPLEMENTATION DETAILS

$$982$$

983 The experiments are conducted on a Linux workstation equipped with an Intel(R) Xeon(R) Gold
 984 6226R CPU (2.90GHz) and an NVIDIA A100-PCIE-40GB GPU. The detailed implementation code
 985 is provided in the supplementary materials.
 986

988 F DATASETS DETAILS

$$989$$

990 We evaluate DART on three widely used datasets: **AudioCaps** Kim et al. (2019), **Clotho** Drossos
 991 et al. (2020), and **ESC-50** Piczak (2015), covering audio-text retrieval and sound event detection
 992 tasks.

993 **AudioCaps** is the largest audio captioning dataset, containing approximately 50K audio-caption
 994 pairs. All audio clips are sourced from AudioSet Gemmeke et al. (2017), a large-scale dataset for
 995 audio tagging. The training set consists of 40,582 audio clips, each 10 seconds long and paired with
 996 a single human-annotated caption. In contrast, the validation and test sets contain 494 and 957 audio
 997 clips, respectively, with each clip accompanied by five ground-truth captions.

998 **Clotho** is an audio captioning dataset collected from the Freesound platform, featuring audio clips
 999 of varying durations between 15 to 30 seconds. We use the second version of the dataset for our
 1000 experiments. The training set includes 3,839 audio clips, while the validation and test sets contain
 1001 over 1k clips each. Every audio clip is paired with five human-annotated captions.

1002 **ESC-50** is an environmental sound classification dataset designed for sound event detection,
 1003 consisting of 2K labelled recordings across 50 sound classes. Since our goal is to evaluate DART's
 1004 transferability, we use only the test set, which contains 400 audio clips.

1005 **Baselines.** We compare DART against state-of-the-art audio-text retrieval models, including On-
 1006 cescu et al. (2021), Mei et al. (2022), Deshmukh et al. (2022), Wu et al. (2023), Luong et al. (2024),
 1007 Wang et al. (2023) and Chen et al. (2023), ensuring consistency in evaluation settings. All baseline
 1008 results are directly sourced from their respective papers for fair comparison. Furthermore, we in-
 1009 vestigate the impact of different training objectives, including contrastive and triplet loss, to analyze
 1010 DART's adaptability under various learning paradigms.

1014 G EXPERIMENTAL SETUP

$$1015$$

1016 **Evaluation metrics.** We evaluate DART using Recall at Rank k (R@ k), a standard metric for
 1017 cross-modal retrieval. R@ k measures the proportion of queries where at least one ground-truth
 1018 match appears in the top- k retrieved results. Formally, for a query set of size N , R@ k is computed
 1019 as:

$$1020 \quad \text{R@}k = \frac{1}{N} \sum_{i=1}^N \mathbb{I}(\text{rank}(y_i) \leq k), \quad (49)$$

$$1021$$

$$1022$$

$$1023$$

1024 where $\mathbb{I}(\cdot)$ is the indicator function that returns 1 if the correct match y_i is ranked within the top- k ,
 1025 and 0 otherwise. A higher R@ k indicates better retrieval performance. We report R@1, R@5, and
 1026 R@10 to compare DART with baseline methods.

1026 H HYPERPARAMETERS

1028 Tab. 5 provides a comprehensive overview of the hyperparameters employed across all baseline
 1029 models. The three sections correspond to different encoder configurations evaluated in the main
 1030 comparison table: (1) ResNet38 (audio) + BERT (text), (2) CNN (audio) + BPE (text), and (3) Beats
 1031 (audio) + BERT (text). All settings align with those used in the respective baselines to ensure fair
 1032 comparison and match the configurations reported in their original papers.

1034 Table 5: Detailed hyper-parameters used in training for the retrieval experiments reported in Table 1.

1036	Hyperparameters	1037 AudioCaps	1038 Clotho
1037	Batch size	256	256
1038	Optimizer	Adam	Adam
1039	Learning rate	5×10^{-5}	5×10^{-5}
1040	Weight decay	0.0	0.0
1041	Total epoch	10	10
1042	λ	0.5	0.5
1043	ϵ	0.03	0.03
1044	τ	0.05	0.05
1045	Batch size	6	6
1046	Optimizer	AdamW	AdamW
1047	Adam β	(0.9,0.999)	(0.9,0.999)
1048	Learning rate	1×10^{-6}	1×10^{-6}
1049	Weight decay	0.01	0.01
1050	Total epoch	10	10
1051	λ	0.5	0.5
1052	ϵ	0.03	0.03
1053	τ	0.05	0.05
1054	Batch size	256	256
1055	Optimizer	AdamW	AdamW
1056	Adam β	(0.9, 0.98)	(0.9, 0.98)
1057	Learning rate	5×10^{-7}	5×10^{-7}
1058	Weight decay	0.01	0.01
1059	Total epoch	10	10
1060	λ	0.5	0.5
1061	ϵ	0.03	0.03
1062	τ	0.05	0.05

