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Abstract

Recent studies have uncovered intriguing phenomena in deep learning,
such as grokking, double descent, and emergent abilities in large language
models, which challenge human intuition and are crucial for a deeper un-
derstanding of neural models. In this paper, we present a comprehensive
study on algorithm task to provide a unified view of these three phenomena,
with a focus on the interplay between memorization and generalization.
Through extensive experiments spanning a wide range of model sizes and
training data quantities, we uncover four distinct training dynamics, each
arising from unique combinations of model size and training data quantity,
formulating a theoretical framework for further analysis. Utilizing this
framework, we establish connections between double descent and grokking
and propose two verifiable predictions regarding the occurrence of double
descent, both substantiated by our experimental results. Moreover, we ex-
pand our experiments to the multi-task learning paradigm, demonstrating
how algorithm tasks can be turned into emergent abilities by mixing some
pure memorization data. This offers a novel perspective to understand
emergent abilities in Large Language Models.

1 Introduction

There are several interesting phenomena in Deep Learning, among which grokking (Power
et al., 2022), double descent (Belkin et al., 2019; Nakkiran et al., 2020) and emergent abili-
ties (Brown et al., 2020; Wei et al., 2022a; Ganguli et al., 2022; Srivastava et al., 2023) in
current Large Language Models attract a lot of attention. Understanding these phenomena
is important for us to reveal the mechanism of deep learning. Plenty of works (Liu et al.,
2022; 2023; Thilak et al., 2022; Varma et al., 2023; Schaeffer et al., 2023; Michaud et al., 2023)
have been done to explain these phenomenons from different perspectives. However, these
works all concentrate on a single phenomenon and explain them separately. In this work,
we provide a preliminary study to give a unified view of these three phenomena from the
perspective of competition between memorization and generalization.

Our work is based on Varma et al. (2023)’s explanation for grokking. They attribute grokking
to the competition between two distinct types of circuits in the model: one responsible for
memorization, which achieves high training accuracy but poor validation accuracy, and
another for generalization, capable of high performance in both training and validation.
The latter, although slower to develop, proves more efficient in terms of parameter norms,
leading to the model finally transferring from memorization to generalization to achieve
higher efficiency. Intriguingly, the efficiency of the memorization circuit is inversely related
to the volume of training data, indicating that larger datasets reduce its efficiency. In contrast,
the efficiency of the generalization circuit remains consistently stable, regardless of the size
of the training data. As a result, Varma et al. (2023) identified a critical dataset size, Dcrit,
delineating a boundary. Within this boundary, memorization and generalization circuits
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Figure 1: Left: The increasing memorization capacity and decreasing critical dataset size for
larger models split the figure into four distinct zones including progression, memorization,
semi-grokking and grokking. Each zone will show a specific training dynamic illustrated in
the right side. Some important intersections are marked with estimated values. Right: Each
figure represents a specific training dynamic: (a) Progression, demonstrated using a model
with a hidden size of 8 and trained on 2600 data points. (b) Memorization, shown with a
model having a hidden size of 32, trained on 2600 data points. (c) Semi-Grokking, depicted
with a model of hidden size 56, trained on 2600 data points. (d) Grokking, visualized using a
model with a larger hidden size of 56, trained on 4000 data points. These figures exemplify
the variable training dynamics of models with different configurations to specific training
data quantities.

demonstrate similar levels of efficiency and the model will show part of generalization
ability. Crossing this threshold significantly enhances the probability of grokking.

Building upon their findings, our study expands the investigation to various model sizes.
We firstly observe that smaller models require a larger critical dataset size for grokking,
implying an inverse relationship between model size and the necessary amount of training
data for grokking. Conversely, a model’s memorization capacity is directly proportional
to its size, indicating that smaller models have a reduced capacity for memorization. We
confirm these relationships by experiments in § 2.

