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ABSTRACT

Complementary-label learning is a weakly supervised learning problem in which
each training example is associated with one or multiple complementary labels
indicating the classes to which it does not belong. Existing consistent approaches
have relied on the uniform distribution assumption to model the generation of
complementary labels, or on an ordinary-label training set to estimate the transi-
tion matrix. However, both conditions may not be satisfied in real-world scenar-
ios. In this paper, we propose a novel complementary-label learning approach that
does not rely on these conditions. We find that complementary-label learning can
be expressed as a set of negative-unlabeled binary classification problems when
using the one-versus-rest strategy. This observation allows us to propose a risk-
consistent approach with theoretical guarantees. Furthermore, we introduce a risk
correction approach to address overfitting problems when using complex models.
We also prove the statistical consistency and convergence rate of the corrected
risk estimator. Extensive experimental results on both synthetic and real-world
benchmark datasets validate the superiority of our proposed approach over state-
of-the-art methods.

1 INTRODUCTION

Deep learning and its applications have achieved great success in recent years. However, to achieve
good performance, large amounts of training data with accurate labels are required, which may
not be satisfied in some real-world scenarios. Due to the effectiveness in reducing the cost and
effort of labeling while maintaining comparable performance, various weakly supervised learning
problems have been investigated in recent years, including semi-supervised learning (Berthelot et al.,
2019), noisy-label learning (Patrini et al., 2017), programmatic weak supervision (Zhang et al.,
2021a), positive-unlabeled learning (Bekker & Davis, 2020), similarity-based classification (Hsu
et al., 2019), and partial-label learning (Wang et al., 2022).

Complementary-label learning is another weakly supervised learning problem that has received a lot
of attention recently (Ishida et al., 2017). In complementary-label learning, we are given training
data associated with complementary labels that specify the classes to which the examples do not be-
long. The task is to learn a multi-class classifier that assigns correct labels to ordinary-label testing
data. Collecting training data with complementary labels is much easier and cheaper than collecting
ordinary-label data. For example, when asking workers on crowdsourcing platforms to annotate
training data, we only need to randomly select a candidate label and then ask them whether the
example belongs to that class or not. Such “yes” or “no” questions are much easier to answer than
asking workers to determine the ground-truth label from candidate labels. The benefits and effec-
tiveness of complementary-label learning have also been demonstrated in several machine learning
problems and applications, such as domain adaptation (Han et al., 2023; Zhang et al., 2021b), semi-
supervised learning (Chen et al., 2020b; Deng et al., 2022), noisy-label learning (Kim et al., 2019),
adversarial robustness (Zhou et al., 2022), and medical image analysis (Rezaei et al., 2020).

Existing research works with consistency guarantees have attempted to solve complementary-label
learning problems by making assumptions about the distribution of complementary labels. The
remedy started with Ishida et al. (2017), which proposed the uniform distribution assumption that
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Table 1: Comparison between CONU and previous risk-consistent or classifier-consistent methods.

Method Uniform distribution
assumption-free

Ordinary-label
training set-free

Classifier-
consistent

Risk-
consistent

PC (Ishida et al., 2017) ✗ ✓ ✓ ✓
Forward (Yu et al., 2018) ✓ ✗ ✓ ✗
NN (Ishida et al., 2019) ✗ ✓ ✓ ✓
LMCL (Feng et al., 2020a) ✗ ✓ ✓ ✓
OP (Liu et al., 2023) ✗ ✓ ✓ ✗

CONU ✓ ✓ ✓ ✓1

a label other than the ground-truth label is sampled from the uniform distribution to be the com-
plementary label. A subsequent work extended it to arbitrary loss functions and models (Ishida
et al., 2019) based on the same distribution assumption. Then, Feng et al. (2020a) extended the
problem setting to the existence of multiple complementary labels. Recent works have proposed
discriminative methods that work by modelling the posterior probabilities of complementary labels
instead of the generation process (Chou et al., 2020; Gao & Zhang, 2021; Liu et al., 2023; Lin &
Lin, 2023). However, the uniform distribution assumption is still necessary to ensure the classifier
consistency property (Liu et al., 2023). Yu et al. (2018) proposed the biased distribution assump-
tion, elaborating that the generation of complementary labels follows a transition matrix, i.e., the
complementary-label distribution is determined by the true label.

In summary, previous complementary-label learning approaches all require either the uniform dis-
tribution assumption or the biased distribution assumption to guarantee the consistency property, to
the best of our knowledge. However, such assumptions may not be satisfied in real-world scenarios.
On the one hand, the uniform distribution assumption is too strong, since the transition probability
for different complementary labels is undifferentiated, i.e., the transition probability from the true
label to a complementary label is constant for all labels. Such an assumption is not realistic since
the annotations may be imbalanced and biased (Wei et al., 2023; Wang et al., 2023). On the other
hand, although the biased distribution assumption is more practical, an ordinary-label training set
with deterministic labels, also known as anchor points (Liu & Tao, 2015), is essential for estimat-
ing transition probabilities during the training phase (Yu et al., 2018). However, the collection of
ordinary-label data with deterministic labels is often unrealistic in complementary-label learning
problems (Feng et al., 2020a; Gao & Zhang, 2021).

To this end, we propose a novel risk-consistent approach named CONU, i.e., COmplementary-label
learning via Negative-Unlabeled learning, without relying on the uniform distribution assumption
or an additional ordinary-label training set. Based on an assumption milder than the uniform dis-
tribution assumption, we show that the complementary-label learning problem can be equivalently
expressed as a set of negative-unlabeled binary classification problems based on the one-versus-rest
strategy. Then, a risk-consistent method is deduced with theoretical guarantees. Table 1 shows
the comparison between CONU and previous methods. The main contributions of this work are
summarized as follows:

• Methodologically, we propose the first consistent complementary-label learning approach without
relying on the uniform distribution assumption or an additional ordinary-label dataset.

• Theoretically, we uncover the relationship between complementary-label learning and negative-
unlabeled learning, which provides a new perspective for understanding complementary-label
learning. The consistency and convergence rate of the corrected risk estimator are proved.

• Empirically, the proposed approach is shown to achieve superior performance over state-of-the-art
methods on both synthetic and real-world benchmark datasets.

