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Abstract

Humans excel at continually acquiring, consolidating, and retaining information from an
ever-changing environment, whereas artificial neural networks (ANNs) exhibit catastrophic
forgetting. There are considerable differences in the complexity of synapses, the processing
of information, and the learning mechanisms in biological neural networks and their artificial
counterparts, which may explain the mismatch in performance. We consider a biologically
plausible framework that constitutes separate populations of exclusively excitatory and in-
hibitory neurons that adhere to Dale’s principle, and the excitatory pyramidal neurons are
augmented with dendritic-like structures for context-dependent processing of stimuli. We
then conduct a comprehensive study on the role and interactions of different mechanisms
inspired by the brain, including sparse non-overlapping representations, Hebbian learning,
synaptic consolidation, and replay of past activations that accompanied the learning event.
Our study suggests that the employing of multiple complementary mechanisms in a bio-
logically plausible architecture, similar to the brain, may be effective in enabling continual
learning in ANNs. 1

1 Introduction

The human brain excels at continually learning from a dynamically changing environment, whereas standard
artificial neural networks (ANNs) are inherently designed for training from stationary i.i.d. data. Sequential
learning of tasks in continual learning (CL) violates this strong assumption, resulting in catastrophic forget-
ting. Although ANNs are inspired by biological neurons (Fukushima, 1980), they omit numerous details of
the design principles and learning mechanisms in the brain. These fundamental differences may account for
the mismatch in performance and behavior.

Biological neural networks are characterized by considerably more complex synapses and dynamic context-
dependent processing of information. In addition, individual neurons have a specific role. Each presynaptic
neuron has an exclusive excitatory or inhibitory impact on its postsynaptic partners, as postulated by
Dale’s principle (Strata et al., 1999). Furthermore, distal dendritic segments in pyramidal neurons, which
comprise the majority of excitatory cells in the neocortex, receive additional context information and enable
context-dependent processing of information. This, in conjunction with inhibition, allows the network to
learn task-specific patterns and avoid catastrophic forgetting (Yang et al., 2014; Iyer et al., 2022; Barron
et al., 2017). Furthermore, replay of non-overlapping and sparse neural activities of previous experiences
in the neocortex and hippocampus is considered to play a critical role in memory formation, consolidation,
and retrieval (Walker & Stickgold, 2004; McClelland et al., 1995). To protect information from erasure,
the brain employs synaptic consolidation, in which plasticity rates are selectively reduced in proportion to
strengthened synapses (Cichon & Gan, 2015).

Thus, we study the role and interactions of different mechanisms inspired by the brain in a biologically plausi-
ble framework in a CL setup. The underlying model constitutes separate populations of exclusively excitatory

1We will make the code available upon acceptance.
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Figure 1: Architecture of one hidden layer in the biologically plausible framework. Each layer consists of
separate populations of exclusively excitatory pyramidal cells and inhibitory neurons, which adhere to Dale’s
principle. The shade indicates the strength of weights or activations, with a darker shade indicating a higher
value. (a) The pyramidal cells are augmented with dendritic segments, which receive an additional context
signal c and the dendritic segment whose weights are most aligned with the context vector (bottom row)
is selected to modulate the output activity of the feedforward neurons for context-dependent processing of
information. (b) The Hebbian update step further strengthens the association between the context and the
winning dendritic segment with maximum absolute value (indicated with a darker shade in the bottom row).
Finally, Heterogeneous dropout keeps the activation count of each pyramidal cell (indicated with the gray
shade) and drops the neurons that were most active for the previous task (the darkest shade dropped) to
enforce non-overlapping representations. The top-k remaining cells then project to the next layer (increased
shade). This provides us with a more biologically plausible framework within which we can study the role
of different brain-inspired mechanisms and provide insights for designing new CL methods.

and inhibitory neurons in each layer, which adheres to Dale’s principle (Cornford et al., 2020) and excitatory
neurons (mimicking pyramidal cells) are augmented with dendrite-like structures for context-dependent pro-
cessing of information (Iyer et al., 2022). Dendritic segments process an additional context signal encoding
task information and subsequently modulate the feedforward activity of the excitatory neuron (Figure 1).
We then systematically study the effect of controlling the overlap in representations, employing the “fire to-
gether, wire together" learning paradigm and employing experience replay and synaptic consolidation. Our
study shows that:

i. An ANN architecture equipped with context-dependent processing of information by dendrites and
adhering to Dale’s principle can learn effectively in CL setup. Importantly, accounting for the discrep-
ancy in the effect of weight changes in excitatory and inhibitory neurons further reduces forgetting in
CL.

ii. Enforcing different levels of activation sparsity in the hidden layers using k-winner-take-all activations
and employing a complementary dropout mechanism that encourages the model to use a different set
of active neurons for each task can effectively control the overlap in representations, and hence reduce
interference while allowing for resusability.

iii. Task similarities need to be considered when enforcing such constraints to allow for a balance between
forwarding transfer and interference.

iv. Mimicking the ubiquitous “fire together, wire together" learning rule in the brain through a Hebbian
update step on the connection between context signal and dendritic segments, which further strength-
ens context gating and facilitates the formation of task-specific subnetworks.
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v. We show that employing both synaptic consolidation with importance measures adjusted to take into
account the discrepancy in the effect of weight changes and a replay mechanism in a context-specific
manner is critical for consolidating information across different tasks, especially for challenging CL
settings.

Our study suggests that employing multiple complementary mechanisms in a biologically plausible architec-
ture, similar to what is believed to exist in the brain, can be effective in enabling CL in ANNs. To the best of
our knowledge, we are the first to provide a comprehensive study of the integration of different brain-inspired
mechanisms in a biologically plausible architecture in a CL setting.

2 Biologically Plausible Framework for CL

We provide details of the biologically plausible framework within which we conduct our study.

2.1 Dale’s Principle

Biological neural networks differ from their artificial counterparts in the complexity of synapses and the role
of individual units. In particular, the majority of neurons in the brain adhere to Dale’s principle, which posits
that presynaptic neurons can only have an exclusive excitatory or inhibitory impact on their postsynaptic
partners (Strata et al., 1999). Several studies show that the balanced dynamics (Murphy & Miller, 2009;
Van Vreeswijk & Sompolinsky, 1996) of excitatory and inhibitory populations provide functional advantages,
including efficient predictive coding (Boerlin et al., 2013) and pattern learning (Ingrosso & Abbott, 2019).
Furthermore, inhibition is hypothesized to play a role in alleviating catastrophic forgetting (Barron et al.,
2017). Standard ANNs, however, lack adherence to Dale’s principle, as neurons contain both positive and
negative output weights, and signs can change while learning.