The reverse relationships with model size inevitably lead to an intersection point of the
two curves (yellow star in Figure 1). The two curves with this intersection point create four
distinct zones on the graph, each reflecting a unique training dynamic in our experiments
as shown in the right side of Figure 1. (a) Progression: When the training data size is beyond
model’s memorization capacity, model will be unable to memorize all of them, causing
model first memorizing as much training data as possible with a zero validation performance
and then generalizing to part of validation data with an increase in train accuracy at the same
time. (b) Memorization: For small amount of training data, model has the ability to memorize
all of them and the memorization circuits is more efficiency than generalization. Therefore,
model will only memorize the training data with zero validation performance. (c) Semi-
Grokking: When the number of training data points approximates the critical dataset size, the
model exhibits moderate generalization capabilities after memorizing all the training data.
This behaviour was first identified by Varma et al. (2023). (d) Grokking (Power et al., 2022):
When the number of training data is beyond critical dataset size, the generalization circuits
become more efficiency than memorization, leading the model transfer from memorization
to generalization long after training performance become perfect.

Analyzing Figure 1, we can easily link double descent with grokking and figure out when double
descent will happen. Specifically, for training data volumes below the intersection point, the
model undergoes progression, memorization, semi-grokking and then grokking with model size
increasing, leading the validation performance first increases, then decreases, and ultimately
increases again, which is exactly the double descent phenomenon (Belkin et al., 2019; Nakkiran
et al., 2020). In contrast, when the quantity of training data surpasses the intersection point,
an increase in model size results in the model through progression to grokking, resulting in a
consistently positive correlation between model size and final validation performance. We
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can see that the occurrence of double descent is highly related to the position of the intersection
point. Therefore, to further verify our illustration, we conduct experiments to move the
position of the intersection point and successfully transform a validation accuracy function
without clear double descent, into one with obvious double descent. This transformation is
achieved by shifting the critical dataset curve upward, thereby also shifting the intersection
point towards the upper right.

Further, we extend our experiments to the multitask learning paradigm where an algorithm
task and a pure memorization task are mixed to train the model. Interestingly, adding a
pure memorization task largely hinders model from formalising the generalization circuits
for the algorithm task. With model size increasing, model always achieves near zero
validation performance until a relatively large model size, which is about 1570 times larger
than training solely on the algorithm task. This phenomenon reminds us of the emergent
abilities in Large Language Models (Brown et al., 2020; Wei et al., 2022a; Ganguli et al., 2022;
Srivastava et al., 2023). The pretraining stage can also be seen as a multi-task learning
process, where model has to remember numerous world knowledge while developing
some general rules and abilities, such as reasoning. Our study suggests that this multi-task
learning feature can be one important reason for the emergent abilities in LLM.

Overall, we make three key contributions in this study, which are outlined as follows:

• We introduce an innovative framework designed for analyzing the performance and
training dynamics in consideration of both the size of the model and the quantity of
training data.

• Utilizing this framework, we provide a nuanced illustration for the double descent
phenomenon and establish a predictive method for identifying instances of double
descent occurrence.

• By extending to multi-task learning which consists of algorithm and pure memo-
rization tasks, we convert algorithm tasks into an emergent ability. This offers a
novel angle for understanding emergent abilities in Large Language Models.

Key Takeaways. To better focus our readers’ attention, we highlight the key takeaways
from our analysis:

1. Critical dataset size for generalization decreases with model size increasing.

2. Memorization capacity increases with model size increasing.

3. The training dynamics can be categorized into four types.

4. Progression and grokking differ in parameter norm variations despite both showing
delayed generalization ability during training.

5. Double descent is caused by training dynamics moving from progression to memoriza-
tion, then to grokking.

6. We can make double descent more prominent by increasing the generalization diffi-
culty.

7. Emergent ability can be introduced by mixture of memorization tasks and general-
ization tasks.

8. Separating memorization and generalization in parameter space leads to faster
emergence.

2 Preliminary Study about Grokking

In this section, we first recall the preliminary setup of Grokking experiments in Varma et al.
(2023), in which we can see the critical dataset size DM

crit as a function with model M and
extend the grokking experiments to different model sizes and training data size, resulting in
an inverse relationship of critical dataset size DM

crit with model size, where larger models
exhibit grokking with less training data.
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Figure 2: Final validation accuracy across
various training dataset sizes and model
hidden sizes. This figure demonstrates
that larger models attain near-perfect val-
idation accuracy with comparatively less
training data, indicating a reduced criti-
cal dataset size for these models.
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Figure 3: Graphical representation of the
model’s memorization capacity relative
to its size. Each model is run with three
distinct random seeds and the average
performance is depicted. The light blue
shaded region illustrates the 95% confi-
dence interval.

