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ABSTRACT

Cross-modal matching tasks have achieved significant progress, yet remain lim-
ited by mini-batch subsampling and scarce labelled data. Existing objectives, such
as contrastive losses, focus solely on instance-level alignment and implicitly as-
sume that all feature dimensions contribute equally. Under small batches, this
assumption amplifies noise, making alignment signals unstable and biased. We
propose DART (Dual-level Alignment via Robust Transport), a framework that
augments instance-level alignment with feature-level regularization based on the
Unbalanced Wasserstein Distance (UWD). DART constructs reliability-weighted
marginals that adaptively reweight channels according to their cross-modal con-
sistency and variance statistics, highlighting stable and informative dimensions
while down-weighting noisy or modality-specific ones. From a theoretical per-
spective, we establish concentration bounds showing that instance-level objectives
scale with the maximum distance across presumed aligned pairs, while feature-
level objectives are governed by the Frobenius norm of the transport plan. By
suppressing unmatched mass and sparsifying the transport plan, DART reduces
the effective transport diameter and tightens the bound, yielding greater robust-
ness under small batches. Empirically, DART achieves state-of-the-art retrieval
performance on three audio-text benchmarks, with particularly strong gains under
scarce labels and small batch sizes.

1 INTRODUCE

Audio-text retrieval is a fundamental cross-modal matching task that supports applications in mul-
timedia search (Elizalde et al 2019) and content understanding (Oncescu et al.| |2024). The key
challenge lies in learning aligned representations that capture semantic correspondences between
heterogeneous modalities, enabling the retrieval of audio clips given text queries and vice versa.
Existing approaches, including learn-to-match frameworks (Luong et al.l [2024; |Shi et al.; [Li et al.,
2019)), contrastive learning (Jia et al., 2021; Radford et al., 20215 |Mei et al., 20225 [Wu et al., |2023)),
and triplet losses (Wei et al., 2021} Zeng et al.,2022), can be viewed under a unified inverse optimal
transport (IOT) perspective (Shi et al., [2023), where paired supervision is used to learn a shared
metric between audio and text features.

In practice, this metric is optimized from mini-batches. As batch size decreases, the variability
across samples increases, amplifying feature fluctuations and making the learned metric more sus-
ceptible to noise and bias. We attribute this vulnerability to the reliance on instance-level distances,
where similarities are computed with Euclidean or cosine measures that implicitly treat all embed-
ding dimensions as equally informative. However, audio and text embeddings are inherently het-
erogeneous: some dimensions encode stable semantic cues, while others capture modality-specific
noise or unstable patterns. When all dimensions are aggregated uniformly, noisy channels may dom-
inate the similarity measure, leading to unstable alignment signals and biased gradients even for se-
mantically matched pairs. Prior channel-weighting methods (e.g., [Luong et al.l|2024) partly address
this by rescaling feature dimensions, but their objectives remain purely instance-level: per-channel
coefficients only change how each dimension contributes to a single sample distance d(z;, y; ), with-
out altering the underlying instance-level IOT formulation or its sensitivity to worst-case pairs.
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This observation motivates moving beyond purely instance-level alignment. To mitigate instabil-
ity and bias, we propose DART (Dual-level Alignment via Robust Transport), which augments
instance-level alignment with feature-level regularization. At the instance level, DART adopts an
IOT objective to enforce tight alignment between paired audio and text samples. At the feature
level, DART treats each embedding channel as a candidate unit for cross-modal matching and min-
imizes the Unbalanced Wasserstein Distance (UWD) between audio and text features. Noisy chan-
nels tend to incur large transport costs, which naturally leads UWD to assign little mass to them,
thereby avoiding spurious alignment, while stable semantic channels with smaller costs are pref-
erentially matched. Beyond this implicit filtering, DART introduces Reliability-Aware Marginals
(RAM) as priors into UWD. For each channel, it computes a reliability score based on variance,
kurtosis, and cross-modal correlation. These scores are normalized into probability distributions
that serve as marginals in UWD, guiding the transport plan toward channels with higher reliability
scores that are more likely to capture stable semantic information, while downweighting volatile or
modality-specific ones. This noisy-channel intuition is further supported by our empirical analysis
in Appendix (Fig. 2, where injecting synthetic noise into feature channels leads to a monotonic
increase in their standardized OT cost.

From a theoretical perspective, we establish that instance-level alignment admits concentration
bounds scaling with the maximum pairwise distance within a batch, whereas the proposed feature-
level formulation yields bounds governed by the Frobenius norm of the transport plan. This change
of the controlling quantity from a worst-case distance D,,.x to an aggregate norm ||P*||r explains
why the added feature-level objective is less sensitive to outliers and noisy channels. This shift of
the controlling quantity from an extremal distance to an aggregate norm explains why feature-level
regularization provides tighter guarantees and greater robustness under small batches or noisy labels.
Overall, our contributions are threefold:

* We introduce DART, a dual-level alignment framework that augments instance-level IOT
with feature-level regularization, enabling more robust cross-modal retrieval.

* We design reliability-aware marginals that incorporate statistical cues (variance, kurtosis,
correlation) to reweight feature channels, suppressing noisy or modality-specific ones.

* We provide a theoretical analysis that connects DART’s feature-level formulation to tighter
concentration bounds, and demonstrate state-of-the-art performance on three audio-text
retrieval benchmarks, particularly under small-batch and limited-label conditions.

2 PRELIMINARIES

2.1 ENTROPIC OPTIMAL TRANSPORT AND INVERSE OPTIMAL TRANSPORT.

Entropic optimal transport (EOT) extends classical OT by adding an entropy regularization term,
which improves computational efficiency and yields smooth couplings (Cuturi, |2013)). Given empir-
ical measures i and v, EOT solves
min (C,II) — eH (IT), 1

plon (G, 1) (ID) ey
where C is the ground cost and U(p,v) = {IL € R}*"|II1, = p, 1171, = v} enforces
marginal constraints. In practice, the true cost C is unknown. Inverse optimal transport (IOT)
(Dupuy et al., 2016; |Li et al., 2019; [Stuart & Wolfram, 2029) learns a parameterized cost C? such
that the induced coupling I1? aligns with observed matches II:

min KL(T||TI%), where II” = arg _min <C‘9,H>—6H(H). 2)
0 I1cU (u,v)

2.2 AUDIO-TEXT RETRIEVAL AS IOT.

Audio-text retrieval aims to align audio with corresponding text captions across modalities. Given
audio and caption data pairs D = {(x;, y;) }I_,, where x; represents the i-th audio sample and y; the
associated text caption, the goal is to learn a mapping that enables retrieving the correct text caption
for a given audio query, and vice versa. To achieve this, the audio samples are encoded via an audio
encoder fy(-), while the text captions are encoded via a text encoder g4(-). A distance function
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d(-,-), such as Euclidean or cosine distance, is used to measure the similarity between the audio
and text embeddings, denoted as d(fo(z;), g4(y;)). The network is then optimized to minimize the
distance for paired embeddings while maximizing it for non-paired embeddings.
During retrieval, given a set of audio samples Xy = {xl}t , and caption samples Yo = {y; }J 1
the distance function d(-, -) is applied to compute pairwise similarities between audio and caption
embeddings. For a specific audio sample x;, its corresponding caption y is determined by minimiz-
ing the distance score over all captions in Y :
d ), ,
j = arg min SXP( (fo (x:) .90 (4i)) 3)
vi €Y 3 ity exp (d (fo (i) 5 96 (Yr)))

The audio-text retrieval task can be framed as an IOT problem. Consider the ground cost matrix
ij = d(fo(x:), g4 (y;)), which represents the alignment costs between the audio and text embed-
dings produced by networks. The optimal transport solver then generates a coupling matrix IT?,
based on Eq[I] which encodes the inferred matching relationships between the audio and text pairs
under the current model parameters. Let the observed coupling matrix II to encode all matching
relationships in the dataset D = {(z;,¥;)}", covering both paired and non-pair data. During
trammg, the network updates the cost matrix C? (and by extension, II%), to better ahgn with the
label II. This corresponds to minimizing the divergence between the observed coupling IT and the
coupling TT? induced by the parameterized cost matrix C?.

