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Abstract

In this paper, we consider the rate-distortion-perception (RDP) problem with
respect to f -divergences from the viewpoint of information-theoretic random
number generation. First, we address the self-random number generation problem,
which is a subproblem of the RDP problem, and derive the general formula for the
optimum achievable rate. Then, we apply our findings to the RDP problem.

1 Introduction

Rate–distortion (RD) theory reveals the tradeoff between the information rate and distortion level
[Shannon, 1948, Cover and Thomas, 1991], but lower distortion does not necessarily imply higher
perceptual quality in a realistic situation, such as image processing. Blau and Michaeli [2019]
formulated this perceptual quality of reconstructed data as the variational distance between the
probability distribution of the original information source and that of the reconstructed information,
and they showed the existence of a tradeoff between perception and distortion. Matsumoto [2018]
was the first to attempt to incorporate this perceptional quality into RD theory. He introduced the
tradeoff among information rate, distortion, and perceptual quality and derived the general formula
for the rate-distortion-dispersion (RDP) function. It should be emphasized that Matsumoto [2018]
treated the RD problem as a subproblem of the RDP problem. A coding theorem for more general
settings has been given by Theis and Wagner [2021].

Meanwhile, the self-random number generation (SRNG) problem has been considered in information
theory. The main objective of the SRNG problem is to approximate the source X = {Xn}∞n=1 by
using that source efficiently while keeping the approximation error smaller than or equal to some given
constant. To formulate this problem, let d(Xn, Y n) denote some approximation measure between two
probability distributions PXn and PY n (e.g., the variational distance). Then, given an arbitrary general
source X = {Xn}∞n=1, we seek a mapping ϕn(Xn) with lim supn→∞ d(Xn, ϕn(X

n)) ≤ D, where
the rate log |ϕn| should be as small as possible. This problem can also be considered as a subproblem
of the RDP problem, so analyzing the SRNG problem is a beneficial step toward a comprehensive
understanding of the RDP problem. In this paper, we derive the optimal achievable rate for the SRNG
problem and then extend our findings to address the broader scope of the RDP problem.
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2 SRNG problem

In this paper, we consider the general source [Han, 2003] defined as an infinite sequence X ={
Xn =

(
X

(n)
1 , X

(n)
2 , . . . , X

(n)
n

)}∞

n=1
of n-dimensional random variables Xn, where each com-

ponent random variable X(n)
i takes values in a finite or infinite countable set X . Here, we dis-

cuss how to approximate the source X by using X itself efficiently. Consider two mappings
φn : Xn → Mn := {1, 2, . . . ,Mn} and ψn : Mn → Xn, and set X̃n = ψn(φn(X

n)). We
consider the f -divergence as an approximation measure between Xn and X̃n. The f -divergence
between two probabilistic distributions PZ and PZ is defined as follows [Csiszár and Shields, 2004],
letting f(t) be a convex function defined for t > 0 and f(1) = 0.
Definition 2.1. Let PZ and PZ denote probability distributions over a finite or countably infinite set
Z . The f -divergence between PZ and PZ is defined by

Df (Z||Z) :=
∑
z∈Z

PZ(z)f

(
PZ(z)

PZ(z)

)
, (1)

where we set 0f
(
0
0

)
= 0, f(0) = limt→0 f(t), and 0f(a0 ) = limt→0 tf(

a
t ) = a limu→∞

f(u)
u .

The following are some examples of f -divergences [Csiszár and Shields, 2004, Sason and Verdú,
2016]:

• f(t) = t log t: (Kullback–Leibler divergence)

Df (Z||Z) =
∑

z∈Z PZ(z) log
PZ(z)
PZ(z) =: D(Z||Z);

• f(t) = − log t: (reverse Kullback–Leibler divergence) Df (Z||Z) = D(Z||Z);
• f(t) = (1− t)+ := max{1− t, 0}: (variational distance)

Df (Z||Z) = 1
2

∑
z∈Z |(PZ(z)− PZ(z))|.