2.1 Experiments Setup

Task Following Power et al. (2022) and Varma et al. (2023), we conduct experiments on
the modular addition task for generalization without specific illustration.

(a + b) mod P; for a, b ∈ (0, ..., P − 1) and P = 113

By using different tuples of a and b, this task can be easily split into non-overlap train
and validation set. Therefore, the memorization behaviour and generalization behaviour
can also be distinguished by the validation performance. Although Nanda et al. (2023)
propose a method to identify the generalization circuit of modular addition, we directly use
validation performance to distinguish for simplicity. We use Dtrain

add and Dval
add to represent

the data number of training set and validation set on this modular addition task.

Model Following previous work (Nanda et al., 2023; Varma et al., 2023), we train a 1-layer
simplified decoder-only transformer (Vaswani et al., 2017) model with 4 attention heads.
We see the tasks above as classification tasks, where the label number is P. During training,
a cross entropy loss LCE with AdamW (Loshchilov & Hutter, 2019) optimizer is utilized.
We mainly vary model size by adjusting its hidden size dimension dh.

2.2 Grokking Experiments

In this study, we explore the impact of varying training dataset sizes, denoted as Dtrain
add ,

which range from 2, 000 to 4, 000 in increments of 200. Additionally, we investigate models
with different hidden sizes, specifically dh ∈ {32, 36, 40, 44, 48, 56, 64}. For each unique
combination of dataset size and model hidden size, we perform experiments using 11
distinct random seeds, and their average performance is reported.

We first verify that modular addition task indeed show grokking in our experimental setup
which is shown in Figure 1 (d). Model quickly achieves perfect training accuracy while
validation accuracy takes more training steps to become perfect. By comparing Figure 1 (c)
and (d), we can also find that model needs a specific amount of training data to show perfect
generalization ability, which is the critical dataset size stated by Varma et al. (2023). Then,
we present the final validation performance as a function of the training dataset size for
different models in Figure 2 to analyse the impact of model size on critical dataset size.

TAKEAWAY-1 From the analysis presented in Figure 2, it is evident that models with larger
hidden sizes tend to exhibit grokking (perfect validation performance) with smaller datasets.
For instance, a model with a hidden size dh of 64 achieves near-perfect validation accuracy
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with just 3, 000 training samples. In contrast, a model with a smaller hidden size of 32
requires an increase in training data size to 4, 000 to achieve similar validation accuracy.
This trend is consistent across models with intermediate hidden sizes ranging between 32
and 64.

In addition, our research also verifies the phenomenon termed semi-grokking (Figure 1 (c)),
as proposed by Varma et al. (2023). This phenomenon is very similar to grokking except
for its partial generalization ability, which means model cannot show perfect validation
performance in the end of training. Occasionally, semi-grokking can show several increasing
stages of validation accuracy. Based on Varma et al. (2023)’s experiments, semi-grokking can
be observed when the number of training data points, Dtrain

add , closely matches the critical
dataset size for the current model, denoted as DM

crit. Under these conditions, the model’s
memorization and generalization circuits demonstrate comparable efficiencies. This balance
prevents the model from fully transitioning from memorization to generalization, resulting
in semi-grokking.

As the results shown in Figure 2, a model with a hidden size dh of 64 shows middling
validation accuracy and exhibits semi-grokking when the training dataset size, Dtrain

add , ranges
between 2, 000 and 3, 000, where the critical dataset size, DM

crit, for this model is approx-
imately 3, 000. We observe that as the gap between Dtrain

add and DM
crit narrows, there is a

general improvement in the model’s generalization ability, as reflected in its final validation
accuracy.

2.3 Memorization Experiments

Since grokking requires the model to memorize all of the training data firstly, we designed
experiments that specifically gauge the model’s ability to memorize. For this purpose, we
assign random labels to the training data (Zhang et al., 2021; Doshi et al., 2024), compelling
the model to focus solely on memorization. Given the modular addition task’s adherence
to the commutative law, which could affect the model’s memorization capability on this
task1, we assign identical random labels to (a + b) mod P and (b + a) mod P. This approach
ensures a more accurate assessment of the model’s true memorization ability for modular
addition task. Our experiments encompass all 12, 769 pairs as training data, and we evaluate
the model’s accuracy on this entire set to represent its memorization capacity.