2.3  LIMITATIONS OF INSTANCE-LEVEL IOT.

While this IOT perspective provides a unifying view, it also reveals key limitations. In mini-batch
training, the cost matrix is estimated from partial data and aggregates all embedding dimensions
uniformly. This uniform pooling ignores the heterogeneity of audio and text embeddings: for ex-
ample, in the caption “A drone is whirring,” certain dimensions may respond strongly to the noun
“drone,” while others capture the acoustic pattern of “whirring.” In practice, many dimensions carry
meaningful semantics, but others encode modality-specific noise or unstable variations. When all
channels contribute equally, noisy ones can dominate the distance computation, distorting the esti-
mated cost matrix and amplifying variance in small batches. Concretely, the instance-level distance
d(x;,y;) pools all channels (e.g., d(x;,y;) = >_4(ia — yja)?), so a few noisy or high-variance
channels can substantially inflate d(x;, y,) for specific matched pairs. As a result, the learned metric
is biased toward spurious fluctuations rather than true semantic alignment. This intuition is for-
malized in Section 4, where Theorem 1 shows that the concentration bound for the instance-level
10T loss is governed by the maximum alignment distance D .x = MAaX(; 5. 1,50 d(x;, yj), and is

therefore dominated by such inflated pairs. This motivates our dual-level formulation.

3 DART: DUAL-LEVEL ALIGNMENT VIA ROBUST TRANSPORT

3.1 MINI-BATCH INSTANCE-LEVEL IOT

Given a mini-batch of & audio-text pairs (X° Y?), the encoders f, and g4 produce embeddings
U’ € RF*du and V? € R¥*4v The cost matrix is defined as

CLNi. 1) = (UL, V2, o

Sample
where d(-, ) is a distance metric (Euclidean in our implementation). An entropy-regularized OT

solver (Sinkhorn) produces a coupling II(?:?)®, and the IOT objective minimizes the divergence to
the ground-truth matching:

Lior(0,¢) = KL(ﬁb | H(9’¢)b)~ (5)

(0,9)b

which reduces to —log IT;,;”"’" under one-to-one alignment.

This mini-batch IOT formulation is widely used and provides a baseline for retrieval tasks. How-
ever, it estimates costs from partial data and aggregates all embedding dimensions uniformly, which
makes it sensitive to batch variance and noisy channels. We therefore extend IOT with feature-level
optimization, as detailed next.
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Figure 1: An overview of the proposed DART framework. DART aligns audio and text modalities
through both instance-level optimization using the Inverse Optimal Transport (IOT) objective and
feature-level optimization via channel-wise distribution alignment. The latter minimizes the Un-
balanced Wasserstein Distance (UWD) with reliability-aware marginals to guide the transport plan
toward stable semantic channels while suppressing noisy or modality-specific ones.

3.2 FEATURE-LEVEL DISTRIBUTION ALIGNMENT

Audio and Text Feature-Level Representations. In DART, each feature dimension is treated as
an independent distribution across the mini-batch and aligned across the two modalities. Given the
audio feature matrix U® and text feature matrix V?, the j-th column of these matrices is interpreted
as a distribution of the j-th feature across the mini-batch samples. Specifically, for the audio and
text modality:

fo(ah), 00 (2),
U’(:,j) = : V(L)) = : : (6)
fo (a2, 90 (),
Here, fy (xf)j denotes the value of the j-th feature dimension for the i-th audio sample. Similarly,

on the text side, each feature dimension j corresponds to a k-dimensional vector representing the
distribution of this feature across the mini-batch samples.

Ground Metric (Feature-Level). The Wasserstein distance has become a widely adopted metric
for measuring the discrepancy between probability distributions, as it considers both distributional
shifts and underlying geometric structures Panaretos & Zemel (2019). Leveraging this property,
DART promotes alignment at the feature level between audio and text modalities via optimal trans-
port. Specifically, let U € R¥*?u and V® € RF*9v denote the audio and text feature matrices for
the b-th mini-batch of size k, with d,, and d,, as their respective feature dimensions. DART constructs

a feature cost matrix Cf:i;ﬁ)f; € R4y whose (i, j)-th entry measures the Euclidean distance be-
tween the distributions of the i-th audio feature dimension and the j-th text feature dimension within

that mini-batch:
o0 4] = U°C,40) = VP, )], - @

Feature

Here, U®(:,i) and V°(:,) are the k-dimensional vectors corresponding to the i-th and the j-th
features of audio and text, respectively, across the samples in the b-th mini-batch.

(Unbalanced) Wasserstein Distance between Feature Distributions in a Mini-Batch. In many
real-world scenarios, feature distributions across modalities (e.g., audio and text) are inherently
misaligned due to noise, missing data, and variations in feature quality or scale. Such discrepan-
cies become more pronounced in randomly sampled mini-batches, where the total “mass” and sup-
port of the distributions may differ across modalities. Consequently, as required by the traditional
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Wasserstein distance, may result in suboptimal alignment. To alleviate this, DART utilizes the un-
balanced Wasserstein distance (UWD), which relaxes the mass-conservation constraint by allowing
mass “leakage”.

Formally, given the cost matrix Cg";‘:j;)f;,

problem, with P? as the transport plan:

the UWD is the optimal value of the following optimization

ul )+ KL(P")"1g,

P’ =arg min [<C(9’¢)b Pb> + 7 (KL(P"1,, vg,))],  ®

po E]Ri“ X dy Feature®

where (-, -) denotes the Frobenius inner product, and 14, (14,) is a vector of ones of length d,,(d,).

The first term, <C£‘Z;ﬁi, Pb>, represents the overall transport cost, capturing how dissimilar the

audio and text feature distributions are within the mini-batch. The second term adds a KL-based
regularization that penalizes discrepancies between the marginals of the transport plan P and the
uniform distributions ulc’lu and vgv. The parameter 7 controls the trade-off between minimizing the

cost and maintaining mass consistency.

Mini-Batch Feature-Level Loss. Once P? is obtained, the feature-level UWD loss within the b-th
mini-batch is defined by the total transport cost:

Lhw(0,9) = (Claie: P) ©

3.3 RELIABILITY-AWARE MARGINALS (RAM)

To further guide feature-level transport toward stable semantic channels and away from volatile or
modality-specific ones, DART builds reliability-aware marginals that act as priors in the unbalanced
OT objective, steering mass allocation toward informative features and reducing the influence of
noisy or unstable dimensions.

Channel Reliability Estimation. ~Given audio and text embeddings U® € R**¢ and V? ¢ RF*4
for a mini-batch of size k, the reliability of the j-th channel is estimated from three complementary
statistics:

T = a(corr(Ub(:,j),Vb(:,j)) - Var(Ub(:,j),Vb(:,j)) - kurt(Ub(:,j),Vb(:,j))>, (10)

where corr denotes normalized cross-modal correlation, var captures variance instability, and kurt
measures heavy-tailedness. o(-) is the sigmoid function. A higher score r; € (0,1) indicates
that channel j is more likely to capture stable cross-modal semantics. Detailed definitions of these
statistics and their computation are provided in Appendix [C}

Normalization into Marginals. The reliability scores are normalized into probability distribu-
tions:

__r b_ T
2T iri

where r = (r1,...,74) is the vector of channel reliabilities. These marginals replace the uniform
ones in the UWD formulation, biasing the transport plan toward reliable channels.

b

u v

(1)

Reliability-Aware UWD Loss. Substituting the marginals into the UWD formulation yields the
reliability-aware feature-level loss:

Lhwor(0:9) = min (CL P! +7[KL(P'Ly | u?) + KL(P") T1a]v")|.  (12)

)
Pb>0 Feature

Here the KL terms penalize deviations of the transport marginals from the reliability priors (u®, v?).
As a result, channels with higher reliability scores receive larger marginal mass, encouraging P?
to allocate more transport to them. This reduces the overall cost term {Creature, Pb>, effectively
lowering the feature-level loss and constraining the solution toward semantically stable dimensions
while suppressing noisy ones.
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Stabilization via EMA. To prevent fluctuations in reliability estimation from small batches,
DART aggregates per-channel scores across distributed workers and updates them using exponential
moving average (EMA). Specifically, for each channel j, the global reliability score () at step t is

updated as !
D =gl (1 pyel?, (13)
where fj(-t) is the score from the current mini-batch and 8 € (0, 1) is the smoothing coefficient,

which we set to 0.9 in all experiments. This EMA update ensures that transient spikes or drops in
small batches do not immediately affect the marginals.

