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ABSTRACT

Deep Q-learning jointly learns representations and values within monolithic net-
works, promising beneficial co-adaptation between features and value estimates.
Although this architecture has attained substantial success, the coupling between
representation and value learning creates instability as representations must con-
stantly adapt to non-stationary value targets, while value estimates depend on these
shifting representations. This is compounded by high variance in bootstrapped
targets, which causes bias in value estimation in off-policy methods. We introduce
Stackelberg Coupled Representation and Reinforcement Learning (SCORER), a
framework for value-based RL that views representation and Q-learning as two
strategic agents in a hierarchical game. SCORER models the Q-function as the
leader, which commits to its strategy by updating less frequently, while the per-
ception network (encoder) acts as the follower, adapting more frequently to learn
representations that minimize Bellman error variance given the leader’s commit-
ted strategy. Through this division of labor, the Q-function minimizes MSBE
while perception minimizes its variance, thereby reducing bias accordingly, with
asymmetric updates allowing stable co-adaptation, unlike simultaneous parameter
updates in monolithic solutions. Our proposed SCORER framework leads to a
bi-level optimization problem whose solution is approximated by a two-timescale
algorithm that creates an asymmetric learning dynamic between the two players.
Extensive experiments on DQN and its variants demonstrate that gains stem from
algorithmic insight rather than model complexity.

1 INTRODUCTION

Deep Reinforcement Learning (RL) has achieved outstanding success, exemplified by the super-
human performance of Deep Q-Networks (DQN) in complex environments (Mnih et al., 2015). The
dominant approach for value-based methods involves training both the representation and the value
function within a single neural network, encouraging a beneficial co-adaptation between the features
learned and value estimates, leading to significant breakthroughs (Hessel et al., 2018; Kapturowski
et al., 2018); however, this monolithic design is subject to an instability known as the deadly
triad (Sutton & Barto, 2018; Van Hasselt et al., 2018). This instability results from the challenging
interaction between function approximation using neural networks, bootstrapping, and off-policy
learning from data stored in an experience replay buffer, where errors in the current value function
are bootstrapped into its own learning targets, leading to a risk of unbounded divergence, an issue
first formally demonstrated in Baird (1995). This risk remains a critical practical concern for modern
agents; recent work has empirically linked this core instability to phenomena like representation
collapse and catastrophic learning failures in deep Q-learning (Lyle et al., 2022).

A prominent line of work seeks to mitigate this instability by directly enhancing the quality of the
learned representations. This is often accomplished by extending the main RL objective with auxiliary
losses, borrowing from advances in self-supervised and representation learning (Jaderberg et al.,
2017; Schwarzer et al., 2021; Laskin et al., 2020b). While this strategy can improve performance,
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Figure 1: SCORER framework. (Left) Overall agent-environment interaction loop. Internally, the agent
comprises a perception network (Follower, fϕ) and a control network (Leader, Qθ) that interact via Stackelberg
game dynamics (UF , UL representing their utility functions). The perception network produces features
z = fϕ(s) used by the control network. (Right) Details the Stackelberg interaction within the agent.

utilizing a shared network to fulfill multiple objectives can introduce the challenge of conflicting
gradients (Yu et al., 2020), wherein the gradient from an auxiliary loss opposes that of the primary
value-learning objective. This interference presents a fundamental trade-off, as the effort to stabilize
representations introduces a new obstacle to learning the value function itself.

This trade-off suggests that simply augmenting the monolithic optimization is an insufficient solution,
motivating a fundamental restructuring of the optimization problem itself. We therefore propose
Stackelberg Coupled Representation and Reinforcement Learning (SCORER), a framework that
recasts the interaction between perception and control as a hierarchical Stackelberg game (Lambertini,
2018). In this game, the Q-function acts as a slow-updating leader, providing the stable learning
target necessary for a fast-adapting perception network (the follower) to learn a robust representations
by minimizing Bellman error variance. This objective incentivizes the creation of representations that
can handle the noisy targets encountered during exploration, preventing the representation collapse
that can afflict monolithic agents (Lyle et al., 2022). This division of labor resolves the underlying
trade-off, using temporal separation to create the stability required for this co-optimization.

We create SCORER’s game-theoretic dynamics through a practical and computationally efficient
algorithm. The Stackelberg equilibrium is approximated using two-timescale gradient descent, where
the follower can track a best response to the leader’s slowly evolving strategy. Implementing SCORER
is simple, as the hierarchical coupling is achieved by assigning the two-players distinct decaying
learning rates that satisfy the conditions for two-timescale convergence, with no alterations to the
underlying network architectures. This two-timescale dynamic provides a principled mechanism for
achieving stable, coordinated adaptation, an approach supported by established theory in stochastic
approximation (Borkar, 1997; Fiez et al., 2020).

Figure 1 provides a high-level overview of the SCORER framework. Our code is available at
https://github.com/fernando-ml/SCORER. In summary, our contributions are three-
fold: 1) We introduce the SCORER framework, a novel game-theoretic formulation that recasts the
interaction between perception and control to address the core instabilities of off-policy value-based
learning directly. 2) We develop a practical and efficient two-timescale algorithm requiring only
update frequency modifications, stabilizing the co-adaptation of representations and value functions.
3) We provide extensive empirical validation, demonstrating that SCORER consistently improves
the sample efficiency and final performance of various off-policy Q-learning agents across multiple
benchmarks.

2 RELATED WORK

Representation learning has been a pivotal topic in RL, even before the advent of deep neural
networks. Early stage efforts concentrated on value function approximation (Thrun & Schwartz,
1993; Tsitsiklis & Roy, 1997) and associated basis function selections (Li & Zhu, 2019; Geramifard
et al., 2013). Entering the age of deep learning, RL harnesses the representation power of neural
networks and becomes capable of solving high-dimensional complex tasks with multi-modal inputs,
such as texts (Li et al., 2016), images (Mnih et al., 2015), and multi-modal sensor data (Liu et al.,
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2017; Yin et al., 2024; Li et al., 2025). The confluence of deep representation learning and RL leads
to the vibrant research field of deep RL.

Depending on the purpose, representation learning methods in deep RL can be classified into two
major categories: those aimed at facilitating training and those designed to enhance testing perfor-
mance. In the training phase, learning appropriate representations helps with 1) dimension reduction:
extracting low-dimensional features from high-dimensional inputs, making the RL tasks tractable, a
typical example of which is vision-based control tasks (Lesort et al., 2018; Li et al., 2023); 2) sample
efficiency: capturing underlying environment dynamics and value structure (Subramanian et al., 2022;
Lee et al., 2020; Dabney et al., 2021; Vincent et al., 2025), which reduce the number of training
episodes and foster faster convergence; and 3) oriented exploration: directing future exploration
strategies based on past experiences and intrinsic motivation (Kulkarni et al., 2016), particularly
in reward-free and sparse-reward settings (Pathak et al., 2017; Hazan et al., 2019). Some other
considerations include training stability (Greydanus et al., 2018) and explainability (Dazeley et al.,
2023; Li et al., 2023). Regarding testing improvement, previous work focuses on the transferability
of representations for improved generalization to downstream or similar tasks (Agarwal et al., 2021a;
Träuble et al., 2021).

Our proposed Stackelberg framework aims to improve sample efficiency and stability in the training
stage. Weighing the three mainstream representation learning methods—supervised, unsupervised,
and self-supervised learning—this work opts for the unsupervised approach based on the Mean
Squared Bellman Error (MSBE). Supervised learning requires additional labeling to inform the agent
of the quality of learned representations (Wang et al., 2024), which is often observed in physical
control with partial observability, and the representations need to encode structural information of the
environment, such as depth maps from RGB images (Mirowski et al., 2017) and physics principles
underlying the wireless sensing inputs (Yin et al., 2024; Li et al., 2025). Distinct from additive value
decompositions (Anand & Precup, 2023) or descriptive architectural separation (Garcin et al., 2025),
this work explores the benefit of internal game-theoretic coupling, creating a hierarchical dependency
between representation and control without external learning signals (other than task rewards) to
interfere with the strategic interactions between the two learning processes.

A similar argument also explains why we do not consider the incorporation of self-supervised learning,
such as contrastive learning (Liu et al., 2021; Stooke et al., 2021; Banino et al., 2022), temporal
dynamics and state prediction (Subramanian et al., 2022; Schwarzer et al., 2021), and observation
reconstruction (Lange & Riedmiller, 2010; Lesort et al., 2018), and most unsupervised learning,
including mutual information (Anand et al., 2019), entropy maximization (Hazan et al., 2019), data
augmentation (Yarats et al., 2022; Laskin et al., 2020a), and bisimulation (Zhang et al., 2021; Agarwal
et al., 2021a). Our proposed unsupervised representation learning solely relies on MSBE and its
sample variance without auxiliary tasks or additional learning signals.

3 PRELIMINARY

Reinforcement Learning and Q-Learning. We consider an agent interacting with an environment
formulated as a Markov Decision Process (MDP), defined by the tuple (S,A, P,R, γ). Here, S is the
state space, A is the action space, P (s′|s, a) is the state transition probability, R(s, a) is the reward,
and γ ∈ [0, 1) is the discount factor. At each step, the environment transitions from state s to s′ and
provides a reward r; if s′ is a terminal state, a done signal d = 1 is captured, otherwise d = 0. The
agent’s goal is to learn a policy π(a|s) that maps states to actions (or distributions over actions) to
maximize the expected sum of discounted future rewards from a given state st: Eπ

[∑∞
i=0 γ

irt+i|st
]
,

where rt+i is the reward received i steps after time t.

In value-based Reinforcement Learning, the optimal action-value function Q∗(s, a) represents the
expected return from taking action a in state s and following the optimal policy thereafter. It satisfies
the Bellman optimality equation: Q∗(s, a) = Es′ [R(s, a) + γmaxa′ Q∗(s′, a′)]. Deep Q-Networks
(DQN) approximate Q∗ using neural networks trained by minimizing the Mean Squared Bellman
Error (MSBE): L(θ) = E(s,a,r,s′,d)∼D

[
(Y −Qθ(s, a))

2
]
.

To stabilize training, the target value Y is calculated using a separate, periodically updated target
network (Qθtarget ) that prevents the learning target from fluctuating at every step. For a given transition,
the target is defined as Y = r + γ(1− d)maxa′ Qθtarget(s

′, a′).
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Stackelberg Game. A Stackelberg game is a hierarchical game involving two types of players: a
leader and one or more followers (Osborne, 2004). The leader moves first, choosing an action aL from
its action set AL. The follower, equipped with the full information on the leader’s action aL, chooses
its own action aF from its action setAF to maximize its own utility uF (aL, aF ), given aL. The basic
equilibrium relationship for the Stackelberg game is reflected by the following bi-level optimization
problem: maxaL

UL(aL, a
∗
F (aL)), s.t. a∗F (aL) ∈ argmaxaF

UF (aL, aF ), with UL(aL, aF ) being
the utility of the leader.

The defining characteristic is the leader’s ability to anticipate and influence the follower’s decision by
committing to a strategy first, steering the game toward a favorable equilibrium. This hierarchical
dynamic inspires our proposed SCORER framework.