1064 I EFFECT OF THE WEIGHTING PARAMETER λ

1066 We analyze the effect of the weighting parameter λ in the overall loss function 14. 6 presents
 1067 the retrieval performance under different values of λ . The results indicate that DART is robust
 1068 to variations in λ , with consistent performance across the tested range. The best performance is
 1069 observed at $\lambda = 0.7$, achieving an R@1 score of 40.41% for text-to-audio retrieval and 53.70%
 1070 for audio-to-text retrieval. Notably, even at $\lambda = 0.1$, the model performs well, with R@1 scores
 1071 of 40.31% and 53.29% for text-to-audio and audio-to-text retrieval, respectively. This suggests
 1072 that while the feature-level alignment provided by \mathcal{L}_{UWD} contributes to optimal performance, the
 1073 underlying IOT framework also plays a critical role in ensuring DART’s robustness. This flexibility
 1074 underscores DART’s ability to effectively balance the contributions of different loss components,
 1075 enabling robust cross-modal retrieval across diverse settings.

1076 J EFFECT OF THE MARGINALS IN \mathcal{L}_{UWD}

1078 We analyze the effect of the marginal distributions used in the feature-level loss defined in Eq. 9.
 1079 Specifically, we consider the following initialization strategies for the source and target marginals:

1080
 1081 Table 6: Retrieval performance (%) under varying λ values (Eq. 14) with a small fixed mini-batch
 1082 size of 32.

λ	Text \rightarrow Audio			Audio \rightarrow Text		
	R@1	R@5	R@10	R@1	R@5	R@10
0.1	40.31	75.23	86.22	53.29	83.07	90.17
0.3	39.97	75.04	85.66	51.51	82.23	90.28
0.5	39.94	75.07	85.64	53.08	83.49	90.59
0.7	40.41	75.06	86.22	53.70	81.50	90.28

1090
 1091 • **Uniform Distribution:** This baseline assumes no prior knowledge of feature importance
 1092 and sets both marginals to uniform weights, assigning equal mass to all feature dimensions.
 1093
 1094 • **Feature Norm-Based Initialization:** In this setting, the marginal distributions are derived
 1095 from the ℓ_2 norm of the corresponding feature dimensions. The underlying motivation is
 1096 that dimensions with higher magnitude may carry more semantic or discriminative infor-
 1097 mation, and thus should be assigned greater mass in the transport plan.
 1098
 1099 • **Feature Variance-Based Initialization:** Here, we use the empirical variance of each fea-
 1100 ture dimension across the batch to form the marginals. The rationale is that dimensions
 1101 exhibiting higher variance across samples are likely to be more informative and discrimi-
 1102 native for downstream alignment.

1103 Table 7: Retrieval performance (%) under different marginal distribution in 9.

Marginal	Text \rightarrow Audio			Audio \rightarrow Text		
	R@1	R@5	R@10	R@1	R@5	R@10
Uniform (\mathcal{U})	32.87	67.77	81.06	43.57	73.98	86.72
L_2 Norm-based	33.24	68.54	81.40	42.00	73.87	85.37
Variance-based	33.10	68.25	80.64	43.88	73.24	85.89

K EFFECT OF THE TEMPERATURE VALUES IN \mathcal{L}_{UWD}

1112 Table 8: Retrieval performance (%) under different temperature values with a small fixed mini-batch
 1113 size of 32.

Temperature	Text \rightarrow Audio			Audio \rightarrow Text		
	R@1	R@5	R@10	R@1	R@5	R@10
0.05	36.46	71.95	83.94	46.39	78.05	88.29
1.0	35.59	71.43	83.97	48.69	77.33	86.42
10.0	37.47	71.60	83.72	46.81	75.76	86.00
100.0	35.34	71.37	83.85	46.71	78.89	89.13
inf (eot)	36.13	72.20	83.66	46.81	77.74	88.09

L ABLATION STUDY ON THE TWO LOSS

1125
 1126 We analyze the contribution of individual loss components to the overall performance. 11 presents
 1127 the results of the ablation study on the loss components, comparing the effects of \mathcal{L}_{IOT} and \mathcal{L}_{UWD}
 1128 individually and in combination. Using only \mathcal{L}_{UWD} results in poor performance, with R@1 scores
 1129 close to zero, highlighting the necessity of correspondence labels for cross-modal alignment tasks.
 1130 When both \mathcal{L}_{IOT} and \mathcal{L}_{UWD} are combined, the model achieves the best performance, which demon-
 1131 strates the complementary nature of the two loss components.

1134

1135 Table 9: Ablation study on the training loss components using the AudioCaps dataset with a small
1136 fixed mini-batch size of 128.

