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Abstract. Multimodal Large Language Models (MLLMs) are emerg-
ing as powerful tools for automating radiology report generation (RRG)
and visual question answering (VQA) from 3D CT scans. In this work,
we present FeLoRA16-SPP, a lightweight adaptation of the M3D-LaMed
baseline that combines LoRA-based para-meter-efficient fine-tuning with
a spatial pooling projector, while freezing the vision encoder for effi-
ciency. We evaluate FeLoRA16-SPP on the FLARE25 MICCALI challenge
using the GREEN score, the official metric for organ-level report com-
pleteness. Our method improves performance on the GREEN score by up
to 12% compared to PHI3 and by 4% compared to Med3DVLM, achiev-
ing an average score of 0.431 across 18 organ systems. FeLoRA16-SPP de-
livers top results for 9 organs including the respiratory tract (0.7901), kid-
neys (0.3386), biliary system (0.6344), pancreas (0.6173), and lymphatic
system (0.6600). These results demonstrate that parameter-efficient adap-
tations of 3D MLLMs can provide clinically meaningful improvements in
structured radiology report generation without requiring full-scale re-
training.
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1 Introduction

Foundation models are transforming medical image analysis by enabling down-
stream adaptability with minimal supervision [2] [9]. Recent work has begun
to explore 3D vision-language models for medical images. The M3D framework
introduced a large 3D image-text dataset (M3D-Data) and the M3D-LaMed
model for tasks including 3D image-to-report generation and VQA [3]. Follow-
ing this, Med3DVLM proposed an efficient 3D vision encoder and advanced
multimodal projector, achieving state-of-the-art results in 3D report genera-
tion and VQA [11]. More recently, a vision-language foundation model tai-
lored for 3D medical imaging, further advancing the design space for volumet-
ric vision-language systems was proposed [10]. These works demonstrate that
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transformer-based MLLMs can effectively process volumetric CT and MRI data
by flattening 3D features into a language model input. For example, a system-
atic study of the 3D MLLM design space showed that model size and masking
strategies influence report generation accuracy, and that combining the raw CT
volume with an organ segmentation mask can further improve performance [2].

Multimodal models have also been evaluated on radiology tasks specifically.
Benchmarks like AMOS-MM and CT2Rep emphasize report generation accu-
racy, while other works focus on visual question answering for 3D scans [12].
Surveys of medical VLMs highlight that recent models integrate advances from
general vision—language research (e.g., CLIP-style pretraining, MLP-Mixer pro-
jectors, contrastive or generative objectives) into medical data. Importantly,
these reviews note that RRG and RVQA remain challenging due to limited
paired data and the complexity of medical language [12] [4]. Our work builds on
these efforts by using the M3D baseline as a starting point and tailoring it for
the FLAREDS requirements (i.e., report generation and VQA)

The FLARE 2025 Task 5 (Multimodal Model for 3D Medical Image Parsing)
requires a single model to handle both report generation and visual question
answering (VQA) from 3D CT scans. This reflects a growing need for general-
ist AI systems in radiology, where images and associated text (reports, notes)
must be interpreted together. A recent review of vision—language foundation
models for 3D medical imaging highlights the rapid evolution of architectures,
datasets, and evaluation protocols in this emerging field [L0]. In particular, ra-
diology report generation (RRG) and visual question answering (VQA) from
images are two closely related tasks with direct clinical impact [4]. Generating
accurate reports can reduce radiologist workload and support under-resourced
settings, while VQA allows interactive querying of 3D scans to clarify findings
(e.g., “Is there a tumor in the pancreas?”). These tasks leverage recent advances
in multimodal large language models (MLLMs) that combine image features with
powerful LLMs [11]. The FLARES5 setup combines these modalities and tasks,
demanding models that can seamlessly integrate visual and textual information
from 3D CTs to answer clinical questions.