4 STACKELBERG COUPLED REPRESENTATION AND REINFORCEMENT
LEARNING

In this section, we formalize the game-theoretic principles outlined previously. We model the value-
based interaction between perception and control as a hierarchical Stackelberg game to resolve the
trade-off between representation stability and value function learning. This framework provides a
clear division of labor, implemented through two distinct network components: a perception network
that acts as the game’s follower, and a control network that acts as the leader.

4.1 THE STACKELBERG GAME FORMULATION

The Leader: Control Network. The Control network Qθ assumes the role of the Stackelberg leader
as it defines the primary optimization goal (value estimation). Its objective is to learn an optimal
action-value function Qθ(z, a), mapping state representations z and actions a to expected cumulative
discounted future rewards. As the leader, the control network learns on a slower timescale, providing
a stable target for the follower. The leader’s objective function, Lleader, is the MSBE. Let D be the
agent’s data source. This source can be a replay buffer, as in traditional replay buffer-based methods,
or a collection of online trajectories, as in PQN (Gallici et al., 2025). The leader aims to solve:

min
θ
Lleader(Qθ, fϕ∗(θ)) ≜ E(s,a,r,s′)∼B⊂D

[
(Y −Qθ(fϕ∗(θ)(s), a))

2
]
, (1)

where B is a batch of transitions sampled from the data sourceD, and Y is the corresponding Bellman
target value. Here, ϕ∗(θ) represents the parameters the follower would ideally converge to given the
leader’s choice of θ. The hierarchical structure is established by having the control network commit
to its parameters on a slower timescale, while the perception network responds on a faster timescale.

The Follower: Perception Network. The Perception network fϕ acts as the Stackelberg follower.
Its function is to learn an encoder that maps raw observations s to a latent representation z = fϕ(s).
Given the control network’s committed strategy (with θ treated as fixed via stop-gradient during the
follower’s update), the follower learns on a faster timescale, allowing it to compute an effective best
response to the leader’s slowly changing strategy. The follower seeks parameters ϕ that minimize its
own loss function, Lfollower.

SCORER is agnostic to the specific choice of follower objective, allowing for different formulations
depending on the desired properties of the learned representations. We investigate multiple objectives
for Lfollower, including directly minimizing the MSBE and minimizing the variance of Bellman
errors. Through extensive empirical evaluation (detailed in Section 5 and Appendix K), we find
that minimizing the variance of Bellman errors yields superior performance, which echoes the
observation that MSBE is biased due to the high variance (Baird, 1995; Wu et al., 2021). For a batch
B, let δj(ϕ, θ) = Yj −Qθ(fϕ(sj), aj) be the Bellman error for transition j, where Yj is the target
value. The follower’s objective becomes:

ϕ∗(θ) ∈ argmin
ϕ
Lfollower(fϕ, Qθ) ≜ Varj∈B [δj(ϕ, θ)], (2)

where Varj∈B [δj ] =
1

|B|
∑

j∈B δ2j −
(

1
|B|

∑
j∈B δj

)2

is the sample variance of the Bellman errors
over the batch.
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The motivation for this variance-minimization objective is to counteract the pathologies of the deadly
triad directly. By focusing on the consistency of the Bellman errors across a batch, the follower
learns representations that are more consistent across the batch, making them robust to the noisy
targets inherent in TD learning. This promotes stability in the learning process, a trait for mitigating
the risk of divergence that was first formally demonstrated in foundational work by Baird (1995).
This objective transforms the follower into an active stabilizing agent, as it is incentivized to find
representations that make the leader’s value predictions more uniform across the data distribution.

4.2 APPROXIMATING THE STACKELBERG EQUILIBRIUM VIA TWO-TIMESCALE GRADIENT
DESCENT

The Stackelberg game described in Section 4.1 translates to a bi-level optimization problem given by
equation 3. The control network aims to optimize its objective Lleader by choosing its parameters θ,
anticipating the follower’s optimal response ϕ∗(θ):

min
θ

Lleader(Qθ, fϕ∗(θ)) subject to ϕ∗(θ) ∈ argmin
ϕ
Lfollower(fϕ, Qθ). (3)

Solving such bi-level problems directly in high-dimensional, non-convex settings typical of deep
reinforcement learning is challenging, with the primary difficulty arising from computing the gradient
of the leader’s objective with respect to its parameters θ. The leader’s objective Lleader(Qθ, fϕ∗(θ))
depends on θ both directly (through Qθ) and indirectly (through the follower’s response ϕ∗(θ)).
Applying the chain rule yields

∇θLleader =
∂Lleader

∂Qθ
∇θQθ +

∂Lleader

∂fϕ∗
∇θfϕ∗(θ), (4)

where the first term is the direct gradient through Qθ, and the second term ∇θfϕ∗(θ) captures the
indirect effect through the follower’s response.

Computing the indirect gradient term is the central challenge of bi-level optimization. It requires the
implicit derivative dϕ∗(θ)

dθ , which contains second-order information about the follower’s optimization
landscape. While this term is computationally prohibitive to calculate directly in deep learning
contexts (Chen et al., 2023), a body of recent work has developed first-order methods to approximate
it (Li et al., 2024; Liu et al., 2022; Li et al., 2022; Hong et al., 2023). However, as our focus is on the
game-theoretic coupling, we adopt a more direct solution: we approximate the leader’s gradient using
the first-order term and converge through a principled timescale separation between the players.

This separation ensures that the faster-learning follower can effectively track the best response to
the slower-learning leader. In our framework, this asymmetry is achieved using time-dependent
learning rate schedules, αϕ,k and αθ,k, that satisfy the key conditions of two-timescale stochastic
approximation (TTSA) theory (Hong et al., 2023). Specifically, both learning rates must decay
over training steps k, while their ratio must also approach zero, i.e., limk→∞ αθ,k/αϕ,k = 0. This
guarantees that the leader learns on a sufficiently slower timescale than the follower, allowing the
system to converge to a first-order stationary point of the game, as detailed in Algorithm 1. The
practical update rules for the follower and leader are thus given by:

ϕk+1 ← ϕk − αϕ,k∇ϕLfollower(ϕk;Bfollower, Y, θk), (5)

θk+1 ← θk − αθ,k∇θLleader(θk;Bleader, Y, ϕk+1), (6)

where · (e.g., θk) denotes a stop-gradient operation that treats the variable as a constant with respect
to the gradient calculation, guaranteeing that no gradients flow from one player’s update to the other’s
parameters. The follower first updates to ϕk+1 based on the fixed leader parameters θk. The leader
then immediately updates to θk+1 using the follower’s new state ϕk+1 as a fixed input.

Our approach of having the leader optimize based on the follower’s recent state, rather than its
fully converged response, is a common and practical technique for approximating bi-level opti-
mization (Fiez et al., 2020; Petrulionytė et al., 2024). Under standard smoothness assumptions
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for two-timescale stochastic approximation, including Lipschitz continuous gradients and a weaker
convexity condition known as the Restricted Secant Inequality (RSI) (Karimi et al., 2016), our method
converges to a first-order stationary point of the game Li et al. (2024). This convergence is general
and holds for both the MSBE and Bellman Error Variance objectives, as both measure temporal
difference consistency.

We provide a detailed convergence analysis in Appendix M, which explicitly characterizes the
convergence rates in terms of the size of neural networks, as well as the learning rates schedules.

4.3 TWO-TIMESCALE STACKELBERG COUPLED LEARNING (SCORER)

The implementation details of SCORER for replay-based agents are detailed in Algorithm 1. Both
the perception network (follower) and the control network (leader) are updated at the same interval,
TUpdate, where the timescale separation that approximates the Stackelberg dynamic is achieved by
setting the two players distinct, time-dependent learning rate schedules, αϕ and αθ. In line with
two-timescale convergence theory, the schedules decay over the course of training and are chosen
such that the follower’s learning rate, αϕ,k, remains significantly larger than the leader’s, αθ,k, making
sure that their ratio diminishes over time. We model the two-player game by stopping the gradient
flow during backpropagation within a single update step, so the follower first updates its parameters
to ϕk+1 based on the fixed leader parameters θk, and subsequently, the leader updates its parameters
to θk+1 using the follower’s newly updated state ϕk+1, completing one step of the hierarchical game.

Algorithm 1 SCORER (Stackelberg Coupled Representation Learning) for Deep Q-Learning Variants
Require: Perception fϕ, Control Qθ; Parameters ϕ, θ; Target networks ϕtarget, θtarget
Require: Learning rates αϕ, αθ; Replay buffer D; Minibatch size Nbatch; Exploration strategy E
Require: Total timesteps T ; Update interval and start step TUpdate, Ttarget, Tstart; Polyak rate τ
1: Initialize online params ϕ, θ; target params ϕtarget ← ϕ, θtarget ← θ; replay D
2: Reset env. and get initial state s; tenv ← 0
3: while tenv < T do ▷ Main environment interaction loop
4: z ← fϕ(s) ▷ Extract representation
5: Select action a ∼ E(Qθ(z, ·))
6: Execute a, observe r, s′, d; Store (s, a, r, s′, d) in D
7: s← s′; tenv ← tenv + 1
8: if tenv > Tstart then
9: if tenv (mod TUpdate) = 0 then

10: Sample minibatch BFollower from D ▷ Perception (Follower) Update
11: Compute targets Y for Bfollower using fϕtarget , Qθtarget (and Qθ for DDQN-like variants)
12: ϕ← ϕ− αϕ∇ϕLfollower(ϕ;Bfollower, Y, θ) ▷ Best response to fixed leader
13: Sample minibatch Bleader from D ▷ Control (Leader) Update
14: Compute targets Y for Bleader using fϕtarget , Qθtarget (and Qθ for DDQN-like variants)
15: θ ← θ − αθ∇θLleader(θ;Bleader, Y, ϕ)
16: end if
17: if tenv (mod Ttarget) = 0 then ▷ Target Network Updates
18: ϕtarget ← τϕ+ (1− τ)ϕtarget; θtarget ← τθ + (1− τ)θtarget
19: end if
20: end if
21: end while

Note: For recurrent variants (e.g., R2D2), fϕ maintains hidden states h across timesteps, resetting when
episodes terminate. The replay buffer stores sequences rather than individual transitions.
Note: For agents like PQN that do not use a replay buffer, the asymmetric dynamic is achieved using a
higher learning rate for the follower without sampling from a replay buffer.

SCORER’s Generality While Algorithm 1 details the implementation for replay-based agents, the
SCORER principle of a two-timescale, leader-follower dynamic is more general. As shown in our
Section 5, it can be seamlessly adapted to modern agents like PQN that do not use a replay buffer.

