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ABSTRACT

Mode connectivity is a phenomenon where trained models are connected by a path
of low loss. We reframe this in the context of Information Geometry, where neural
networks are studied as spaces of parameterized distributions with curved geome-
try. We hypothesize that shortest paths in these spaces, known as geodesics, cor-
respond to mode-connecting paths in the loss landscape. We propose an algorithm
to approximate geodesics and demonstrate that they achieve mode connectivity.

1 INTRODUCTION
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Figure 1: Geodesics are shortest paths in the space of parameterized distributions M. For nar-
row architectures linear interpolation (dashed) fails to achieve mode connectivity, passing through a
region of high loss, despite using a permutation π to ‘shift’ θb closer to θa (Ainsworth et al., 2022).
If we instead follow the geodesic (shortest) path (solid) in the curved distribution space, this does
achieve mode connectivity, appearing as a curved path in the loss landscape.

Garipov et al. (2018) demonstrated the existence of mode connectivity, wherein stochastic gradient
descent (SGD) solutions are connected by low-loss paths in the loss landscape. This result chal-
lenged the prevailing perspective of isolated minima in favour of large connected valleys. More
recently, Ainsworth et al. (2022) achieved linear mode connectivity (LMC), finding linear paths
between two minima with no increase in loss. They achieved this by exploiting the natural permuta-
tion symmetries of neural network layers (Entezari et al., 2022) to ‘shift’ one of the models into the
same loss basin as the other, enabling LMC (see Figure 1, LHS).

Information Geometry interprets neural networks as parameterized distributions p(x, ŷ;θ), studying
them using tools from differential geometry (Amari, 2012). In this setting, the distribution space M
is endowed with a metric which determines lengths and gives the space a curvature, much like
Einstein’s theory of general relativity defines a metric describing curved spacetime. One can then
define geodesics as the paths of shortest length between two points in this space.

Our work demonstrates a connection between mode connectivity and geodesics in the curved distri-
bution space. In particular, we hypothesize that all geodesics between SGD solutions are mode-
connecting paths. Our specific contributions include:

1. A novel algorithm for approximating geodesic paths through the loss landscape.
2. Using our algorithm to find mode-connecting paths between narrow ResNets trained on

CIFAR-10, where existing methods require wider architectures.
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Figure 2: Geodesic optimization achieves mode connectivity for ResNet20 on CIFAR-10. Left:
Geodesic optimization minimizes discretized length functional. Our algorithm finds a curved
path in parameter space; although this curvature increases the Euclidean length (dashed) compared
to the linear path, it decreases the distribution space length (solid). Right: Geodesic optimization
identifies low-loss paths where linear mode connectivity has failed. Linear interpolation between
θ1 and θN shows a large increase in loss on both train and test datasets. After geodesic optimization,
all points on the path have low loss, which we refer to as geodesic mode connectivity.

2 GEODESIC OPTIMIZATION

Given two trained neural networks, θa and θb, we seek to approximate the geodesic path γ between
the distributions pa = p(x, ŷ;θa) and pb = p(x, ŷ;θb). This path minimizes the length functional
defined in Equation 1, where gij is the Fisher-Rao metric (see Appendix A.1). This functional is
equivalent to the integral of the infinitesimal square root Jensen-Shannon Divergence (JSD) (Crooks,
2007). Our algorithm uses a discrete version of Equation 1. We first initialize a sequence of N
models {θa = θ1,θ2, . . . ,θN = θb} along a linear path. Keeping the endpoints fixed, we optimize
parameters {θi} to minimize the loss defined in Equation 2. Note two differences with Equation 1:
(i) We approximate the integral as a discrete sum, measuring the JSD between distributions defined
by each θi, similar to (Carter et al., 2008) (ii) We do not take the square root of JSD; this is equivalent
to minimizing the energy functional which gives the unique geodesic of constant velocity.

L(γ) =

∫
t

√
dγi

dt
gij

dγj

dt
dt =

√
8

∫
γ

√
dJSD (1)

L({θi}Ni=1) =

N−1∑
i=1

JSD(pi||pi+1) (2)

3 EXPERIMENTS

We conduct experiments with a 4× width ResNet20 architecture (He et al., 2016) on the CIFAR-10
dataset (Krizhevsky, 2009). We independently train two networks, θa and θb, and use the weight
matching algorithm of Ainsworth et al. (2022) to permute θb closer to θa. Even after permuting, the
linear path between the two models still shows a large increase in loss, as seen in Figure 2 (RHS). We
then use the algorithm defined in Section 2 with N = 25. Note this only requires training images,
no labels or test data are employed. See Appendix A.2 for further details. The results in Figure 2
demonstrate that our algorithm achieves mode connectivity, where LMC has failed.

4 CONCLUSION

Geodesic optimization succeeds in identifying paths of low-loss between narrow ResNets, where
linear mode connectivity is not present. Future work could compare geodesic paths with those
found by the method of Garipov et al. (2018), or theoretically investigate these geodesic paths.
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A APPENDIX

A.1 NEURAL NETWORK INFORMATION GEOMETRY

In the context of supervised learning for classification tasks, a neural network with parameters θ
can be interpreted as a conditional distribution p(ŷ|x;θ), which maps an input x to a probability
distribution over a set of class labels ŷ. Coupled with a distribution over the inputs p(x), we get a
parameterized joint probability distribution p(x, ŷ;θ) = p(x)p(ŷ|x;θ). In practice, we take p(x)
to be the empirical distribution of our input data to obtain the joint probabilities discussed in the
main text.
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This space of joint distributions, under certain assumptions, is a Riemannian manifold equipped with
a Riemannian metric known as the Fisher-Rao metric g. This is also known, in broader contexts,
as the Fisher information matrix. Given a parameter vector θ = (θ1, . . . , θd), where d is the total
number of parameters, the (i, j)-coordinate of the Fisher-Rao metric is given by Equation 3. For
further details on information geometry and its application to neural networks, see Amari (2012).

gij(θ) = Ep(x,ŷ;θ)

[
∂ log p(x, ŷ;θ)

∂θi

∂ log p(x, ŷ;θ)

∂θj

]
, (3)

A.2 IMPLEMENTATION DETAILS

A.2.1 RESNET ARCHITECTURE

The ResNet architecture employed by Ainsworth et al. (2022) and this work differs from the standard
ResNet He et al. (2016) by the use of LayerNorm (Ba et al., 2016) instead of BatchNorm Ioffe &
Szegedy (2015). This is due to BatchNorm layers lacking invariance to permutations. The use of
LayerNorm was observed to decrease the test accuracy of the models by a few percentage points
compared to BatchNorm.

A.2.2 EXPERIMENTAL PROCEDURE

We train two separate models θa and θb from different random seeds using SGD. We then employ
the weight matching algorithm of Ainsworth et al. (2022) to permute θb, accounting for the per-
mutation symmetries of the parameter space. We next linearly interpolate between θa and π(θb) to
obtain N models {θi}Ni=1, where N = 25. Keeping the end points fixed, we optimize the parameters
θi using SGD with a learning rate of 0.1 and a batch size of 256, to minimise the loss as given by
Equation 2.
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