The key motivation of this work is to leverage the strong pretraining of
3D MLLMs (e.g., M3D-LaMed) while fine-tuning them for the specific report-
ing and question-answering tasks of FLARE Task 5. We propose FeLoRA16-
SPP, which retains the original 3D MLLM architecture [3] [2] but adapts it
with tuned hyperparameters and input preprocessing. Our contributions include
a parameter-efficient fine-tuning strategy for 3D medical LLMs that improves
GREEN score [7] on report generation for CT scans. Results on the FLARE5
validation sets show that FeLoRA16-SPP outperforms the provided Med3DVLM
baseline in GREEN score across most anatomical systems, achieving top scores
on biliary tract, pancreas, kidneys, lymphatic system, musculoskeletal system,
and respiratory tract. Overall, this work shows that relatively light-touch fine-
tuning of a strong 3D MLLM can yield significant gains in clinically relevant
subtasks, even if global answer diversity is somewhat reduced.
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2 Method

We adopt the LLaVA-style MLLM framework for its simple, effective, and widely
used modular design—a visual encoder, a projector, and a language model. In
this work, we fine-tuned M3D-LaMed-Phi-3-4B, which is itself an MLLM com-
posed of a ViT-based 3D visual encoder, a projector, and a Phi-3 language
model, and was previously pretrained on large-scale medical imaging data. The
model’s projected visual embeddings are concatenated with the query prompt
and supplied to the language model to generate radiology reports. Architecture
illustration is provided in Figure 1.

Only CT Images

Projector LLM

Fig. 1. Overall architecture of the M3D-LaMed-Phi-3-4B model. CT volumes are en-
coded by a 3D ViT, projected via token pooling, and passed to the Phi-3 language
model for report generation.

2.1 Preprocessing

The raw 3D CT volumes were standardized to the model’s input format. Intensi-
ties were clipped to clinically relevant ranges (—160-240 HU for AMOS/abdominal,
—1350-150 HU for others), rescaled to [0, 1], and resampled to 32 x 256 x 256 with
a single channel. The processed volumes were stored as binary arrays with an
updated manifest to ensure reproducible inputs for fine-tuning. Figure 2 shows
the preprocessing workflow.

0 Resi
?;::i:‘fct Normalize an:s;z; d Preprocessed CT
. i > between —> —> volume
Intensity [0,1] channel al
clipping dimension (-npy file)

Load raw CT scan AMOS: -160 to 240 HU, Size: (1, 32, 256, 256)
(3D volume, .nii.gz) ~ Otherwise -1350 to 150 HU

Fig. 2. Preprocessing pipeline. Raw CT volumes in NIfTI format are loaded, intensity
values are clipped within dataset-specific Hounsfield Unit ranges, normalized to [0,1],
resampled to a fixed resolution (32x256x256), and stored as standardized .npy files.
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2.2 Proposed Method

The overall pipeline of the proposed method is illustrated in Figure 3. We fine-
tune the M3D-LaMed-Phi-3-4B model, designed for multimodal medical un-
derstanding tasks. A 3D Vision Transformer (ViT) encoder processes the CT
volumes, which are preprocessed to a standardized resolution of 32 x 256 X
256 and partitioned into 4 x 16 x 16 voxel patches embedded as tokens. The
vision encoder is kept frozen to leverage pretraining on large-scale medical CT
datasets.

To bridge the encoder and language model, we experiment with two projector
designs. The Spatial Pooling Perceiver (SPP) reduces token count while preserv-
ing 3D structure, and the HILT projector uses stacked cross-attention blocks to
enrich coarse representations with fine-grained spatial details. Both projectors
output refined features via an MLP. The SPP-based model is FeLoRA16-SPP,
and the HILT-based model is FeLoRA16-HILT. The fused representations are
input into the Phi-3 language model, fine-tuned with LoRA adapters, which
generates structured radiology findings, impressions, and answers clinical VQA
queries.

Overall, this design balances efficiency and adaptability: by freezing the vi-
sion encoder and only fine-tuning the multimodal projector and LLM, less than
8% of the total parameters ( 321M of 4.07B) are trainable, significantly reduc-
ing computational cost while still enabling effective cross-modal alignment and
medical report generation.

Model Outputs
1. Radiology report

(e.g. liver: The liver is
normal in size and shape

with homogeneous density.
AR 3D Vision SPP/HILT Phi3 e
(@,T —>| Transformer Projector LLM o ob?}o‘.sly e )
2. Visual

Question/Answers
Preprocessed Frozen Fine-tuned LoRA Fine-tuned (e.g. Q. Is there a round low-
CT images density lesion in the right
Kidney?
Ans: Yes ...)
Q y

Fig. 3. Proposed model. CT images are encoded by a frozen 3D Vision Transformer,
projected into the language space by a projector, and processed by a LoRA-tuned Phi-3
LLM to generate radiology reports and answer clinical questions.