Cornford et al. (2020) incorporate Dale’s principle into ANNs (referred to as DANNs), which take into account
the distinct connectivity patterns of excitatory and inhibitory neurons (Tremblay et al., 2016) and perform
comparable to standard ANNs in the benchmark object recognition task. Each layer l comprises of a separate
population of excitatory, hl

e ∈ Rne
+ , and inhibitory hl

i ∈ Rni
+ neurons, where ne ≫ ni and synaptic weights are

strictly non-negative. Similar to biological networks, while both populations receive excitatory projections
from the previous layer (hl−1

e ), only excitatory neurons project between layers, whereas inhibitory neurons
inhibit the activity of excitatory units of the same layer. Cornford et al. (2020) characterized these properties
by three sets of strictly positive weights: excitatory connections between layers W l

ee ∈ Rne×ne
+ , excitatory

projection to inhibitory units W l
ie ∈ Rni×ne

+ , and inhibitory projections within the layer W l
ei ∈ Rne×ni

+ . The
output of the excitatory units is impacted by the subtractive inhibition from the inhibitory units:

zl = (W l
ee −W l

eiW
l
ie)hl−1

e + bl (1)

where bl ∈ Rne is the bias term. Figure 1 shows the interactions and connectivity between excitatory
pyramidal cells (triangle symbol) and inhibitory neurons (denoted by i).

We aim to employ DANNs as feedforward neurons to show that they can also learn in a challenging CL
setting and performance comparable to standard ANNs and provide a biologically plausible framework for
further studying the role of inhibition in alleviating catastrophic forgetting.

2.2 Active Dendrites

The brain employs specific structures and mechanisms for context-dependent processing and routing of
information. The prefrontal cortex, which plays an important role in cognitive control (Miller & Cohen,
2001), receives sensory inputs as well as contextual information, which allows it to choose the most relevant
sensory features for the present task to guide actions (Mante et al., 2013; Fuster, 2015; Siegel et al., 2015; Zeng
et al., 2019). Of particular interest are pyramidal cells, which represent the most populous members of the
excitatory family of neurons in the brain (Bekkers, 2011). The dendritic spines in pyramid cells exhibit highly
non-linear integrative properties that are considered important for learning task-specific patterns (Yang et al.,
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2014). Pyramidal cells integrate a range of diverse inputs into multiple independent dendritic segments,
allowing contextual inputs in active dendrites to modulate the response of a neuron, making it more likely to
fire. However, standard ANNs are based on a point neuron model (Lapique, 1907) which is an oversimplified
model of biological computations and lacks the sophisticated non-linear and context-dependent behavior of
pyramidal cells.

Iyer et al. (2022) model these integrative properties of dendrites by augmenting each neuron with a set of
dendritic segments. Multiple dendritic segments receive additional contextual information, which is processed
using a separate set of weights. The resultant dendritic output modulates the feedforward activation, which
is computed by a linearly weighted sum of the feedforward inputs. This computation results in a neuron
where the magnitude of the response to a given stimulus is highly context-dependent. To enable task-specific
processing of information, the prototype vector for task τ is evaluated by taking the element-wise mean of the
tasks samples, Dτ at the beginning of the task and then subsequently provided as context during training.

cτ = 1
|Dτ |

∑
x∈Dτ

x (2)

During inference, the closest prototype vector to each test sample, x′, is selected as the context using the
Euclidean distance among all task prototypes, C, stored in memory.

c′ = arg min
cτ

∥x′ −Cτ∥2 (3)

Following Iyer et al. (2022), we augment the excitatory units in each layer with dendritic segments (Figure
1 (a)). The feedforward activity of excitatory units is modulated by dendritic segments, which receive a
context vector. Given the context vector, each dendritic segment j computes uT

j c, given weight uj ∈ Rd

and the context vector c ∈ Rd where d is the dimensions of the input image. For excitatory neurons, the
dendritic segment with the highest response to the context (maximum absolute value with the sign retained)
is selected to modulate output activity.

hl
e = k-WTA(zl × σ(uT

κ c)), where κ = arg max
j

|uT
j c| (4)

where σ is the sigmoid function (Han & Moraga, 1995) and k-WTA(.) is the k-Winner-Take-All activation
function (Ahmad & Scheinkman, 2019) which propagates only the top k neurons and sets the rest at zero.
This provides us with a biologically plausible framework where, similar to biological networks, the feedforward
neurons adhere to Dale’s principle, and the excitatory neurons mimic the integrative properties of active
dendrties for context-dependent processing of stimuli.

3 Continual Learning Settings

To study the role of different components inspired by the brain in a biologically plausible NN for CL and
gauge their roles in the performance and characteristics of the model, we conduct all our experiments under
uniform settings. Implementation details and experimental setup are provided in Appendix. We evaluate
the models on two CL scenarios. Domain incremental learning (Domain-IL) refers to the CL scenario
in which the classes remain the same in subsequent tasks but the input distribution changes. We consider
Rot-MNIST which involves classifying the 10 digits in each task with each digit rotated by an angle between
0 and 180 degrees, and Perm-MNIST which applies a fixed random permutation to the pixels for each task.
Importantly, there are different variants of Rot-MNIST with varying difficulties. We incrementally rotate
the digits to a fixed degree, i.e. {0, 8, ..., (N-1)*8} for task {τ1, τ2, .., τN } which is substantially more
challenging than random sampling rotations. Importantly, the Rot-MNIST dataset captures the notion of
similarity in subsequent tasks, where the similarity between two tasks is defined by the difference in their
degree of rotation, whereas each task in Perm-MNIST is independent. We also consider the challenging
Class incremental learning (Class-IL) scenario where new classes are added with each subsequent task
and the agent must learn to distinguish not only amongst the classes within the current task but also across
all learned tasks. Seq-MNIST divides the MNIST classification into 5 tasks with 2 classes for each task.
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Table 1: Effect of each component of the biologically plausible framework on different datasets with varying
number of tasks. We first show the effect of utilizing feedforward neurons adhering to Dale’s principle in
conjunction with Active Dendrites to form the framework within which we evaluate the individual effect of
brain-inspired mechanisms before combining them all together (along with Heterogeneous Dropout) to forge
Bio-ANN. For all the experiments, we set the percentage of active neurons to 5. We provide the average
task performance and 1 std of three runs.

Method Rot-MNIST Perm-MNIST Seq-MNIST
5 10 20 5 10 20

Active Dendrites 92.72±0.31 71.48±0.60 48.13±0.73 95.53±0.10 94.37±0.26 91.76±0.39 20.06±0.36

+ Dale’s Principle 92.28±0.27 70.78±0.23 48.79±0.27 95.77±0.33 95.06±0.29 92.40±0.38 19.81±0.03

+ Hebbian Update 92.68±0.36 71.42±0.94 49.26±0.58 95.97±0.16 94.96±0.14 92.69±0.19 19.85±0.04

+ SC 93.40±0.86 75.87±1.35 64.78±3.43 96.67±0.23 96.36±0.10 95.61±0.10 20.26±0.56

+ ER 95.15±0.37 90.86±0.52 83.42±0.44 96.75±0.15 96.01±0.14 94.50±0.16 86.88±0.83

+ ER + CR 96.67±0.06 93.85±0.24 89.38±0.16 97.34±0.03 97.03±0.04 96.12±0.04 89.23±0.48

Bio-ANN 96.82±0.14 94.64±0.23 91.32±0.26 97.33±0.04 97.07±0.05 96.51±0.03 89.26±0.42

Table 2: Effect of different levels of sparsity in activations on the performance of the model. Columns show
the ratio of active neurons (k in k-WTA activation), and rows provide the number of tasks.

k
#Tasks

Rot-MNIST Perm-MNIST
0.05 0.10 0.20 0.50 0.05 0.10 0.20 0.50

5 92.28±0.27 92.26±0.31 92.79±0.44 92.26±0.65 95.77±0.33 96.32±0.20 90.29±6.07 74.51±13.55

10 70.78±0.23 71.95±1.54 73.32±0.69 71.61±0.76 95.06±0.29 93.45±0.92 72.68±12.83 41.33±6.72

20 48.79±0.27 47.96±1.84 48.65±0.91 47.71±0.91 92.40±0.38 84.28±1.35 63.84±3.45 20.80±0.99

4 Empirical Evaluation

To investigate the impact of the different components inspired by the brain, we use the aforementioned
biologically plausible framework and study the effect on the performance and characteristics of the model.