DART then integrates this reliability-aware UWD loss into the overall training objective to encour-
age cross-modal alignment. The total loss is given by:
1B
Lo = min 5 > (Lior(0.6) + Aiwpr (0. 0)) | (14)

b=1

where /J{’OT(G, @) is the loss defined in and A is a hyperparameter that balances the two losses.

4 CONCENTRATION BOUNDS FOR L;or AND Lywp

Theorem 1 (Concentration of Instance-Level IOT Loss). Let 6 € (0,1) and m be the fixed mini-
batch size. Suppose the log function is L-Lipschitz on [e, 1] and the optimal transport plan I1 satisfies

IT;; € [e, 1]. Define the maximum alignment distance over the ground-truth support II as

Dmax - max d('riayj)v (15)
(4,7): IL;; >0
namely the largest distance among audio-text pairs labeled as matches. Then, with probability at
least 1 —§:
el? log(2/6)

[£for — Lion|” € G- (D + €(2logy(m) + 1)) /257, (16)

where B is the number of training batches.
Theorem 2 (Concentration of Feature-Level UWD Loss). Let § € (0, 1) and consider the feature-

level UWD loss Lywp in equation |§| Suppose the mini-batch cost matrix C%iﬁ{fre € Rduxdv jg
estimated from m i.i.d. paired samples, with variance bounded by o>.

Then, with probability at least 1 — §:

* " 1
|LGwp — Lowp| < IP*llF - €m + B s (17)

2
where €,, = 1/ %5(2/5), T is the regularization parameter in equation and P* is the optimal
feature-level transport plan.

The two bounds highlight a key distinction between instance-level and feature-level formulations.
For the instance-level loss in Theorem([I} the deviation is controlled by the largest alignment distance
Dyax among audio-text pairs labeled as matches. Because mini-batches only contain a restricted
subset of samples, their feasible matching set is limited. When the correct partner of a sample is
absent from the batch (e.g., due to label noise), the transport plan may be forced to assign mass to
a higher-cost alternative. This inflates the effective D,y in mini-batch training compared to the
global dataset, leading to a looser concentration bound and larger variance in gradient estimates.

In contrast, the feature-level bound in Theorem [2{ depends on the Frobenius norm of the transport
plan |P*||z. This term measures the squared sum of all transport assignments across channels,
so the deviation is controlled by the overall mass distribution rather than dominated by a single
worst-case pair. As a result, occasional noisy or high-cost channels contribute only marginally
to the bound, while the majority of stable semantic channels reduce the effective variance. This
aggregation effect makes the bound inherently tighter and less sensitive to outliers, thereby providing
greater robustness under small batches or noisy labels.
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Table 1: Retrieval performance on AudioCaps (AuC) and Clotho (Clo) datasets. All methods are
trained with a batch size of 256, consistent with the settings reported in the original papers, except
for the models in the second block (rows with CNN/BPE encoders), where the batch size is reduced
to 6 due to GPU memory constraints. For DART variants, w/ RAM denotes using reliability-aware
marginals, while w/o RAM reduces to uniform marginals.

Method | Encoder | T— A(AuC) A —T(AuC) | T— A(Clo) A — T (Clo)
‘ ‘ R@1 R@10 R@1 R@10 ‘ R@1 R@10 R@1 R@10

(Oncescu et al.|[2021) 28.1 79.0 33.7 83.7 9.6 40.1 10.7 40.8
(Mei et al.|[2022) Audio: 339 82.6 394 83.9 14.4 49.9 16.2 50.2
(Deshmukh et al.|[2022) | ResNet38 | 33.1 80.3 39.8 84.6 15.8 49.9 17.4 543

(Wu et al.|[2023) Text: 36.7 83.2 453 87.7 12.0 43.9 15.7 51.3
(Luong et al.|[2024) BERT 39.10 8578 4994 9049 | 16.65 52.84 22.10 56.74
DART w/o RAM 40.20 8545 5444 90.59 | 17.30 5335 2248 57.03
DART w/ RAM 41.67 8597 55.27 90.38 | 17.18 54.52 23.54 58.85

(Wang et al.|[2023) | A: CNN 33.72 8359 39.14 8224 | 16.63 5198 2047 55.50
DART w/o RAM | T: BPE 3312 8193 4330 84.11 | 19.67 57.18 26.50 63.25
DART w/ RAM 3342 8253 4330 84.11 | 20.07 59.08 26.79 62.00

(Chen et al.||2023) | A: Beats 54.2 91.2 66.9 96.7 36.7 74.4 259 64.7
DART w/o RAM | T: BERT 56.2 93.2 71.1 97.3 37.0 75.9 27.5 68.9
DART w/ RAM 56.9 93.2 72.1 97.0 37.5 75.9 27.9 69.5

5 EXPERIMENTS

We evaluate the effectiveness and generalization of DART on audio-text retrieval benchmarks and
beyond. We compare DART against standard baselines including contrastive learning (Radford
et al.l|2021;Jia et al.}|2021), triplet losses (Wei et al.,2021)), and OT-based methods (Shi et al.,[2023)).
All methods are trained under the same conditions unless otherwise noted. Detailed implementation
settings are provided in Appendix [E]

DART consistently enhances overall audio-text retrieval performance. We present DART on
the AudioCaps and Clotho datasets, comparing them with state-of-the-art methods using the R@1
and R@10 metrics. To ensure a fair comparison, we categorize the baselines based on their au-
dio/text encoder architectures and adopt identical model settings, including batch sizes, for each
group. As shown in Tab. [I] DART consistently superior or comparable performance across all en-
coder settings. For instance, with ResNet38+BERT encoders on AudioCaps, DART outperforms
the strongest baseline |Luong et al.| (2024) by 4.5% (A—T) and 1.1% (T—A) in R@1. Similar
gains are observed on Clotho, where DART leads in both R@1 and R@10. Despite matching the
ONE-PEACE’s|Wang et al.|(2023)) constrained batch size of 2 (required due to model scale), DART
achieves superior performance in 5 of 8 key metrics while maintaining comparable results in others.

DART remains robust under small batches and noisy or semi-supervised labels. We first eval-
uate DART’s performance under noisy and semi-supervised conditions on the AudioCaps dataset.
Noise is introduced by randomly replacing text captions with unrelated ones at ratios of 20% and
40%, while semi-supervised settings simulate scenarios where a portion of the data lacks labels
entirely by randomly masking parts of the label information (in IT). In this experiment, we set a
small batch size of 32 to test DART’s performance under limited negative samples and noisy data
conditions. The results in [2| show that DART maintains stable retrieval performance even with re-
duced negative samples and noisy inputs, demonstrating its resilience to input perturbations. This
robustness in challenging settings highlights DART’s capacity to generalize well even when faced
with noisy data and limited label availability. These findings underscore DART’s suitability for
large-scale, real-world applications where data quality and label availability may be limited, and
computational resources are constrained.

Zero-Shot Sound Event Detection. We evaluate DART’s generalization ability by conducting
zero-shot sound event detection on the ESC-50 dataset. Models are pretrained on the AudioCaps
dataset for the audio-caption matching task and applied directly to ESC-50 without additional fine-
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Table 2: Retrieval performance on the AudioCaps dataset under varying semi-supervised and noisy
conditions. The top rows show semi-supervised settings with 20% and 40% unlabeled data, while
the bottom rows represent noisy correspondence settings with 20% and 40% of captions replaced by
unrelated ones. All methods use a batch size of 32.

