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Abstract

Empirical, benchmark-driven testing is a fundamental paradigm in the current RL
community. While using off-the-shelf benchmarks in reinforcement learning (RL)
research is a common practice, this choice is rarely discussed. Benchmark choices
are often done based on intuitive ideas like “legged robots” or “visual observations”.
In this paper, we argue that benchmarking in RL needs to be treated as a scientific
discipline itself. To illustrate our point, we present a case study on different variants
of the Hopper environment to show that the selection of standard benchmarking
suites can drastically change how we judge performance of algorithms. The field
does not have a cohesive notion of what the different Hopper environments are
representative – they do not even seem to be representative of each other. Our
experimental results suggests a larger issue in the deep RL literature: benchmark
choices are neither commonly justified, nor does there exist a language that could be
used to justify the selection of certain environments. This paper concludes with a
discussion of the requirements for proper discussion and evaluations of benchmarks
and recommends steps to start a dialogue towards this goal.

1 Introduction

When designing a new algorithm in the wide field of reinforcement learning (RL), a seemingly clear
and simple question inevitably arises: How good is it?

Theoretical research has made great strides in characterizing the complexity and error bounds of
many algorithms under specific assumptions on the MDP structure (Kearns & Singh, 2002; Strehl
et al., 2006; Jaksch et al., 2010; Farahmand et al., 2010; Lattimore & Hutter, 2012; Dann & Brun-
skill, 2015; Osband & Roy, 2016; Azar et al., 2017; Zanette & Brunskill, 2019; Jin et al., 2020b;a;
2021; Domingues et al., 2021). However, once function approximation, large state-action spaces,
and exploration are introduced, it is often too difficult to obtain rigorous guarantees without further
assumptions (Du et al., 2019; Kane et al., 2022; Golowich et al., 2024). In lieu of mathematical
yardsticks, the empirical RL community has used benchmarks and competitive testing to obtain
performance estimates of proposed algorithms (Bellemare et al., 2013; Brockman et al., 2016; Tun-
yasuvunakool et al., 2020). While the statistical validity of empirical comparisons have received
attention (Henderson et al., 2018; Agarwal et al., 2021; Patterson et al., 2023), another important
problem is less discussed: Are our benchmarks representative of a wider set of problems of interest?

This paper is a play in two parts. In act one, we provide a technical evaluation. We showcase that
picking among two different variants of similar benchmarks, we are unable to replicate algorithm
evaluation. For this, we investigate four algorithms: Soft-actor critic (SAC) (Haarnoja et al., 2018),
Model-based Policy Optimization (MBPO) (Janner et al., 2019), Aligned Latent Models (ALM)
(Ghugare et al., 2023), and Diversity is All You Need (DIAYN) (Eysenbach et al., 2019), chosen to
account for the variety of RL paradigms (model-free, model-based, and reward-free). We highlight
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that derived insights do not generalize across the different implementations for all these algorithms.
This shows the field does not have a cohesive notion of what the different Hopper environments are
representative—they do not even seem to be representative of each other.

In the second act, we form a position statement by reflecting on the outcome of the technical section.
We argue that our experiments necessitate a reorientation of the community on the role and selection
of benchmarks. In this, we aim to widen the frame of reinforcement learning research to include
research on the benchmarks themselves. The intuitive idea of a “Hopper” does evidently not capture
the relevant aspects and difficulties of the benchmark. Without evaluating its benchmarks, the RL
community is unable to fully quantify whether there is genuine progress towards the goal of general
learning agents. We summarize the overarching claim of these two acts in a single statement:

Benchmark selection impacts the evaluation of algorithms, but in the past it has largely been
neglected as a first-class problem. This necessitates a re-evaluation of how we describe,

compare, and design our RL evaluation platforms.

2 Background

Before we discuss whether commonly used benchmarks are adequate, we require at least a rough
definition of the term “benchmark”. Although benchmarks play a vital role in the development of
machine learning (Deng et al., 2009; Raji et al., 2021), there is little formal study of their design and
role, especially in the context of RL. Thus, we synthesize an informal definition from a dictionary
(dic) and prior work asking a similar question to ours in image classification (Raji et al., 2021).

Definition 2.1 (Benchmark) A benchmark is a software library or dataset together with com-
munity resources and guidelines specifying its standardized usage. Any benchmark comes with pre-
defined, rankable performance metrics meant to enable algorithm comparison.