3 Experiments

3.1 Dataset and evaluation measures

The training is conducted using the MICCAI FLARE 2025 Task 5 3D dataset.
In total, the training dataset includes 3,290 CT volumes and over 30,000 ques-
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tions, supporting both radiology report generation and visual question answering
(VQA). The validation set contains 681 samples. Annotations are stored in struc-
tured JSON format containing case _id, findings, impression, and both global and
local VQA. The dataset combines contributions from CT-RATE (2,000 scans,
19,276 questions) and AMOS-MM (1,236 scans, 12,287 questions), covering chest
and abdominal regions with multi-organ details. There are a total of 18 organs
covered in the dataset. The official metric of the challenge which is GREEN
score [7] is used to evaluate the outputs of report generation and accuracy is
used to evaluate the local and global VQA. We also compute text similarity
metrics such as BLEU [8], METEOR [5]and ROUGE [6] for report generation.

3.2 Implementation details

The input scan was resized to a volume size of 32 x 256 x 256, ensuring consistent
spatial representation across the datasets. For the SPP projector, the pooling
type used is spatial pooling, with a pooling size of 2 to reduce the number of
tokens while preserving spatial structure. The projector layer type is set to MLP,
consisting of 2 layers, which refine the pooled features before passing them to
the language model. For the HILT projector, we used 2 stacked cross-attention
transformer blocks with 12 attention heads each, followed by a 3-layer MLP
to refine low-resolution features using high-resolution context. A prompt-based
training strategy was adopted, where a simple template instruction guided the
language model to generate descriptive findings and answer clinical questions.
Prompts used in training are mentioned in Table 1.

Table 1. Prompts for report generation and VQA tasks.

Task Prompt

Report Generation You are an Al assistant trained
to act as a thoracoabdominal ra-
diologist. Please describe in detail
the findings in this thoracoabdom-
inal CT scan. Include all relevant
anatomical structures visible in the
scan — both thoracic (e.g., lungs,
heart, mediastinum) and abdomi-
nal (e.g., liver, pancreas, kidneys,
etc.).

VQA You are an Al assistant acting as a
radiologist tasked with answering a
multiple-choice question based on a
CT scan.

Environment settings All model training and inference were implemented
using the Hugging Face Transformers framework. The development environments
and requirements are presented in Table 2.
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Table 2. Development environments and requirements.

System Ubuntu 22.04 LTS

RAM 48 GB

GPU (number and type) 1 x NVIDIA A40, 48 GB VRAM
CUDA version 11.8

Programming language Python 3.10.14

Deep learning framework torch 2.2.1, torchvision 0.17.1

Training protocols The vision encoder of the MLLM was kept frozen, while
the projector was finetuned and the LLM (Phi-3) was fine-tuned using LoRA
adapters (rank 16). This selective tuning strategy allowed efficient adaptation of
cross-modal alignment and language reasoning while significantly reducing the
number of trainable parameters. The model was trained for 6 epochs with a
batch size of 4, gradient accumulation of 2, which makes effective batch size 8,
and a learning rate of 5 x 1072, scheduled using a cosine decay strategy with
a warmup ratio of 0.03. To optimize memory usage and improve throughput,
bfloat16 precision and gradient checkpointing were employed. A summary of the
training hyperparameters is presented in Table 3.

Table 3. Training protocols.

Batch size 4

Gradient accumulation 2

Patch size 4x16 x 16

Total epochs 6

Optimizer AdamW (default parameters)
Initial learning rate (Ir) 5x107°

Lr decay schedule cosine

Training time 10 hours

Loss function CrossEntropyLoss

Number of model parameters 4.07B

4 Results and discussion

The quantitative results of radiology report generation are presented in Table 4.
FeLoRA16-SPP, demonstrates consistently strong performance across several or-
gan systems. For instance, it achieved high GREEN scores for the Respiratory
Tract (0.7901), Esophagus (0.6816), Biliary System (0.6344), Lymphatic System
(0.6600), Pancreas (0.6173), Musculoskeletal System (0.5911), Abdominal Cav-
ity and Peritoneum (0.4721), Kidneys (0.3386), and Lungs & Pleura (0.3230).
These organs are generally characterized by well-defined anatomical boundaries
and consistent appearance in CT scans, which allowed the model to effectively
align image features with report text.
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Performance was notably low for Blood Vessels (0.0472), Gastrointestinal
Tract (0.0790), Breast Tissue (0.0), and Diaphragm (0.0). In particular, breast
tissue and diaphragm were largely not captured, reflecting their extreme under-
representation in the training set (95 and 20 samples out of 3,290, respectively).
The complexity and small size of these structures, combined with their scarcity,
made them especially challenging to capture. Blood vessels and gastrointestinal
structures, though better represented, are highly variable and intertwined with
neighboring tissues, leading to reduced sensitivity. Additionally, thin structures
like the diaphragm are easily lost during patch-based downsampling, and freez-
ing the vision encoder further limited adaptation to fine-grained spatial features,
exacerbating the poor detection of these regions.