Condition Method Text — Audio Audio — Text
R@l R@5 R@10 R@l R@5 R@I10
Triplet loss 1534 4834 66.88 2429 5283 69.84
Semi-Supervised Contrastive loss 28.58 65.55 81.50 35.63 68.42 80.36
(20% Unlabeled) (Luongetal.,2024) 3293 67.43 80.89 39.81 70.53 82.44
DART 3485 7044 8334 45.03 76.28 86.62
Triplet loss 0.1 0.52 1.06 0.1 0.52 1.46
Semi-Supervised  Contrastive loss 20.58 5396 70.72 27.37 5872 7521
(40% Unlabeled) (Luong et al.,2024) 28.58 62.69 77.19 35.00 69.27 79.72
DART 33.24 69.55 82.74 43.67 7439 87.46
Triplet loss 16.82 4639 62.71 19.64 46.39 59.77
Noisy Labels Contrastive loss 25.80 61.56 78.16 33.33 66.66 78.78
(20% Noisy) (Luong et al., 2024) 31.32 67.11 80.48 3835 73.77 84.85
DART 3287 67.77 81.06 43.57 7398 86.72
Triplet loss 0.58 1.58 2.13 1.14 491 8.98
Noisy Labels Contrastive loss 2223 5590 7276 2695 59.03 73.24
(40% Noisy) (Luong et al.,2024) 26.20 61.31 76.17 3437 6530 77.84
DART 29.67 6530 80.20 37.09 67.18 8045

tuning. Following Luong et al.| (2024)), all classes in the test set are converted to template captions,
such as “This is a sound of class.” As shown inE], we report the R@ 1, R@5, R@10, and mAP scores
for models trained with three types of IOT loss under different constraints: triplet loss, contrastive
loss, matching loss (as used in|Luong et al.[(2024)), and our proposed DART, with a consistent batch
size of 128 for all models. DART achieves the highest R@1 score of 80.75%, outperforming triplet
loss (71.25%), contrastive loss (72.25%), and matching loss (79.25%). It also shows competitive
performance in R@5 and R@10, closely matching the results of Luong et al.| (2024). This demon-
strates DART’s superior generalization to unseen sound events in a zero-shot setting. Notably, the
matching loss in[Luong et al.|(2024) is similar to our Lior in[5] and the improvements highlight how
the feature-level Lywp in DART enhances alignment between audio and text distributions, boosting
performance.

DART introduces negligible GPU memory overhead compared to instance-level baselines. A
potential concern is whether feature-level transport increases GPU memory consumption. For a
batch size of k and feature dimension d=512, the feature-level cost matrix CFeature??)? involves
computing d? = 5122 pairwise distances, each costing O(k) operations. Storing all intermediate
results in float32 requires only a few megabytes: the embedding matrices U?, V? € R¥*512 occupy
about 64KB each when k=32, and both the cost matrix CFeature and the transport plan P’ require
roughly 1MB each. The unbalanced Wasserstein loss LZUWD in Eq. (16) is computed as a point-
wise product (CFeature, P?), requiring no additional buffers. Importantly, P® in Eq. (15) can be
computed on CPU via offloaded OT solvers and is detached from the gradient graph, so during
backpropagation only Creyure contributes gradients. In practice, this means DART introduces only
~2MB of extra GPU memory with no additional GPU cost for optimizing P?. Moreover, reliability
estimation (variance, kurtosis, and cross-modal correlation) can be precomputed or updated offline,
further ensuring that DART fits within the same GPU memory budget as instance-level IOT methods.
For extremely high-dimensional encoders (e.g., d > 2048), one can further ensure scalability by first
projecting features to a lower dimension d’ < 1024 with a lightweight linear layer before computing
feature-level OT, or by applying low-rank approximations of the cost matrix (such as Nystrom-type
methods) to reduce the effective quadratic dependence on d.
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DART generalizes effectively to other cross-modal tasks such as image-text retrieval. Be-
yond audio-text retrieval, we evaluate DART on the MSCOCO dataset for image-text matching. As
shown in Tab.[3] DART consistently improves both image—text and text—image retrieval compared
to strong baselines. This demonstrates that the proposed dual-level alignment and reliability-aware
marginals are not tied to the audio-text domain, but transfer naturally to other heterogeneous modal-
ities. The results highlight DART’s potential as a general solution for cross-modal matching tasks.

Ablation Study. We conduct ablation studies

to understand the contribution of each compo- Table 3: Image-text retrieval performance on
nent in DART. First, the dual-level objective  MSCOCO dataset. Results are reported in R@1.
is necessary. As shown in Appendix [9] using Method
only the feature-level loss Lywp leads to almost
zero R@1, since feature-level OT alone cannot  (Shi et al.)) 19.15 20.90
recover cross-modal correspondences. In con-  DART (ours) 21.27 23.34
trast, the instance-level IOT loss Lior already
provides a strong baseline, and jointly optimizing Lior+Luywp yields the best performance, with an
absolute R@1 gain of about 12.3% over Lywp alone. This confirms that the two levels play com-
plementary roles rather than being redundant: Ljor anchors sample-level alignment, while Lywp
regularizes feature channels to suppress noisy directions.

Image—Text Text—Image

Second, reliability-aware marginals are both effective and interpretable. Replacing RAM with uni-
form marginals (“DART w/o Reliability” in Tab. [I) consistently degrades retrieval accuracy across
all encoder settings, indicating that treating all channels equally is suboptimal. A more fine-grained
ablation in Appendix (Tabs. [I2] and [I3)) further decomposes RAM into uniform, correlation-only,
variance-only (emavar), kurtosis-only, and the full corr—var—kurt combination. These results show
that (i) correlation alone is unstable and can even underperform the uniform baseline in mean R@1,
(i1) variance and kurtosis each provide meaningful gains when used alone, acting as effective sta-
bilizers against high-variance or heavy-tailed channels, and (iii) the full RAM achieves the highest
mean R@ 1 among all variants. In other words, the non-linear corr—var—kurt design is not a cosmetic
heuristic: all three statistics are needed to obtain both robustness and peak accuracy, while keeping
the reliability module light-weight and easy to compute.

Finally, additional experiments on batch size (Tab. [IT)), the loss-weighting parameter A in Eq.
(Tab. [6), and alternative marginal choices for the UWD formulation (Tab. [7) show that DART is
robust to moderate changes of these hyperparameters.

6 CONCLUSION

We presented DART, a dual-level alignment

framework for audio-text retrieval that com-  Table 4: The zero-shot sound event detection on
bines instance-level IOT with feature-level reg-  the ESC50 test set, the RQ1 score is equivalent to
ularization via unbalanced optimal transport. accuracy.

By treating each embedding channel as a can-

: : . . L Loss Audio — Sound
didate unit and introducing reliability-aware
marginals, DART guides transport toward sta- R@l R@5 R@10 mAP
ble semantic dimensions while suppressing Triplet 7125 9175 95.75 80.09
noisy ones. From a theoretical standpoint,  oniactive 7225 93.00 96.75 80.84
we established concentration bounds showing 1o 7925 975 9925 87.09
that instance-level objectives are governed by — pART 8075 9725 9975 87.78

the maximum alignment distance, whereas the
feature-level formulation depends on the Frobenius norm of the transport plan, leading to tighter
guarantees under small batches and noisy labels. Empirically, DART consistently improves retrieval
accuracy across AudioCaps, Clotho, and ESC-50, and further generalizes to image-text retrieval.
These results highlight its robustness, efficiency, and applicability to broader cross-modal matching
tasks. This work marks an initial step toward feature-level alignment in cross-modal tasks. While
our reliability scores are based on simple statistics, future work may design more flexible estimators
and scale the approach to large multimodal models. We hope DART encourages further exploration
of feature-level regularization as a complement to instance-level matching.
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LLM USAGE STATEMENT

We used large language models (e.g., ChatGPT) as general-purpose writing assistants to improve
the readability and clarity of the manuscript. The research ideas, methodology, experimental design,
and analysis were conceived and carried out entirely by the authors.