To be a little more meticulous about this definition, we can try to draw from other fields that have
treated benchmarking as an area of study. In performance engineering, von Kistowski et al. (2015)
define various lower-level characteristics that are helpful for us to understand what a benchmark
is. It should be relevant to the behavior of interest, reproducible, fair, verifiable, and easily usable.
While all of these play a crucial role also for the RL community, our focus will be on the first point.

To understand relevance, we differentiate benchmarks from domain-specific test environments. An
example of the latter would be a specific robot simulator for platform for which an engineer requires
a control algorithm. The engineer might use this simulator of a physical platform, carefully test
the difference between the simulation and the real environment, and then design and tune an RL
algorithm to produce a controller which is executed in the real environment. A benchmark however
is used not to obtain an instantiation of a policy, but rather to test whether a method to obtain
policies performs well on the specified metric. The important differentiating factor is that an RL
researcher does not necessarily care about an agent that, for example, plays Atari games well. Atari
games serve as a proxy for an actual problem of interest interest which may be hard to specify.

Given that the performance on the specific metric is not the main goal, we instead hope that it is
correlated to a problem representative of a wider class of interesting scenarios within which our finding
generalize. This is is rarely explicitly assessed and there are philosophical difficulties in establishing
what qualifies as representative (Chollet, 2019). Notably, in fields like image classification and natural
language processing, discussing if and how benchmarks actually represent problems of interest is an
active subfield (Scheuerman et al., 2021), yet this discussion is mostly absent in the RL literature.
We defer a further discussion of the nuances of this question to the second part of the paper, and
simply posit the following, somewhat testable core requirement for now:

If an algorithm performs well on a benchmark environment,
it should also do well on other environments representing similar objectives.
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3 Empirical case study: The Hopper environment

For continuous control, a standard testing scenario includes simplified locomotion benchmarks. In
these, the goal is to make various instantiations of legged robots move forward. There are two
commonly used variants of this benchmark, the OpenAI Gym (Brockman et al., 2016) and the
DeepMind Control (Tunyasuvunakool et al., 2020) suites. Both are built on top of the MuJoCo
physics simulator (Todorov et al., 2012) and contain similar robots and tasks, making them well-
suited for testing our previous requirement. Our focus will specifically be the Hopper robot, whose
goal it is to hop forward without falling over. Paraphrasing our requirement, one might be tempted
to say: If it looks like a Hopper and hops like a Hopper, then it better be able to hop everywhere.

To verify whether algorithms are able to make the Hopper hop, we selected four commonly used
algorithms. We chose SAC (Haarnoja et al., 2018) as one of the most popular model-free RL
algorithms, MBPO (Janner et al., 2019) and ALM (Ghugare et al., 2023) as representatives of the
model-based paradigm, and DIAYN (Eysenbach et al., 2019), a reward-free RL approach. For details
on our implementation choices we refer to Appendix A. Each algorithm was originally published using
the OpenAI gym variant of the benchmark. We first discuss the major differences between the two
implementations and then present a detailed comparison of algorithm performance.

3.1 Comparing the benchmark specifications

The Hopper environment is, to the best of our knowledge, first mentioned in Erez et al. (2011) and it
reappears in Schulman et al. (2015) and Lillicrap et al. (2016). In the current Gym version (Towers
et al., 2023), the task description in the documentation (May 2024) is “The Hopper is a two-
dimensional one-legged figure that consist of four main body parts - the torso at the top, the thigh in
the middle, the leg in the bottom, and a single foot on which the entire body rests. The goal is to make
hops that move in the forward (right) direction by applying torques on the three hinges connecting
the four body parts.” (hop) The reward model consists of three terms: a bonus for remaining healthy,
which is defined with a set of constraints to ensure that the Hopper is roughly upright, a bonus for
achieving a forward velocity, and a small regularization cost for large torques. The episode is also
terminated if the Hopper becomes “unhealthy”, meaning it has toppled over.

The other variant of the Hopper benchmark is a reimplementation of the environment as part of the
DeepMind Control Suite of environments (Tunyasuvunakool et al., 2020) based on (Lillicrap et al.,
2016). In this variant, there are three important changes. The Hopper’s torso has one additional link,
which also adds another controllable joint. The reward is designed to be strictly contained within
the interval [0, 1], making comparisons of algorithms simpler as the maximum cumulative return can
be computed from the episode length. Finally, the DMC suite does not use early termination of
unhealthy environments, trajectories are truncated after 1000 steps by default. These design choices
lead to an effectively sparser reward in the DMC Hopper environment, as the Hopper obtains 0
reward when toppling over, but the episode is not reset.