TAKEAWAY-2 Unsurprisingly, the findings, illustrated in Figure 3, reveal a distinctly positive
correlation between the model size and its memorization capacity; larger models are capable
of memorizing more training data.

3 Proposed Framework

In this section, we introduce our framework designed to analyze both the training dynamics
and final validation performance. This approach is grounded on two key assumptions,
which are substantiated by the experiments detailed in § 2.

Assumption 3.1. The critical dataset size for a model M (DM
crit) is negatively correlated to

the model’s size. This implies that larger models require less data to exhibit grokking.

Assumption 3.2. The memorization capacity of a model M (DM
mem) correlates positively

with the model’s size, indicating that larger models have a greater capacity to memorize
training data.

TAKEAWAY-3 Drawing from Assumption 3.1 and Assumption 3.2, we can construct a graph-
ical representation for a specific task, as illustrated in Figure 1. This graph delineates the
relationship between memorization capacity and critical dataset size, highlighting their
intersection point (marked by a yellow star in Figure 1). Consequently, this demarcates

1It is easier for model to memorize training data which obeys commutative law, since it only needs
to memorize half of the training data.
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four distinct zones, each representing a unique training dynamic. These dynamics will be
discussed detailly in the subsequent discussion (right side of Figure 1).

Progression In scenarios where the training dataset Dtrain surpasses the memorization
capacity DM

mem of a model M, the model is incapable of memorizing the entire dataset.
This limitation leads to a two-stage learning dynamic. Initially, the model memorizes a
portion of the training data, which does not translate into improved validation performance.
Subsequently, the model begins to generalize, improving both its training accuracy and
validation performance, as shown in Figure 1 (a).

Memorization When the training data Dtrain falls below the memorization capacity DM
mem

of the model, it can memorize the entire dataset. However, if Dtrain is also significantly less
than the critical dataset size DM

crit, memorization circuits outperform generalization circuits
in efficiency. This leads the model to opt for pure memorization, resulting in negligible
validation performance, as illustrated in Figure 1 (b).

Semi-Grokking In cases where the training data Dtrain approximates the critical dataset
size DM

crit, the efficiency of memorization and generalization circuits becomes comparable.
This parity causes the model to struggle with transitioning entirely to generalization circuits.
Consequently, the final model is a combination of both memorization and generalization
circuits, yielding moderate validation accuracy. Additionally, multiple stages of increase in
validation performance may be observed, indicating repeated shifts between memorization
and generalization circuits, as shown in Figure 1 (c).

Grokking In the situation where the training data Dtrain is between the memorization
capacity DM

mem and the critical dataset size DM
crit, the model is able to memorize the entire

training dataset. However, the circuits dedicated to memorization are less efficient compared
to those for generalization. Initially, the model achieves perfect training accuracy through
memorization. It then transitions to generalization circuits for higher efficiency, leading to a
training dynamic demonstrated in Figure 1 (d), where validation performance reaches near
perfection well after the model has overfitted to the training set.

Discussion Despite progression and grokking show similar validation performance dynamic
during training, it is crucial to note the distinction between them in two fundamental
aspects. Firstly, the generalization circuits in progression show up a moderate level of
training accuracy. In contrast, grokking is characterized by the formation of generalization
circuits only after the model has achieved perfect training accuracy. Secondly, the underlying
mechanisms driving the formation of generalization circuits differ significantly. In the case
of progression, generalization circuits are induced by the constraints of cross-entropy loss, as
the model is unable to completely memorize all training data, preventing it from reaching
near-zero training loss. Consequently, the generalization circuits in progression are developed
to minimize training loss while concurrently enhancing validation performance. However,
the emergence of generalization circuits in grokking is attributed to the model’s preference
towards more efficient circuits, which is minimizing the model’s parameter norm. This leads
to a notable trend for generalization where, during grokking, the model’s parameter norm
tends to decrease, whereas in progression, an increase in the parameter norm is typically
observed, which is shown in Figure 7. (TAKEAWAY-4)