APPENDIX OVERVIEW

The appendix is organized into the following sections with additional analysis, proofs, and imple-
mentation details:

* In Section |A] we provide related works.
* In Section[B] we provide full training pseudocode of DART.

* In Section|[C] we detailed implementation of the reliability-aware marginal estimation mod-
ule.

e In Section we present theoretical analysis, including notation, mini-batch sampling
paradigms, and concentration bounds for LioT and Lywp.

¢ In Section E], we describe implementation details such as hardware, software stack, and
training setup.

e In Section@ we summarize dataset statistics for AudioCaps, Clotho, and ESC-50.

¢ In Section[G] we detail evaluation metrics and baselines.

* In Section[H] we list the complete hyperparameter settings for all encoder configurations.
* In Section[l} we analyze the effect of the weighting parameter X in Eq. equation [T4]

* In Section[]] we study alternative marginal distributions for the feature-level loss.

* In Table[§] we evaluate the effect of temperature values on retrieval performance.

e In Table @ we conduct ablation studies on the two loss components Lior and Lywp.

e In Table@], we show the effectiveness of Lywp as a complementary constraint under dif-
ferent sample-level objectives.

* In Table[TT] we investigate the impact of varying mini-batch sizes on DART’s performance.

A RELATED WORKS

Cross-modal matching is a fundamental challenge in multi-modal learning, aiming to establish
meaningful correspondences between two modalities, such as text-image (Jia et al, |2021; Rad-
ford et al.l [2021; [Wei et al. [2020), text-audio (Wu et al., 2023} [Deshmukh et al., 2022)), by align-
ing their underlying distributions. Recent advancements have focused on leveraging metric learn-
ing techniques to learn joint embedding spaces where semantically similar instances from different
modalities are mapped close to each other, using methods such as triplet loss (Mei et al., 2022 |Wei
et al., 2020), contrastive learning (Radford et al., 2021} [Yang et al., 2022)), and matching loss (Shi
et al.). Despite their success, these approaches treat all embedding dimensions equally, implicitly
assuming that each channel contributes similarly to semantic alignment. In practice, however, many
dimensions may be noisy, redundant, or modality-specific, making uniform treatment suboptimal.
Although [Luong et al.|(2024) introduces per-channel coefficients that reweight feature dimensions,
their formulation only assigns weights to corresponding dimensions across modalities (e.g., audio
7-th dimension with text j-th dimension), which effectively assumes one-to-one channel alignment.
Such a constraint overlooks potential cross-channel correspondences (e.g., an audio rhythm dimen-
sion aligning better with a textual verb-related dimension), thereby limiting flexibility. Moreover,
their method still relies heavily on sample-level supervision, leaving it vulnerable to small-batch
variance and noisy labels.

B ALGORITHM
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Algorithm 1 DART

Input: Initialize audio encoder fy, text encoder g4, training data pairs D, number of mini-batches
B
repeat
for b =1to B do
Sample (X?,Y?) from D;
Embeddings U® = fp(X?), Vb = g,(Y?);
Compute cost matrices C? Clequre by ?? and[]

Sample> ~Feature
Solve EOT that TT” = EOT(C{,) by[l}
Lior = KL(IT?||II?) with label IT? = eye(1);
Solve UOT that P* = UOT(C},.) by [}
Lywp = <Cgeature7 Pb>
Liott = Lior + AMLuwp
97 QS < 97 ¢ - nv0,¢£tolal;

end for
until converged

C RELIABILITY SCORE COMPUTATION

In this section, we provide the detailed implementation of the reliability-aware marginal estimation
module described in Section The procedure consists of three steps: computing channel-wise
statistics, aggregating them into reliability scores, and stabilizing the estimates across training.

Channel-wise Statistics. For a mini-batch of size k, the audio and text embeddings are denoted
as U?, Vb € R¥*4_For the j-th feature channel, we compute:

1. Cross-modal correlation:

. . <Ub(:aj)_ﬂ'7 Vb(:?j)_5'>
corr(U°(:, 1), VO (2, 7)) = . 2 (18)
10°G,5) =gl - 1VP( ) — 0512
where u; and v; are the sample means of the j-th channel. This normalized correlation
measures semantic consistency between modalities.

2. Variance instability:
var(U(:,5), Vb (:,5)) = Var(U®(:, §)) + Var(V°(:, 5)). (19)
Larger values indicate unstable or noisy activations across samples.

3. Kaurtosis (heavy-tailedness):
kurt(U°(:, 7), V(:, 7)) = Kurt(U®(:, 5)) + Kurt(V°(:, §)), (20)

4
where Kurt(z) = w denotes standardized fourth-order moment. High kurtosis
indicates outliers or bursty patterns.

Score Aggregation. The channel reliability score r; is defined as:
ry = o (corr(UP(:,9), V2, ) = var(UP(:, ), V(. ) = kurt(UP(:, ), V(. 9) ), D)

where o(-) is the sigmoid function. Higher values indicate more stable and semantically reliable
channels. The scores are normalized into probability marginals:

w= = v = = (22)

where r = (11,...,74).
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Stabilization Across Training. Since 7; is computed per mini-batch, it can fluctuate due to ran-
domness in sampling. To stabilize the estimates, we adopt:

* EMA smoothing: Reliability scores are updated across training iterations using exponen-
tial moving average:

(t) (t—1) batch
Ty = BT + (1= 8)-r",
where /8 S [0, 1) isa SmOOthing coefficient.

* Hysteresis rule: Thresholds 7, 71, decide whether to activate or suppress a channel,
avoiding oscillations.

e Warm-up: All channels are considered active during the first 75,1, iterations.
» Freeze: After a fixed epoch, the selection of reliable channels can be frozen for stability.

» Top-K filtering: Optionally, only the K most reliable channels are retained to reduce noise
further.

Implementation Note. All reliability statistics (correlation, variance, kurtosis) are computed in-
dependently from the forward-backward graph and can be executed off-GPU. This avoids additional
GPU memory usage and ensures minimal runtime overhead.

D THEORETICAL ANALYSIS

D.1 SyYMBOL DEFINITIONS

Let the full-batch optimal coupling matrix be IT* € R™*" for n data pairs. For mini-batch stochastic
optimization:

* Let Sy, T, C [n] denote the sample index sets of size m for batch b.

* Let ap : [m] — Sp and By : [m] — T} be index mapping functions that link local mini-
batch indices to global indices.

s Let IT® € R™*™ denote the local coupling matrix for batch b, where I1(p, q) correspond-
ing to the pair (a(p), Bp(g) in the global coupling matrix.

Then we formalize two distinct mini-batch sampling paradigms:

Definition 3 (Global coupling matrix under Non-overlapping Mini-Batch Sampling). Let
I3 € R" " be the global coupling matrix constructed from B non-overlapping mini-batches

{(Sy, )},

HB(i7j){Hb(ab—l(i),ﬁb‘l(j)), if 3bsticSyandjeTh, (23)

0, otherwise.

Proof Roadmap. The theoretical analysis proceeds in three steps:

* Inner Optimization (Coupling Matrix). We first establish the e-strong convexity of the
entropy-regularized OT objective (Lemma [4)), which allows bounding deviations between
the mini-batch coupling II? and the full-batch optimum IT* via the functional gap.

* Mini-Batch Concentration. Using Hoeffding’s inequality, we derive concentration
bounds on the mini-batch OT objective (Lemma [3)), showing how the deviation shrinks
with the number of batches B and depends on the maximum alignment distance M .

* Loss-Level Bounds. Finally, we transfer these results to the loss functions: Theorem
for the instance-level Lior and Theorem E] for the feature-level Lywp, highlighting their
different dependence on Dy, versus ||P*|| p.

Together, these steps show why feature-level regularization yields tighter bounds and better robust-
ness under small batches or noisy data.