2 PRELIMINARIES

In this section, we introduce the notations used in this paper and briefly discuss the background of
ordinary multi-class classification and positive-unlabeled learning.

1The risk consistency is w.r.t. the one-versus-rest risk.
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2.1 MULTI-CLASS CLASSIFICATION

Let X = Rd denote the d-dimensional feature space and Y = {1, 2, . . . , q} denote the label space
with q class labels. Let p(x, y) be the joint probability density over the random variables (x, y) ∈
X × Y . Let πk = p(y = k) be the class-prior probability of the k-th class and p(x|y = k)
denote the class-conditional density. Besides, let p(x) denote the marginal density of unlabeled
data. Then, an ordinary-label dataset DO = {(xi, yi)}ni=1 consists of n training examples sampled
independently from p(x, y). In this paper, we consider the one-versus-rest (OVR) strategy to solve
multi-class classification, which is a common strategy with extensive theoretical guarantees and
sound performance (Rifkin & Klautau, 2004; Zhang, 2004). Accordingly, the classification risk is

R (f1, f2, . . . , fq) = Ep(x,y)

ℓ (fy (x)) + ∑
k∈Y\{y}

ℓ (−fk (x))

 . (1)

Here, fk is a binary classifier w.r.t. the k-th class, E denotes the expectation, and ℓ : R → R+ is
a non-negative binary-class loss function. Then, the predicted label for a testing instance x is de-
termined as f(x) = argmaxk∈Y fk(x). The goal is to find optimal classifiers f∗1 , f

∗
2 , . . . , f

∗
q in a

function class F which achieve the minimum classification risk in Eq. (1), i.e.,
(
f∗1 , f

∗
2 , . . . , f

∗
q

)
=

argminf1,f2,...,fq∈F R (f1, f2, . . . , fq). However, since the joint probability distribution is un-
known in practice, the classification risk in Eq. (1) is often approximated by the empirical risk
R̂ (f1, f2, . . . , fq) =

∑n
i=1

(
ℓ (fyi(xi)) +

∑
k∈Y\{yi} ℓ (−fk(xi))

)
/n. Accordingly, the optimal

classifier w.r.t. the empirical risk is
(
f̂1, f̂2, . . . , f̂q

)
= argminf1,f2,...,fq∈F R̂ (f1, f2, . . . , fq). We

may add regularization terms to R̂ (f1, f2, . . . , fq) when necessary (Loshchilov & Hutter, 2019).
Also, when using deep neural networks as the backbone model, we typically share the representa-
tion layers and only use different classification layers for different labels (Wen et al., 2021).

2.2 POSITIVE-UNLABELED LEARNING

In positive-unlabeled (PU) learning (Elkan & Noto, 2008; du Plessis et al., 2014; Kiryo et al., 2017),
the goal is to learn a binary classifier only from a positive dataset DP = {(xi,+1)}n

P

i=1 and an
unlabeled dataset DU = {xi}n

U

i=1. Based on different assumptions about the data generation process,
there are mainly two problem settings for PU learning, i.e., the case-control setting (du Plessis et al.,
2014; Niu et al., 2016) and the single-training-set setting (Elkan & Noto, 2008). In the case-control
setting, we assume that DP is sampled from the positive-class density p(x|y = +1) and DU is
sampled from the marginal density p(x). In contrast, in the single-training-set setting, we assume
that an unlabeled dataset is first sampled from the marginal density p(x). Then, if a training example
is positive, its label is observed with a constant probability c, and the example remains unlabeled
with probability 1− c. If a training example is negative, its label is never observed and the example
remains unlabeled with probability 1. In this paper, we make use of the single-training-set setting.

3 METHODOLOGY

In this section, we first elaborate the generation process of complementary labels. Then, we present
a novel unbiased risk estimator (URE) for complementary-label learning with extensive theoreti-
cal analysis. Furthermore, a risk correction approach is introduced to improve the generalization
performance with risk consistency guarantees.

3.1 DATA GENERATION PROCESS

In complementary-label learning, each training example is associated with one or multiple comple-
mentary labels specifying the classes to which the example does not belong. Let D =

{(
xi, Ȳi

)}n
i=1

denote the complementary-label training set sampled i.i.d. from an unknown distribution p(x, Ȳ ).
Here, x ∈ X is a feature vector, and Ȳ ⊆ Y is a complementary-label set associated with x. Tradi-
tional complementary-label learning problems can be categorized into single complementary-label
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learning (Ishida et al., 2017; Gao & Zhang, 2021; Liu et al., 2023) and multiple complementary-
label learning (Feng et al., 2020a). In this paper, we consider a more general case where Ȳ may
contain any number of complementary labels, ranging from zero to q − 1. For ease of notation,
we use a q-dimensional label vector ȳ = [ȳ1, ȳ2, . . . , ȳq] ∈ {0, 1}q to denote the vector version of
Ȳ , where ȳk = 1 when k ∈ Ȳ and ȳk = 0 otherwise. Let π̄k = p (ȳk = 1) denote the fraction
of training data where the k-th class is considered as a complementary label. Let p (x|ȳk = 1) and
p (x|ȳk = 0) denote the marginal densities where the k-th class is considered as a complementary
label or not. The task of complementary-label learning is to learn a multi-class classifier f : X → Y
from D.

Inspired by the Selected Completely At Random (SCAR) assumption in PU learning (Elkan & Noto,
2008; Coudray et al., 2023), we propose the SCAR assumption for generating complementary labels,
which can be summarized as follows.
Assumption 1 (Selected Completely At Random (SCAR)). The training examples with the k-th
class as a complementary label are sampled completely at random from the marginal density of data
not belonging to the k-th class, i.e.,

p
(
k ∈ Ȳ |x, k ∈ Y\{y}

)
= p

(
k ∈ Ȳ |k ∈ Y\{y}

)
= ck= π̄k/(1− πk), (2)

where ck is a constant related to the k-th class.

The above assumption means that the sampling procedure is independent of the features and ground-
truth labels. Notably, such an assumption is milder than the uniform distribution assumption because
the transition probabilities can be different for different complementary labels. Besides, our assump-
tion differs from the biased distribution assumption in that we do not require the transition matrix
to be normalized in the row. Based on the SCAR assumption, we generate the complementary-label
training set D as follows. First, an unlabeled dataset is sampled from p(x). Then, if the latent
ground-truth label of an example is not the k-th class, we assign it a complementary label k with
probability ck and still consider it to be an unlabeled example with probability 1− ck. We generate
complementary labels for all the examples by following the procedure w.r.t. each of the q labels.