FeLoRA16-SPP consistently outperformed the baselines Med3DVLM and
PHI3 on multiple organ systems. An alternative configuration, FeLoRA16-HILT,
which uses a different projector, showed competitive results in certain cases (e.g.,
Spleen and endocrine system), but overall FeLoRA16-SPP yielded superior av-
erage GREEN score across all regions as presented in Table 4. The SPP pro-
jector outperformed HILT for these challenging regions because it preserves the
3D spatial structure, maintaining coarse-to-fine context even for scarce or thin
structures. In contrast, HILT’s cross-attention sometimes missed these regions
when low-resolution queries failed to capture high-resolution details.

The VQA results are shown in Table 5. FeLoRA16-SPP achieved higher
accuracy on local questions (0.4054) than global questions (0.0954), reflecting
task characteristics: local questions had few well-defined answer choices (e.g.,
“Yes/No”), constraining the output space and facilitating model performance.
Global questions involved many possible conditions, increasing difficulty and re-
ducing accuracy. Compared with baselines, FeLoRA16-SPP performed compet-
itively on local questions but lagged behind three other models, and exhibited
lower accuracy on global questions, where Med3DVLM achieved superior results.

Based on the NLP metrics reported in Table 6 for report generation, FeLoRA16-
SPP performs better than FeLoRA16-HILT across all metrics. It has higher
ROUGE (0.4899 vs 0.4560), METEOR, (0.3549 vs 0.3126), and BLEU (0.1598
vs 0.1047), indicating that its generated reports are closer to the ground truth in
terms of sequence overlap, semantic similarity, and n-gram precision. This sug-
gests that Fe.oRA16-SPP produces more accurate, fluent, and clinically relevant
text than FeLoRA16-HILT.

4.1 Quantitative results on validation set

GREEN score comparison is reported for FeLoRA16-SPP, FeLoRA16-HILT and
the provided baselines of Med3DVLM and PHIS.
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Table 4. Results of radiology report generation (GREEN score).

Organ/System FeLoRA16-SPP FeLoRA16-HILT Med3DVLM PHI3
Liver 0.2740 0.2278 0.2775  0.2408
Biliary System 0.6344 0.5986 0.5122 0.4842
Spleen 0.7024 0.7508 0.6346 0.5691
Pancreas 0.6173 0.58 0.5835 0.5351
Kidneys 0.3386 0.2869 0.2470 0.2243
Endocrine System 0.4094 0.4294 0.2804 0.2296
Lymphatic System 0.66 0.644 0.5643 0.4946
Gastrointestinal Tract 0.079 0.073 0.1199 0.0761
Abdominal Cavity & 0.4721 0.3462 0.3962 0.3148
Peritoneum

Blood Vessels 0.0472 0 0.1261 0.1016
Musculoskeletal 0.5911 0.515 0.5309 0.4255
System

Lungs & Pleura 0.3230 0.3038 0.2729 0.2142
Respiratory Tract 0.7901 0.7183 0.7794 0.7049
Heart 0.5462 0.3544 0.6545  0.6663
Mediastinum 0.6016 0.6025 0.6117  0.5192
Esophagus 0.6816 0.567 0.6408 0.6626
Breast Tissue 0 0 0 0
Diaphragm 0 0 0 0
Average 0.431 0.389 0.402 0.359

Table 5. Comparison results of visual question answering.

Metric FeLoRA16-SPP FeLoRA16-HILT Med3DVLM PHI3
Global Accuracy 0.0954 0.0859 0.2358  0.1799
Local Accuracy 0.4054 0.4441 0.4180 0.5691

Table 6. Comparison results of NLP metrics on report generation.

Metric(Avg.) FeLoRA16-SPP FeLoRA16-HILT
ROUGE 0.4899 0.4560
METEOR 0.3549 0.3126
BLEU 0.1598 0.1047

4.2 Qualitative results on validation set

Table 7 shows comparison of generated report and the ground truth. The gen-
erated report has an average green score among all organs of 0.925. The model
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identified every organ that was in the ground truth and nearly correctly captur-
ing their associated findings. While Table 8 presents a generated report with an
average green score of 0.06 across all organs. The model exhibited hallucination
by including a non-existent organ and produced inaccurate descriptions for the
correctly identified organ.