14
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D.2 CONCENTRATION BOUNDS OF Lior

In this subsection, we analyze the deviation introduced by mini-batch optimization in solving the
original Inverse Optimal Transport (IOT) problem (3)). The IOT problem comprises two sequential
stages: (1) an outer minimization stage for learning representations, and (2) an inner optimization
stage for computing the coupling (i.e., the probability matching matrix) between point sets. The
inner stage corresponds to a standard Entropy-Regularized Optimal Transport (EOT) problem. Our
analysis focuses on quantifying the discrepancy between the full-batch solution IT* and the mini-
batch solution ITZ.

Lemma 4 (e-Strongly Convexity of EOT Objective). Consider the objective function f(-)
U(u,v) — R for the Entropy-Regularized Optimal Transport (EOT) problem, defined as:

F(ID) = <H, C>—6H(H),

where U (i, v) denotes the set of coupling matrices with marginals  and v, C is the cost func-
tion, and H (II) is the entropy term. Then f is e-strongly convex over the relative interior of
U(u,v). Specifically, for any feasible coupling matrix II; € U(u,v) and the EOT optimizer
IT* := arg mingyey(p,.) f(I1), it holds that:

SITL — T3 < f(IT) — £(IT°). 24)

Proof. For any coupling matrix IT € relint({/ (4, v)) (where II;; > 0), the Hessian operator of f is
given by:

V2f(1_[) = € - diag (1/Hij)7;j )
where the diagonal operator acts on the vectorized matrix. For any tangent direction D € T34(,,..),

we have: )

D;.
(D, V2f(IID)p =€y 1 > ¢[D|
i Y
where the inequality follows from II;; < 1 in the probability simplex. This establishes the e-strong
convexity. O

According to 4} the Frobenius norm deviation between IT* and I8 is upper-bounded by the func-
tional value difference, which allows us to analyze the convergence through the functional gap that:
17 — I*[% < 2(f(I17) — f(I1%)).

Lemma 5 (Concentration Bound of Mini-Batch EOT Objective). Letr § € (0,1) and B > 1, we
have a bound between f(I1®) and f(I1*) depending on the number of batches B that

log(2/6)

|FI07) = fO)| < My =2, (25)

with probability at least 1 — 0. Here, M = D + €(2log,(m) + 1).

Proof. The proof can be found in [Fatras et al.| (2019), Lemma 3], and we restate it here for better
understanding.

To simplify the problem, we first derive an upper bound for the function value f(TI%) of any fea-
sible coupling matrix TT® € R™*™ within a mini-batch. For any X; ~ p and Y, ~ v, we
have | X; — V|| < M, implying ng < M for all (i,5). The Shannon entropy E(II%) =
— Y 1<ijom Y log ITY; satisfies 0 < E(II°) < logy(m?) where the maximum entropy occurs
when TI? is uniform. Applying the triangle inequality, we have

|f(IT")] = Knb, Cb>feH(Hb)‘ <| Y el — Y mYlogM 41
1<i,j<m 1<i,j<m
<D Z IO}, + €(logy(m?) + 1)
1<i,j<m
< D +€(2logy(m) +1) = M. (26)
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The mini-batch sampling process can be modeled as a sequence of independent trials over all pos-
sible mini-batch configurations. For each trial b € [B], let 1, € {0,1}, be a Bernoulli random

variable indicating whether a specific mini-batch configuration (among the total (fn) possible con-
figurations) is selected. Therefore, we then have

B
f(OP) — () = %Zwm 27)
b=1

where w, = (1;, — 1/((7’;;)2)) f(TI%). Here, 1, — 1/((7’;)2) represents the deviation between the

actual selection status of the mini-batch pair (.Sy, T}) in trial b and its expected selection probability.
f(TI") denotes the objective function value corresponding to the selected mini-batch configuration,
and w, reflects the contribution of trial b to the overall deviation from the expected value. Since
the variables {wj}{ | are independent, centered (E[w,] = 0) and bounded by M, we can apply
Hoeffding’s inequality, which gives:

1 B
52

b=1

2

2t
> 1) < 2exp(—

W)’ (28)

P(|f(I17) — f(IT)| > t) = IP(

To derive a high-probability bound, set the right-hand side equal to a confidence parameter §:
2 exp(f%;) = ¢, solving for ¢ yields:

B log(2/6)
t=M 5B (29)

O

Theorem 6 (Maximal Deviation Bound in the Inner Optimization Stage of Lior ). Letd € (0,1),
B > 1 and the mini-batch size m be fixed, we have a maximal deviation bound between I1° and

IT* that
€
I — I < 5 [£(I17) - ()|

eM [ [log(2/5)
L )

with probability at least 1 — 0. Here, M = D + ¢(2log,(m) + 1).

Proof. Here, the first inequality is obtained by the strong convexity of EOT ([24). The second in-
equality follows from the triangle inequality by introducing the intermediate solution II*", Apply-
ing E] to bound the mini-batch estimation error, we derive the final result. O

Before deriving the deviation bound in the outer optimization stage of Ljor, recall that the mini-
batch objective function is defined as

B
Ll == 1 log(I] "), 31)

where IT is a permutation matrix representing the ground-truth matching, with I; =1 indicating
correctly paired audio and text instances.

The full-batch loss function is then given by:
Lior == [ #wp)og,, , (2.0) dula)av(y). 32)
XxXY
Here, 11 and v are discrete measures defined on the finite sets X = {x1,x9,...,2,,} and

Y = {y1,¥Y2,...,yn}, respectively: p = L5 5, v = %2?21 8y, The function 7 (z, y)
represents the probabilistic coupling between the elements of X and Y.
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Theorem 7 (Concentration Bound of £ ). Let § € (0,1), B > 1 and the mini-batch size m be
fixed. Suppose the log function is L—Lipschitz over [e, 1] for some € > 0, where II € [e, 1] for all
batches. Then, with probability at least 1 — §, the maximal deviation between the mini-batch loss
Ly and the full-batch loss L}y satisfies:

* 2 %2
|Lior — Lior|” = L7 [TIP — 1T |, (33)
2
. 6M2L ( 1og2(2/5)> | )

Here, M = D + ¢(2logy(m) 4+ 1).

Proof. Step 1: Lipschitz continuity of loss difference. Since Iisa permutation matrix, it satisfies
m;; = 1 for correctly paired instances and 0 otherwise. Thus, the loss function simplifies to:

B
1 * *
LB = -5 > logIl, = —logILf], Lior = —logII};. (35)
b=1

Both ITZ and IT* correspond to the predicted probabilities of correct matches, their values tend to
be close to 1. Therefore, assuming that the logarithm function is L— Lipschitz over the domain of
I1;; is reasonable. This implies the following bound:

‘EIBOT - ‘CikOT’ = |1og I}, — log IT/} (36)
< L-|IIj, — 7| (Lipschitz condition) (37)
<L- Z(H;‘i —TIZ)2  (Element-wise difference to vector 2-norm)  (38)

i=1
< L-||II* —TIP||r (Vector 2-norm to matrix Frobenius norm). 39)

Step 2: Concentration via pre-established bound. By applying the concentration result in [6] we
directly obtain the[33] O

D.3 CONCENTRATION BOUND OF Lywp (9))

Assumption 8 (Statistical Model of Feature Extractors). The feature encoders fg and g, satisfy:

fo(x)i =g+ 67i(x), Banx[dri(@)] =0, Vargex(07i(x)) =07, (40)
96(¥); = 195 +645¥),  Eyy[dg ()] =0, Varyy(3y;(y)) = o ;, (41)

where [1y i, [tg.; are expected feature values, and 05 ;(x), 64 ;(y) are zero-mean noise terms.