Both variants of the Hopper environment ostensibly represent a very similar robot and task but
we will demonstrate that it does not fulfill our core requirement: neither algorithmic performance
evaluation nor qualitative claims about the usefulness of the chosen algorithms generalize between
these two environments. Note that we do not test whether a policy is transferable between simulators,
but whether the same algorithm is able to produce a policy on both environments.

3.2 Reward-based reinforcement learning

We compare the four previously mentioned algorithms in the Hopper environment using three dif-
ferent instantiations: the standard Gym version of the benchmark, a modified Gym version without
forced termination (to test whether the gap mostly stems from early termination), and the DM
Control version. We report our results in Figure 1.
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1Figure 1: Performance evaluation on the Hopper environment variations. Shaded area denotes a
bootstrapped 95% confidence interval of the mean at 95 across 30 seeds with 5000 resamples.

SAC is able to solve OpenAI Gym variant of the benchmark, but struggles with the DMC version.
To the best of our knowledge, some recent algorithms achieve at most roughly 500 reward points
on this benchmark (D’Oro et al., 2023; Hussing et al., 2024; Hansen et al., 2024). However, both
model-based approaches do not achieve any reward on the DMC variant, even though they achieve
on par or better results on the OpenAI Gym version. This means that depending on which variant of
the benchmark is used, neither the absolute performance nor the relative ranking of the algorithms
stays intact, a feature that other benchmarks such as ImageNet do possess (Recht et al., 2019).

The hypothesis that this effect can be attributed mostly to early termination cannot be verified.
While MBPO struggles with the absence of termination, both SAC and ALM obtain similar returns
to the early terminated variant. Further investigation on the performance of model-based algorithms
in environments without early termination seems pertinent in this light. For completeness sake, it is
important to note that not all model-based approaches fail on the DMC Hopper task. Algorithms
such as TD-MPC2 achieve strong performance even without termination (Hansen et al., 2024).

3.3 Reward-free reinforcement learning

For reward-free RL, we present a qualitative evaluation. First, we note that the original work
presenting the DIAYN algorithm (Eysenbach et al., 2019) tests their approach on the Hopper variant
with early termination. Their results are presented at this link: sites.google.com/view/diayn/hopper.
In their evaluation, the Hopper performs a variety of different dynamic skills, which can be used to
obtain policies for downstream tasks.

We repeated the same experiment now on the DMC variant, without early termination. We visualize
the end states of the trajectories in Figure 2, with the full trajectories visualized in the appendix.
Without termination, the optimization target of DIAYN does not incentivize learning dynamic skills,
but rather distinct static poses, as these are simple to distinguish for the discriminator. As most
common definitions of “skill” imply a dynamic motion, not a static contortion, we highlight that
the emergence of skills with DIAYN seems to depend on properties of the testing environment as
much as on the proposed algorithm. Thus, if another variant of the benchmark, had been chosen,
the analysis of the algorithm would likely have been different. This again highlights our core claim.

Figure 2: Final states for 8 out of 20 “skills” learnt by the DIAYN algorithm on DMC Hopper.
In all cases the Hopper immediately moves towards the final configuration without displaying the
dynamic skills reported in the original paper.

https://sites.google.com/view/diayn/hopper
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4 How do we describe and evaluate benchmarks?

In some sense, the previous section can be narrowly read as a simple comparison of a single envi-
ronment out of set of two common test benchmarks. Finding that these two benchmarks behave
differently, especially when realizing that not even the observation or action spaces are identical,
might not be too surprising. However, dismissing the experiments ignores the role and use of bench-
marks in the wider context of the RL literature. The fact that the observation and action spaces
are different should not matter to this degree. If you agree with our initial requirement, namely
that algorithms should work across benchmarks that represent the same agent and have the same
objective, we may have convinced you at this point that something is wrong.

If a benchmark is supposed to be representative of a wider set of algorithmic problems, we must
begin with investigating the goal of building and using the benchmark. The question that then
demands an answer is: What is the ultimate purpose of reinforcement learning? The broad purpose
of AI is often stated as the development and understanding of general intelligence, as vague as that
might be. If this is indeed the intended purpose, the fact that our algorithms performs so differently
on benchmarks with arguably similar objectives, is —at least to us— somewhat unsettling.

4.1 Evaluating the purpose of reinforcement learning

Reinforcement learning as a field studies methods to compute optimal policies (or related quantities
e.g. value functions) in Markov Decision Processes. The fundamental object here is not derived
by a real-world application such as with image classification, but is instead a formal, mathematical
object that can be arbitrarily complex. The generality of the MDP is often seen as a strength of
the RL paradigm, as many problems which would intuitively require intelligence can be phrased as
a specific variant of the general framework. However, this generality also causes problems.