Table 7. The model captured all regions in its report, yielding high GREEN score.

Generated

Ground truth

lungs and pleura: There are sub-
centimeter nonspecific nodules in both
lungs. No mass or infiltrative lesion is
identified in either lung. No pleural ef-
fusion is present.

respiratory tract: The trachea and
both main bronchi are patent. No oc-
clusive pathology is identified in the
trachea or main bronchi.

heart: The heart is normal in size
and contour. No pericardial effusion is
present.

mediastinum: Mediastinal structures
cannot be optimally evaluated due to
the absence of intravenous contrast.
The widths of the mediastinal great
vessels are normal.

esophagus: No abnormal wall thick-
ening of the esophagus is observed
within the imaged sections.
lymphatic system: No pathologi-
cally enlarged lymph nodes are iden-
tified in the mediastinum or hilar re-
gions. No enlarged lymph nodes of
pathological size are detected.
musculoskeletal system: Thoracic
vertebral body heights, alignment,
and densities are normal. Interverte-
bral disc spaces are preserved. Neu-
ral foramina are patent. No lytic or
destructive bone lesions are identified
within the imaged sections.
abdominal cavity and peri-
toneum: No free fluid collection is
identified in the upper abdomen on
the imaged sections. No mass with
distinct borders is observed in the
upper abdominal organs within the
limits of the non-contrast CT.

lungs and pleura: There is plaque-
like linear calcification in the pleura
of the apical segment of the right up-
per lobe adjacent to the mediastinum,
with adjacent parenchymal scarring.
No evidence of pneumothorax is seen
in either lung. No active infiltration
or mass lesion is identified in either
lung. Both lungs are well ventilated.
No pleural effusion is present.
respiratory tract: The trachea and
both main bronchi are patent without
evidence of occlusive pathology.
heart: Cardiac contour and size are
within normal limits as far as can
be evaluated without intravenous con-
trast. No pericardial effusion is de-
tected.

mediastinum: Mediastinal vascular
structures are normal in caliber as
far as can be evaluated without intra-
venous contrast.

esophagus: No abnormal wall thick-
ening is observed in the thoracic
esophagus.

lymphatic system: No lymph nodes
of pathological size or appearance are
identified in the mediastinum or axil-
lary regions.

musculoskeletal system: No lytic or
destructive bone lesions are seen. Ver-
tebral body heights are preserved.
abdominal cavity and peri-
toneum: No abnormality is detected
in the upper abdominal
within the field of view on non-
contrast CT.

sections
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Table 8. The model hallucinated a region and produced inaccurate report for the
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identified organ, resulting in a low GREEN score.

Generated

Ground truth

kidneys: Both kidneys are normal in
position, shape, and size with smooth
contours. The perirenal fat space is
clear. The parenchymal density is
uniform without focal density abnor-
malities. The left renal pelvis, ca-
lyces, and ureter are dilated with hy-
dronephrosis. The right renal pelvis,
calyces, and ureter are not dilated.
The right renal hilum is located an-
teriorly.

lymphatic system: No enlarged
lymph nodes are seen in the
retroperitoneum.

kidneys: The left kidney is enlarged.
Dilation of the right renal pelvis
with fluid accumulation. Thinning of
the renal parenchyma. Multiple spot-
ted high-density foci in the collect-
ing system, largest measuring ap-
proximately 11 mm+/65mm. Multi-
ple cyst-like low-density foci in the
left kidney, largest measuring ap-
proximately 16mm. Multiple cyst-
like low-density foci in the renal
parenchyma, largest measuring ap-
proximately 15mm. No obvious ab-
normalities in the position or mor-
phology of the right kidney. The
perirenal fat space is clear. No dila-
tion of the renal pelvis or calyces.

Table 9 and Table 10 show qualitative results of global and local visual ques-

tion answers.

Table 9. Qualitative results of the model on global visual question answers. The model

successfully predicted several answers accurately, although some predictions were miss-

ing.
Global Ques- Choices (Options Ground Truth Generated
tion Given) Answer Answer
Which of the Arterial wall calcification, Arterial wall cal- FEmphysema,
following condi- Coronary artery wall cification, Hiatal Lung nodule
tions are present calcification, Hiatal her- hernia, Emphy-
in this scan? nia, Lymphadenopathy, sema, Lung nod-
(Select all that Emphysema, Atelectasis, ule

apply, leave
empty if none)

Lung nodule, Lung opac-
ity, Pulmonary fibrotic
sequela, Pleural effu-
sion, Mosaic attenuation
pattern, Peribronchial
thickening, Consolidation,
Bronchiectasis, Interlobu-
lar septal thickening
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Table 10. Qualitative results of the model on local visual question answers. The model
accurately addressed most root questions and demonstrated strong performance on

follow-up questions.