Lemma 9 (Concentration of Feature-Level Cost Matrix). Let Zy := fo(xx): — 94(yx); denote the
difference in the i-th and j-th feature dimensions of paired embeddings, where {(x, i)}, are
sampled i.i.d., and suppose each Zy is sub-Gaussian with zero mean and bounded variance proxy
o? (i.e., E[Z;] = 0, E[Z?] < 0?). Given the empirical cost entry as:

m
(Feat)B | __ 7 J _
e Hf( ) _g<a)H2 = >z
k=1

and let the full-batch cost be: Cge“’)* = vm - |E[fo(x);] — Elgs(y);]| . Then, with probability at
least 1 — 0, the deviation between empirical and expected feature-level cost satisfies:

_ [27%082/8)

(Feat) B ~(Feat)*
c! Clfen| < =
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Proof. We begin by computing the expectation of CiFeat)B :

E [ngw} =E |} (fo(zr)i = 9o(ur);) ZE (g6 +07.0) = (g + 0g.0))]

k=1 k=1

E [((1gi — o) + Ok — 0g.1))°]

I
NE

b
Il

1

tnqs

E [(Ds; + 0k)? Z ij + 2D;;E[6] + E[67])
k=1

>~

H
i
—~ =

o2+ D2). 42)

To simply, we set Cj; (Feat)B _ = />, Z2, where Zy := fo(xi)i — go(yk);. Since Zj, are sub-

Gaussian, and the squared terms Z7 are sub-exponential. According to the concentration inequality
for sub-exponential variables, we have:

1 & (0t
P < EZZ’%_ 73] 2t> < 2exp (—c-m-mln (04,02)). (43)
k=1

According we substitute E[Z7] = D, + 0 and S = Y_" | Z}, for t = €,/m and obtain:

ot

2
P (|S —m(D}; 4+ 0%)| > em) < 2exp (—CE m). (44)

Using the inequality

— 7‘S_E[S]| wi = m(D? + o
‘\/E \/E[S]’g SEg s M ESI = m(Df 4o,
we derive:

P (’C?;eat)B —/m(D3; + 02)‘ > e) <P <|S — m(Dj; +0°)| > 2¢,/m(D} + 02)) . (45

Combining with the result, we obtain:

2 D2+
p ([ _ m\>e)<gexp< it ”). 6)

Recall that C?;eat)* = /mD;;, and that m(DZ, + 0?) < JmDy; +
% (via Taylor expansion), we can write:
2
Cgem)B B Cg‘eat)* ~ ‘\/E —vmDyj| < e+ 2D;;’ 47)
O

Theorem 10 (Feature-level Loss Lywp @) Concentration). Assume the feature-level cost matrix

ngm) B ¢ Rixd jg computed from m i.i.d. paired samples, and each entry satisfies the deviation

bound:
(Feat) B (Feat)*
crr — ¢

< €, with probability at least 1 — 0,
where €,, = 4/ W. Then the unbalanced OT loss satisfies the deviation bound:

N 1
<P lr e em+ 55 - €

with probability at least 1 — §, where A = € + reg,, is the strong convexity constant of the UOT
objective.

‘£U0T(Cgeat)3) _ ﬁUOT(C(iJ;eat)*)
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Proof. Leveraging the strong convexity of unbalanced optimal transport (with coefficient A\ = € +
reg,,):

y at)* * ea eat)* 1 ca cat)*
Luor(CF7) = Luor(CH™)| < P15 - [CT0F = CF*| o 4o | CT0F — T 3.
(48)

Based on Lemma([9] the theorem follows. O

E IMPLEMATION DETAILS

The experiments are conducted on a Linux workstation equipped with an Intel(R) Xeon(R) Gold
6226R CPU (2.90GHz) and an NVIDIA A100-PCIE-40GB GPU. The detailed implementation code
is provided in the supplementary materials.

F DATASETS DETAILS

We evaluate DART on three widely used datasets: AudioCaps Kim et al.| (2019), Clotho |Drossos
et al.| (2020), and ESC-50 Piczakl (2015)), covering audio-text retrieval and sound event detection
tasks.

AudioCaps is the largest audio captioning dataset, containing approximately 50K audio-caption
pairs. All audio clips are sourced from AudioSet Gemmeke et al.|(2017), a large-scale dataset for
audio tagging. The training set consists of 40,582 audio clips, each 10 seconds long and paired with
a single human-annotated caption. In contrast, the validation and test sets contain 494 and 957 audio
clips, respectively, with each clip accompanied by five ground-truth captions.

Clotho is an audio captioning dataset collected from the Freesound platform, featuring audio clips
of varying durations between 15 to 30 seconds. We use the second version of the dataset for our
experiments. The training set includes 3,839 audio clips, while the validation and test sets contain
over 1k clips each. Every audio clip is paired with five human-annotated captions.

ESC-50 is an environmental sound classification dataset designed for sound event detection, con-
sisting of 2K labelled recordings across 50 sound classes. Since our goal is to evaluate DART’s
transferability, we use only the test set, which contains 400 audio clips.

Baselines. We compare DART against state-of-the-art audio-text retrieval models, including (On-
cescu et al.| (2021)), |[Mei et al.[(2022), Deshmukh et al.| (2022),|Wu et al.| (2023), [Luong et al.[(2024),
Wang et al.|(2023) and |Chen et al.|(2023)), ensuring consistency in evaluation settings. All baseline
results are directly sourced from their respective papers for fair comparison. Furthermore, we in-
vestigate the impact of different training objectives, including contrastive and triplet loss, to analyze
DART’s adaptability under various learning paradigms.

G EXPERIMENTAL SETUP

Evaluation metrics. We evaluate DART using Recall at Rank k£ (R@k), a standard metric for
cross-modal retrieval. R@Fk measures the proportion of queries where at least one ground-truth
match appears in the top-k retrieved results. Formally, for a query set of size /N, R@Fk is computed
as:

N
1
R@k = ¥ ;]I (rank(y;) < k), (49)

where I(-) is the indicator function that returns 1 if the correct match y; is ranked within the top-k,
and O otherwise. A higher R@F indicates better retrieval performance. We report R@1, R@5, and
R@10 to compare DART with baseline methods.
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H HYPERPARAMETERS

Tab. [5] provides a comprehensive overview of the hyperparameters employed across all baseline
models. The three sections correspond to different encoder configurations evaluated in the main
comparison table: (1) ResNet38 (audio) + BERT (text), (2) CNN (audio) + BPE (text), and (3) Beats
(audio) + BERT (text). All settings align with those used in the respective baselines to ensure fair
comparison and match the configurations reported in their original papers.

Table 5: Detailed hyper-parameters used in training for the retrieval experiments reported in Table[I]

Hyperparameters AudioCaps Clotho

Batch size 256 256
Optimizer Adam Adam
Learning rate 5x 107 5x107°
Weight decay 0.0 0.0
Total epoch 10 10

A 0.5 0.5

€ 0.03 0.03

T 0.05 0.05
Batch size 6 6
Optimizer AdamW AdamW
Adam (0.9,0.999)  (0.9,0.999)
Learning rate 1x10° 1x10°6
Weight decay 0.01 0.01
Total epoch 10 10

A 0.5 0.5

€ 0.03 0.03

T 0.05 0.05
Batch size 256 256
Optimizer AdamW AdamW
Adam (0.9,0.98)  (0.9,0.98)
Learning rate 5x 1077 5x 1077
Weight decay 0.01 0.01
Total epoch 10 10

A 0.5 0.5

€ 0.03 0.03

T 0.05 0.05

I EFFECT OF THE WEIGHTING PARAMETER )\

We analyze the effect of the weighting parameter A in the overall loss function [6] presents
the retrieval performance under different values of A. The results indicate that DART is robust
to variations in A, with consistent performance across the tested range. The best performance is
observed at A = 0.7, achieving an R@1 score of 40.41% for text-to-audio retrieval and 53.70%
for audio-to-text retrieval. Notably, even at A = 0.1, the model performs well, with R@1 scores
of 40.31% and 53.29% for text-to-audio and audio-to-text retrieval, respectively. This suggests
that while the feature-level alignment provided by Lywp contributes to optimal performance, the
underlying IOT framework also plays a critical role in ensuring DART’s robustness. This flexibility
underscores DART’s ability to effectively balance the contributions of different loss components,
enabling robust cross-modal retrieval across diverse settings.