5 EXPERIMENTS AND RESULTS

In this section, we empirically evaluate the performance of SCORER when integrated with multiple
established value-based RL algorithms: DQN and its variants (Double, Dueling) (Mnih et al., 2015;
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Van Hasselt et al., 2016; Wang et al., 2016), and R2D2 (Kapturowski et al., 2018) for partially
observable environments. We also compare it against the Parallelized Q-Network (PQN) (Gallici
et al., 2025), a recent, high-performance off-policy value-based method that forgoes the use of
a replay buffer. Our evaluation covers diverse domains, including the MinAtar suite to measure
sample efficiency, the Atari-5 benchmark for high-dimensional visual control tasks, and MinGrid
environments that test partially observable scenarios. Additionally, we investigate SCORER’s stability
properties on challenging counterexamples known to cause divergence in standard TD learning, as
well as its robustness to environmental stochasticity. Our primary goal is to assess whether the
proposed Stackelberg coupling (Algorithm 1) improves learning compared to standard end-to-end
training of these baseline methods without increasing computational overhead or architectural size.

All experiments use an efficient JAX-based framework inspired by PureJaxRL and CleanRL algo-
rithms (Lu et al., 2022; Huang et al., 2022). To provide a fair comparison, the underlying network
architectures and hyperparameter budgets are kept identical between SCORER variants and their
respective baselines. Consequently, any observed performance gains are directly attributable to the
dynamics introduced by SCORER. A detailed description of experimental setups and hyperparameters
is in Appendix C.

5.1 PERFORMANCE ON GYMNAX ENVIRONMENTS

For the first evaluation, we use SCORER across the MinAtar suite (Young & Tian, 2019) through
Gymnax (Lange, 2022). Learning curves comparing the SCORER-enhanced variants against their
respective baselines are displayed in Figure 2 over Asterix, Breakout, Freeway, and SpaceInvaders.
Table 1 complements these curves by summarizing final performance.
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Figure 2: Learning curves on MinAtar comparing SCORER variants against baselines. SCORER generally
demonstrate improved sample efficiency and performance across several algorithm-environment combinations.

The results demonstrate that SCORER provides a consistent and significant performance benefit
across all tested base algorithms. For the classic DQN family, the SCORER variants show dramatic
gains in sample efficiency and final performance. In Breakout, for example, SCORER triples the final
score of a standard DQN agent. More importantly, SCORER allows these replay-based methods to
become competitive with, and in some cases (e.g., SpaceInvaders), superior to the state-of-the-art
methods like PQN baseline.

The final rows of Table 1 show that SCORER’s benefits are not limited to replay-based agents. When
applied to PQN, our framework provides further statistically significant performance gains. This
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Table 1: Final IQM return (± 95% Bootstrap CI over 30 seeds) on MinAtar, averaged over the last 10% of
training. Highlighted values indicate the best-performing variant within each algorithm family per environment.
Highlighted performances are not statistically worse than the best (bootstrap difference test, p ≥ 0.05).

Variant Asterix Breakout Freeway SpaceInvaders Speed Comparison

DQN Baseline 54.95 ± 0.92 19.16 ± 1.50 62.70 ± 0.17 127.78 ± 0.55 1.00x
SCORER 54.78 ± 0.42 65.69 ± 2.52 63.03 ± 0.08 148.71 ± 2.02 0.99x

DQN Baseline 52.55 ± 2.27 19.21 ± 3.81 62.23 ± 0.13 118.41 ± 2.08 1.00x
SCORER 52.88 ± 0.41 63.93 ± 1.86 62.75 ± 0.09 147.82 ± 4.44 0.99x

DDQN Baseline 50.77 ± 1.19 36.47 ± 5.04 62.22 ± 0.07 116.72 ± 3.36 1.00x
SCORER 52.59 ± 0.27 64.44 ± 2.48 62.68 ± 0.08 146.67 ± 5.14 1.00x

DuelingDQN Baseline 39.22 ± 9.24 27.81 ± 3.99 61.89 ± 0.09 121.21 ± 1.70 1.00x
SCORER 52.28 ± 0.55 60.04 ± 2.62 62.27 ± 0.09 139.08 ± 3.42 1.01x

DuelingDDQN Baseline 46.53 ± 3.05 27.68 ± 5.55 61.58 ± 0.14 122.26 ± 1.44 1.00x
SCORER 52.44 ± 0.24 59.92 ± 3.83 62.22 ± 0.08 142.71 ± 2.82 1.00x

PQN Baseline 50.41 ± 1.34 69.97 ± 0.68 61.77 ± 0.34 137.73 ± 1.04 1.00x
SCORER 50.80 ± 0.62 71.16 ± 0.84 61.05 ± 0.47 141.85 ± 0.76 1.00x

demonstrates that SCORER is not only restricted to replay buffer-based agents but represents an
advancement in the co-adaptation of representation and control in value-based RL. Additional results
on classic control benchmarks in Appendix H further corroborate this trend.

5.2 PERFORMANCE ON ATARI

To efficiently evaluate SCORER’s scalability to high-dimensional visual environments, we evaluate
on Atari-5 (Bellemare et al., 2013; Aitchison et al., 2023), a statistically validated subset of the
Arcade Learning Environment (ALE) that provides a reliable estimate of performance across the full
Atari-57 suite while requiring significantly fewer computational resources. We integrate SCORER
with PQN (Gallici et al., 2025), being an SOTA algorithm that serves as a strong baseline.

Following standard protocols Machado et al. (2018), we train on each game for 200M frames using 5
independent random seeds per game. We compare vanilla PQN against SCORER PQN, using identical
hyperparameters and network architectures for both variants to guarantee that any performance
differences are attributable exclusively to SCORER’s game-theoretic coupling mechanism. Results in
Figure 3 indicate that in BattleZone, DoubleDunk, and NameThisGame, SCORER PQN statistically
matches baseline performance, while in Phoenix and Qbert outperforms the backbone model without
adding computational overhead. This confirms that our game-theoretic coupling scales effectively to
high-dimensional visual control without requiring additional architectural complexity.

Figure 3: Atari-5 Average Episodic Return

5.3 PERFORMANCE ON MINIGRID ENVIRONMENTS

Environment Max. Perf SCORER R2D2
TTT SR TTT SR

DoorKey 6x6 1.00 0.3 ± 0.0 100% 0.4 ± 0.0 100%
SimpleCrossing S9N2 1.00 0.3 ± 0.0 100% 0.4 ± 0.0 100%
DistShift2 1.00 0.1 ± 0.0 100% 0.1 ± 0.0 100%
LavaGap S6 1.00 0.1 ± 0.0 100% 0.2 ± 0.0 100%
GoToDoor 8x8 1.00 0.2 ± 0.0 100% 0.3 ± 0.0 100%
Empty Random 8x8 1.00 0.1 ± 0.0 100% 0.3 ± 0.1 100%
Dynamic Obstacles 6x6 1.00 0.5 ± 0.0 83% 0.7 ± 0.1 73%
Four Rooms 1.00 0.6 ± 0.0 97% - 0%

Figure 4: Time-to-threshold analysis showing mean timesteps (in mil-
lions) ± 95% confidence interval to reach 99% maximum performance
over 30 seeds. SR (%) is the success rate of runs reaching the threshold.

We test SCORER on Min-
Grid (Chevalier-Boisvert et al.,
2023), a suite of gridworld envi-
ronments testing navigation, ob-
ject interaction, and dynamic
obstacle avoidance, accessed
through Navix (Pignatelli et al.,
2024). As these environments
are partially observable, we com-
pare R2D2 and its SCORER
R2D2 counterpart. Table 4
shows time-to-threshold analy-
sis measuring timesteps to reach
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99% maximum performance within one million timesteps. SCORER consistently outperforms
R2D2, achieving 25-50% faster convergence across all environments. The benefit of the Stack-
elberg coupling is particularly pronounced in tasks requiring adaptation and exploration. In
Dynamic Obstacles, SCORER improves the success rate by 10 points over the baseline, and in the
Four Rooms environment, SCORER achieves a 97% success rate while the baseline R2D2 completely
fails to solve the task. Full learning curves in Appendix I.

5.4 STABILITY ANALYSIS: BAIRD’S COUNTEREXAMPLE AND STOCHASTIC ENVIRONMENTS

To better understand SCORER’s stability properties, we test it against Baird’s counterexample (Baird,
1995), a challenging domain known to induce divergence under off-policy learning with function
approximation, and against Stochastic Deep Sea (Osband et al., 2020), which combines complex
exploration with intrinsic environment noise.

Baird’s Counterexample: In this setting, we instantiate SCORER with linear networks that match
the representational capacity of the standard linear TD baseline, and we retain the original off-policy
behavior policy. Figure 5 (Left) reports the loss on a logarithmic scale. As expected, the baseline
Linear TD method diverges. Conversely, SCORER’s variants (using either the MSBE or BE Variance
follower objective) stay stable and converge, remarking the effect of the Stackelberg structure. Here,
the perception learns representations that are explicitly shaped by the leader’s learning dynamics,
thus disrupting the destructive feedback loop that causes divergence in the monolithic agent.

Deep Sea: Figures 5 (Center & Right) evaluate SCORER on both deterministic and stochastic
Deep Sea (depth 10) using Bootstrapped DQN (Osband et al., 2016). For each configuration, we run
30 seeds and report the fraction that reach a solved state (Osband et al., 2020). In the deterministic
case, both SCORER variants achieve near-complete solved rates before the baseline, indicating faster
and more reliable learning. This advantage carries over to the stochastic version as SCORER is able
to reach near-complete solved rates, while the baseline plateaus around 20%.

Figure 5: SCORER Stability and Stochasticity Robustness. (Left) Baird’s Counterexample: The
standard SCORER hierarchy outperforms the inverted role configuration. (Center & Right) Deter-
ministic & Stochastic Deep Sea: SCORER variants solve the task while baseline solves it ~20%.

5.5 DISSECTING THE SCORER FRAMEWORK

To validate the core design of SCORER, we perform a series of ablation studies investigating on
the MinAtar suite. We investigate our three central design choices: the follower’s objective, the
assignment of Stackelberg roles, and the hierarchical coupling dynamic. The main results are
presented here as aggregated Interquartile Mean (IQM) scores, while detailed per-environment
learning curves for these studies can be found in Appendix K.

Stackelberg roles: We test our role assignment by inverting the hierarchy, making perception
the leader and control the follower. Figure 6 (left) shows that this inversion leads to a collapse in
performance, falling well below the monolithic baseline. This result strongly supports our claim that
the control objective must lead the representation learning process.

Follower’s objective: Figure 6 (center) shows that using a Bellman Error Variance objective for the
follower substantially outperforms a variant where the follower minimizes MSBE. This confirms that
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Figure 6: Ablation studies on SCORER’s core components on MinAtar. (Left) Stackelberg Roles:
The standard SCORER hierarchy outperforms the inverted role configuration. (Center) Follower’s
Objective: Bellman Error (BE) Variance is superior to MSBE. (Right) Coupling Dynamic: SCORER’s
hierarchical coupling is critical for performance, outperforming baselines.

an explicit stabilization objective is critical for SCORER’s performance, providing a clear advantage
over a redundant performance objective.