3.2 UNBIASED RISK ESTIMATOR

First, we show that the ordinary multi-class classification risk in Eq. (1) can be expressed using
examples sampled from p (x|ȳk = 1) and p (x|ȳk = 0) (the proof is given in Appendix C).
Theorem 1. Based on Assumption 1, the classification risk in Eq. (1) can be equivalently expressed
as R(f1, f2, . . . , fq) =

∑q
k=1Rk(fk), where

Rk(fk) =Ep(x|ȳk=1) [(1− πk)ℓ (−fk(x)) + (π̄k + πk − 1) ℓ (fk(x))]

+ Ep(x|ȳk=0) [(1− π̄k) ℓ (fk(x))] .

Remark 1. We find that the multi-class classification risk in Theorem 1 is the sum of the classifica-
tion risk in negative-unlabeled learning (Elkan & Noto, 2008) by regarding each class as the positive
class in turn. Actually, the proposed approach can be considered as a general framework for solving
complementary-label learning problems. Apart from minimizing Rk(fk), we can adopt any other
PU learning approach (Chen et al., 2020a; Garg et al., 2021; Li et al., 2022; Wilton et al., 2022) to
derive the binary classifier fk by interchanging the positive class and the negative class. Then, we
adopt the OVR strategy to determine the predicted label for testing data.

Since the true densities p (x|ȳk = 1) and p (x|ȳk = 0) are not directly accessible, we approximate
the risk empirically. To this end, we need to collect datasets DN

k and DU
k sampled i.i.d. from

p (x|ȳk = 1) and p (x|ȳk = 0), respectively. This paper considers generating these datasets by
duplicating instances of D. Specifically, if the k-th class is a complementary label of a training
example, we regard its duplicated instance as a negative example sampled from p (x|ȳk = 1) and
put the duplicated instance in DN

k . If the k-th class is not a complementary label of a training ex-
ample, we regard its duplicated instance as an unlabeled example sampled from p (x|ȳk = 0) and
put the duplicated instance in DU

k . In this way, we can obtain q negative binary-class datasets and q
unlabeled binary-class datasets:

DN
k =

{
(xN
k,i,−1)

}nN
k

i=1
=
{
(xj ,−1)|(xj , Ȳj) ∈ D, k ∈ Ȳj

}
, where k ∈ Y; (3)

DU
k =

{
xU
k,i

}nU
k

i=1
=
{
xj |(xj , Ȳj) ∈ D, k /∈ Ȳj

}
, where k ∈ Y. (4)
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Then, an unbiased risk estimator can be derived from these binary-class datasets to approximate the
classification risk in Theorem 1 as R̂(f1, f2, . . . , fq) =

∑q
k=1 R̂k(fk), where

R̂k(fk) =
1

nNk

nN
k∑

i=1

(
(1− πk) ℓ

(
−fk(xN

k,i)
)
+ (π̄k + πk − 1) ℓ

(
fk(x

N
k,i)
))

+
(1− π̄k)

nUk

nU
k∑

i=1

ℓ
(
fk(x

U
k,i)
)
. (5)

When the class priors πk are not accessible to the learning algorithm, they can be estimated by
off-the-shelf mixture proportion estimation approaches (Ramaswamy et al., 2016; Scott, 2015; Garg
et al., 2021; Yao et al., 2022). Notably, the irreducibility (Blanchard et al., 2010; Scott et al., 2013)
assumption is necessary for class-prior estimation. However, it is still less demanding than the biased
distribution assumption, which requires additional ordinary-label training data with deterministic la-
bels, a.k.a. anchor points, to estimate the transition matrix (Yu et al., 2018). Due to page limitations,
we present the details of a class-prior estimation algorithm in Appendix A.

3.3 THEORETICAL ANALYSIS

Infinite-sample consistency. Since the OVR strategy is used, it remains unknown whether the
proposed risk can be calibrated to the 0-1 loss. We answer this question in the affirmative by provid-
ing infinite-sample consistency. Let R0−1(f) = Ep(x,y)I(f(x) ̸= y) denote the expected 0-1 loss
where f(x) = argmaxk∈Y fk(x) and R∗

0−1 = minf R0−1(f) denote the Bayes error. Besides,
let R∗ = minf1,f2,...,fq R(f1, f2, . . . , fq) denote the minimum risk of the proposed risk. Then we
have the following theorem (its proof is given in Appendix D).
Theorem 2. Suppose the binary-class loss function ℓ is convex, bounded below, differential, and
satisfies ℓ(z) ≤ ℓ(−z) when z > 0. Then we have that for any ϵ1 > 0, there exists a ϵ2 > 0 such
that

R (f1, f2, . . . , fq) ≤ R∗ + ϵ2 ⇒ R0−1(f) ≤ R∗
0−1 + ϵ1. (6)

Remark 2. The infinite-sample consistency elucidates that the proposed risk can be calibrated to
the 0-1 loss. Therefore, if we minimize the risk and obtain the optimal classifier, the classifier also
achieves the Bayes error.

Estimation error bound. We further elaborate the convergence property of the empirical risk
estimator R̂(f1, f2, . . . , fq) by providing its estimation error bound. We assume that there exists
some constant Cf such that supf∈F ∥f∥∞ ≤ Cf and some constant Cℓ such that sup|z|≤Cf

ℓ(z) ≤
Cℓ. We also assume that the binary-class loss function ℓ(z) is Lipschitz continuous w.r.t. z with a
Lipschitz constant Lℓ. Then we have the following theorem (its proof is given in Appendix E).
Theorem 3. Based on the above assumptions, for any δ > 0, the following inequality holds with
probability at least 1− δ:

R
(
f̂1, f̂2, . . . , f̂q

)
−R

(
f∗1 , f

∗
2 , . . . , f

∗
q

)
≤

q∑
k=1

(
(1− π̄k)Cℓ

√
2 ln (2/δ)

nUk
+ (4− 4π̄k)LℓRnU

k ,p
U
k
(F)