4 Illustrate Double Descent

The phenomenon of double descent, as observed by Nakkiran et al. (2020), reveals an in-
triguing pattern wherein the increase in model size firstly detrimentally impacts validation
performance before finally contribute positively to the validation performance. In this
section, we provide a detailed exploration of the double descent phenomenon, coupled
with predictions regarding its occurrence given our framework in § 3. Subsequently, we
undertake a series of experiments designed to validate our theoretical illustration.
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Figure 4: Results on modular addition task with varying training data sizes. Each experiment
is conducted 11 times using distinct random seeds, and mean accuracy is reported. The
light-colored regions denote 95% confidence intervals. Consistent with our expectations,
smaller amount of training data tends to induce the double descent phenomenon.

4.1 Illustration About Double Descent

TAKEAWAY-5 Our framework elucidates that the phenomenon of double descent is likely to
manifest when the number of training data, Dtrain, is substantially lower than the intersec-
tion point of two curves in Figure 1. In such scenarios, the model undergoes a series of
stages: progression, memorization, semi-grokking, and finally grokking. Initially, as the model
size increases during the progression phase, there is an enhancement in its generalization
ability. However, this ability declines, potentially to zero, upon transitioning into the memo-
rization stage. This decline is in alignment with the critical interval of model size postulated
by Nakkiran et al. (2020). As the model continues to grow, it enters the semi-grokking and
grokking phases, where its generalization ability is revived, leading to a secondary increase.
This relationship results in the double descent curve observed in validation performance2.
Conversely, in instances where the training data exceeds the intersection point, the model
predominantly experiences progression and grokking, resulting in a consistent upsurge in
generalization ability as the model size increases. Under these conditions, the double descent
phenomenon does not occur.

4.2 Experiments

To validate our illustration, we carried out a series of experiments centered on
the modular addition task, as detailed in § 2. We set the training data sizes to
{2600, 3000, 4000, 5000} and varied the model’s hidden size from 4 to 100, following the
sequence {4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 56, 64, 100}. Each configuration was tested
across 11 experiments with distinct random seeds, and the average performance was re-
ported, accompanied by a 95% confidence interval. These results are depicted in Figure 4.

Observations from Figure 4 (a) reveal that with a training dataset of 2600 samples, the
models transition through the stages of progression, memorization, semi-grokking3. In the
progression phases, larger models generally demonstrate improved validation performance.
However, the memorization phase, evident when the model’s hidden size ranges between 24
and 40, leads to zero validation performance, resulting in the double descent pattern for this
dataset size.

Increasing the training data slightly to 3000 samples eliminates the memorization stage. The
models then progress through progression, semi-grokking, and grokking, resulting in a less
pronounced double descent curve. Still, a dip in validation performance is noticeable for
model sizes between 28 and 36, as shown in Figure 4 (b). Outside this range, there is a
general trend of increasing performance with larger model sizes.

2The “descent” in double descent refers to validation error/loss, therefore in terms of validation
performance, it’s validated by the two “increase” stage.

3Due to the small number of training data, grokking doesn’t happen in this model size range.
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With the training data further increased to 4000 and 5000, models bypass the memorization
and semi-grokking stages, transitioning directly from progression to grokking. This leads to
a consistent improvement in validation performance as model size increases, without any
occurrence of double descent, as illustrated in Figure 4 (c) and (d).

4.3 Make Double Descent More Prominent
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Figure 5: Experimental results of (a +
b)2 mod P with 3000 training data points.

TAKEAWAY-6 Under our proposed framework,
the occurrence of double descent is highly related
to the position of intersection point in Figure 1.
Therefore, moving in the intersection point to-
wards the upper right results in an expanded
range of training data sizes, during which model
will show pronounced double descent. Conse-
quently, a specific quantity of training data that
previously does not demonstrate double descent
can be transformed into one that does. To move
intersection point towards the upper right, what
we need is to increase the difficulty of generaliza-
tion. To validate this hypothesis, we designed
experiments centered around a task more com-
plex than the modular addition which is defined
as:

(a + b)2 mod P; for a, b ∈ (0, ..., P − 1) and P = 113

Given that this task also adheres to the commutative law, it does not affect the memorization
capacity curve. For a direct comparison, we use 3000 training data, the same size that did
not exhibit a very clear double descent in Figure 4 (b). We keep all other experimental setup
the same as modular addition task. The outcomes are depicted in Figure 5.