Hierarchical vs. Synchronous Coupling: Finally, we study whether SCORER’s benefits stem
from its full hierarchical dynamic or merely from the architectural separation of networks. For
this, we design a baseline called Synchronous Coupling, where distinct perception (fϕ) and control
(Qθ) networks are updated at the same frequency, with both minimizing MSBE. Stop-gradients
operations ensure the updates are independent (∇ϕLMSBE(fϕ, Qθ) and∇θLMSBE(fϕ, Qθ)), removing
any strategic interaction. This setup cleanly isolates the effect of using two networks from the
timescale-based hierarchy of the Stackelberg game. We also test a simpler baseline, a standard
monolithic DQN with per-layer learning rates matching SCORER’s timescale ratio, where the
encoder layers update faster than Q-head layers without architectural changes or stop-gradients.

The results present a clear picture of SCORER’s effect (Figure 6, right). We observe that the
Synchronous Coupling baseline provides marginal benefit, though not significant, and the monolithic
per-layer LR baseline does indeed outperform standard DQN, validating that faster updates for the
representation are beneficial. Yet, SCORER outperforms both alternatives, and the performance
gap is most notable in Breakout and SpaceInvaders (see Appendix K for per-environment results).
Overall, the ablations provide evidence that all three design choices (the hierarchical structure, the
specific form of the stabilization objective, and the correct assignment of the roles) are important and
complementary ingredients of the SCORER framework.

6 CONCLUSION

This work revisited and addressed the foundational instability that arises from the tight coupling of
representation and control in monolithic value deep Q-learning agents. We present the Stackelberg
Coupled Representation and Reinforcement Learning (SCORER), a framework that reframes this
dynamic as a hierarchical Stackelberg game. We model the control network (Qθ) as the leader and
the perception network (fϕ) as the follower. This game-theoretic interaction is achieved through
a practical two-timescale algorithm where the leader’s slower learning rate delivers a stable target,
enabling the follower to learn good representations by minimizing Bellman error variance. SCORER
consistently exhibited improvements in sample efficiency and/or stabilized returns of a wide range of
replay-based and online Q-learning agents, validating the efficacy of its design.

Despite our promising results, some limitations provide clear directions for future work. The current
work focused on value-based methods in discrete action spaces, so extending the SCORER principle to
actor-critic algorithms for continuous control is an immediate next step. Additionally, our theoretical
analysis, which provides convergence guarantees for the two-timescale approximation, could be
extended to explore the algorithm’s sample complexity, specifically to mathematically characterize
how the follower’s stabilization objective reduces the number of samples required to learn a high-
quality policy. Finally, investigating alternative follower objectives derived from information-theoretic
principles presents another compelling research direction. We believe SCORER provides a flexible
foundation for developing a new class of more stable and efficient deep RL systems.
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APPENDIX

A CODE AVAILABILITY

The complete source code for SCORER and the experiments presented in this paper is available at
https://github.com/fernando-ml/SCORER/ to ensure reproducibility. Our implemen-
tation is built in JAX (Bradbury et al., 2018) and leverages significant components, particularly for
environment vectorization and training loops, from the PureJaxRL framework (Lu et al., 2022)1.
While core architectural choices (Section C) and hyperparameters for baseline algorithms are consis-
tent with PureJaxRL defaults for MinAtar and DQN, our SCORER-specific mechanisms (perception
network objective, perception learning rate) are additions.

B LLM USAGE

Writing and editing assistants, including a large language model (LLM) and automated grammar-
checking tools, were used to improve the clarity, conciseness, and grammatical correctness of this
work. The usage of these tools was strictly limited to polishing the written text. All scientific contri-
butions, including the framework ideation, conceptualization, theoretical analysis, and experimental
results, are the original work of the authors.

C EXPERIMENT SETUP AND HYPERPARAMETERS

Software We used the following software versions:

• Python 3.10 - Python Software License https://docs.python.org/3/license.
html

• CUDA 12.4 - NVIDIA Software License Agreement https://docs.nvidia.com/
cuda/eula/index.html

• Jax 0.4.28 - Apache License 2.0 https://github.com/jax-ml/jax

• Flashbax 0.1.3 - Apache License 2.0 https://github.com/instadeepai/
flashbax

• Chex 0.1.90 - Apache License 2.0 https://github.com/google-deepmind/
chex

• Optax 0.2.5 - Apache License 2.0 https://github.com/google-deepmind/
optax

• flax 0.10.4 - Apache License 2.0 https://github.com/google/flax

• Gymnax 0.0.9 - Apache License 2.0 https://github.com/RobertTLange/
gymnax

• Navix 0.7.4 - Apache License 2.0 https://epignatelli.com/navix/

• Rlax 0.1.7 - Apache License 2.0 https://github.com/google-deepmind/rlax

• Envpool 0.8.4 - Apache License 2.0 https://github.com/sail-sg/envpool

• OpenAI Gym - 0.26.2 - MIT License https://github.com/openai/gym

• PureJaxRL - Apache License 2.0 https://github.com/luchris429/
purejaxrl

All experiments were conducted on NVIDIA Tesla V100-PCIE-32GB GPUs. A typical experimental
run, consisting of training one algorithm variant (e.g., SCORER DQN) over 30 random seeds for
108 total environment time steps on a MinAtar environment, completed in approximately 20 to 27
minutes.

1https://github.com/luchris429/purejaxrl/tree/main
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Hyperparameter Tuning Methodology For a fair and rigorous comparison, we performed a
two-stage hyperparameter search where initially, for each base algorithm (e.g., DQN, PQN), we
performed a systematic grid search to identify its strongest possible configuration on our benchmarks.
Then, we inherited these optimal hyperparameters for each SCORER variant and conducted a targeted
search for the introduced SCORER hyperparameter (the follower’s learning rate, αϕ), while satisfying
the timescale separation condition (αϕ > αθ).

SCORER-Specific Hyperparameters The key parameters introduced by SCORER are the learning
rates for the leader (αθ) and the follower (αϕ). As described in Section 4, the leader’s learning rate
(αθ) is set to the optimal learning rate found for the baselines. The follower’s learning rate (αϕ) is
then tuned from a set of values greater than αθ to establish the necessary timescale separation.

Architectural Parity To confirm that performance gains are a result of SCORER and not increased
model capacity, we keep strict architectural parity between each baseline and its corresponding
SCORER version. For a given monolithic baseline (e.g., a DQN with a three-layer MLP), the
SCORER version is constructed by splitting this same architecture. The initial layers form the
perception network (fϕ), and the final layer forms the control network (Qθ). This way, we ensure
that the total number of layers, hidden units, and learnable parameters is nearly identical between the
baseline and SCORER agent, isolating the algorithmic contribution.

Learning Rate Schedule For all experiments, learning rates follow a linear decay schedule from
their initial values to zero over the full training duration, i.e., α(t) = α0(1 − t/T ) where T is the
total number of updates. This schedule is applied identically to both baseline agents and SCORER
variants. The Leader network uses the exact same learning rate trajectory as the corresponding
baseline, and the Follower uses the same decay schedule starting from a higher value to satisfy the
timescale condition.

Gradient Clipping Gradient clipping via global norm is applied identically across all experiments.
For baseline agents, gradients are clipped to a maximum norm of 0.5 (MinAtar DQN variants,
MinAtar PQN, R2D2) or 0.3 (classic control), and 5.0 for Full Atari. For SCORER variants, the same
clipping threshold is applied independently to both the Leader and Follower networks.

Table 2: General Training Hyperparameters for Q-Learning Methods - MinAtar

Parameter Value
Training Configuration
Number of parallel environments 128
Total timesteps 1× 108

Learning starts (time steps) 1× 104

Training interval (env steps) 4

Replay Buffer
Buffer size 1× 105

Batch size 64

Exploration (Epsilon-Greedy)
ϵ start 1.0
ϵ finish 0.01
ϵ anneal time (env steps) 2.5× 105

Learning Parameters
Optimizer Adam
Discount factor (γ) 0.99
Linear learning rate decay (Baseline & SCORER) True
Target network update interval (env steps) 1× 103

Soft update parameter (τ ) for target nets 1.0
Q-network learning rate (αθ) 1× 10−4

Q-networks max gradient norm 0.5
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Table 3: SCORER-Specific Hyperparameters - MinAtar

Parameter Value
Leader-Follower Architecture
Optimizer Adam
Leader (control) learning rate (αθ) 1× 10−4

Follower (perception) learning rate (αϕ) 5× 10−4

Max gradient norm for Leader & Follower 0.5

Table 4: General Training Hyperparameters for Q-Learning Methods for classic control environments

Parameter Value
Training Configuration
Number of parallel environments 10
Total timesteps 1× 106

Learning starts (time steps) 1× 103

Training interval (env steps) 10

Replay Buffer
Buffer size 5× 104

Batch size 64

Exploration (Epsilon-Greedy)
ϵ start 1.0
ϵ finish 0.01
ϵ anneal time (env steps) 2.5× 105

Learning Parameters
Optimizer Adam
Discount factor (γ) 0.99
Linear learning rate decay (Baseline & SCORER) True
Target network update interval (env steps) 1× 103

Soft update parameter (τ ) for target nets 1.0
Q-network learning rate (αθ) 1× 10−4

Q-networks max gradient norm 0.3

Table 5: SCORER-Specific Hyperparameters (Classic Control).

Parameter Value
Leader-Follower Architecture
Optimizer Adam
Leader (control) learning rate (αθ) 1× 10−4

Follower (perception) learning rate (αϕ) 3× 10−4

Max gradient norm for Leader & Follower 0.3
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Table 6: General Training Hyperparameters for SCORER PQN (MinAtar environment defaults).

Parameter Value
Training Configuration
Number of parallel environments 128
Total timesteps 1× 108

Rollout length (experience collection) 32
Training epochs per rollout 2

Minibatch count per epoch 32

Exploration (Epsilon-Greedy)
ϵ start 1.0
ϵ finish 0.01
ϵ anneal period 40% of training updates (4× 107 steps)

Learning Parameters
Optimizer RAdam
Discount factor (γ) 0.99
Lambda for TD(λ) returns (λ) 0.65
Linear learning rate decay (Baseline & SCORER) True (over first 50% of training)
Target network N/A (uses λ-returns)
Q-network learning rate (αθ) 2.5× 10−4

Q-network max gradient norm 5.0

Table 7: SCORER-Specific Hyperparameters for PQN (MinAtar environment defaults).

Parameter Value
Leader-Follower Architecture
Optimizer RAdam
Leader (Q-Network) learning rate (αθ) 2.5× 10−4

Follower (Perception) learning rate (αϕ) 5× 10−4

Max gradient norm for Leader & Follower 5.0

Table 8: General Training Hyperparameters for SCORER PQN (Atari environment defaults).

Parameter Value
Training Configuration
Number of parallel environments 128
Total timesteps 5× 107

Rollout length (experience collection) 32
Training epochs per rollout 2

Minibatch count per epoch 32

Exploration (Epsilon-Greedy)
ϵ start 1.0
ϵ finish 0.001
ϵ anneal period 10% of training updates (5× 106 steps)

Learning Parameters
Optimizer RAdam
Discount factor (γ) 0.99
Lambda for TD(λ) returns (λ) 0.65
Linear learning rate decay (Baseline & SCORER) True (over 100% of training)
Target network N/A (uses λ-returns)
Q-network learning rate (αθ) 2.5× 10−4

Q-network max gradient norm 10.0
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Table 9: SCORER-Specific Hyperparameters for PQN (Atari environment defaults).