4.1 Effect of Inhibitory Neurons

We first study whether feedforward networks with separate populations of excitatory and inhibitory units
can work well in the CL setting. Importantly, we note that when learning a sequence of tasks with inhibitory
neurons, it is beneficial to take into account the disparities in the degree to which updates to different
parameters affect the layer’s output distribution (Cornford et al., 2020) and hence forgetting. Specifically,
since W l

ie and W l
ei affect the output distribution to a higher degree than W l

ee, we reduce the learning rate
for these weights after the first task (see Appendix).

Table 1 shows that models with feedforward neurons adhering to Dale’s principle perform as well as the
standard neurons and can also further mitigate forgetting in some cases. Note that this gain comes with
considerably fewer parameters and context-dependent processing, as we keep the number of neurons in each
layer the same, and only excitatory neurons (∼90%) are augmented with dendritic segments. For 20 tasks,
Active Dendrite with Dale’s principle reduces the parameters from ∼70M to less than ∼64M parameters.
We hypothesize that having separate populations within a layer enables them to play a specialized role. In
particular, inhibitory neurons can selectively inhibit certain excitatory neurons based on stimulus, which
can further facilitate the formation of task-specific subnetworks and complement the context-dependent
processing of information by dendritic segments.
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Figure 2: Total activation counts for the test set of each task (y-axis) for a random set of 25 units in the
second hidden layer of the model. Heterogeneous dropout reduces the overlap in activations and facilitates
the formation of task-specific subnetworks.

Table 3: Effect of Heterogeneous dropout with increasing ρ values on different datasets with varying number
of tasks.

Dataset # Tasks w/o Dropout parameter (ρ)
Dropout 0.1 0.3 0.5 0.7 1.0

Rot-MNIST
5 92.28±0.20 91.79±0.53 92.53±0.11 92.74±0.38 93.19±0.32 93.42±0.25

10 70.78±0.23 71.53±1.07 72.38±1.44 73.63±1.00 74.20±0.78 75.50±0.74

20 48.79±0.27 48.57±0.90 48.91±0.65 49.84±0.59 51.03±0.31 51.11±0.76

Perm-MNIST
5 95.77±0.33 95.70±0.29 95.97±0.44 96.40±0.28 96.58±0.17 96.48±0.26

10 95.06±0.29 95.23±0.04 95.65±0.20 95.54±0.26 95.74±0.22 95.94±0.24

20 92.40±0.38 92.83±0.42 93.20±0.32 92.82±0.06 93.09±0.47 91.77±0.30

4.2 Sparse Activations Facilitate the Formation of Subnetworks

Neocortical circuits are characterized by high levels of sparsity in neural activations (Barth & Poulet, 2012;
Graham & Field, 2006). There is further evidence suggesting that neuronal coding of natural sensory stimuli
should be sparse (Barth & Poulet, 2012; Tolhurst et al., 2009). This is in stark contrast to the dense and
highly entangled connectivity in standard ANNs. Particularly for CL, sparsity provides several advantages:
sparse non-overlapping representations can reduce interference between tasks (Abbasi et al., 2022; Iyer et al.,
2022; Aljundi et al., 2019), can lead to the natural emergence of task-specific modules (Hadsell et al., 2020).

We study the effect of different levels of activation sparsity by varying the ratio of active neurons in k-winner-
take-all (k-WTA) activations (Ahmad & Scheinkman, 2019). Each hidden layer of our model has a constant
sparsity in its connections (randomly 50% of weights are set to 0 at initialization) and propagates only the
top-k activations (in Figure 1, k-WTA layer). Table 2 shows that sparsity plays a critical role in enabling CL
in DNNs. Sparsity in activations effectively reduces interference by reducing the overlap in representations.
Interestingly, the stark difference in the effect of different levels of sparse activations on Rot-MNIST and
Perm-MNIST highlights the importance of considering task similarity in the design of CL methods. As the
tasks in Perm-MNIST are independent of each other, having fewer active neurons (5%) enables the network
to learn non-overlapping representations for each task, while the high task similarity in Rot-MNIST can
benefit from overlapping representations, which allows for the reusability of features across the tasks. The
number of tasks the agent has to learn also has an effect on the optimal sparsity level. In Appendix, we
show that having different levels of sparsity in different layers can further improve performance. As the
earlier layers learn general features, having a higher ratio of active neurons can enable higher resuability
and forward transfer. For the later layers, a smaller ratio of active neurons can reduce interference between
task-specific features.
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Figure 3: Effect of dropout ρ on the
overlap between the distributions of
layer two activation counts for each task
in Perm-MNIST with 2 tasks. Higher ρ
reduces the overlap.
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Figure 4: Dendritic segment activations of a unit in layer 1 for
the context vectors of each task for a model trained on Perm-
MNIST with 5 tasks. Hebbian update strengthens the association
between the context and the dendritic segments, increasing the
magnitude of the modulating signal.

4.3 Heterogeneous Dropout for Non-overlapping Activations and Subnetworks

Information in the brain is encoded by the strong activation of a relatively small set of neurons that form
a sparse coding. A different subset of neurons is utilized to represent different types of stimuli Graham
& Field (2006). Furthermore, there is evidence of non-overlapping representations in the brain. To mimic
this, we employ Heterogeneous dropout (Abbasi et al., 2022) which in conjunction with context-dependent
processing of information, can effectively reduce the overlap of representations, leading to less interference
between tasks and, thereby, less forgetting. During training, we track the frequency of activations for each
neuron in a layer for a given task, and in the subsequent tasks, the probability of a neuron being dropped
is inversely proportional to its activation counts. This encourages the model to learn the new task using
neurons that have been less active for previous tasks. Figure 1 shows that neurons that have been more
active (darker shade) are more likely to be dropped before k-WTA is applied. Specifically, let [al

t]j denote
the activation counter of the neuron j in the layer l after learning t tasks. For the learning task t + 1, the
probability that this neuron is retained is given by:

[pl
t+1]j = exp( −[al

t]j
maxj [al

t]j
ρ) (5)

where ρ controls the strength of enforcement of non-overlapping representations, with larger values leading
to less overlap. This provides us with an efficient mechanism for controlling the degree of overlap between
the representations of different tasks and, hence, the degree of forward transfer and interference based on
the task similarities.