+(8− 8πk − 4π̄k)LℓRnN
k ,p

N
k
(F) + (2− 2πk − π̄k)Cℓ

√
2 ln (2/δ)

nNk

)
. (7)

where RnU
k ,p

U
k
(F) and RnN

k ,p
N
k
(F) denote the Rademacher complexity of F given nUk unlabeled

data sampled from p (x|ȳk = 0) and nNk negative data sampled from p (x|ȳk = 1) respectively.
Remark 3. Theorem 3 elucidates an estimation error bound of our proposed risk estimator. When
nUk and nNk → ∞, R

(
f̂1, f̂2, . . . , f̂q

)
→ R

(
f∗1 , f

∗
2 , . . . , f

∗
q

)
because RnU

k ,p
U
k
(F) → 0 and

RnN
k ,p

N
k
(F) → 0 for all parametric models with a bounded norm such as deep neural networks

with weight decay (Golowich et al., 2018). Furthermore, the estimation error bound converges in

Op

(∑q
k=1

(
1/
√
nNk + 1/

√
nUk

))
, where Op denotes the order in probability.
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3.4 RISK CORRECTION APPROACH

Although the URE has sound theoretical properties, we have found that it can encounter several
overfitting problems when using complex models such as deep neural networks. The training curves
and testing curves of the method that works by minimizing the URE in Eq. (5) are shown in Figure 1.
We refer to the method that works by minimizing the corrected risk estimator in Eq. (9) introduced
below as CONU, where the algorithm details are summarized in Appendix B. We can observe that
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Figure 1: Training curves and testing curves of the method that minimizes the URE and testing
curves of our proposed risk correction approach CONU. The green dashed lines indicate when the
URE becomes negative while the yellow dashed lines indicate when the overfitting phenomena oc-
cur. The complementary labels are generated by following the uniform distribution assumption.
ResNet is used as the model architecture for CIFAR-10 and MLP is used for other datasets.

the overfitting phenomena often occur almost simultaneously when the training loss becomes neg-
ative. We conjecture the overfitting problems arise from the negative terms in Eq. (5) (Cao et al.,
2021; Kiryo et al., 2017; Lu et al., 2020). Therefore, following Ishida et al. (2019); Kiryo et al.
(2017), we wrap each potentially negative term with a non-negative risk correction function g(z),
such as the absolute value function g(z) = |z|. For ease of notation, we introduce

R̂P
k (fk) =

π̄k + πk − 1

nNk

nN
k∑

i=1

ℓ
(
fk(x

N
k,i)
)
+

1− π̄k
nUk

nU
k∑

i=1

ℓ
(
fk(x

U
k,i)
)
. (8)

Then, the corrected risk estimator can be written as R̃ (f1, f2, . . . , fq) =
∑q
k=1 R̃k(fk), where

R̃k(fk) = g
(
R̂P
k (fk)

)
+

1− πk
nNk

nN
k∑

i=1

ℓ
(
−fk(xN

k,i)
)
. (9)

It is obvious that Eq. (9) is an upper bound of Eq. (5), so the bias is always present. Therefore,
it remains doubtful whether the corrected risk estimator is still risk-consistent. Next, we perform
a theoretical analysis to clarify that the corrected risk estimator is biased but consistent. Since
E
[
R̂P
k (fk)

]
= πkEp(x|y=k)ℓ (fk(x)) is non-negative, we assume that there exists a non-negative

constant β such that for ∀k ∈ Y,E
[
R̂P
k (fk)

]
≥ β. Besides, we assume that the risk correction

function g(z) is Lipschitz continuous with a Lipschitz constant Lg . We also assume that the as-

sumptions of Theorem 3 still hold. Let
(
f̃1, f̃2, . . . , f̃q

)
= argminf1,f2,...,fq∈F R̃ (f1, f2, . . . , fq),

then we have the following theorems (the proofs are given in Appendix F and G respectively).
Theorem 4. Based on the above assumptions, the bias of the expectation of the corrected risk
estimator has the following lower and upper bounds:

0 ≤ E[R̃(f1, f2, . . . , fq)]−R(f1, f2, . . . , fq) ≤
q∑

k=1

(2− 2π̄k − πk) (Lg + 1)Cℓ∆k, (10)

where ∆k = exp
(
−2β2/

(
(1− πk − π̄k)

2C2
ℓ /n

N
k + (1− π̄k)

2C2
ℓ /n

U
k

))
. Furthermore, for any

δ > 0, the following inequality holds with probability at least 1− δ:

|R̃(f1, f2, . . . , fq)−R(f1, f2, . . . , fq)| ≤
q∑

k=1

(
(1− π̄k)CℓLg

√
ln (2/δ)

2nUk

+(2− 2π̄k − πk) (Lg + 1)Cℓ∆k + ((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (2/δ)

2nNk

)
.

6



Under review as a conference paper at ICLR 2024

Theorem 5. Based on the above assumptions, for any δ > 0, the following inequality holds with
probability at least 1− δ:

R(f̃1, f̃2, . . . , f̃q)−R(f∗1 , f
∗
2 , . . . , f

∗
q ) ≤

q∑
k=1

(4− 4π̄k − 2πk) (Lg + 1)Cℓ∆k

+

q∑
k=1

(
(1− π̄k)CℓLg

√
2 ln (1/δ)

nUk
+ ((1− πk − π̄k)Lg + 1− πk)Cℓ

√
2 ln (1/δ)

nNk

)

+

q∑
k=1

(
(8− 8π̄k)LgLℓRnU

k ,p
U
k
(F) + ((8− 8πk − 8π̄k)Lg + 8− 8πk)LℓRnN

k ,p
N
k
(F)

)
.

Remark 4. Theorem 4 elaborates that R̃(f1, f2, . . . , fq) → R(f1, f2, . . . , fq) as n → ∞, which
indicates that the corrected risk estimator is biased but consistent. An estimation error bound is
also shown in Theorem 5. For n → ∞, R(f̃1, f̃2, . . . , f̃q) → R(f∗1 , f

∗
2 , . . . , f

∗
q ) because ∆k → 0,

Rn,pU → 0, and RnN
k ,p

N
k
→ 0 for all parametric models with a bounded norm (Mohri et al., 2012).

The convergence rate of the estimation error bound is still Op

(∑q
k=1

(
1/
√
nNk + 1/

√
nUk

))
.