The optimum SRNG rate with respect to the given f -divergence is defined as follows.
Definition 2.2. Rate R is said to be ∆-achievable with the given f -divergence if there exists a
sequence of mappings (φn, ψn) such that

lim sup
n→∞

Df

(
Xn||X̃n

)
≤ ∆ and lim sup

n→∞

1

n
logMn ≤ R, (2)

where X̃n = ψn(φn(X
n)).

Definition 2.3 (Optimum SRNG rate).
Sf (∆|X) = inf {R | R is ∆-achievable} . (3)

The optimum SRNG rate has been considered in the case of the variational distance (i.e., f(t) =
(1− t)+) and ∆ = 0, and Han [2003] showed the following theorem.
Theorem 2.1 (Han [2003]). For f(t) = (1− t)+, it holds that

Sf (0|X) = inf

{
R

∣∣∣∣ limn→∞
Pr

{
1

n
log

1

PXn(Xn)
> R

}
= 0

}
=: H(X), (4)

where H(X) is called the spectral sup-entropy rate of the source X [Han, 2003].

The spectral sup-entropy rate H(X) is a generalization of the entropy defined by Shannon [1948] for
an i.i.d. source.

To derive Sf (∆|X), we assume the following three conditions on the function f .

C1 f(t) is a monotonically decreasing function of t. That is, for any pair of positive real numbers
(a, b) satisfying a < b, it holds that f(a) ≥ f(b).

C2 For any pair of positive real numbers (a, b), it holds that limn→∞ e−naf
(
e−nb

)
= 0.

C3 For any positive number a ∈ [0, 1], it holds that 0f
(
a
0

)
= 0.

Remark 2.1. Notice here that f(t) = − log t and f(t) = (1− t)+ satisfy these conditions, while
f(t) = t log t does not.
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3 Optimum SRNG rate

3.1 Fundamental lemmas

Before considering optimum achievable rates in the SRNG problem with f -divergences, we show
two useful lemmas. Proofs of these lemmas can be found in Nomura [2023].

Lemma 3.1 (Nomura [2023]). Assuming that the function f satisfies conditions C1 and C3, for any
Mn and γ > 0, there exists a pair of mappings (φn, ψn) satisfying

Df (X
n||ψn(φn(X

n))) ≤ f

(
Pr

{
1

n
log

1

PXn(Xn)
≤ 1

n
logMn − γ

}
− e−nγ

)
+ e−nγf

(
1

Mn

)
. (5)

Remark 3.1. In the direct part of the proof of Theorem 2.1, Han used a pair of mappings that is
essentially the same as the optimum fixed-length source code. However, in the proof of the above
lemma, one may wonder whether we can use a pair of mappings such as

φ′
n(xi) =

{
i x ∈ Sn,
1 otherwise (6)

and ψ′
n(i) = xi, where Sn is a high-probability set satisfying |Sn| ≈Mn (see the proof of the lemma

in the Appendix). This pair (φ′
n, ψ

′
n) has often been used to show the source coding theorem, but

unfortunately it is difficult to derive a similar bound by using (φ′
n, ψ

′
n) in the case of f -divergences.

Lemma 3.2 (Nomura [2023]). Assuming that the function f satisfies conditions C1 and C3, for any
pair of mappings (φn, ψn) it holds that

Df (X
n||ψn(φn(X

n))) ≥ f

(
Pr

{
1

n
log

1

PXn(Xn)
≤ 1

n
logMn + γ

}
+ e−nγ

)
(7)

for any γ > 0.

3.2 General formula

By using the previous two lemmas, we show here the general formula for the SRNG problem with
f -divergences. To express the general formula for the optimum SRNG rate, we define the following
quantity that depends on the function f :

Kf (∆|X) := inf

{
R

∣∣∣∣lim sup
n→∞

f

(
Pr

{
1

n
log

1

PXn(Xn)
≤ R

})
≤ ∆

}
. (8)

Then, we have the following theorem.