Local Question(s) Ground Truth Generated An- Match
Answer swer

1. Are there two lesions Yes Yes Root  question

of cystic density in the Cystic Cystic correct, Follow-

right kidney? up correct

2. How would you de-

scribe the appearance

of these right kidney

lesions? Choices: [Solid;

Cystic; Calcified]

1. Is there diffuse density No No Root  question

loss in the liver? Hepatosteatosis None of the above correct, Follow-

2. What is the most up incorrect

likely clinical implication (missed implica-

of the diffuse density loss tion)

in the liver? Choices:

[Hepatosteatosis; Cirrho-

sis; Hepatic congestion|

1. Are there parenchymal No Yes Root  question

findings in the lungs dur- Posterior segment Posterior segment incorrect  (op-

ing the late recovery pe- of the upper lobes, of the upper lobes, posite yes/no),

riod of Covid pneumonia? right middle lobe, right middle lobe, Follow-up cor-

2. Which lung regions and lower lobes of and lower lobes of rect

show these parenchymal

both lungs

both lungs

findings? Choices: [Only
upper lobes; Only lower
lobes; Posterior segment
of the upper lobes, right
middle lobe, and lower
lobes of both lungs|

4.3 Limitation and future work

Our approach has several limitations. First, freezing the vision encoder, while
efficient, likely limited the model’s ability to capture fine-grained details, leading
to weaker performance in detecting thin or subtle structures such as blood vessels
and the diaphragm. Second, we did not perform ablation studies (e.g., varying
LoRA rank, frozen vs. unfrozen encoder layers), which restricts our ability to
attribute gains to specific design choices. Third, the evaluation metric itself in-
troduces bias: the GREEN score emphasises coverage across major organ systems
but may obscure failures in rare or clinically critical findings. Fourth, our model
is restricted to CT scans of the abdomen and thorax, limiting generalizability;
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extending to other imaging modalities (e.g., MRI, X-ray) will require modality-
specific pretraining or domain adaptation. Finally, we relied on the original M3D
backbone without exploring newer vision-language designs (e.g., DC-Former [1])
or larger LLMs (e.g., Phi-3), which may further improve representation learning.
Future work could address these gaps by conducting systematic ablations of fine-
tuning strategies, unfreezing parts of the vision encoder, and incorporating mul-
timodal training with more diverse CT datasets. Designing explicit multi-task
heads for detection and counting tasks, along with context-aware mechanisms
such as cross-slice attention, may also improve global reasoning. Moreover, sup-
plementing benchmark-based evaluation with expert radiologist assessment will
help identify clinically meaningful failure modes beyond what automatic metrics
capture.

5 Conclusion

We have presented FeLoRA16-SPP, a fine-tuned adaptation of the M3D 3D-
Medical LLM for radiology report generation from 3D CT scans. Our method
retains the original M3D backbone while introducing task-specific fine-tuning
strategies. Although FeLoRA16-SPP does not surpass Med3DVLM and PHI3
in global or local VQA accuracy, it achieves consistently higher GREEN scores
across multiple anatomical systems, including spleen, biliary tract, pancreas,
kidneys, lymphatic system, musculoskeletal system, and respiratory tract. These
results highlight that our fine-tuning strategy enhances system-level consistency
and organ-specific precision in report generation, even when overall answer di-
versity remains limited. In summary, FeLoRA16-SPP demonstrates the value of
lightweight fine-tuning in improving clinically relevant evaluation metrics, par-
ticularly the GREEN score, for 3D medical image understanding.
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Table 11. Checklist Table. Please fill out this checklist table in the answer column.

Requirements Answer
A meaningful title Yes
The number of authors (<6) 6
Author affiliations and ORCID Yes
Corresponding author email is presented Yes
Validation scores are presented in the abstract Yes
Introduction includes at least three parts: Yes
background, related work, and motivation

A pipeline/network figure is provided Fig 3
Pre-processing 4
The dataset and evaluation metric section are presented 4
Environment setting table is provided 2
Training protocol table is provided 3
Ablation study 7
Limitation and future work are presented Yes

Reference format is consistent. Yes