LOSS	Text → Audio			Audio → Text		
	R@1	R@5	R@10	R@1	R@5	R@10
\mathcal{L}_{UWD}	0.12	0.52	0.98	0.10	0.31	0.41
\mathcal{L}_{IOT}	39.28	74.50	85.85	52.45	80.25	90.17
$\mathcal{L}_{IOT} + \mathcal{L}_{UWD}$	39.94	75.07	85.64	53.08	83.49	90.59

1142

1143
1144 **M EFFECTIVENESS OF FEATURE-LEVEL LOSS AS A COMPLEMENTARY**
1145 **CONSTRAINT**
11461147 Our feature-level loss \mathcal{L}_{UWD} is designed to capture fine-grained alignment between modality-specific
1148 dimensions, and is intended to be used as a complementary constraint rather than a standalone ob-
1149 jective. Specifically, while many existing retrieval systems are trained with sample-level objectives
1150 such as contrastive loss, triplet loss, or more advanced models like m-LTM, our method is compati-
1151 ble with all of them.1152 In this section, we conduct a controlled ablation study to demonstrate that \mathcal{L}_{UWD} can be seamlessly
1153 integrated with different sample-level losses and consistently improves retrieval performance across
1154 the board. Table 10 summarizes the results on the AudioCaps dataset (same setup as in the main
1155 paper). We observe that for each baseline loss, adding our feature-level loss leads to noticeable gains
1156 in both A→T and T→A retrieval tasks.1157 This confirms that our approach serves as a modular and universally beneficial component that
1158 strengthens the representation alignment across modalities without conflicting with the core retrieval
1159 objective.
1160

1161

1162 Table 10: Retrieval performance on the AudioCaps dataset with different sample-level objectives,
1163 evaluated with and without the feature-level loss \mathcal{L}_{UWD} under a small fixed mini-batch size of 32.

Method	A→T R@1	T→A R@1
Triplet loss	37.72	32.85
+ \mathcal{L}_{UWD}	38.24	32.10
Contrastive loss	38.24	31.07
+ \mathcal{L}_{UWD}	39.18	32.14
IOT loss Luong et al. (2024)	41.69	32.39
+ \mathcal{L}_{UWD}	41.79	32.87

1172

1173

1174 **M.1 EFFECT OF BATCH SIZES (NUMBER OF SAMPLES PER BATCH)**
11751176 Second, we examine the impact of batch size on DART’s performance, particularly focusing on the
1177 role of \mathcal{L}_{UWD} . As shown in 11, the benefits of \mathcal{L}_{UWD} are more pronounced with smaller batch sizes.
1178 This finding is particularly relevant for real-world applications where computational resources are
1179 often constrained. By providing feature-level alignment, \mathcal{L}_{UWD} enables DART to maintain strong
1180 performance despite having fewer negative samples, making it well-suited for large-scale deploy-
1181 ments with limited resources.
1182

1183

1184 **N ABLATION STUDY FOR RAM**
1185

1186

1187

1188

1189
1190 Table 11: Retrieval Performance (%) with Varying Mini-Batch Sizes (Number of Samples per
1190 Batch).

1191 1192 1193 k	1194 1195 1196 1197 1198 1199 1200 LOSS	1194 1195 1196 1197 1198 1199 1200 Text \rightarrow Audio			1194 1195 1196 1197 1198 1199 1200 Audio \rightarrow Text		
		1194 R@1	1195 R@5	1196 R@10	1194 R@1	1195 R@5	1196 R@10
1194 8	1195 SOTA Luong et al. (2024) $\mathcal{L}_{\text{IOT}} + \mathcal{L}_{\text{UWD}}$	20.44	49.95	65.54	32.91	63.74	77.11
		24.24	57.57	72.49	35.21	65.93	78.78
1196 32	1197 SOTA Luong et al. (2024) $\mathcal{L}_{\text{IOT}} + \mathcal{L}_{\text{UWD}}$	33.77	69.94	82.44	43.36	74.19	85.78
		36.46	71.95	83.94	46.39	78.05	88.29
1198 128	1199 SOTA Luong et al. (2024) $\mathcal{L}_{\text{IOT}} + \mathcal{L}_{\text{UWD}}$	39.28	74.50	85.85	52.45	80.25	90.17
		39.94	75.07	85.64	53.08	83.49	90.59

1201

1202

1203 Table 12: Core RAM variants on AudioCaps (ResNet38–BERT, batch size 64).

Marginal Design	A \rightarrow T R@1	A \rightarrow T R@10	T \rightarrow A R@1	T \rightarrow A R@10	Mean R@1
uniform (w/o RAM)	51.52	90.80	38.31	85.77	44.92
corr (correlation)	50.05	90.60	38.64	85.22	44.35
emavar (EMA variance)	51.83	90.49	38.52	85.56	45.18
kurt (kurtosis)	51.93	90.60	38.64	85.74	45.29
RAM (full)	52.56	90.60	38.54	85.56	45.55