The results from this more complex task reveal a more pronounced double descent phe-
nomenon in the validation performance compared to the one observed in Figure 4 (b), which
utilized an identical quantity of training data. Notably, in this task, the model exhibits
memorization stage with zero validation performance when the hidden size of the model
is 24. This memorization stage is not observed in the modular addition task with the same
training data size of 3000. These behaviours corroborate our previously stated hypothesis
and verify our illustration about double descent.

5 Multi-Task Learning Leads to Emergent Ability

In this section, we expand our research to the multi-task learning paradigm, which combines
modular addition task, with a task focused solely on memorization. This approach reveals
that the model’s generalization ability on the algorithm task remains negligible until the
model reaches a substantially larger size—specifically, 1570 times larger than training on a
single task. As a result, the validation performance on algorithm task show an emergent
phenomenon relative to model size.

Experiment Setup Our experiments utilize the modular addition task as the generalization
component. For the memorization task, we assign random labels to a subtraction task,
compelling the model to memorize these associations. By incorporating different calculation
symbols (+,−) into the input tokens, we ensure that the memorization and algorithm task
have no overlapping inputs. Our experiments involve 3000 data points from the modular
addition task and a varying number of memorization data points, ranging from 3000 to 6000.
We adjust the model size from a 1-layer transformer with a hidden size of 64 to an 8-layer
transformer with a hidden size of 1024. Each experiment is conducted three times, and the
highest validation accuracy is reported to showcase each model’s optimal generalization
ability. The results are presented in Figure 6.
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Figure 6: Adding a pure memorization task
into the modular addition task makes it be-
come an emergent ability.

TAKEAWAY-7 We observe that incorporat-
ing pure memorization data significantly
impedes smaller models in developing gen-
eralization circuits. The emergence of gen-
eralization ability in the modular addition
task is notable, with models typically dis-
playing substantial validation performance
at relatively larger sizes, approximately
1570 times larger than those trained solely
on the modular addition task. Additionally,
the volume of memorization data appears
to have minimal impact on the emergent
model size.

Discussion From the perspective of the
competition between memorization and
generalization, the presence of a pure mem-
orization task prevents the model from to-
tally transitioning from memorization to generalization after memorizing all training data,
as there are no generalization methods for the pure memorization task. However, once a
sufficiently large model size is reached, the model’s memorization capacity significantly
exceeds the training data volume, allowing it to show functional differentiation for differ-
ent abilities including memorization and generalization. The experiment in Appendix E,
which reduces the emergent model size by allocating separate parameters for generalization
and memorization data, further supports this hypothesis. This phenomenon echoes the
emergent abilities observed in current Large Language Models, since the pretraining stage
can also be seen as a multi-task learning scenario, where the model must retain a vast
array of world knowledge while acquiring general rules and capabilities, such as in context
learning (Brown et al., 2020) and multi-step reasoning (Wei et al., 2022b). This observation
also elucidates the hypothesis proposed by Hu et al. (2024), where it is hypothesized that
emergent abilities are formed through the competition of different neural circuits. Although
the emergence of abilities in current LLMs is driven by a multitude of complex factors, we
believe our experiments will offer fresh insights into understanding emergent abilities in
LLMs and stimulate further research in this area.

6 Related Work

Grokking The phenomenon of grokking, where models demonstrate exceptional general-
ization capabilities well beyond the point of overfitting to training data, was first identified
by Power et al. (2022) in various algorithm tasks. Thilak et al. (2022) demonstrate that
grokking often comes with "Slingshot Effects," which may play a pivotal role in its emergence.
Delving into the underlying mechanisms, Liu et al. (2022) approached grokking from a
representation learning standpoint, uncovering its association with structured representa-
tion development. Merrill et al. (2023) analyse grokking through the competition between
subnetworks. Beyond algorithm tasks, recent work (Liu et al., 2023; Murty et al., 2023) also
discovered that grokking happens in a broader spectrum of realistic tasks. Additionally,
Junior et al. (2024) explored predictive markers of grokking, highlighting "oscillations"
within the loss landscape as potential indicators. A novel perspective by Varma et al. (2023)
suggests that grokking can be interpreted through the competition between memorization
and generalization circuits, influenced by the efficiency of these circuits. This demonstration
can be included in our framework by a vertical line on the right of the intersection point in
Figure 1.