4 EXPERIMENTS

In this section, we validate the effectiveness of CONU through extensive experiments.

4.1 EXPERIMENTS ON SYNTHETIC BENCHMARK DATASETS

We conducted experiments on synthetic benchmark datasets, including MNIST (LeCun et al., 1998),
Kuzushiji-MNIST (Clanuwat et al., 2018), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10
(Krizhevsky & Hinton, 2009). We considered various generation processes of complementary la-
bels by following the uniform, biased, and SCAR assumptions. Details of the datasets, models,
and hyperparameters can be found in Appendix H. We considered the single complementary-label
setting and similar results could be observed with multiple complementary labels. We evaluated
the classification performance of CONU against six single complementary-label learning methods,
including PC (Ishida et al., 2017), NN (Ishida et al., 2019), GA (Ishida et al., 2019), L-UW (Gao
& Zhang, 2021), L-W (Gao & Zhang, 2021), and OP (Liu et al., 2023). We assumed that the class
priors were accessible to the learning algorithm. Since it is not easy to tune hyperparameters for
complementary-label learning approaches without an additional ordinary-label dataset (Wang et al.,
2023), we adopted the same hyperparameter settings for all the compared approaches for a fair com-
parison. We randomly generated complementary labels five times with different seeds and recorded
the mean accuracy and standard deviations. In addition, a pairwise t-test at the 0.05 significance
level is performed to show whether the performance advantages are significant.

Tables 2, 3, and 4 show the classification performance of each method with different models and
generation settings of complementary labels on MNIST, Kuzushiji-MNIST, and Fashion-MNIST
respectively. The experimental results on CIFAR-10 are shown in Appendix J. It is surprising to
observe that CONU has achieved the best performance in almost all the settings with different model
architectures. This clearly illustrates the superiority of our method in tackling different types of
complementary labels.

4.2 EXPERIMENTS ON REAL-WORLD BENCHMARK DATASETS

We also verified the effectiveness of CONU on two real-world complementary-label datasets
CLCIFAR-10 and CLCIFAR-20 (Wang et al., 2023). The datasets were annotated by human an-
notators from Amazon Mechanical Turk (MTurk). The distribution of complementary labels is too
complex to be captured by any of the above assumptions. Moreover, the complementary labels may
be noisy, which means that the complementary labels may be annotated as ground-truth labels by
mistake. Therefore, both datasets can be used to test the robustness of methods in more realistic
environments. There are three human-annotated complementary labels for each example, so they
can be considered as multiple complementary-label datasets. We evaluated the classification per-
formance of CONU against eight multiple complementary-label learning or partial-label learning
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Table 2: Classification accuracy (mean±std) of each method on MNIST. The best performance is
shown in bold (pairwise t-test at the 0.05 significance level).

Setting Uniform Biased-a Biased-b SCAR-a SCAR-b

Model MLP LeNet MLP LeNet MLP LeNet MLP LeNet MLP LeNet

PC 71.11
±0.83

82.69
±1.15

69.29
±0.97

87.82
±0.69

71.59
±0.85

87.66
±0.66

66.97
±1.03

11.00
±0.79

57.67
±0.98

49.17
±35.9

NN 67.75
±0.96

86.16
±0.69

30.59
±2.31

46.27
±2.61

38.50
±3.93

63.67
±3.75

67.39
±0.68

86.58
±0.95

63.95
±0.56

79.94
±0.48

GA 88.00
±0.85

96.02
±0.15

65.97
±7.87

94.55
±0.43

75.77
±1.48

94.87
±0.28

62.62
±2.29

90.23
±0.92

56.91
±2.08

78.66
±0.61

L-UW 73.49
±0.88

77.74
±0.97

39.63
±0.57

32.21
±1.20

42.77
±1.42

34.57
±1.90

35.08
±1.59

33.82
±2.44

30.24
±1.81

24.28
±2.74

L-W 62.24
±0.50

63.04
±1.58

36.90
±0.34

29.25
±0.94

41.55
±0.63

32.98
±2.25

33.53
±2.08

26.02
±1.31

28.99
±2.38

23.69
±2.94

OP 78.87
±0.46

88.76
±1.68

73.46
±0.71

85.96
±1.02

74.16
±0.52

87.23
±1.31

76.29
±0.23

86.94
±1.94

68.12
±0.51

71.67
±2.30

CONU 91.27
±0.20

97.00
±0.30

88.14
±0.70

96.14
±0.32

89.51
±0.44

96.62
±0.10

90.98
±0.27

96.72
±0.16

81.85
±0.25

87.05
±0.28

Table 3: Classification accuracy (mean±std) of each method on Kuzushiji-MNIST. The best perfor-
mance is shown in bold (pairwise t-test at the 0.05 significance level).