Table 3 shows that employing Heterogeneous dropout can further improve the performance of the model.
We also analyze the effect of the ρ parameter on the activation counts and the overlap in the representations.
Figure 2 shows that Heterogeneous dropout can facilitate the formation of task-specific subnetworks and
Figure 3 shows the symmetric KL-divergence between the distribution of activation counts on the test set
of Task 1 and Task 2 on the model trained with different ρ values on Perm-MNIST with two tasks. As
we increase the ρ parameter, the activations in each layer become increasingly dissimilar. Heterogeneous
dropout provides a simple mechanism for balancing the reusability and interference of features depending
on the similarity of tasks.
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Table 4: Effect of layer-wise dropout ρ on Rot-MNIST with 5 tasks with varying degrees of incremental
rotation (θinc) in each subsequent task. Row 0 shows (ρl1 , ρl2) the ρ values for the first and second hidden
layers, respectively.

ρl1 , ρl2 Task Similarity (θinc)
2 4 8 16 24 32

0.1, 0.1 97.60±0.12 96.74±0.16 91.79±0.53 74.99±1.16 63.33±1.15 57.39±2.36

0.1, 0.5 97.77±0.08 97.02±0.11 92.39±0.39 75.56±1.46 64.18±1.79 57.05±2.13

0.5, 0.5 97.88±0.12 97.22±0.11 92.74±0.38 76.73±1.01 64.18±1.42 58.35±0.73

0.5, 1.0 97.88±0.04 97.25±0.11 92.87±0.39 76.87±0.39 64.84±0.65 59.40±2.31

1.0, 1.0 97.89±0.09 97.19±0.09 93.42±0.25 77.48±0.94 66.33±1.62 61.35±1.90

1.0, 2.0 97.68±0.09 97.00±0.23 93.46±0.78 79.07±0.67 68.20±2.34 63.08±0.86

2.0, 2.0 97.42±0.17 97.00±0.11 93.53±0.53 80.03±0.62 69.99±1.97 65.74±1.21

2.0, 5.0 97.39±0.03 96.54±0.15 92.95±0.01 80.55±0.89 73.74±0.21 69.46±2.66

5.0, 5.0 96.86±0.11 96.12±0.08 92.33±0.18 79.53±0.42 72.47±1.23 70.77±2.11

w/o Dropout 97.72±0.29 96.93±0.40 92.31±0.56 75.67±1.40 63.68±1.36 56.49±2.86

4.4 Layerwise Heterogeneous Dropout and Task Similarity

For an effective CL agent, it is important to maintain a balance between forward transfer and interference
across tasks. As the earlier layers learn general features, a higher portion of the features can be reused to
learn the new task, which can facilitate forward transfer, whereas the later layers learn more task-specific
features, which can cause interference. Heterogeneous dropout provides us with an efficient mechanism for
controlling the degree of overlap between the activations, and hence the features of each layer. Here, we
investigate whether having different levels of sparsity (controlled with the ρ parameter) in different layers
can further improve performance. As the earlier layers learn general features, having higher overlap (smaller
ρ) between the set of active neurons can enable higher resuability and forward transfer. For the later layers,
a lesser overlap between the activations (higher ρ) can reduce interference between task-specific features.

To study the effect of Heterogeneous dropout in relation to task similarity, we vary the incremental rota-
tion, θinc, in each subsequent task for Rot-MNIST setting with 5 tasks. The rotation of task τ is given by
(τ − 1)θinc. Table 4.4 shows the performance of the model for different layerwise ρ values. Generally, het-
erogeneous dropout consistently improves the performance of the model, especially when the task similarity
is low. For θinc = 32, it provides ∼25% improvement. As task similarity decreases (θinc increases), higher
values of ρ are more effective. Furthermore, we see that having different ρ values for each layer can provide
additional gains in performance.

4.5 Hebbian Learning Strengthens Context Gating

For a biologically plausible ANN, it is important to incorporate not only the design elements of biological
neurons but also the learning mechanisms it employs. Lifetime plasticity in the brain generally follows the
Hebbian principle: a neuron that consistently contributes to the firing of another neuron will build a stronger
connection to that neuron (Hebb, 2005).

Therefore, we follow the approach in Flesch et al. (2023) to complement error-based learning with the Hebbian
update to strengthen the connections between contextual information and dendritic segments (Figure 1(b)).
Each supervised parameter update with backpropagation is followed by a Hebbian update step on the
dendritic segments to strengthen the connections between the context input and the corresponding dendritic
segment, which is activated. To constrain the parameters, we use Oja’s rule, which adds weight decay to
Hebbian learning (Oja, 1982),

uκ ← uκ + ηhd(c− duκ) (6)

where ηh is the learning rate, κ is the index of the winning dendrite with weight uκ and the modulating signal
d = uT

κ c for the context signal c. Figure 4 shows that the Hebbian update step increases the magnitude of
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the modulating signal from the dendrites on the feedforward activity, which can further strengthen context-
dependent gating and facilitate the formation of task-specific subnetworks. Table 1 shows that this results
in a consistent improvement in performance.

4.6 Synaptic Consolidation Further Mitigates Forgetting

In addition to their integrative properties, dendrites also play a key role in retaining information and pro-
viding protection against erasure (Cichon & Gan, 2015; Yang et al., 2009). New spines that are formed on
different sets of dendritic branches in response to learning different tasks are protected from being eliminated
through mediation of synaptic plasticity and structural changes that persist when learning a new task (Yang
et al., 2009).

We employ synaptic consolidation by incorporating Synaptic Intelligence (Zenke et al., 2017) (details in
Appendix) which maintains an importance estimate of each synapse in an online manner during training
and subsequently reduces the plasticity of synapses which are considered important for learned tasks. In
particular, we adjust the importance estimate to account for the disparity in the degree to which updates to
different parameters affect the output of the layer due to the inhibitory interneuron architecture in the DANN
layers (Cornford et al., 2020). The importance estimates of the excitatory connections to the inhibitory units
and the intra-layer inhibitory connections are upscaled to further penalize changes to these weights. Table 1
shows that employing Synaptic Intelligence (+SC) in this manner further mitigates forgetting. Particularly
for Rot-MNIST with 20 tasks, it provides considerable performance improvement.

4.7 Experience Replay is Essential for Enabling CL in Challenging Scenarios

Replay of past neural activation patterns in the brain is considered to play a critical role in memory formation,
consolidation, and retrieval (Walker & Stickgold, 2004; McClelland et al., 1995). The replay mechanism in
the hippocampus (Kumaran et al., 2016) has inspired a series of rehearsal-based approaches (Li & Hoiem,
2017; Chaudhry et al., 2019; Lopez-Paz & Ranzato, 2017; Arani et al., 2022) that have been proven to be
effective in challenging continual learning scenarios (Farquhar & Gal, 2018; Hadsell et al., 2020). Therefore,
to replay samples from previous tasks, we utilize a small episodic memory buffer that is maintained through
Reservoir sampling (Vitter, 1985). It attempts to approximately match the distribution of the incoming
stream by assigning equal probabilities to each new sample to be represented in the buffer. During training,
samples from the current task, (xb, yb) ∼ Dτ , are interleaved with memory buffer samples, (xm, ym) ∼M to
approximate the joint distribution of tasks seen so far. Furthermore, to mimic the replay of the activation
patterns that accompanied the learning event in the brain, we also save the output logits, zm, across the
training trajectory and enforce consistency loss when replaying samples from episodic memory. Concretely,
the loss is given by:

L = Lcls(f(xb; θ), yb) + αLcls(f(xm; θ), ym) + β(f(xm; θ)− zm)2 (7)

where f(.; θ) is the model parameterized by θ, Lcls is the standard cross-entropy loss, and α and β controls
the strength of interleaved training and the consistency constraint, respectively.