If the purpose of our field was simply the mathematical study of MDPs, then empirical research is
not needed at all. However, finding efficient algorithms to solve any MDP is likely an intractable
proposal. Instead, we might want efficient solutions to many real world problems by understanding
their properties (Farahmand, 2011). Approaching the overarching purpose from the empirical side
as well to establish relevant (sub-)problems on the path towards general intelligence is then indeed
important. We invite the community to approach the resulting question, even though it is difficult:
What specific (sub-)problems are important to solve with our algorithms and how do we measure
whether our benchmarks properly capture these problems?

We acknowledge the main challenge with our ultimate purpose: Verifying that a benchmark mean-
ingfully represents general intelligence is incredibly difficult. Thus, we argue that RL benchmarking
needs to be treated as a scientific discipline itself. This is not a criticism of the hard work that has
already been put into developing novel RL benchmark environments. We value the contributions of
such work as establishing new test beds is one way to address this difficult problem. To acknowledge
a sampling of such efforts, we briefly survey related work on benchmarks in Appendix C. Rather,
similar to recent efforts in evaluating Large Language Models, we argue that the RL community
needs to start thinking about how to describe its benchmarks and motivate their selection. In addi-
tion to more diverse and interesting benchmarks, we call for expanding the frame of RL research to
include assessing the benchmarks themselves.

4.2 Towards effective benchmarks: Developing a common language

One of the first steps in this endeavor we propose is the development of a common language for
benchmarks. We need to establish an understanding of important concepts, such as goals, properties,
and measurable quantities that are often used without proper specification. In this work, we have
already introduced some nomenclature but we would like to emphasize that it might by no means
be perfect or the standard from here on out. It is an attempt to start a conversation around a topic
we believe to be quite difficult to grasp. We have established the term purpose for the overarching
objective of the community and problems as concrete challenges on the path towards this goal.
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We use the term property to describe the intuitive categories that researchers have used to describe
and group benchmarks, such as “legged robot” or “visual observation”. However, our work hopefully
convinces you that these are not necessarily useful! Purely intuitive notions of “properties” such
as “Hopper” cannot be used without establishing and testing whether they represent meaningful
groupings with regard to problems of interest. We do not know how to do this in all generality but
at least we have established that such tests can be attempted. While some attempts have been made
to define properties of MDPs more rigorously (Osband et al., 2020), to the best of our knowledge
no work has attempted to formalize and study these properties in most established benchmarks.

To develop such properties, we require measurable quantities to group and compare environments,
and to test whether they are meaningful for the problem they were defined for. One positive
example that studies properties of benchmarks is Laidlaw et al. (2023). It introduces the “effective
horizon” as a testable quantity of exploration difficulty in the Atari games. Another example from
the empirical literature is Machado et al. (2018), who investigate common usage patterns of the
ALE suite. Importantly, these quantities need to be computable across arbitrary benchmarks to
allow us to draw conclusion across test-beds. Moreover, they might be highly entangled with each
other and getting to a state of disentanglement will require nuanced treatment and a continually
improving research process. For example, when measuring the exploration difficulty in a pixel-based
environment, the visual representation problem could be a confounding factor. Extending and
verifying these quantities should be a celebrated contribution to the literature at relevant venues.

Finally, it is necessary for future RL papers to discuss how the chosen benchmarks impact algorith-
mic design choices. For example, our experiments show that for DIAYN, early termination is not
merely an incidental property of the benchmark that is external to and separate from the algorithm.
Instead, it is important so that the algorithm behaves as intended. By not discussing such properties
directly, we structurally blind ourselves to understanding their impact. An outcome of the study of
benchmarks should be the ability to inform a conscious choice of the appropriate environments.

4.3 A peek at other fields of science

Purpose, goals, properties and measurable quantities have a somewhat circular relationship as one
needs to define a purpose to define a goal and corresponding properties and quantities but we require
disentangled quantities to reason which goals are achievable. At this point we would like to draw a
parallel to physical sciences. In physics, science often starts out with a first stab to characterize a
system. Isaac Newton defined a “Force” as a measurable quantity consisting of mass and acceleration.
For a long time, this was sufficient to explain various physical behaviors. With the study of more
complex systems such as atomic system, these definitions needed to be revisited. We believe that a
similar, open-ended research process will be necessary to characterize benchmarks.