Setting Uniform Biased-a Biased-b SCAR-a SCAR-b

Model MLP LeNet MLP LeNet MLP LeNet MLP LeNet MLP LeNet

PC 42.93
±0.33

56.79
±1.54

41.60
±0.97

67.39
±1.04

42.53
±0.80

66.81
±1.33

39.58
±1.35

42.59
±29.8

33.95
±1.14

37.67
±25.3

NN 39.42
±0.68

58.57
±1.15

23.97
±2.53

31.10
±2.95

29.93
±1.80

48.72
±2.89

39.31
±1.18

56.84
±2.10

38.68
±0.58

56.70
±1.08

GA 60.83
±1.37

76.17
±0.44

43.22
±3.03

75.04
±0.92

48.03
±2.93

77.05
±1.67

36.56
±2.96

59.16
±3.30

33.02
±2.31

52.92
±2.39

L-UW 43.00
±1.20

49.31
±1.95

27.89
±0.51

25.82
±0.78

31.53
±0.42

30.05
±1.63

21.49
±0.57

19.71
±1.44

18.36
±1.23

16.67
±1.86

L-W 37.21
±0.59

42.69
±2.54

26.75
±0.61

25.86
±0.64

30.10
±0.57

27.94
±1.68

21.22
±0.77

18.28
±2.11

18.41
±1.66

16.25
±1.51

OP 51.78
±0.41

65.94
±1.38

45.66
±0.90

65.59
±1.71

47.47
±1.26

64.65
±1.68

49.95
±0.79

59.93
±1.38

42.72
±0.95

56.36
±2.15

CONU 67.95
±1.29

79.81
±1.19

62.43
±1.02

75.99
±0.91

64.98
±0.72

78.53
±0.57

66.72
±0.69

78.27
±1.09

61.78
±0.36

72.03
±0.45

methods, including CC (Feng et al., 2020b), PRODEN (Lv et al., 2020), EXP (Feng et al., 2020a),
MAE (Feng et al., 2020a), Phuber-CE (Feng et al., 2020a), LWS (Wen et al., 2021), CAVL (Zhang
et al., 2022), and IDGP (Qiao et al., 2023). We found that the performance of some approaches
was unstable with different network initialization, so we randomly initialized the network five times
with different seeds and recorded the mean accuracy and standard deviations. Table 5 shows the
experimental results on CLCIFAR-10 and CLCIFAR-20 with different models. It is interesting to
observe that CONU still achieves the best performance on both datasets, confirming its effectiveness
in handling challenging real-world complementary labels.

4.3 SENSITIVITY ANALYSIS

In many real-world scenarios, the given or estimated class priors may deviate from the ground-
truth values. We investigated the influence of inaccurate class priors on the classification
performance of CONU. Specifically, let π̄k = ϵkπk denote the corrupted class prior prob-
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Table 4: Classification accuracy (mean±std) of each method on Fashion-MNIST. The best perfor-
mance is shown in bold (pairwise t-test at the 0.05 significance level).

Setting Uniform Biased-a Biased-b SCAR-a SCAR-b

Model MLP LeNet MLP LeNet MLP LeNet MLP LeNet MLP LeNet

PC 64.82
±1.27

69.56
±1.82

61.14
±1.09

72.89
±1.26

61.20
±0.79

73.04
±1.38

63.08
±0.88

23.28
±29.7

47.23
±2.38

37.53
±25.2

NN 63.89
±0.92

70.34
±1.09

25.66
±2.12

36.93
±3.86

30.75
±0.96

40.88
±3.71

63.47
±0.70

70.83
±0.87

55.96
±1.55

63.06
±1.38

GA 77.04
±0.95

81.91
±0.43

50.04
±4.30

74.73
±0.96

49.02
±5.76

75.66
±1.10

54.74
±3.04

74.75
±1.17

44.75
±3.04

60.01
±1.47

L-UW 80.29
±0.44

72.43
±2.07

40.26
±2.49

29.46
±1.70

43.55
±1.61

33.53
±1.35

35.71
±1.50

30.73
±1.64

31.43
±2.98

22.03
±3.62

L-W 75.14
±0.40

61.89
±0.88

39.87
±0.95

27.57
±1.70

42.02
±1.41

32.69
±0.68

31.86
±2.16

27.37
±2.30

30.26
±1.68

21.61
±2.12

OP 69.03
±0.71

71.28
±0.94

62.93
±1.25

70.82
±1.15

62.25
±0.36

68.94
±2.78

66.29
±0.60

69.52
±1.18

56.55
±1.39

56.39
±3.03

CONU 80.44
±0.19

82.74
±0.39

70.08
±2.53

79.74
±1.10

71.97
±1.09

80.43
±0.69

79.75
±0.60

82.55
±0.30

71.16
±0.66

72.79
±0.62

Table 5: Classification accuracy (mean±std) of each method on CLCIFAR-10 and CLCIFAR-20.
The best performance is shown in bold (pairwise t-test at the 0.05 significance level).

Dataset Model CC PRODEN EXP MAE Phuber-CE LWS CAVL IDGP CONU

CLCIFAR-10
ResNet 31.56

±2.17
26.37
±0.98

34.84
±4.19

19.48
±2.88

41.13
±0.74

13.05
±4.18

24.12
±3.32

10.00
±0.00

42.04
±0.96

DenseNet 37.03
±1.77

31.31
±1.06

43.27
±1.33

22.77
±0.22

39.92
±0.91

10.00
±0.00

25.31
±4.06

10.00
±0.00

44.41
±0.43

CLCIFAR-20
ResNet 5.00

±0.00
6.69
±0.31

7.21
±0.17

5.00
±0.00

8.10
±0.18

5.20
±0.45

5.00
±0.00

4.96
±0.09

20.08
±0.62

DenseNet 5.00
±0.00

5.00
±0.00

7.51
±0.91

5.67
±1.49

7.22
±0.39

5.00
±0.00

5.09
±0.13

5.00
±0.00

19.91
±0.68

ability for the k-th class where ϵk is sampled from a normal distribution N (1, σ2). We
further normalized the obtained corrupted class priors to ensure that they sum up to one.
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Figure 2: Classification accuracy
given inaccurate class priors.

Figure 2 shows the classification performance given inaccurate
class priors on three datasets using the uniform generation pro-
cess and LeNet as the model architecture. From Figure 2, we
can see that the performance is still satisfactory with small per-
turbations of the class priors. However, the performance will
degenerate if the class priors deviate too much from the ground-
truth values. Therefore, it is important to obtain accurate class
priors to ensure satisfactory performance.

5 CONCLUSION

In this paper, we proposed a consistent complementary-label
learning approach without relying on the uniform distribution assumption or an ordinary-label train-
ing set to estimate the transition matrix. We observed that complementary-label learning could be
expressed as a set of negative-unlabeled classification problems based on the OVR strategy. Accord-
ingly, a risk-consistent approach with theoretical guarantees was proposed. Extensive experimental
results on benchmark datasets validated the effectiveness of our proposed approach. In the future, it
would be interesting to apply the idea to other weakly supervised learning problems.
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A CLASS-PRIOR ESTIMATION

When the class priors πk are not accessible to the learning algorithm, they can be estimated by
off-the-shelf mixture proportion estimation approaches (Ramaswamy et al., 2016; Scott, 2015; Garg
et al., 2021; Yao et al., 2022). In this section, we discuss the problem formulation and how to adapt
a state-of-the-art class-prior estimation method to our problem as an example.

Mixture proportion estimation. Let F be a mixture distribution of two component distributions
G and H with a proportion θ∗, i.e.,

F = (1− θ∗)G+ θ∗H.