1210

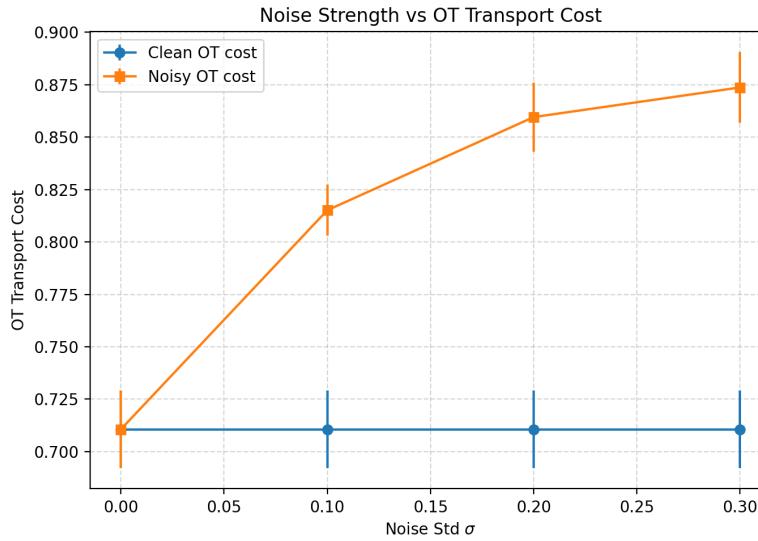
1211

1212 Table 13: Corr-based RAM variants on AudioCaps (ResNet38–BERT, batch size 64).

Marginal Design	A \rightarrow T R@1	T \rightarrow A R@1	Mean R@1
corr-gap	51.83	38.12	44.97
corr-burt	50.99	38.75	44.87

1217

1218



1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

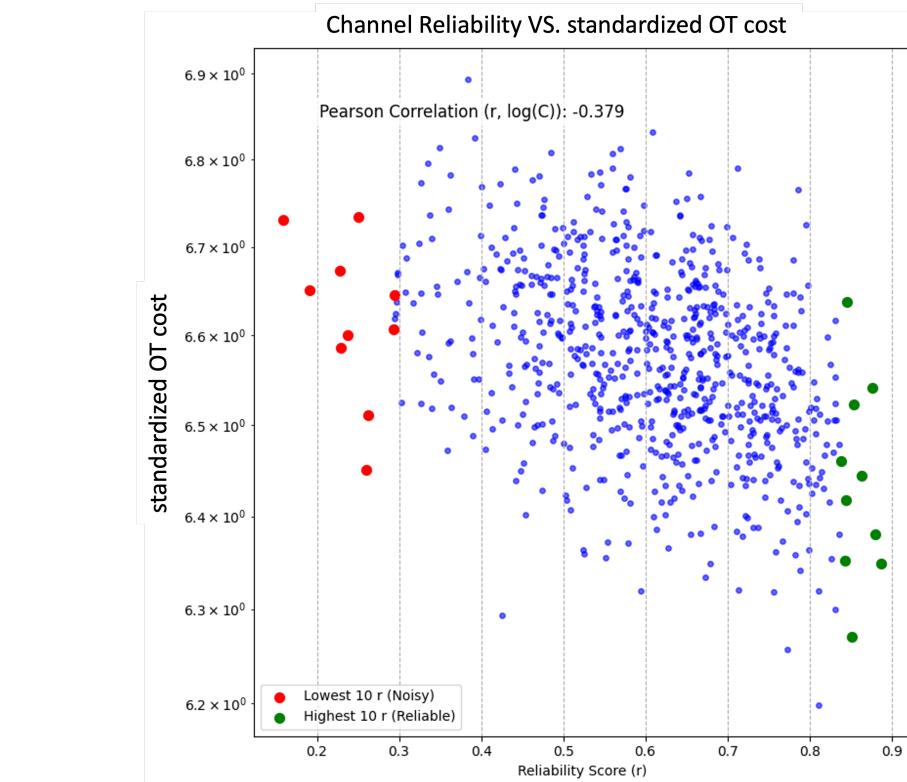


Figure 3: Relationship between reliability scores and standardized OT cost in a trained DART model. For each feature channel j , we compute its reliability score r_j and standardized OT cost \tilde{C}_j . Each point corresponds to one channel, and we report the Pearson correlation $\rho(r, \log \tilde{C})$ in the legend. Channels with low reliability (highlighted in red) concentrate in the high-cost region, while high-reliability channels (highlighted in green) lie in the low-cost region, indicating that RAM successfully down-weights noisy, high-cost channels in the transport.

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295