Parameter Value
Leader-Follower Architecture
Optimizer RAdam
Leader (Q-Network) learning rate (αθ) 2.5× 10−4

Follower (Perception) learning rate (αϕ) 5× 10−4

Max gradient norm 10.0
Latent dimension 256

Table 10: General Training Hyperparameters for SCORER R2D2.

Parameter Value
Training Configuration
Number of parallel environments 10
Total timesteps 1× 106

Learning starts (env steps) 25,000

Prioritized Trajectory Replay Buffer
Buffer size (transitions) 1× 105

Min buffer size for sampling 5,000
Batch size (sequences) 32
Sampled sequence length 100
Burn-in length 50
N-step returns 10
PER alpha (α) 0.6
PER beta start (β0) 0.4
PER beta end (βT ) 1.0

Exploration (Epsilon-Greedy)
ϵ start 1.0
ϵ finish 0.01
ϵ anneal time (env steps) 5× 105

Learning Parameters
Optimizer Adam
Discount factor (γ) 0.99
Linear learning rate decay (Baseline & SCORER) True
Target network update interval (env steps) 5,000
Update interval (env steps) 16
Soft update parameter (τ ) 1.0
Q-network learning rate (αθ) 1× 10−4

Max gradient norm 0.5

Table 11: SCORER-Specific Hyperparameters for R2D2.

Parameter Value
Leader-Follower Architecture
Optimizer Adam
Leader (Control) learning rate (αθ) 1× 10−4

Follower (Perception) learning rate (αϕ) 3× 10−4

Max gradient norm (Leader & Follower) 0.5
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C.1 NETWORK ARCHITECTURES

All agents within the DQN family (DQN, DDQN, Dueling DQN, and Dueling DDQN) are built from
a shared architectural template. The monolithic baseline for each variant is constructed first, and its
corresponding SCORER version is created by splitting this same architecture to maintain parity in
the number of layers and parameters. Table 12 details this base architecture.

Table 12: Base network architecture for the SCORER DQN agent family. Linear(in, out)
denotes a fully connected layer and L1Norm denotes a layer that normalizes its input to have a unit
L1 norm. Key dimensions are environment-dependent. The activation function is applied after
hidden layers, but not on the final Q-Network output.

SCORER DQN Base Architecture

Hyperparameters:
state_dim = Dimension of observation vector
action_dim = Number of discrete actions
latent_dim = 64 (for Control tasks), 128 (for MinAtar)
q_hidden_dim = 64 (for Control tasks), 128 (for MinAtar)
activation = Tanh (for Control tasks), ReLU (for MinAtar)

Perception Network (Follower, fϕ)
▷ Encodes raw state into a latent representation z.
If MinAtar environment:
input_state = L1Norm(state)
Else:
input_state = state
p_l0 = Linear(state_dim, latent_dim)

Perception Network Forward Pass:
h0 = activation(p_l0(input_state))
z = h0 (For Control tasks)
If MinAtar environment:
p_l1 = Linear(latent_dim, latent_dim)
h1 = activation(p_l1(h0))
z = L1Norm(h1) (Overrides z)

Q Network (Leader, Qθ)
▷ Predicts Q-values from the latent representation z.
q_l0 = Linear(latent_dim, q_hidden_dim)
q_l1 = Linear(q_hidden_dim, action_dim)

Q Network Forward Pass:
input = z
h0 = activation(q_l0(input))
q_values = q_l1(h0)

Architectural Variants The architecture described in Table 12 serves as the foundation for all
agents in the DQN family.

• DQN and DDQN: The monolithic baselines for DQN and DDQN consist of a single
network formed by composing the layers described above (e.g., for MinAtar, a four-layer
MLP). The SCORER variants are created by splitting this architecture exactly as shown
above.
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• Dueling DQN and Dueling DDQN: For these agents, the Perception Network (fϕ) remains
identical. The Q-Network (Qθ) is modified to implement the dueling architecture (Wang
et al., 2016). Specifically, the ‘h0‘ feature vector from the Q Network’s forward pass is
fed into two separate heads: a state-value head, V (z) = Linear(q_hidden_dim, 1),
and an advantage head, A(z, a) = Linear(q_hidden_dim, action_dim). The
final Q-values are then combined using the standard aggregation method: Q(z, a) = V (z) +
(A(z, a)− 1

|A|
∑

a′ A(z, a′)).

Table 13: Base network architecture for the SCORER PQN. Linear(in, out) denotes a fully
connected layer, Conv(k, c, s) a convolutional layer, and Norm denotes LayerNorm. Key
dimensions are environment-dependent. The activation function is applied in hidden layers.

SCORER PQN Base Architecture

Hyperparameters:
state_dim = Dimension of observation vector (or image shape for Atari)
action_dim = Number of discrete actions
latent_dim = 64 (Control), 128 (MinAtar), 256 (Atari)
q_hidden_dim = 32 (Control), 64 (MinAtar), 256 (Atari)
activation = ReLU (for all tasks)
norm_type = LayerNorm (for all tasks)

Perception Network (Follower, fϕ)
▷ Encodes raw state into a latent representation z.

Option A: Vector Observation (Control, MinAtar)
p_l0 = Linear(state_dim, latent_dim)
Forward Pass:
h0 = p_l0(state)
h1 = Norm(h0)
h2 = activation(h1)
z = Norm(h2)

Option B: Pixel Observation (Atari)
cnn_block = [Conv(8x8, 32, 4), Norm, Relu, Conv(4x4, 64, 2),
Norm, Relu, Conv(3x3, 64, 1), Norm, Relu]
p_l0 = Linear(cnn_out_dim, latent_dim)
Forward Pass:
features = cnn_block(state)
h0 = p_l0(features.flatten())
h1 = Norm(h0)
z = activation(h1) (Atari ends with activation)

Q Network (Leader, Qθ)
▷ Predicts Q-values from the latent representation z.
▷ Contains q_num_layers hidden blocks.
q_l_hidden = Linear(latent_dim, q_hidden_dim)
q_l_out = Linear(q_hidden_dim, action_dim)

Q Network Forward Pass (for q_num_layers=1):
input = z
h0 = q_l_hidden(input)
h1 = Norm(h0)
h2 = activation(h1)
q_values = q_l_out(h2)
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Table 14: Architecture for the SCORER R2D2. Linear(in, out) denotes a fully connected
layer, GRUCell(in, out) denotes a Gated Recurrent Unit cell, and L2Norm denotes a layer that
normalizes its input to have a unit L2 norm. The activation function is applied after hidden
layers, but not on the final Control Network output.

SCORER R2D2 Base Architecture

Hyperparameters:
state_dim = Dimension of observation vector
action_dim = Number of discrete actions
embed_dim = 128
recurrent_dim = 128
q_hidden_dim = 128
activation = Tanh

Perception Network (Follower, fϕ)
▷ Encodes state and updates the recurrent hidden state.
▷ Takes current state statet and previous hidden state ht−1 as
input.
p_l_embed = Linear(state_dim, embed_dim)
p_gru = GRUCell(embed_dim, recurrent_dim)

Perception Network Forward Pass:
input_state = L2Norm(state_t)
emb = p_l_embed(input_state)
emb_act = activation(emb)
ht, z_raw = p_gru(ht−1, emb_act) (ht is new hidden, z_raw is
GRU output)
z = L2Norm(z_raw) (Representation passed to Control Network)
▷ The new hidden state for the next step is L2Norm(ht).

Control Network (Leader, Qθ)
▷ Predicts Q-values from the latent representation z.
q_l_hidden = Linear(recurrent_dim, q_hidden_dim)
q_l_out = Linear(q_hidden_dim, action_dim)

Control Network Forward Pass:
input = z
h0 = q_l_hidden(input)
h1 = activation(h0)
q_values = q_l_out(h1)
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D OBJECTIVE FUNCTIONS

This section provides the explicit formulations used by the SCORER framework. In our game, the
Control Network (Qθ) acts as the Leader and the Perception Network (fϕ) acts as the Follower.

D.1 LEADER (CONTROL NETWORK) OBJECTIVE

As detailed in Section 4.1 ( equation 1), the control network Qθ acts as the Stackelberg leader. Its
objective is to learn an optimal action-value function by minimizing the Mean Squared Bellman Error
(MSBE). Given a batch of transitions Bleader and the follower’s best-reponse representations fϕ∗ , the
leader’s objective is:

Lleader(θ, ϕ
∗) = E(s,a,r,s′,d)∼Bleader

[
(Y −Qθ(fϕ∗(s), a))

2
]
. (7)

The Bellman target Y used in these objectives is defined in Section 3. In our two-timescale algorithm,
the leader’s update at step k + 1 uses the follower’s most recent parameters ϕk+1 as a proxy for the
ideal ϕ∗, and the gradient is taken with respect to θ only.

D.2 FOLLOWER (PERCEPTION NETWORK) OBJECTIVE

The follower’s goal is to learn representations that support the Leader’s learning process. In our
ablation studies, we explored two objectives for the follower, both of which treat the leader’s
parameters θ as fixed via a stop-gradient operation. See equation 5, and Algorithm 1 Line 12.

D.2.1 MINIMIZING FOLLOWER’S MEAN SQUARED BELLMAN ERROR (SCORER MSBE)

In this ablation variant, the follower’s objective is identical to the leader’s loss. Here, the follower
learns representations that directly minimize the MSBE given the leader’s committed weights:

LMSBE
Follower(ϕ, θ) =

1

N

N∑
j=1

[(
Yj −Qθ(fϕ(sj), aj)

)2]
. (8)

The optimization is performed with respect to ϕ.

D.2.2 MINIMIZING BELLMAN ERROR VARIANCE

This is the main objective used in SCORER, designed to explicitly stabilize the leader’s learning
signal. The intuition behind is that by focusing on the consistency of the Bellman errors across a
batch, the follower can learn representations that are robust to the noisy target inherent in TD learning.
Let the Bellman error for a single transition be δj(ϕ, θ) = Yj −Qθ(fϕ(sj), aj). The follower’s goal
is to minimize the sample variance of these errors as:

LVar
follower(ϕ, θ) =

1

N

N∑
j=1

(
δj(ϕ, θ)

)2 −
 1

N

N∑
j=1

δj(ϕ, θ)

2

. (9)

This formulation is the standard sample variance (Casella & Berger, 2024), which uses all N samples
from the batch for both terms, and is algebraically equivalent to 1

N

∑N
j=1(δj − δ̄)2 where δ̄ denotes

the sample mean.

This objective turns the follower into an active stabilizing agent. Because the leader’s performance
is evaluated on an independent sample batch of data (Bleader), the follower is asked to learn repre-
sentations that create a generally stable learning signal, instead of overfitting the specifics of its
own sampled batch (Bfollower). The follower must find representations that make the leader’s value
predictions more uniform and predictable across the entire data distribution, truly dividing the task
of stabilization from the immediate task of performance maximization. Our ablation studies (Sec-
tion 5.5) empirically validate that this variance-minimization objective outperforms using MSBE for
the SCORER’s follower objective.
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Stochasticity and the Variance Objective. A well-known theoretical challenge in minimizing
Bellman residual errors is the need for unbiased gradients, which typically requires two independent
samples of the next state (Baird, 1995). SCORER addresses this by minimizing the sample variance
calculated over a batch as it treats the batch statistics as a deterministic objective, ensuring that the
gradients are exact with respect to the sampled data.