The task of mixture proportion estimation problems is to estimate θ∗ given training examples
sampled from F and H . For PU learning, we consider F = p(x), G = p(x|y = −1), and
H = p(x|y = +1). Then, the estimation of θ∗ corresponds to the estimation of the class prior
p(y = +1). It is shown that θ∗ cannot be identified without any additional assumptions (Scott et al.,
2013; Scott, 2015). Hence, various assumptions have been proposed to ensure the identifiability, in-
cluding the irreducibility assumption (Scott et al., 2013), the anchor point assumption (Scott, 2015;
Liu & Tao, 2015), the separability assumption (Ramaswamy et al., 2016), etc.

Best Bin Estimation. We use Best Bin Estimation (BBE) (Garg et al., 2021) as the base algorithm
for class-prior estimation since it can achieve nice performance with easy implementations. First,

they split the PU data into PU training data DPTr =
{(

xPTr
i ,+1

)}nPTr

i=1
and DUTr =

{
xUTr
i

}nUTr

i=1
,

and PU validation data DPVal =
{(

xPVal
i ,+1

)}nPVal

i=1
and DUVal =

{
xUVal
i

}nUVal

i=1
. Then,

they train a positive-versus-unlabeled (PvU) classifier fPvU with DPTr and DUTr. They col-

lect the model outputs of PU validation data ZP =
{
zPi
}nPVal

i=1
and ZU =

{
zUi
}nUVal

i=1
where

zPi = fPvU
(
xPVal
i

)
and zUi = fPvU

(
xUVal
i

)
. Besides, they introduce q(z) =

∫
Az
p(x) dx where

Az =
{
x ∈ X |fPvU(x) ≥ z

}
. Then, q(z) can be regarded as the proportion of data with the model

output no less than z. For p (x|y = +1) and p (x), they define qP(z) and qU(z) respectively. they
estimate them empirically as

q̂P(z) =

∑nPVal

i=1 I
(
fPvU

(
xPVal
i

)
≥ z
)

nPVal
and q̂U(z) =

∑nUVal

i=1 I
(
fPvU

(
xUVal
i

)
≥ z
)

nUVal
. (11)

Then, they obtain ẑ as

ẑ = argmax
z∈[0,1]

(
q̂U(z)

q̂P(z)
+

1 + γ

q̂P(z)

(√
ln (4/δ)

2nPVal
+

√
ln (4/δ)

2nUVal

))
(12)

where γ and δ are hyperparameters respectively. Finally, they calculate the estimation value of the
mixture proportion as

θ̂ =
q̂U (ẑ)

q̂P (ẑ)
(13)

and they prove that θ̂ is an unbiased estimator of θ∗ when satisfying the pure positive bin assumption,
a variant of the irreducibility assumption. More detailed descriptions of the approach can be found
in Garg et al. (2021).

Class-prior estimation for CONU. Our class-prior estimation approach is based on BBE. First,
we split complementary-label data into training and validation data. Then, we generate q negative
binary-class datasets DNTr

k and q unlabeled binary-class datasets DUTr
k by Eq. (3) and Eq. (4) with

training data (k ∈ Y). We also generate q negative binary-class datasets DNVal
k and q unlabeled

binary-class datasets DUVal
k by Eq. (3) and Eq. (4) with validation data (k ∈ Y). Then, we estimate

the class priors 1 − πk for each label k ∈ Y by BBE adapted by interchanging the postive and
negative classes. Finally, we normalize πk to ensure that they sum up to one. The algorithm detail
is summarized in Algorithm 1.
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Algorithm 1 Class-prior Estimation
Input: Complementary-label training set D.

1: for k ∈ Y do
2: Generate training datasets DNTr

k , DUTr
k , validation data DNVal

k , and DUVal
k by Eq. (3) and

Eq. (4);
3: Estimate the value of 1−πk by employing the BBE algorithm and interchanging the positive

and negative classes;
4: end for
5: Normalize πk to ensure they sum up to one;
Output: Class priors πk (k ∈ Y).

B ALGORITHM DETAILS OF CONU

Algorithm 2 CONU
Input: Complementary-label training set D, class priors πk (k ∈ Y), unseen instance x∗, epoch
Tmax, iteration Imax.

1: for t = 1, 2, . . . , Tmax do
2: Shuffle the complementary-label training set D;
3: for j = 1, . . . , Imax do
4: Fetch mini-batch Dj from D;
5: Update the shared representation layers and specific classification layers f1, f2, . . . , fq

by minimizing the corrected risk estimator R̃ (f1, f2, . . . , fq) in Eq. (9);
6: end for
7: end for
8: Return y∗ = argmaxk∈Y fk(x∗);
Output: Predicted label y∗.

C PROOF OF THEOREM 1

First, we introduce the following lemma.

Lemma 1. Based on Assumption 1, we have p (x|ȳk = 1) = p(x|y ̸= k).

Proof. On one hand, we have

p(x|ȳk = 1, y ̸= k) =
p (x|ȳk = 1) p(y ̸= k|x, ȳk = 1)

p(y ̸= k|ȳk = 1)
.

According to the definition of complementary labels, we have p(y ̸= k|x, ȳk = 1) = p(y ̸= k|ȳk =
1) = 1. Therefore, we have p(x|ȳk = 1, y ̸= k) = p (x|ȳk = 1). On the other hand, we have

p(x|ȳk = 1, y ̸= k) =
p(x|y ̸= k)p(ȳk = 1|x, y ̸= k)

p(ȳk = 1|y ̸= k)
= p(x|y ̸= k),

where the first equation is derived from Assumption 1. The proof is completed.

Then, the proof of Theorem 1 is given.
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Proof of Theorem 1.