Table 1 shows that experience replay (+ER) complements context-dependent information processing and
enables the model to learn the joint distribution well in varying challenging settings. In particular, the
failure of the model to avoid forgetting in the Class-IL setting (Seq-MNIST) without experience replay
suggests that context-dependent processing of information alone does not suffice, and experience replay
might be essential. Adding consistency regularization (+CR) further improves performance as the model
receives additional relational information about the structural similarity of classes, which facilitates the
consolidation of information.

4.8 Combining the individual components

Having shown the individual effect of each of the brain-inspired components in the biologically plausible
framework, here we look at their combined effect. The resultant model is referred to as Bio-ANN. Table 1
shows that the different components complement each other and consistently improve the performance of
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the model. Our empirical results suggest that employing multiple complementary components and learning
mechanisms, similar to the brain, may be an effective approach to enable continual learning in ANNs.

5 Discussion

Continual learning is a hallmark of intelligence, and the human brain constitutes the most efficient learning
agent capable of CL. Therefore, incorporating the different components and mechanisms employed in the
brain and studying their interactions can provide valuable insights for the design of ANNs suitable for CL.
While there are several studies that are inspired by the brain, they focus primarily on one aspect. Since
the brain employs all these different components in tandem, it stands to reason that their interactions, or
complementary nature, are what enable effective learning instead of one component alone. Furthermore, the
underlying framework within which these components are employed and the learning mechanisms might also
be critical. The effort to close the gap between current AI and human intelligence could benefit from our
enhanced understanding of the brain and incorporating similar mechanisms in ANNs. This is the fundamental
question we aimed to study and bring to the attention of the research community at large.

We conducted a study on the effect of different brain-inspired mechanisms under a biologically plausible
framework in the CL setting. The underlying model incorporates several key components of the design
principles and learning mechanisms in the brain: each layer constitutes separate populations of exclusively
excitatory and inhibitory units, which adheres to Dale’s principle, and the excitatory pyramidal neurons are
augmented with dendritic segments for context-dependent processing of information. We first showed that,
equipped with the integrative properties of dendrites, the feedforward network adhering to Dale’s principle
not only performs as well as standard ANNs, but also provides gains. Then we studied the individual role
of different components. We showed that controlling the sparsity in activations using k-WTA activations
and Heterogeneous dropout mechanism that encourages the model to use a different set of neurons for each
task is an effective approach for maintaining a balance between reusability of features and interference,
which is critical for enabling CL. We further showed that complementing error-based learning with the “fire
together, wire together" learning paradigm can further strengthen the association between the context signal
and dendritic segments that process them and facilitate context-dependent gating. To further mitigate
forgetting, we incorporated synaptic consolidation in conjunction with experience replay and showed their
effectiveness in challenging CL settings. Finally, the combined effect of these components suggests that,
similar to the brain, employing multiple complementary mechanisms in a biologically plausible architecture
is an effective approach to enable CL in ANN. It also provides a framework for further study of the role of
inhibition in mitigating catastrophic forgetting.

However, there are several limitations and potential avenues for future research. In particular, as dendritic
segments provide an effective mechanism for studying the effect of encoding different information in the
context signal, they provide an interesting research avenue as to what information is useful for the sequential
learning of tasks and the effect of different context signals. Neuroscience studies suggest that multiple brain
regions are involved in processing a stimulus and, while there is evidence that active dendritic segments
receive contextual information that is different from the input received by the proximal segments, it is
unclear what information is encoded in the contextual information and how it is extracted. Here, we used
the context signal as in (Iyer et al., 2022), which aims to encode the identity of the task by taking the
average input image of all the samples in the task. Although this approach empirically works well in the
Perm-MNIST setting, it is important to consider its utility and limitations under different CL settings. Given
the specific design of Perm-MNIST, binary-centered digits, and the independent nature of the permutations
in each task, the average input image can provide a good approximation of the applied permutation, and
hence efficiently encode the task identity. However, this is not straightforward for Rot-MNIST where the
task similarities are higher and even more challenging for natural images, where averaging the input image
does not provide a meaningful signal. More importantly, it does not seem biologically plausible to encode
task information alone as the context signal and ignore the similarity of classes occurring in different tasks.
For instance, it seems more reasonable to process slight rotations of the same digits similarly (as in Rot-
MNIST) rather than processing them through different subnetworks. Ideally, we would like the context
signal for different rotations of a digit to be highly similar. It is, however, quite challenging to design context
signals that can capture a wide range of complexities in sequential learning of tasks. Furthermore, instead of
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hand engineering the context signal to bias learning towards certain types of task, an effective approach for
learning the context signal in an end-to-end training framework is an interesting direction for future search.

In general, our study presents a compelling case for incorporating the design principles and learning machin-
ery of the brain into ANNs and provides credence to the argument that distilling the details of the learning
machinery of the brain can bring us closer to human intelligence (Hassabis et al., 2017; Hayes et al., 2021).
Furthermore, deep learning is increasingly being used in neuroscience research to model and analyze brain
data (Richards et al., 2019). The utility of the model for such research depends on two critical aspects: the
performance of the model and how close the architecture is to the brain (Cornford et al., 2020; Schrimpf
et al., 2020). The biologically plausible framework in our study incorporates several design components and
learning mechanisms of the brain and performs well in a (continual learning) task that is closer to human
learning. Therefore, we believe that this work may also be useful for the neuroscience community in evalu-
ating and guiding computational neuroscience. Studying the properties of ANNs with higher similarity to
the brain may provide insight into the mechanisms of brain functions. We believe that the fields of artificial
intelligence and neuroscience are intricately intertwined, and progress in one can drive the other as well.
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A Appendix

A.1 Related Work - Biological Inspired AI

The human brain has long been a source of inspiration for ANNs design (Hassabis et al., 2017; Kudithipudi
et al., 2022). However, we have failed to take full advantage of our enhanced understanding of the brain,
and there are fundamental differences between the design principles and learning mechanisms employed in
the brain and ANNs. These differences may account for the huge gap in performance and behavior.

From an architecture design perspective, standard ANNs are predominantly based on the point neuron
model (Lapique, 1907) which is an outdated and oversimplified model of biological computations that lacks
sophisticated and context-dependent processing in the brain. Furthermore, neurons in standard ANNs lack
adherence to Dale’s principle (Strata et al., 1999) to which most neurons in the brain adhere. Unlike the
brain where presynaptic neurons have an exclusively excitatory or inhibitory impact on their postsynaptic
partners, neurons in standard ANNs contain both positive and negative output weights, and signs can change
while learning. These constitute two of the major fundamental differences in the underlying design principle
of ANNs and the brain.