Theorem 3.1. Assuming that the function f satisfies conditions C1–C3, then for any 0 ≤ ∆ < f−1(0)
it holds that

Sf (∆|X) = Kf (∆|X). (9)

Proof. See Nomura [2023].

Next, we show a particular example of our theorem by considering only the case of f(t) = (1− t)+,
which indicates the variational distance. From Theorem 3.1, we obtain the following corollary.

Corollary 3.1. For f(t) = (1− t)+, it holds that

Sf (∆|X) = inf

{
R

∣∣∣∣lim sup
n→∞

Pr

{
1

n
log

1

PXn(Xn)
> R

}
≤ ε

}
=: H(∆|X). (10)

This corollary is a generalization of Theorem 2.1, so the quantity Kf (∆|X) in (8) is a form of
generalization of the entropy.
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4 RDP function

Next, we consider the RDP problem. Let ϕn : Xn → Mn and ξn : Mn → Xn denote a lossy
source encoder and a decoder, respectively. A general distortion function is defined by a mapping
gn : Xn ×Xn → [0,+∞), where gn(x,x) = 0 for any x ∈ Xn.

Below, we define the RDP function with respect to f -divergences.
Definition 4.1. A triplet (R,D,∆) is said to be achievable with the given f -divergence if there exists
a sequence of (ϕn, ξn) such that

lim sup
n→∞

1

n
logMn ≤ R, lim sup

n→∞

1

n
E [gn (X

n, ξn(ϕn(X
n)))] ≤ D, (11)

lim sup
n→∞

Df (X
n||ξn(ϕn(Xn))) ≤ ∆. (12)

Definition 4.2 (RDP function with the given f -divergence).

Rf (D,∆) = inf {R|(R,D,∆) is achievable} . (13)

Then, from Theorem 3.1 we immediately have the following theorem.
Theorem 4.1.

Rf (D,∆) ≥ max{r(D|X),Kf (∆|X)}, (14)
where r(D|X) is the general RD function (see Steinberg and Verdú [1996] and Han [2003]) and
Kf (∆|X) is defined in (8).

Proof. The theorem is obvious from Theorem 3.1 and the result for the RD function in a general
setting [Steinberg and Verdú, 1996, Han, 2003].

The above theorem shows the lower bound of the RDP function with the given f -divergence. Unfor-
tunately, the upper bound in the general case is difficult to derive. Here, we define two quantities
gn := max(x,x′) gn(x,x

′) and Dthreshold := 1
ngn · Pr{− logPXn(Xn) ≥ Kf (∆|X)} given ∆,

the function f , and gn.
Theorem 4.2. For D ≥ Dthreshold, we have

Rf (D,∆) ≤ Kf (∆|X). (15)

Proof. We can prove this theorem by using the pair of mappings used in the proof of Lemma 3.1.

Intuitively, relaxing the constraints on distortion levels leads to the prominence of the condition
stated in (12) regarding perceptual quantity. This phenomenon is highlighted by the condition
D ≥ Dthreshold in the above theorem.

Originally, the RDP function was defined with respect to the variational distance instead of the
f -divergence in (12) [Matsumoto, 2019], and Matsumoto showed the following theorem.
Theorem 4.3 (RDP function [Matsumoto, 2019]). For f(t) = (1− t)+, it holds that

Rf (D,∆) = max{r(D|X), H(∆|X)}, (16)

where H(∆|X) is defined in (10).

Note here that Theis and Wagner [2021] considered the RDP function in a more general setting,
considering a stochastic encoder and a decoder. It is not straightforward to derive the upper bound
(direct part) of the RDP function in general. However, we believe that Lemma 3.1 and its proof give
useful insights into how to construct a suitable code for the RDP problem.
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