Double Descent The concept of double descent, as introduced by Belkin et al. (2019),
illustrates a unique pattern in model validation error: an initial decrease, followed by
an increase, and then a subsequent decrease, in correlation with the growing size of the
model. The increase of validation error typically coincides with the model’s training
error nearing zero. Expanding upon this concept, Nakkiran et al. (2020) conducted a
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comprehensive examination of the double descent phenomenon across varying model
architectures, datasets, and optimization techniques. In a parallel effort, Davies et al. (2022)
attempted to bridge the concepts of double descent and grokking. This was approached
through a proposed duality between model size and scaling time, though this hypothesis
remains to be empirically verified.

Emergent Abilities The concept of emergent abilities has garnered significant interest in
the era of the development of LLMs. Wei et al. (2022a) provide a thorough investigation
into different abilities across various models, characterizing them as capabilities that are
absent in smaller models but suddenly present in larger ones. Barak et al. (2022) gave a
comprehensive analysis on a synthetic task about its emergence. Caballero et al. (2023)
introduced a complex function, modeled on a piece-wise power law, to encapsulate various
phenomena, including emergent abilities. Schaeffer et al. (2023) attributed the emergence of
these abilities to the non-smooth metrics employed in task evaluation. Taking a predictive
angle, Hu et al. (2024) succeeded in forecasting certain emergent abilities by employing a
metric with infinite resolution. Different from these works, our research delves into this
phenomenon from a unique angle, focusing on the competition between memorization and
generalization.

7 Conclusion

In this paper, we conduct a comprehensive study on algorithm task to show varying training
dynamics across different model sizes and training dataset sizes and build a framework
to analyse different phenomena. Based on this, we offer a comprehensive illustration of
double descent and establish its connection with grokking. By integrating memorization and
generalization tasks, we successfully induce emergent behaviour into generalization tasks,
shedding new light on the understanding of emergent abilities. Future work on more realistic
tasks and models will be crucial for a deeper and more comprehensive understanding of
deep learning mechanisms.
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A Limitations

Our experiments and analysis are all conducted on algorithm tasks like modular addition
due to their simplicity. Since there is no noise data and no overlap between training
and validation set, we can easily distinguish model’s memorization and generalization
behaviours, and therefore fully focus on model’s generalization ability in this task. However,
we believe our framework can also make some sense for more realistic setting and real tasks
since the concept of memorization and generalization still hold under these circumstances.
Further experiments on realistic setting will be an important future direction.

Besides, we only consider pure memorization and generalization in this work. However,
neural networks can encompass different circuit types that may also affect the model’s
ability to memorize and generalize. For instance, the communicative law in algorithmic
tasks can introduce heuristic circuits that enhance the model’s capacity to memorize training
data. Although we have taken steps to eliminate such heuristic bias in our training data,
other biases may still exist that we have not accounted for.

B Training Details

Data Split Since all the algorithm tasks in this paper follow communicative law, we split
train and validation data based on tuples to avoid heuristic generalization method, which
means if (a + b) mod P in training set, then (b + a) mod P is also in training set. This is also
the reason that communicative law can influence model’s memorization capacity since it
only needs to memorize half of the training data.

Model Structure We utilize a 1-layer simplified decoder-only transformer with 4 attention
heads for most of our experiments, which don’t have bias in linear layer and layernorm. We
utilize ReLU as the activation function in MLP and the intermediate size of MLP is 4 times
model’s hidden size (dimension of model’s embedding). We mainly modify model’s hidden
size without changing attention heads number to change model size except for experiments
in § 5 and Appendix E, where we also increase the layer number to support larger models.

Training Hyper-Parameters We implement our experiments based on the trainer of Hug-
gingface transformers (Wolf et al., 2020). During training, we utilize a dropout of 0.1 and a
constant learning rate of 0.001. AdamW with weight decay of 1.0 is utilized for optimization.
For larger models experiments in § 5 and Appendix E, we find high learning rate of 0.001
will cause the model even cannot memorize the training data, so we adjust the learning rate
to 0.0005.