Two recent studies attempt to address this gap. Cornford et al. (2020) incorporated Dale’s principle into
ANNs (DANNs) in a more biologically plausible manner and show that with certain initialization and
regularization considerations, DANNs can perform comparable to standard ANNs in object recognition task,
which earlier attempts failed to do so. Our study extends DANNs to the more challenging CL setting and
shows that accounting for the discrepancy in the effect of weight changes in excitatory and inhibitory neurons
can further reduce forgetting in CL. Iyer et al. (2022) propose an alternative to the point neuron model
and provide an algorithmic abstraction of pyramidal neurons in the neocortex. Each neuron is augmented
with dendritic segments which receive an additional context signal and the output of the dendrite segment
modulates the activity of the neuron, allowing context-dependent processing of information. Our study
builds upon their work and provides a biologically plausible architecture characterized with both adherence
to Dale’s principle and the context-dependent processing of pyramidal neurons. This provides us with a
framework to study the role of brain-inspired mechanisms and allows us to study the role of inhibition in
the challenging continual learning setting, which is closer to human learning.

From a learning perspective, several approaches have been inspired by the brain, particularly for CL (Ku-
dithipudi et al., 2022).The replay mechanism in the hippocampus (Kumaran et al., 2016) has inspired a
series of rehearsal-based approaches (Hayes et al., 2021; Hadsell et al., 2020) which have proven to be ef-
fective in challenging continual learning scenarios (Farquhar & Gal, 2018). Another popular approach for
continual learning, regularization-based approaches Zenke et al. (2017); Kirkpatrick et al. (2017), has been
inspired by neurobiological models that suggest that CL in the neocortex is based on a task-specific synaptic
consolidation process that involves rendering a proportion of synapses less plastic and, therefore, stable over
long timescales (Benna & Fusi, 2016; Yang et al., 2009). While both approaches are inspired by the brain,
researches have mostly discounted the fact that the brain employs both of them in conjunction to consolidate
information rather than in isolation. Therefore, the research in both of these methods has been orthogonal.
Furthermore, they have been applied on top of standard ANNs which are not representative of the complex-
ities of the neuron in the brain. Our study employs replay and synaptic consolidation together in a more
biologically plausible architecture and shows that they complement each other to improve performance.

Furthermore, our framework employs several techniques to mimic the characteristics of activations in the
brain. As yyramidal neurons in the neocortex have highly sparse connectivity to each other (Hunter et al.,
2021; Holmgren et al., 2003) and only a small percentage (<2%) of neurons are active for given stimuli
neurons (Barth & Poulet, 2012), we apply k-winner-take-all (k-WTA) activations (Ahmad & Scheinkman,
2019) to mimic activation sparsity. Several studies have shown the benefits of sparsity in CL (Abbasi et al.,
2022; Mallya et al., 2018; Aljundi et al., 2019), they do not consider that the brain not only utilizes sparsity,
it does so in an efficient manner to encode information. Information in the brain is encoded by the strong
activation of a relatively small set of neurons, forming sparse coding. A different subset of neurons is utilized
to represent different types of stimuli (Foldiak, 2003) and semantically similar stimuli activate a similar set of
neurons. Heterogeneous dropout (Abbasi et al., 2022) coupled with k-WTA activations aims to mimic these
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characteristics by encouraging the new task to utilize a new set of neurons for learning. Finally, we argue
that it is important not only to incorporate the design elements of biological neurons but also the learning
mechanisms that they employ. Lifetime plasticity in the brain generally follows the Hebbian principle (Hebb,
2005). Therefore, we follow the approach in Flesch et al. (2023) to complement error-based learning with
Hebbian update to strengthen the connections between contextual information and dendritic segments and
show that it strengthens context gating.

Our study provides a biologically plausible framework with the underlying architecture with the context-
dependent processing of information and adherence to Dale’s principle. Additionally, it employs the learning
mechanisms (experience replay, synaptic consolidation, and Hebbian update) and characteristics (sparse
non-overlapping activations and task-specific subnetworks) of the brain. To the best of our knowledge, we
are the first to provide a comprehensive study of the integration of different brain-inspired mechanisms in a
biologically plausible architecture in a CL setting.

A.2 Additional Results

Additionally, we conducted experiments on Fashion-MNIST, which is more challenging than the MNIST
datasets. We considered both the Class-IL (Seq-FMNIST) and Domain-IL (Rot-FMNIST) setting. Seq-
FMNIST divides the classification into 5 tasks with 2 classes each, while Rot-FMNIST involves classifying
the 10 classes in each task with the samples rotated by i.e. {0, 8, ..., (N-1)*8} for task {τ1, τ2, .., τN }.

For brevity, we refer to Active Dendrites + Dale’s principle as ActiveDANN. To show the effect of different
components better (ActiveDANN without ER fails in the class-IL setting), we consider ActiveDann + ER
as the baseline upon which we add the other components. Empirical results in Table A.2 show that the
findings on MNIST settings also translate to Fashion-MNIST and each component leads to performance
improvement.

Table 5: Effect of each component of the biologically plausible framework on different Seq-FMNIST and
Rot-FMNIST. For all experiments, we use a memory budget of 500 samples. HD refers to heterogeneous
dropout. We provide the average task performance and 1 std of 5 runs.

Method Seq-FMNIST Rot-FMNIST
Joint 94.33±0.51 98.15±0.09

SGD 19.83±0.04 51.89±0.27

ActiveDANN + ER 77.56±0.27 80.99±0.53

+ Hebb 78.02±0.38 82.16±0.26

+ SC 78.05±0.61 82.55±0.37

+ HD 78.74±0.38 83.97±0.46

Bio-ANN 79.28±0.42 89.22±0.21

A.3 Experimental Setup

To study the role of the different components inspired by the brain in a biologically plausible NN for CL
and to gauge their roles in the performance and characteristics of the model, we conduct all our experiments
under uniform settings. Unless otherwise stated, we use a multi-layer perception (MLP) with two hidden
layers with 2048 units and k-WTA activations. Each neuron is augmented with N dendritic segments
where N corresponds to the number of tasks and the dimensions correspond to the dimensions of the
context vector that correspond to the input image size (784 for all MNIST-based settings). The model
is trained using an SGD optimizer with 0.3 learning rate and a batch size of 128 for 3 epochs on each
task. We set the weight sparsity to 0 and set the percentage of active neurons to 5%. For our experiments
involving Dale’s principle, we maintain the same number of total units in each layer divided into 1844
excitatory and 204 inhibitory units. Only the excitatory units are augmented with dendritic segments.
Importantly, we use the initialization strategy and corrections for the SGD update as posited in Cornford
et al. (2020) to account for the disparities in the degree to which updates to different parameters affect
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the layer output distribution. Updates to inhibitory unit parameters are scaled down relative to update of
excitatory parameters. Concretely, the gradient updates to Wie were scaled by √ne

−1 and Wei by d−1, where
ne are the number of excitatory neurons in the layer and d is the input dimension of the layer. Furthermore,
to select the hyperparameters for different settings, we use a small validation set. Note that, as the goal
was not to achieve the best possible accuracy, but rather to show the effect of each component, we did not
conduct an extensive hyperparameter search. Table A.3 provides the selected hyperparameters for the effect
of individual component experiments in Table 1 and Table A.3 provides the selected hyperparameter for
Bio-ANN experiments. We report the mean accuracy over all tasks and 1 std over three different random
seeds.

Table 6: The selected hyperparamneters for the experiments showing the individual effect of each component
(Table 1). The base learning rate for all the experiments is 0.3 and the individual components use the same
learning rates for Wie and Wei as (+ Dale’s principle). For + SC experiments, we use λWie

=10 and λWei
=10.