Thus, we should allow researchers that attempt to make progress towards this end to publish their
work even if it may not capture every single facet of the problem. Similar to how we often take small
steps to develop solutions in the algorithm realm, we should allow ourselves to make incremental but
consistent progress on the relevance of benchmarks. Many other fields have worked on the question
of how to measure important quantities of interest (take for example the enormous difficulty of
establishing a meaningful measure of human intelligence), and how to test whether novel approaches
make meaningful progress towards them. These can serve as inspiration for us, for example reviewing
the thorough and rigorous testing standards of engineering fields such as material science.

5 Conclusion

We have questioned the motivation for benchmark usage in RL and ask the community to consider
a meta-level question that will help inform more conscious choices around which benchmarks are
relevant for what. More work is needed to properly characterize what our benchmarks represent.

What is the ultimate purpose and what are the underlying goals for the RL community?
And how do we capture its various aspects in our benchmark environments in a testable manner?
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A Implementation details of algorithms

Algorithm Code base
SAC https://github.com/proceduralia/high_replay_ratio_continuous_

control
MBPO https://github.com/facebookresearch/mbrl-lib
ALM https://github.com/RajGhugare19/alm
DIAYN Personal reimplementation based on https://github.com/proceduralia/high_

replay_ratio_continuous_control

Table 1: Code sources for tested algorithms

The source code repositories for all algorithms are presented in Table 1. We aimed to make minimal
changes to the algorithms and hyperparameters, to stay close to the way that they have been
evaluated in previous work.

We used all algorithms with the same hyperparameters across all environments, taken from the
original papers proposing each algorithm or the off-the-shelf reference implementations. We note
that all hyperparameters are similar to each other, as all algorithms use SAC as the actor-critic
component, and even with some moderate hyperparameter tuning, we were unable to elicit good
performance from MBPO and ALM on DMC. We also note that while MBPO is seemingly trained
for significantly fewer steps, this is in line with the original paper, as MBPO uses a significantly
higher update ratio.

All of our chosen algorithms were originally implmented on the OpenAI Gym benchmark variant.
This was a conscious choice, for two reasons. First, the OpenAI Gym version is the more popular
benchmark alternative, which means more algorithm in general are tested on it. Second, the existence
of early termination requires explicit handling in the code. To minimize the amount of changes to the
code we were required to make, it was useful to chose algorithm implementations that already handle
this correctly. An algorithm like T-MPC2 (Hansen et al., 2024) would have required potentially
substantial changes to be useable on OpenAI Gym.
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B DIAYN sequences

Figure 3: Full visualization of 8 out of 20 skills from one run of DIAYN. Each row is one sequence
from the execution of a skill, with each column one frame every 100 environment time steps. For
almost all skills we observe that the Hopper maintains a static pose after the first 50-100 time-steps,
which is a very different behavior from the one reported in the original paper.
The poses are mostly distinct, which does optimize the discriminative objective of the algorithm.

C Additional related work on benchmarks

The development of new testbeds has played a significant role in the area of reinforcement learning.
The following is a non-exhaustive list of highly valuable benchmark contributions to the field of RL.

A classical application for benchmarking in RL has always been video games due to the planning
complexity and our ability to quickly simulate them (Bellemare et al., 2013; Brockman et al., 2016;
Kempka et al., 2016; Vinyals et al., 2017; Lanctot et al., 2019; Kurach et al., 2020). When moving to
continuous control, benchmarks are often inspired by robotics application. This includes for instance
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the set of DM control tasks used in this work (Tunyasuvunakool et al., 2020). Yet, there are many
other attempts to capture the difficulties of continuous control in single task learning (Zhu et al.,
2020; James et al., 2020). To build challenges beyond the single-task realm, others have tried to
capture modes beyong single task learning. There exist benchmarks for multi-task (Henderson et al.,
2017), meta (Yu et al., 2019), continual (Wołczyk et al., 2021; Tomilin et al., 2023; Liu et al., 2023),
compositional (Mendez et al., 2022), skill (Mu et al., 2021) and causal (Ahmed et al., 2021) learning.
Further, researchers have integrated other challenges posed by different modalities such as text (Côté
et al., 2018; Chevalier-Boisvert et al., 2019; Küttler et al., 2020) or visual generalization (Cobbe et al.,
2019) as well as challenges posed by human-robot collaboration (Puig et al., 2024) into the their
benchmarks. There are also benchmarks that are more application-based and try to solve automatic
algorithm configuration (Eimer et al., 2021), combinatorial problems (Bonnet et al., 2024) or financial
trading (Liu et al., 2021). Finally, there are benchmarks which focus on tasks other than reward
maximization, such as safe control (Ray et al., 2019; Yuan et al., 2022).