In stochastic environments, the total variance of the Bellman error naturally includes irreducible
environmental noise. Yet, this total variance decomposes into aleatoric variance (environment
stochasticity) and epistemic variance (prediction inconsistency):

Vartotal[δ] ≈ Varaleatoric + Varepistemic (10)

Because the perception network cannot alter the environment’s inherent noise (Varaleatoric), reducing
the sample variance targets the reduction of Varepistemic. This way, we push the follower to learn
representations that make the value function errors as consistent as possible across the batch, sim-
plifying the learning signal for the leader. Our results on the Stochastic Deep Sea environment
(Section 5.4) confirm that this objective successfully stabilizes learning even in the presence of
significant environmental noise.

E MOTIVATION FOR STACKELBERG ROLES

Assigning the role of the leader to the Control network (Qθ) and setting Perception (fϕ) as the
follower is grounded in the structural properties of the corresponding bi-level optimization. The
ultimate goal of Q-learning is to identify the Q-function that minimizes MSBE as we discussed
in Sec. 3. Comparing the optimization problems faced by the control and perception networks
in equation 1 and equation 2, it is a natural setting to have equation 1 as the outer problem (sometimes
also known as the upper-level problem in the literature, see, e.g. Zhang et al. (2024)) and equation 2
as the inner (lower-level) problem in the bi-level optimization connecting them. The leader-follower
roles for the two networks in the Stackelberg game thus in turn reflect this relationship.

F STATISTICAL SIGNIFICANCE CALCULATIONS

Throughout this work, reported performance metrics aim to provide a robust understanding of
algorithm behavior across multiple independent trials. This appendix details the methods used for
calculating and presenting these statistics.

F.1 IQM AND CONFIDENCE INTERVALS

The learning curves represent the IQM (Interquartile Mean) of the total reward, averaged over
independent runs (seeds). Following Agarwal et al. (2021b), the IQM statistic is a recommended
evaluation metric in deep RL as it has the same properties as a 25% trimmed mean. The bottom
25% and top 25% of run scores are removed at each timestep before the mean is computed, which
mitigates the effect of outliers without losing as much statistical power as the median.

The shaded areas represent 95% confidence intervals (CIs) estimated using the percentile bootstrap
method (Agarwal et al., 2021b). We estimate the sampling distribution of the IQM by generating
B = 2000 bootstrap samples that resample the seeds with replacement, from which the 95% CI is
given by the 2.5th and 97.5th percentiles of the bootstrap distribution, without assuming normality.
The curves are smoothed by a rolling mean over 50 timesteps, which is applied to both the IQM point
estimates and the CI boundaries.

IQM for final performance tables For reporting final performance in tables, we first compute
the mean return over the last 10% of training for each seed, which results in a more stable final
score per run. We then compute the IQM over these final scores from all seeds using the 25%
trimmed mean, and CIs are estimated via percentile bootstrap with B = 2000 resamples. To test
for statistical significance when highlighting values in the tables, we perform a bootstrap difference
test: we compute the distribution of IQM differences between the best-performing variant and each
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competitor, and count the number of bootstrap samples in which the competitor matches or exceeds
the best. If this proportion is less than 5%, we consider the difference to be statistically significant
(p < 0.05).

Normalized IQM Return For comparative analysis across environments with different reward
scales, we present normalized IQM returns in some figures. The normalization is performed per
environment by dividing all IQM values by the maximum IQM value reached across all methods in
that specific environment. This helps us to develop a meaningful comparison of relative performance
improvements across tasks while preserving the temporal dynamics of learning.

F.2 SPEED COMPARISON

The Speed Comparison column in Table 1 reports the relative wall-clock time required to complete a
full training run. For each base algorithm (e.g., DQN), the runtime of its standard monolithic version
is normalized to 1.00x. The runtime of the corresponding SCORER variant is then reported as a
multiple of this baseline. A value of 0.99x indicates that the SCORER variant was 1% faster than its
baseline, whereas a value of 1.01% would indicate it was 1% slower.

F.3 TIME-TO-THRESHOLD (TTT) CALCULATION

To provide a measure of sample efficiency over the MiniGrid experiments, we use a Time-to-Threshold
(TTT) analysis. TTT quantifies the number of environment steps required for an agent to reliably
fulfill the task, or at least reach a high level of performance. Our calculation follows a two-pass
process to ensure fair comparisons across environments with different reward scales and performance
ceilings.

F.3.1 PERFORMANCE THRESHOLDS

Initially, for each evaluation environment, we determine the maximum asymptotic performance
achieved across all runs of all methods. This sets an empirical "best-case" performance for the task.
The performance threshold for each environment is then set to 99% of this maximum value.

F.3.2 CALCULATING TTT AND SUCCESS RATE

In the second pass, for each individual seed of each method, we identify the first timestep at which
the agent’s episodic return meets or exceeds the calculated 99% performance threshold. This timestep
is recorded as the TTT for that run. If a run fails to reach the threshold within the maximum allowed
timesteps for that environment, its TTT is considered undefined. The final TTT reported in Table 4
is the mean over all successful runs. To capture the reliability of each method, we also present the
Success Rate (SR), which is the percentage of the 30 independent runs that successfully reached the
performance threshold.

F.4 STATISTICAL SIGNIFICANCE TESTING

In Table 1, we highlight statistically significant performance differences within each algorithm family
(e.g. DQN vs. SCORER-DQN) per environment. We first identify the variant with the highest IQM
within each group. We then use a bootstrap difference test to compare each of the other variants to
this top performer: for each of the B = 2000 bootstrap resamples, we compute the IQM of both
variants and record the difference. If less than 5% of bootstrap samples have the competitor matching
or exceeding the top performer, we deem this difference to be statistically significant (p < 0.05). All
variants that are not significantly worse than the best are highlighted in green.

G SAMPLE EFFICIENCY RESULTS

To complement the learning curves presented in Section 5, this section provides a detailed break-
down of the sample efficiency for SCORER compared to the baseline agents across four MinAtar
environments. Tables 15 through 18 report the mean number of training steps (in millions, ± 95%
CI) required for an agent to reach pre-defined reward thresholds, averaged over 30 seeds. For each
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experimental condition, a run is considered to have reached a threshold at the first time step where its
individual performance curve meets or exceeds the target value. The tables report the statistics for all
seeds that successfully reached the threshold. An "N/A" indicates that the Interquartile Mean (IQM)
of the agent’s runs failed to reach the threshold within 108 steps. The highlighted values indicates
the variant that achieved the given threshold in the fewest timesteps.

Across the board, the data shows the substantial impact of the SCORER framework on learning speed.
The effect is most pronounced in Breakout(Table 15). Here, the SCORER agents are an order of
magnitude more sample-efficient than their monolithic baselines.

Table 15: Sample efficiency (time steps in millions to reach reward thresholds) for Breakout-MinAtar.

Model Variant Threshold 17 Threshold 20 Threshold 25

DQN Baseline 39.1 ± 7.6 N/A N/A
SCORER 3.4 ± 0.2 4.8 ± 0.5 8.2 ± 0.9

DDQN Baseline 42.4 ± 6.6 43.8 ± 5.0 62.3 ± 6.4
SCORER 4.2 ± 0.4 5.9 ± 0.8 12.7 ± 3.6

DuelingDQN Baseline 43.6 ± 8.4 50.8 ± 9.7 72.0 ± 9.1
SCORER 4.0 ± 0.4 5.3 ± 0.6 13.5 ± 2.7

DuelingDDQN Baseline 27.6 ± 6.5 33.7 ± 5.8 64.2 ± 5.2
SCORER 4.2 ± 0.4 5.6 ± 0.6 17.8 ± 7.9

In Asterix and SpaceInvaders Table 16 and Table 17), SCORER consistently reduces the number of
samples required to reach performance thresholds, demonstrating robust improvements in sample
efficiency across different base algorithms. The gains are particularly notable for higher thresholds.

In Freeway (Table 18), all agents converge rapidly. Even so, the SCORER variants consistently reach
all performance thresholds in approximately half the time of their baseline counterparts.

Table 16: Sample efficiency (time steps in millions to reach reward thresholds) for Asterix-MinAtar.

Model Variant Threshold 35 Threshold 40

DQN Baseline 22.8 ± 0.6 27.3 ± 1.1
SCORER 14.6 ± 2.2 17.3 ± 2.4

DDQN Baseline 23.3 ± 0.9 27.7 ± 1.2
SCORER 14.8 ± 1.0 18.2 ± 1.2

DuelingDQN Baseline 19.8 ± 1.0 22.6 ± 1.0
SCORER 15.4 ± 3.3 18.3 ± 3.4

DuelingDDQN Baseline 20.5 ± 1.0 25.1 ± 1.8
SCORER 17.2 ± 6.4 16.6 ± 3.2
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Table 17: Sample efficiency (time steps in millions to reach reward thresholds) for SpaceInvaders-
MinAtar.

Model Variant Threshold 75 Threshold 100 Threshold 110

DQN Baseline 9.7 ± 1.0 20.6 ± 2.7 31.2 ± 2.7
SCORER 9.1 ± 0.5 14.3 ± 0.8 17.8 ± 1.7

DDQN Baseline 11.8 ± 1.1 24.7 ± 2.7 37.1 ± 2.6
SCORER 11.1 ± 0.6 18.6 ± 2.5 22.9 ± 3.4

DuelingDQN Baseline 10.0 ± 0.9 23.4 ± 4.1 33.2 ± 5.7
SCORER 17.1 ± 0.7 26.0 ± 1.8 32.0 ± 2.5

DuelingDDQN Baseline 9.9 ± 0.7 16.6 ± 1.4 26.9 ± 3.1
SCORER 15.4 ± 0.7 23.8 ± 1.8 30.2 ± 3.4

Table 18: Sample efficiency (time steps in millions to reach reward thresholds) for Freeway-MinAtar.