For ER experiments, we use a memory budget of 500 samples.
Dataset #Tasks + Dale’s Principle + Hebbian + SC + ER + ER + CR

Update

Rot-MNIST
5 ηWie

=3e-2, ηWei
=3e-3 nh=3e-10 λ=0.25 α=1, β=0 α=1, β=0.50

10 ηWie
=3e-2, ηWei

=3e-3 nh=3e-08 λ=0.25 α=1, β=0 α=1, β=0.50
20 ηWie

=3e-3, ηWei
=3e-4 nh=3e-10 λ=1.00 α=1, β=0 α=1, β=0.50

Perm-MNIST
5 ηWie

=3e-2, ηWei
=3e-2 nh=3e-09 λ=0.10 α=1, β=0 α=1, β=0.50

10 ηWie
=3e-2, ηWei

=3e-2 nh=3e-06 λ=0.25 α=1, β=0 α=1, β=0.50
20 ηWie=3e-2, ηWei=3e-3 nh=3e-09 λ=0.10 α=1, β=0 α=1, β=0.50

Seq-MNIST 5 ηWie=3e-2, ηWei=3e-3 nh=3e-07 λ=0.25 α=1, β=0 α=1, β=0.25

Table 7: The selected hyperparamneters for Bio-ANN experiments in Table 1. We use the same learning
rate for each setting as + Dale’s principle (Table A.3).

Dataset #Tasks nh λ ρ α β

Rot-MNIST
5 3e-8 0.25 0.1 1 0.5
10 3e-8 0.1 0.3 1 0.5
20 3e-8 0.1 0.3 1 0.5

Perm-MNIST
5 3e-6 0.1 0.1 1 0.5
10 3e-8 0.1 0.3 1 0.5
20 3e-8 0.1 0.3 1 0.5

Seq-MNIST 5 3e-6 0.1 0.1 1 0.25

A.4 Effect of adjusting for the inhibitory weights

The inhibitory interneuron architecture of DANN layers introduces disparities in the degree to which updates
to different parameters affect the layer’s output distribution, e.g. if a single element of Wie is updated, this
has an effect on each element of the layer’s output. An inhibitory weight update of δ to Wie changes the
model distribution approximately ne times more than an excitatory weight update of δ to Wee (Cornford
et al., 2020). The effect of these disparities would be even more pronounced in a CL setting as large changes
to the output distribution when learning a new task can cause more forgetting of previous tasks. To account
for these, we further reduce the learning rate of Wie and Wei after learning the first task. Table A.4
shows that accounting for the higher effect of inhibitory neurons can further improve the performance of the
model in majority of the settings. It would be interesting to explore better approaches to account for the
aforementioned disparities, which are tailored for CL and consider the effect on forgetting.
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Table 8: Effect of adjusting the learning rates of Wie and Wei at the end of the first task on different datasets
with a varying number of tasks.

ηW ie ηW ei
Rot-MNIST Perm-MNIST

5 10 20 5 10 20
3e-1 3e-1 92.12±0.34 70.86±0.44 46.30±1.03 95.78±0.19 94.73±0.36 92.67±0.61

3e-2 3e-2 92.23±0.53 70.23±1.12 47.53±1.79 95.77±0.33 95.06±0.29 91.63±0.39

3e-2 3e-3 92.28±0.27 70.78±0.23 47.32±1.43 95.68±0.14 94.96±0.49 92.40±0.38

3e-3 3e-3 92.34±0.51 71.27±1.69 47.81±1.10 95.70±0.29 94.44±0.70 92.02±0.19

3e-3 3e-4 92.03±0.09 70.79±1.75 48.79±0.27 95.90±0.13 94.19±0.47 91.04±0.34

A.5 Effect of adjusting for scaling the SI importance estimate for inhibitory weights

Similar to adjusting the learning rate of inhibitory weights, we check whether scaling up the importance
estimate of inhibitory neurons can further improve the effectiveness of synaptic consolidation in reducing
forgetting. Table A.5 shows that scaling the importance estimate in accordance with the degree to which
inhibitory weights affect the output distribution, and hence forgetting, further improves the performance in
majority of cases, especially for a lower number of tasks. This suggests that regularization methods designed
specifically for networks with inhibitory neurons is a promising research direction.

Table 9: Effect of scaling the importance estimate for Wie and Wei to reduce the parameter shift in the
inhibitory weights on Rot-MNIST and Perm-MNIST datasets with varying number of tasks.

λ λWie
λWei

Rot-MNIST Perm-MNIST
5 10 20 5 10 20

0.1
1 1 92.92±0.22 75.53±1.46 52.16±1.17 96.59±0.17 96.20±0.13 95.69±0.10

10 10 92.77±0.27 74.70±1.05 51.94±1.05 96.57±0.34 96.18±0.18 95.64±0.15

10 100 92.50±0.65 74.67±1.27 52.55±1.12 96.67±0.23 96.26±0.26 95.61±0.10

0.25
1 1 92.77±0.69 76.30±0.77 55.05±2.47 96.62±0.28 96.07±0.02 95.36±0.24

10 10 93.54±0.79 75.44±0.81 54.93±2.35 96.54±0.22 96.23±0.16 95.03±0.13

10 100 93.40±0.86 75.87±1.35 55.06±1.77 96.65±0.25 96.36±0.10 95.18±0.29

0.5
1 1 93.23±0.71 75.24±0.62 60.24±2.02 96.22±0.37 95.97±0.06 92.94±0.85

10 10 93.13±0.24 75.95±0.38 59.35±1.53 96.24±0.51 95.81±0.10 92.86±0.87

10 100 92.85±0.42 75.85±1.18 58.94±2.15 96.36±0.42 96.02±0.27 93.48±0.57

w/o SC 92.28±0.27 70.78±0.23 48.79±0.27 95.77±0.33 95.06±0.29 92.40±0.38

A.6 Effect of Sparsity

To further study the effect of different levels of sparsity in activations and connections, we vary the number of
weights randomly set to zero at initialization (SW ∈ {0, 0.25, 0.50}) and the ratio of active neurons (kl1, kl2)
in each hidden layer. Table A.6 shows that sparsity in activation plays a critical role in enabling CL in
ANNs. Interestingly, sparsity in connections play a considerable role in Perm-MNIST with higher levels of
active neurons (≥ 0.2). Furthermore, exploring finer differences in activation sparsity of different layers may
further improve the performance. Similar to heterogeneous dropout, we show the effect of activation sparsity
in relation to task similarity in Table A.6. Similar tasks (lower θinc) benefit from a higher number of active
neurons that can increase forward transfer, while dissimilar tasks (higher θinc) perform better with higher
activation sparsity that can reduce the overlap in representations.
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Table 10: Effect of different levels of sparsity in activations (ratio of active neurons, (kl1, kl2) in 1st and 2nd

hidden layer respectively) and connections (ratio of zero weights, SW ) on Rot-MNIST and Perm-MNNIST
with increasing number of tasks. The best performance across the different sparsity levels for each task is in
bold.