C Parameter Norm Variations on Progression and Grokking

As we have discussed in § 3, the concepts of progression and grokking differ in two funda-
mental ways. The first difference lies in the training accuracy at the point of generalization,
a distinction that is clearly observable in Figure 1 and Figure 7. The second difference
pertains to the underlying reasons for the emergence of generalization abilities. In the case
of progression, generalization is triggered by non-zero training loss by pure memorization,
leading to a reduction in both training and validation losses by generalization. Conversely,
grokking occurs when generalization circuits prove to be more efficient than those used
for memorization, a phenomenon that is verified by Varma et al. (2023). This distinction
can also be highlighted by the observed trends in parameter norms: during the shift from
memorization to generalization, grokking exhibits a decreasing parameter norm, whereas
progression demonstrates an increasing parameter norm, as depicted in Figure 7.

D Double Descent with Full Test Set

Different from modular addition task, which we can split into non-overlap training and
validation set, real tasks always show some overlap or similar data between training and

16



Published as a conference paper at COLM 2024

0 10000 20000 30000 40000 50000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) progression
Train Accuracy Validation Accuracy Parameter Norm

16

18

20

22

24

26

0 10000 20000 30000 40000 50000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

(b) grokking

35

40

45

50

55

60

65

70

Pa
ra

m
et

er
 N

or
m

Figure 7: Difference of parameter norm variations during training for progression and
grokking in Figure 1. Notably, the parameter norm in progression exhibits a marked increase
when the transition to generalization happens. Conversely, in grokking, the parameter norm
demonstrates a decreasing trend as generalization ability is formalized, highlighting the
difference mechanisms driving generalization in each case.
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Figure 8: Experimental results on the modular addition task with varying training data
sizes. The validation set is all the data pairs in this task. Each experiment is conducted 11
times using distinct random seeds, and the mean accuracy is reported. The light-colored
regions denote 95% confidence intervals. Similar to the Figure 4, 2600 training data and
3000 training data show double descent.

validation set (Lewis et al., 2021), where memorization of the training data will lead to
increased performance in validation. Therefore, we further examine model’s performance
on all the data pairs of modular addition task which include the training data and unseen
validation data to measure model’s ability (no matter memorization or generalization) on
this task. The results are shown in Figure 8. We can see that model show more significant
double descent with 2600 and 3000 training data compared with Figure 4 (a) and (b). Besides,
4000 and 5000 training data still don’t show double descent in this scenario, which also verifies
our illustration about double descent in § 4.

E Further Experiments on Emergent Ability

TAKEAWAY-8 To enhance our understanding of how combining a pure memorization task
with a modular addition task results in emergent ability, we hypothesize that the inclusion
of a pure memorization task inhibits the model’s shift from memorization to generalization.
This occurs because there are no generalization methods specifically for the pure memo-
rization task. To investigate this further, we designed experiments to segregate parameters
dedicated to memorization and generalization task. Prior studies suggest that the feed-
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Figure 9: Experiments on multi-task learning with a pure memorization task and modular
addition task. This study delves into the effects of manually constructing a sparse model to
separately address pure memorization and modular addition data. Through this approach,
we significantly accelerate the emergence of the modular addition capability in terms of
model size. This finding highlights the crucial role of functional differentiation within
neural models in fostering the emergence of new abilities.

forward layer in the Transformer architecture predominantly facilitates memorization (Geva
et al., 2021). Additionally, this ffn layer in transformer is also crucial for the generalization
process in the modular addition task (Nanda et al., 2023; Chughtai et al., 2023). Therefore,
we partitioned the feed-forward layer into two specialized sections by dividing the interme-
diate dimension, akin to the current MoE architecture (Lepikhin et al., 2021; Fedus et al.,
2022). In this setup, one part exclusively processes the modular addition task data, while
the other focuses solely on the memorization task data. Our experiments, conducted on
3000 instances of modular addition and 3000 memorization data, are depicted in Figure 9.
The results demonstrate that manually creating a sparse network significantly accelerates
emergence of the modular addition task capabilities with the same training dataset. This
finding underscores the critical role of functional differentiation and sparseness (Zhang
et al., 2022) in language models for developing emergent abilities.
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