Model Variant Threshold 30 Threshold 40 Threshold 50

DQN Baseline 3.8 ± 0.2 6.0 ± 0.3 10.1 ± 0.5
SCORER 1.3 ± 0.1 2.3 ± 0.1 4.5 ± 0.1

DDQN Baseline 3.8 ± 0.3 5.9 ± 0.3 9.6 ± 0.4
SCORER 1.4 ± 0.1 2.3 ± 0.1 4.5 ± 0.2

DuelingDQN Baseline 4.7 ± 0.4 6.1 ± 0.3 10.0 ± 0.4
SCORER 1.8 ± 0.2 2.7 ± 0.2 5.0 ± 0.4

DuelingDDQN Baseline 4.6 ± 0.5 6.8 ± 0.7 11.5 ± 1.1
SCORER 1.6 ± 0.2 2.6 ± 0.2 4.9 ± 0.4

H CLASSIC CONTROL RESULTS

To further assess the general applicability of the SCORER framework beyond the MinAtar suite
and MiniGrid, we conducted experiments on two classic control environments from OpenAI Gym
(Brockman et al., 2016) using Gymnax (Lange, 2022) for JAX compatibility: For these tasks, simpler
Multi-Layer Perceptron architectures were used for both the perception and control networks, with
details provided in Appendix C.
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Figure 7: Learning curves on classic control environments (CartPole-v1, Acrobot-v1). Each row corresponds to
a base algorithm (DQN, DDQN, DuelingDQN, DuelingDDQN), and each column to an environment. Curves
show IQM return over 30 seeds; shaded regions represent 95% confidence intervals.
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I LEARNING CURVES ON MINIGRID ENVIRONMENTS

This section provides the full learning curves that support the time-to-threshold analysis presented in
Table 4. We evaluate the performance of SCORER when applied to R2D2, a recurrent baseline for
partially observable environments, across a suite of MiniGrid tasks.

Figure 8: Learning curves for SCORER R2D2 SCORER versus the Vanilla R2D2 on eight Minigrid envi-
ronments, averaged over 30 seeds. Shaded regions represent a 95% confidence interval. The plots highlight
SCORER’s consistent improvement in sample efficiency and its ability to solve challenging exploration tasks
like Four Rooms where the baseline fails.

The learning curves in Figure 8 visually confirm Table 4’s results. The SCORER-enhanced agent
demonstrates a steeper learning curve in most environments, indicating superior sample efficiency.
The most significant result is observed in the Four Rooms environment, a classic hard-exploration
task. Here, the baseline R2D2 agent performs poorly, compared to SCORER R2D2, which can solve
the task, reaching a high success rate.
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J DEEP SEA RESULTS

Even in stochastic MDPs, minimizing Bellman error variance remains beneficial. The total variance
decomposes as Var[δ] = Varaleatoric + Varepistemic, where aleatoric variance comes from environment
stochasticity (non-reducible) and epistemic variance comes from value function error (reducible). The
follower learns representations that minimize the total variance, which indirectly reduces epistemic
variance by making the value function more consistent across the batch. We validate this using
stochastic Deep Sea environment (depth 10) the suite’s baseline (Bootstrapped DQN) (Osband et al.,
2020; 2016). Deep sea is a challenging exploration task available in both deterministic and stochastic
variants.

Figure 9: SCORER Performance on Deterministic and Stochastic Deep Sea (Depth 10). (Left)
Deterministic Deep Sea: Both SCORER variants converge substantially faster than baseline Boot-
strapped DQN, with near-complete solved rates by episode 5000. (Right) Stochastic Deep Sea:
SCORER succeeds despite increased environment noise, achieving near-complete solved rates while
the baseline reaches around 20%. The variance-minimization objective remains effective even in the
presence of irreducible stochasticity.

K DETAILED ABLATION STUDY RESULTS

This section provides detailed, per-environment learning curves for the ablation studies summarized
in Section 5.5.

Figure 10: Per-environment results for the Stackelberg role assignment ablation. The standard
SCORER configuration (Control as Leader, purple) is compared against the monolithic DQN baseline
(green) and an inverted hierarchy where Perception acts as the Leader (teal).

Stackelberg Role Assignment. Figure 10 details the results of our role-swapping experiment. The
plots confirm that the standard SCORER configuration, where the control network acts as the leader,
consistently and substantially outperforms both the baseline and the inverted hierarchy across all
tested environments. The performance collapse observed when perception is assigned the leader role
is particularly pronounced in complex environments like Breakout and SpaceInvaders, providing
strong evidence that for stable learning to occur, the value function must lead the representation
learning process.
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Figure 11: Perception Objective

Follower’s Objective. Figure 11 presents a per-environment breakdown of the follower’s objective
ablation. The results reinforce the conclusion from our main analysis: the Bellman Error Variance
objective is critical for SCORER’s performance. In every environment, the BE Variance follower
achieves the highest final performance and demonstrates the best sample efficiency. While the
MSBE follower offers a clear improvement over the baseline, particularly in Breakout, the explicit
stabilization provided by the variance objective unlocks a significantly higher level of performance,
highlighting its role in enabling robust co-adaptation.

Learning Rate Sensitivity. We study SCORER’s sensitivity to the timescale separation by testing
on different learning rates for the follower (αϕ) while fixing the leader’s rate (αθ = 1 × 10−4).
Figure 12 compares follower rates from 2×10−4 to 1×10−3 (ratios of 2:1 to 10:1). The results show
that SCORER is not hypersensitive to the exact ratio; nonetheless, performance drops noticeably at
the lowest rate (2× 10−4), confirming the necessity for the follower to adapt sufficiently fast relative
to the leader to compute an effective best response.
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Figure 12: Performance across MinAtar environments with varying follower learning rates (αϕ),
given a fixed leader rate

Hierarchical vs. Synchronous Ablation Figure 13 shows per-environment learning curves com-
paring all ablation variants. The monolithic per-layer LR baseline (encoders: 5 × 10−4, Q-heads:
1× 10−4) outperforms the baseline in Breakout and SpaceInvaders, confirming that utilizing faster
representation updates is of benefit. However, SCORER still surpasses this much simpler alternative.
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Figure 13: Team Coupling Study across MinAtar environments
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L LEARNING DYNAMICS AND REPRESENTATION ANALYSIS

To gain further understanding into SCORER’s behavior, we analyze dynamics of representation rank
and parameter norm on Breakout-MinAtar, motivated by recent diagnostic efforts on the causes of
deep RL pathologies (Kumar et al., 2021).

0 20 40 60 80 100
Training Steps (Millions)

0

10

20

30

40

50

60

70

IQ
M

 R
et

ur
ns

Performance

0 20 40 60 80 100
Training Steps (Millions)

30

40

50

60

70

Pa
ra

m
 N

or
m

Parameter Norm

0 20 40 60 80 100
Training Steps (Millions)

106

108

110

112

114

116

118

120

Sr
an

k

Representation Rank

SCORER
Baseline

Figure 14: Learning dynamics on Breakout-MinAtar. (Left) Returns over training, showing
SCORER’s sample efficiency advantage and higher performance. (Center) L2 parameter norm
of all network weights; both methods eventually stabilize, but SCORER achieves a larger value.
(Right) Srank; SCORER maintains near-maximal rank throughout, whereas the baseline only recov-
ers a comparable value after ∼40M steps.

Representation Rank. We track the effective rank of penultimate activations using Srank (Kumar
et al., 2021), which is an estimate of the minimal number of singular value components required to
account for 99% of their cumulative sum. Figure 14(Right) shows that the difference is in the when
of high-rank representations, rather than the whether. Baseline DQN starts at a lower effective rank
of around 107 (out of 128 dimensions), and takes about 40 million steps to approach near-maximal
values around 119. SCORER reaches a high effective rank very early in training and continues to
hover around that level, though with a slight dip during initial exploration. The period of maximal
rank divergence (0–40M steps) coincides precisely with the phase where SCORER demonstrates its
largest performance advantage (Figure 14, Left). While our experiments cannot establish causality,
this temporal correspondence is consistent with recent findings that representation collapse (the
failure to utilize available representational capacity) is a primary cause of sample inefficiency in deep
Q-learning (Kumar et al., 2021; Lyle et al., 2022). SCORER’s game-theoretic structure appears to
provide a natural regularization that maintains high-rank representations throughout training.

Parameter Norm. Figure 14(Center) shows the L2 norm of all network parameters throughout
training. SCORER exhibits faster parameter norm growth than the baseline, with both methods
stabilizing in the latter half of training.

M THEORETICAL FOUNDATIONS OF SCORER

In this section, we discuss optimization (especially bilevel optimization) related issues in the SCORER
framework. Since the results are of independent interest for a large family of bi-level optimization
problems, we adapted a general formulation.

M.1 BILEVEL OPTIMIZATION & TWO-TIMESCALE ALGORITHMS

The SCORER framework formulates the interaction between perception and control as a Stackelberg
game, which we cast as a standard bilevel optimization problem:

min
x∈Rdx

ℓ(x) := f(x,y∗(x)), s.t. y∗(x) ∈ arg min
y∈Rdy

g(x,y). (11)

Mapping to SCORER. In the context of SCORER, this general formulation maps directly to the
SCORER framework as:

• The outer (leader) variable x corresponds to the control network parameters θ.
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• The inner (follower) variable y corresponds to the perception network parameters ϕ.

• The outer objective f(x,y) is the Mean Squared Bellman Error (MSBE) loss for the leader.

• The inner objective g(x,y) is the Bellman Error Variance loss for the follower.

The remainder of this section will proceed with the general (x,y) notation to align with the standard
optimization literature.

Two-Timescale Stochastic Approximation (TTSA) algorithm proposed in Borkar (1997) updates the
variable through the following iterative step,

yk+1 = yk − βkD
k
g , (12)

xk+1 = xk − αkD
k
f , (13)

where two sequences of learning rates {αk} and {βk} satisfying αk/βk → 0, as k → ∞; Dk
f and

Dk
g represent stochastic estimates of the gradients ∇xf(x

k,yk+1) and ∇yg(x
k,yk), respectively,

with∇xf(x, y) := ∇xf(x, y)−∇2
xyg(x, y)∇2

yyg(x, y)
−1∇yf(x, y). The following conditions on

the objective functions and their approximations are discussed in Hong et al. (2023), here, while
we follow mostly their notations and basic arguments, detailed calculations are modified to fit our
purposes.

Assumption 1. The outer function f(x,y) satisfies gradient Lipschitz conditions: for any y1 ̸=
y2 ∈ R∗,

∥∇xf(x,y1)−∇xf(x,y2)∥
∥y1 − y2∥

≤ Lfx , uniformly in x,

∥∇yf(x,y1)−∇yf(x,y2)∥
∥y1 − y2∥

≤ Lfy , uniformly in x,

and for any x1 ̸= x2 ∈ Rdx ,

∥∇yf(x1,y)−∇yf(x1,y)∥
∥x1 − x2∥

≤ L̄fy , uniformly in y.

Gradient bound condition: ∥∇yf(x,y)∥ ≤ Cfy , uniformly in x and y.

Assumption 2. The inner function g(x, y) ∈ C2(Ω× R∗),

∥∇yy(x,y1)−∇yg(x,y2)∥
∥y1 − y2∥

≤ Lg, uniformly in x,

∥∇2
xyg(x,y1)−∇2

xyg(x,y2)∥
∥y1 − y2∥

≤ Lgxy
, uniformly in x,

∥∇2
yyg(x,y1)−∇2

yyg(x,y2)∥
∥y1 − y2∥

≤ Lgyy
, uniformly in x,

∥∇2
xyg(x1,y)−∇2

xyg(x2,y)∥
∥x2 − x2∥

≤ L̄gxy
, uniformly in x,

∥∇2
yyg(x1,y)−∇2

yyg(x2,y)∥
∥x2 − x2∥

≤ L̄gyy
, uniformly in x,

Convexity: For any x ∈ Rdx , g(x, ·) is strongly convex in y with modulus µg > 0. Hessian
boundedness: ∥∇2

xyg(x,y)∥ ≤ Cgxy
, uniformly in x and y.