#Tasks SW
Activation Sparsity (kl1, kl2)

(0.05, 0.05) (0.1, 0.05) (0.1, 0.1) (0.2, 0.1) (0.2, 0.2) (0.5, 0.2) (0.5, 0.5)

R
ot

-M
N

IS
T

5
0.00 92.28±0.27 92.63±0.46 92.26±0.31 92.25±0.71 92.79±0.44 92.51±0.50 92.26±0.65

0.25 91.22±0.58 91.50±0.36 92.33±0.26 91.75±0.30 92.60±0.19 91.23±1.63 91.66±0.46

0.50 90.78±0.11 91.15±0.34 91.25±0.14 91.25±0.92 90.67±0.73 90.75±0.86 90.41±1.48

10
0.00 70.78±0.23 71.16±0.51 71.95±1.54 72.22±0.63 73.32±0.69 71.89±0.62 71.61±0.76

0.25 70.23±0.76 71.42±0.98 71.84±0.72 73.22±1.34 72.58±0.64 72.23±0.71 71.23±0.84

0.50 69.61±0.50 70.59±0.62 70.94±0.71 72.05±0.34 72.25±1.40 71.37±0.65 70.85±0.67

20
0.00 48.79±0.27 48.01±0.58 47.96±1.84 48.33±1.23 48.65±0.91 48.19±0.14 47.71±0.91

0.25 47.72±0.83 48.61±0.30 48.41±0.84 48.53±1.77 48.30±0.87 48.29±1.59 47.11±0.44

0.50 46.20±0.26 47.15±1.37 48.02±1.10 48.17±1.42 48.30±1.41 47.66±1.53 47.73±0.51

Pe
rm

-M
N

IS
T

5
0.00 95.77±0.33 95.55±0.27 96.43±0.10 95.85±0.29 90.29±6.07 88.18±8.86 74.51±13.55

0.25 95.45±0.25 95.14±0.27 95.65±0.22 95.75±0.32 93.73±1.29 87.49±2.33 75.97±5.61

0.50 93.95±0.65 94.19±0.41 94.90±0.22 94.22±1.19 94.05±0.81 91.02±3.71 83.94±9.58

10
0.00 95.06±0.29 94.08±0.95 94.38±0.73 89.54±2.27 78.91±5.26 76.44±7.93 35.86±2.04

0.25 94.51±0.12 93.52±0.01 93.62±0.64 88.58±2.17 84.94±3.58 69.32±6.24 59.53±9.57

0.50 92.12±0.62 90.31±2.01 92.29±0.73 88.48±0.22 82.57±2.40 74.42±2.84 69.31±5.66

20
0.00 92.40±0.38 89.41±1.73 84.28±1.35 73.29±2.60 63.84±3.45 58.85±5.00 20.80±0.99

0.25 90.75±0.63 89.22±0.94 84.29±2.17 75.82±6.68 67.26±1.22 63.96±1.19 41.60±2.64

0.50 87.31±0.82 84.90±1.99 83.72±0.63 69.62±5.98 66.27±2.74 64.42±2.33 51.92±3.79

Table 11: Effect of different levels of activation sparsity on Rot-MNIST with 5 tasks with varying degrees
of incremental rotation (θinc) in each subsequent task. Row 0 shows (kl1 , kl2) the ratio of active neurons in
the 1st and 2nd hidden layers, respectively.

(kl1 , kl2) Task Similarity (θinc)
2 4 8 16 24 32

0.05, 0.05 97.54±0.06 96.56±0.14 91.95±0.54 75.13±0.83 63.14±0.52 57.01±0.89

0.1, 0.05 97.57±0.32 96.84±0.18 92.49±0.59 76.15±1.28 64.03±1.12 58.56±1.17

0.1, 0.1 97.81±0.08 96.84±0.30 92.28±0.31 76.80±1.20 64.91±1.17 58.62±1.70

0.2, 0.1 97.44±0.74 96.88±0.45 92.47±0.69 75.79±1.26 64.38±1.58 58.34±1.54

0.2, 0.2 97.88±0.11 97.27±0.15 92.79±0.50 76.22±1.46 64.30±1.38 57.22±1.06

0.5, 0.2 97.67±0.64 96.92±0.78 92.61±0.65 75.66±0.95 63.86±0.61 56.11±1.20

0.5, 0.5 97.67±0.55 97.03±0.53 92.29±0.58 74.55±1.01 62.37±0.62 53.13±3.62
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Algorithm 1 Bio-ANN: A biologically plausible framework for CL.
Input: Data stream D; Learning rates η, ηWie , ηWei ; Hebbian learning rate ηh; Heterogeneous dropout
ρ; Synaptic consolidation weights λ, λWie

, λWei
, γ; Experience replay weights α, β

Initialize:
Model weights θ, Reference weights θc = {}, Task prototypes Cτ = {}
Heterogeneous dropout: Overall activation counts Aτ = 0, Keep probabilities Pτ = 1
Memory buffer M←− {}
Synaptic Intelligence: ω = 0, Ω = 0

▷ Sample task from data stream
1: for Dτ ∈ {D1,D2, ..,DT } do

▷ Task context
2: Evaluate context vector (Eq. 2):

cτ = 1
|Dτ |

∑
x∈Dτ

x

3: Update the set of prototypes:
Cτ ←− {Cτ , cτ}

▷ Train on task τ
4: while Training do
5: Sample data: (xb, yb) ∼ Dτ and (xm, ym, zm) ∼M

▷ Task specific loss
6: Get the model output and activation counts on the current task batch:

zb, ab = F (xb, cτ ; θ, Pτ ) # Apply Heterogeneous dropout
7: Calculate task loss:

Lτ = Lcls(zb, yb)
8: Update overall activation counts:

Aτ ←− UpdateActivationCounts(at)
▷ Experience replay

9: Infer context for buffer samples (Eq. 3):
cm = arg min

cτ

∥x′ −Cτ∥2

10: Get model output on buffer samples:
z = F (xm, cm; θ) # Disable Heterogeneous dropout

11: Calculate replay loss:
Ler = αLcls(z, ym) + β(z − zm)2

▷ Synaptic regularization
12: Calculate SI loss:

Lsc = Ωadj(θ − θc)2

13: Calculate overall loss and clip the gradient between 0 and 1:
L = Lτ + Ler + Lsc

∇θL = Clip(∇θL, 0, 1)
▷ Update Models

14: SGD update: θ = UpdateModel(∇θL, η, ηWie , ηWei)
15: Hebbian update on dendritic segments: U = HebbianStep({cτ , cm}, U)
16:
17: Update small omega: ω = ω + η∇2

θL) ▷ Update SI parameter
18: M←− Reservoir(M, (xb, yb, zb)) ▷ Update memory buffer (Algorithm 2)
19: ▷ Task Boundary
20: Update keep Probabilities (Eq 5): Pτ = exp( −Aτ

max Aτ
ρ)

21: Update SI Omega and reference weights and reset small omega:
Ω = Ω + ω

(θ−θc)2+γ
ω = 0
θc = θ

22: Scale up importance for inhibitory weights
Ωadj = ScaleUpInhib(Ω, λWie

, λWei
)

return θ
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Algorithm 2 Reservoir Sampling
Input: Memory Buffer M, Buffer Size B, Number of examples seen so far N , data points (x, y, z)

1: if B > N then ▷ Check if memory is full
2: M[N ]←− (x, y, z)
3: else ▷ Select a sample to replace
4: n = SampleRandomInteger(min=0, max=N)
5: if n < B then
6: M[n]←− (x, y, z)

return M
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