J  EFFECT OF THE MARGINALS IN Lywp

We analyze the effect of the marginal distributions used in the feature-level loss defined in Eq.[9]
Specifically, we consider the following initialization strategies for the source and target marginals:
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Table 6: Retrieval performance (%) under varying A values (Eq. with a small fixed mini-batch
size of 32.

A Text — Audio \ Audio — Text
| R@l R@5 R@I0| R@I R@5 R@I0

0.1 | 40.31 7523 86.22 | 53.29 83.07 90.17
0.3 ] 3997 75.04 85.66 | 51.51 8223 90.28
0513994 7507 85.64 | 53.08 83.49 90.59
0.7 | 4041 75.06 86.22 | 53.70 81.50 90.28

* Uniform Distribution: This baseline assumes no prior knowledge of feature importance
and sets both marginals to uniform weights, assigning equal mass to all feature dimensions.

* Feature Norm-Based Initialization: In this setting, the marginal distributions are derived
from the ¢5 norm of the corresponding feature dimensions. The underlying motivation is
that dimensions with higher magnitude may carry more semantic or discriminative infor-
mation, and thus should be assigned greater mass in the transport plan.

* Feature Variance-Based Initialization: Here, we use the empirical variance of each fea-
ture dimension across the batch to form the marginals. The rationale is that dimensions
exhibiting higher variance across samples are likely to be more informative and discrimi-
native for downstream alignment.

Table 7: Retrieval performance (%) under different marginal distribution in[9]
Marginal | Text — Audio \ Audio — Text

| Rel R@5 R@I0 | R@I R@5 R@I0

Uniform (/) 32.87 67.77 81.06 | 43.57 7398 86.72
Lo Norm-based | 33.24 68.54 81.40 | 42.00 73.87 85.37
Variance-based | 33.10 68.25 80.64 | 43.88 73.24 85.89

K EFFECT OF THE TEMPERATURE VALUES IN Lywp

Table 8: Retrieval performance (%) under different temperature values with a small fixed mini-batch
size of 32.

Temperature | Text — Audio \ Audio — Text
| R@l R@5 R@I0 | R@l R@5 R@I0
0.05 36.46 7195 8394 | 46.39 78.05 88.29
1.0 35.59 7143 8397 | 48.69 7733 8642
10.0 3747 71.60 83.72 | 46.81 75.76  86.00

100.0 3534 7137 83.85 | 46.71 78.89 89.13
inf (eot) 36.13 7220 83.66 | 46.81 77.74 88.09

L  ABLATION STUDY ON THE TwO LOSS

We analyze the contribution of individual loss components to the overall performance. [IT] presents
the results of the ablation study on the loss components, comparing the effects of Lior and Lywp
individually and in combination. Using only Lywp results in poor performance, with R@1 scores
close to zero, highlighting the necessity of correspondence labels for cross-modal alignment tasks.
When both Ljor and Lywp are combined, the model achieves the best performance, which demon-
strates the complementary nature of the two loss components.
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Table 9: Ablation study on the training loss components using the AudioCaps dataset with a small
fixed mini-batch size of 128.

LOSS \ Text — Audio \ Audio — Text

‘ R@l R@5 R@10 ‘ R@l R@5 R@I10
Luwp 0.12 0.52 0.98 0.10 0.31 0.41
Lior 39.28 7450 85.85 | 5245 80.25 90.17

Lior + Luwp | 39.94 75.07 85.64 | 53.08 83.49 90.59

M EFFECTIVENESS OF FEATURE-LEVEL LOSS AS A COMPLEMENTARY
CONSTRAINT

Our feature-level loss Lywp is designed to capture fine-grained alignment between modality-specific
dimensions, and is intended to be used as a complementary constraint rather than a standalone ob-
jective. Specifically, while many existing retrieval systems are trained with sample-level objectives
such as contrastive loss, triplet loss, or more advanced models like m-LTM, our method is compati-
ble with all of them.

In this section, we conduct a controlled ablation study to demonstrate that Lywp can be seamlessly
integrated with different sample-level losses and consistently improves retrieval performance across
the board. Table [I0] summarizes the results on the AudioCaps dataset (same setup as in the main
paper). We observe that for each baseline loss, adding our feature-level loss leads to noticeable gains
in both A—T and T— A retrieval tasks.

This confirms that our approach serves as a modular and universally beneficial component that
strengthens the representation alignment across modalities without conflicting with the core retrieval
objective.

Table 10: Retrieval performance on the AudioCaps dataset with different sample-level objectives,
evaluated with and without the feature-level loss Lywp under a small fixed mini-batch size of 32.

Method \ A—TR@1 T—AR@l1
Triplet loss 37.72 32.85
+ Luwp 38.24 32.10
Contrastive loss 38.24 31.07
+ Lywp 39.18 32.14
IOT loss Luong et al.|(2024) 41.69 32.39
+ LUWD 41.79 32.87

M.1 EFFECT OF BATCH SIZES (NUMBER OF SAMPLES PER BATCH)

Second, we examine the impact of batch size on DART’s performance, particularly focusing on the
role of Lywp. As shown in@ the benefits of Lywp are more pronounced with smaller batch sizes.
This finding is particularly relevant for real-world applications where computational resources are
often constrained. By providing feature-level alignment, Lywp enables DART to maintain strong
performance despite having fewer negative samples, making it well-suited for large-scale deploy-
ments with limited resources.

N ABLATION STUDY FOR RAM
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Table 11: Retrieval Performance (%) with Varying Mini-Batch Sizes (Number of Samples per
Batch).

k| LOSS \ Text — Audio \ Audio — Text
| | R@l R@5 R@I0 | R@l R@5 R@I0

] SOTA Luong et al.|(2024) | 20.44 4995 65.54 | 3291 63.74 77.11
Lior + Luwp 2424 5757 7249 | 3521 6593 78.78

32 SOTA [Luong et al.| (2024) | 33.77 69.94 8244 | 4336 74.19 85.78
Lior + Luwp 3646 7195 8394 | 4639 78.05 88.29

128 SOTA [Luong et al.| (2024) | 39.28 7450 85.85 | 52.45 80.25 90.17
Lior + Luwp 39.94 75.07 85.64 | 53.08 83.49 90.59

Table 12: Core RAM variants on AudioCaps (ResNet38—BERT, batch size 64).

Marginal Design A—-TR@1 A—-TR@I0 T—AR@l T—AR@10 MeanR@I
uniform (w/o RAM) 51.52 90.80 38.31 85.77 44.92
corr (correlation) 50.05 90.60 38.64 85.22 44.35
emavar (EMA variance) 51.83 90.49 38.52 85.56 45.18
kurt (kurtosis) 51.93 90.60 38.64 85.74 45.29
RAM (full) 52.56 90.60 38.54 85.56 45.55

Table 13: Corr-based RAM variants on AudioCaps (ResNet38—BERT, batch size 64).
Marginal Design A—TR@1 T—AR@1 MeanR@1

corr-gap 51.83 38.12 44.97
corr-burt 50.99 38.75 44 87
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Figure 2: Effect of injected noise on OT cost. We fix a clean pair of audio—text feature distributions
and inject i.i.d. Gaussian noise with increasing standard deviation o into one modality. For each
o, we plot the OT cost between clean features (clean—clean) and between noisy and clean features
(noisy—-clean). The noisy OT cost grows monotonically with ¢ and is consistently larger than the
clean baseline, empirically supporting the claim that stronger channel noise leads to larger transport
costs.
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Figure 3: Relationship between reliability scores and standardized OT cost in a trained DART model.
For each feature channel j, we compute its reliability score r; and standardized OT cost C;. Each
point corresponds to one channel, and we report the Pearson correlation p(r,log C') in the legend.
Channels with low reliability (highlighted in red) concentrate in the high-cost region, while high-
reliability channels (highlighted in green) lie in the low-cost region, indicating that RAM success-
fully down-weights noisy, high-cost channels in the transport.
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