It is known that under these assumptions, we have
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Lemma M.1 (Lemma 2.2 from Ghadimi & Wang (2018)).

∥∇xf(x, y)−∇ℓ(x)∥ ≤ L(y∗(x)− y∥, ∥y∗(x1)− y∗(x2)∥ ≤ Ly∥x1 − x2∥, (14)
∥∇ℓ(x1)−∇ℓ(x2)∥ = ∥∇f(x1, y

∗(x1))−∇f(x2, y
∗(x2))∥ ≤ Lf∥x1 − x2∥, (15)

with

L := Lfx +
LfyCgxy

µg
+ Cfy

(
Lgxy

µg
+

LgyyCgxy

µ2
g

)
,

Lf := Lfx +
(L̄fy + L)Cgxy

µg
+ Cfy

(
L̄gxy

µg
+

L̄gyy
Cgxy

µ2
g

)
, Ly :=

Cgxy

µg
.

We also make assumptions on the random approximation of the gradient. The widely used assumptions
in optimization literature, see e.g. Hong et al. (2023); Li et al. (2024); Pan et al. (2025), are usually
in the following form
Assumption 3. There are two positive constants σf and σg , and a nonincreasing sequence {bk}k≥0

such that,

E[Dk
g |Fk] = ∇g(xk, yk), E[Dk

g |F ′
k] = ∇g(xk, yk+1) +Bk, ∥Bk∥ ≤ bk, (16)

E[∥Dk
g −∇yg(x

k, yk)∥2|Fk] ≤ σ2
g [1 + ∥∇yg(x

k, yk)∥2], (17)

E[∥Dk
f −∇xf(x

k, yk+1)−Bk∥2|F ′
k] ≤ σf . (18)

In this paper, the function and derivative approximation are realized through deep neural networks.
Therefore, it is desired to connect the constants σf , σg, and {bk}k≥0 to network parameters, such
as their widths and depths, which can be adjusted to ensure the assumptions hold. This type of
quantitative relation between the effectiveness of the approximation and network parameters has been
carried out recently, see, e.g. Lu et al. (2021) and Belomestny et al. (2023). Summarizing their results,
for neural networks of width W and depth D, the following can be reasonably assumed.
Assumption 4. There are two positive constants σf and σg , and a nonincreasing sequence {bk}k≥0

such that,

E[Dk
g |Fk] = ∇g(xk, yk), E[Dk

g |F ′
k] = ∇g(xk, yk+1) +Bk, ∥Bk∥ ≤ bkS, (19)

E[∥Dk
g −∇yg(x

k, yk)∥2|Fk] ≤ σ2
g [1 + ∥∇yg(x

k, yk)∥2]S2, (20)

E[∥Dk
f −∇g(xk, yk+1)−Bk∥2|F ′

k] ≤ σfS2. (21)

with S := W−2s/(dx+dy)D−2s/(dx+dy).
Assumption 5. For any fixed x ∈ Rdx , the inner objective function g(x, ·) satisfies the Restricted
Secant Inequality with respect to its minimizer y∗(x). That is, for all y ∈ Rdy , we have:

⟨∇yg(x,y),y − y∗(x)⟩ ≥ µg∥y − y∗(x)∥2

where µg > 0 is a constant.

M.2 CONVERGENCE ANALYSIS OF THE ALGORITHMS FOR INNER OPTIMIZATION

The update for the inner optimization (SGD) takes the following form,

yk+1 = yk − βkD
k
g , (22)

where Dk
g is a random variable approximating ∇yg(x

k, yk).

The goal is to estimate E[∥yk+1 − y∗(xk)∥2|Fk], for that, we have,

E[∥yk+1 − y∗(xk)∥2|Fk] =E[∥yk − y∗(xk)− βkD
k
g∥2|Fk]

=E[∥yk − y∗(xk)∥2 − 2βkD
k
g [y

k − y∗(xk)] + β2
k∥Dk

g∥2|Fk].

From restricted secant inequality (RSI), we know that

E[Dk
g [y

k − y∗(xk)]|Fk]
ind
= ∇yg(x

k, yk)[yk − y∗(xk)]
RSI
≥ µg∥yk − y∗(xk)∥2.
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Plug this back into the equation above, we have,

E[∥yk+1 − y∗(xk)∥2|Fk] ≤E(1− 2βk)∥yk − y∗(xk)∥2 + β2
kE[∥Dk

g∥2|Fk].

Now, let us examine the last term,

E[∥Dk
g∥2|Fk] = E[∥Dk

g∥2 − ∥∇yg(x
k, yk)∥2|Fk] + ∥∇yg(x

k, yk)∥2

(1)
= E[∥Dk

g −∇yg(x
k, yk)∥2|Fk] + ∥∇yg(x

k, yk)∥2

(2)

≤ σ2
gS2 + σ2

gS2∥∇yg(x
k, yk)∥2 + ∥∇yg(x

k, yk)∥2

= σ2
gS2 + (1 + σ2

gS2)∥∇yg(x
k, yk)∥2

(3)
= σ2

gS2 + (1 + σ2
gS2)∥∇yg(x

k, yk)−∇yg(x
k, y∗(xk))∥2

(4)
= σ2

gS2 + (1 + σ2
gS2)L2

g∥yk − y∗(xk)∥2,

where (1) is due to the fact that E[Dk
g ]∥ = ∇yg(x

k, yk); (2) is due to the assumption on vari-
ance of Dk

g in Assumption 4; (3) is due to the fact that y∗(xk) is the stationary point, hence
∇yg(x

k, y∗(xk)) = 0; and (4) is due to the gradient Lipschitz assumption.

Now, with the assumption that βk goes to zero, as k → ∞, βk(1 + σ2
g) ≤ µk always holds for

sufficiently large k. Hence, we have,

E[∥yk+1 − y∗(xk)∥2|Fk] ≤(1− βk)∥yk − y∗(xk)∥2 + β2
kσ

2
g .

Next, to form a recursion, split ∥yk − y∗(xk)∥2 into ∥yk − y∗(xk−1)∥2 + ∥y∗(xk−1)− y∗(xk)∥2.
Thus,

∥y∗(xk−1)− y∗(xk)∥2 ≤ L2
y∥xk − xk−1∥2 = L2

y∥αk−1D
k−1
f ∥2 = α2

k−1L
2
y∥Dk−1

f ∥2,

where the first inequality follows from the Lipschitz continuity of y∗(·) (Lemma M.1), and the
equality follows directly from the definition of the unconstrained update rule in Equation equation 13.
Therefore,

E[∥yk+1 − y∗(xk)∥2|Fk] ≤E(1− βk)∥yk − y∗(xk−1)∥2 + β2
kσ

2
g + a2k−1L

2
yE[∥Dk−1

f ∥2|Fk].

Hence, we have,

E[∥yk+1 − y∗(xk)∥2|Fk]

≤E(1− βk + a2k−1L
2
y(1 + σ2

gS2)L2
g)∥yk − y∗(xk−1)∥2 + β2

kσ
2
g + a2k−1L

2
yσ

2
gS2.

As we know αk/βk → 0, we can see that (1 − βk + a2k−1L
2
yB) will be the uniform contraction

factor, and β2
kσ

2
g + a2k−1L

2
yA is a correction term also tends to zero, therefore, E[∥yk+1 − y∗(xk)∥2

diminished to zero, and the rate can also be quantified, especially in terms of the size of the neural
networks.

M.3 CONVERGENCE ANALYSIS OF THE ALGORITHMS FOR OUTER OPTIMIZATION

From the unconstrained update rule in equation 13, we have:

∥xk+1 − x∗∥2 = ∥xkαkD
k
f − x∗∥2 = ∥xk − x∗∥2 − 2αk⟨Dk

f , x
k − x∗⟩+ α2

k∥Dfk∥2,
where x∗ denotes the global optimum of problem defined in equation 11. From the Assumption 4 on
the random variable Dk

f , we can see that,

E[⟨Dk
f , x

k − x∗⟩|Fk] =⟨∇xf(x
k, yk+1) +Bk, x

k − x∗⟩
=⟨∇ℓ(xk), xk − x∗⟩+ ⟨∇xf(x

k, yk+1)−∇ℓ(xk) +Bk, x
k − x∗⟩.

Hence, we have,

E[∥xk+1 − x∗∥2|Fk] ≤∥xk − x∗∥2 − 2αk⟨∇ℓ(xk), xk − x∗⟩+ α2
kE∥Dfk∥2|Fk]

− 2αk⟨∇xf(x
k, yk+1)−∇ℓ(xk) +Bk, x

k − x∗⟩.
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Restricted secant inequality implies that,

⟨∇ℓ(xk), xk − x∗⟩ = ⟨∇ℓ(xk)−∇ℓ(x∗), xk − x∗⟩ ≥ µℓ∥xk − x∗∥2.

We then have,

E[∥xk+1 − x∗∥2|Fk] ≤(1− 2αkµℓ)∥xk − x∗∥2 − 2αk⟨∇xf(x
k, yk+1)−∇ℓ(xk) +Bk, x

k − x∗⟩
+ α2

kE∥Dfk∥2|Fk]

(1)

≤ (1− αkµℓ)∥xk − x∗∥2 + αk

µℓ
∥∇xf(x

k, yk+1)−∇ℓ(xk) +Bk∥2

+ α2
kE∥Dfk∥2|Fk]

(2)

≤ (1− αkµℓ)∥xk − x∗∥2 + 2αk

µℓ
[L2∥yk+1 − y∗(xk)∥2 + bkS]

+ α2
kE∥Dfk∥2|Fk],

where (1) is the result of completing a square, and (2) again follows from Lemma M.1. Hence, we
can have uniformly bounded constants π, ζ > 0 such that

E[∥xk+1 − x∗∥2|Fk] ≤(1− αkµℓ)∥xk − x∗∥2 + αkπL
2∥yk+1 − y∗(xk)∥2 + ζα2

k.

Incorporating the above estimation into the inner and outer optimization, following a similar argument
to Theorem 1 in Hong et al. (2023), we can reach the following conclusion.

Theorem M.1. Under Assumptions 1, 2 and 4, when αk ≤ c0β
3/2
k and βk ≤ c1α

2/3
k with constants

c0, c1 > 0, the difference between the k-th step of the algorithm and the global optimum of problem
defined in equation 11, x∗, can be estimated as,

E[∥xk − x∗∥2] ≤

{
k−1∏
i=0

((1− αiµℓ)
[
E[∥x0 − x∗∥2] + πE[∥y0 − y∗(x0)∥2]

]
+ ζα

2/3
k−1

}
. (23)

Similarly,

E[∥yk − y∗(xk−1)∥2] ≤σ2
g(S2 + 3)

[
k−1∏
i=0

(
1− βiµg

4

)
E[∥y0 − y∗(x0)∥2] + βk−1

]
. (24)

The consequence of the theorem is that in the case of αk, βk → 0, as k →∞, we know that the two
quantities on the left-hand side will diminish to zero, thus the convergence of the algorithm in the
sense of mean square error.
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