R(f1, f2, . . . , fq) =Ep(x,y)

ℓ (fy (x)) + q∑
k=1,k ̸=y

ℓ (−fk (x))


=Ep(x,y)

[
q∑

k=1

(I(k = y)ℓ(fk(x)) + I(k ̸= y)ℓ(−fk(x)))

]

=

q∑
k=1

Ep(x,y) [I(k = y)ℓ (fk(x)) + I(k ̸= y)ℓ (−fk(x))]

=

q∑
k=1

(
πkEp(x|y=k) [ℓ (fk(x))] + (1− πk)Ep(x|y ̸=k) [ℓ (−fk(x))]

)
=

q∑
k=1

(
Ep(x) [ℓ(fk(x))]− (1− πk)Ep(x|y ̸=k) [ℓ(fk(x))]

+(1− πk)Ep(x|y ̸=k) [ℓ(−fk(x))]
)

=

q∑
k=1

(
Ep(x) [ℓ(fk(x))]− (1− πk)Ep(x|ȳk=1) [ℓ(fk(x))]

+(1− πk)Ep(x|ȳk=1) [ℓ(−fk(x))]
)

=

q∑
k=1

(
π̄kEp(x|ȳk=1) [ℓ(fk(x))] + (1− π̄k)Ep(x|ȳk=0) [ℓ(fk(x))]

−(1− πk)Ep(x|ȳk=1) [ℓ(fk(x))] + (1− πk)Ep(x|ȳk=1) [ℓ(−fk(x))]
)

=

q∑
k=1

(
Ep(x|ȳk=1) [(1− πk)ℓ (−fk(x)) + (π̄k + πk − 1) ℓ (fk(x))]

+Ep(x|ȳk=0) [(1− π̄k) ℓ (fk(x))]
)
.

Here, I(·) returns 1 if predicate holds. Otherwise, I(·) returns 0. The proof is completed.

D PROOF OF THEOREM 2

To begin with, we show the following theoretical results about infinite-sample consistency from
Zhang (2004). For ease of notations, let f(x) = [f1(x), f2(x), . . . , fq(x)] denote the vector form
of modeling outputs of all the binary classifiers. First, we elaborate the infinite-sample consistency
property of the OVR strategy.
Theorem 5 (Theorem 10 of Zhang (2004)). Consider the OVR strategy, whose surrogate loss func-
tion is defined as Ψy(f(x)) = ψ(fy(x)) +

∑
k∈Y\{y} ψ(−fk(x)). Assume ψ is convex, bounded

below, differentiable, and ψ(z) < ψ(−z) when z > 0. Then, the OVR strategy is infinite-sample
consistent on Ω = RK with respect to 0-1 classification risk.

Then, we elaborate the relationship between the minimum classification risk of an infinite-sample
consistent method and the Bayes error.
Theorem 6 (Theorem 3 of Zhang (2004)). Let B be the set of all vector Borel measurable functions,
which take values in Rq . For Ω ⊂ Rq , let BΩ = {f ∈ B : ∀x,f(x) ∈ Ω}. If [Ψy(·)] is infinite-
sample consistent on Ω with respect to 0-1 classification risk, then for any ϵ1 > 0, there exists ϵ2 > 0
such that for all underlying Borel probability measurable p, and f(·) ∈ BΩ,

E(x,y)∼p[Ψy(f(x))] ≤ inf
f ′∈BΩ

E(x,y)∼p[Ψy(f
′(x))] + ϵ2 (14)

implies
R0−1(T (f(·))) ≤ R∗

0−1 + ϵ1, (15)
where T (·) is defined as T (f(x)) := argmaxk=1,...,q fk(x).
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Then, we give the proof of Theorem 2.

Proof of Theorem 2. According to Theorem 1, the proposed classification risk R(f1, f2, . . . , fq) is
equivalent to the OVR risk. Therefore, it is sufficient to elaborate the theoretical properties of the
OVR risk to prove Theorem 2.

E PROOF OF THEOREM 3

First, we give the definition of Rademacher complexity.

Definition 1 (Rademacher complexity). Let Xn = {x1, . . .xn} denote n i.i.d. random variables
drawn from a probability distribution with density p(x), F = {f : X 7→ R} denote a class of
measurable functions, and σ = (σ1, σ2, . . . , σn) denote Rademacher variables taking values from
{+1,−1} uniformly. Then, the (expected) Rademacher complexity of F is defined as

Rn,p(F) = EXn
Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
. (16)

For ease of notation, we define D̄ = DU
1

⋃
DU

2

⋃
. . .
⋃

DU
q

⋃
DN

1

⋃
DN

2

⋃
. . .
⋃

DN
q denote the set

of all the binary-class training data. Then, we have the following lemma.

Lemma 2. For any δ > 0, the inequalities below hold with probability at least 1− δ:

sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)
∣∣∣ ≤ q∑

k=1

(
(1− π̄k)Cℓ

√
ln (2/δ)

2nUk

+(2− 2π̄k)LℓRnU
k ,p

U
k
(F) + (4− 4πk − 2π̄k)LℓRnN

k ,p
N
k
(F) + (2− 2πk − π̄k)Cℓ

√
ln (2/δ)

2nNk

)
.

(17)

Proof. We can observe that when an unlabeled example xU
k,i ∈ DU

k is substituted by another unla-

beled example xU
k,j , the value of supf1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)
∣∣∣ changes

at most (1− π̄k)Cℓ/nUk . Besides, when a negative example xN
k,i ∈ DN

k is substituted by another neg-

ative example xN
k,j , the value of supf1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)
∣∣∣ changes at

most (2− 2πk− π̄k)Cℓ/nN
k . According to the McDiarmid’s inequality, for any δ > 0, the following

inequality holds with probability at least 1− δ/2:

sup
f1,f2,...,fq∈F

(
R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)

)
≤ED̄

[
sup

f1,f2,...,fq∈F

(
R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)

)]

+

q∑
k=1

(
(1− π̄k)Cℓ

√
ln (2/δ)

2nUk
+ (2− 2πk − π̄k)Cℓ

√
ln (2/δ)

2nNk

)
, (18)

where the inequality is deduced since
√
a+ b ≤

√
a +

√
b. It is a routine work to show by sym-

metrization (Mohri et al., 2012) that

ED̄

[
sup

f1,f2,...,fq∈F

(
R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)

)]

≤
q∑

k=1

(
(2− 2π̄k)RnU

k ,p
U
k
(ℓ ◦ F) + (4− 4πk − 2π̄k)RnN

k ,p
N
k
(ℓ ◦ F)

)
, (19)
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where Rn,p(ℓ◦F) is the Rademacher complexity of the composite function class (ℓ◦F). According
to Talagrand’s contraction lemma (Ledoux & Talagrand, 1991), we have

RnU
k ,p

U
k
(ℓ ◦ F) ≤ LℓRnU

k ,p
U
k
(F), (20)

RnN
k ,p

N
k
(ℓ ◦ F) ≤ LℓRnN

k ,p
N
k
(F). (21)

By combining Inequality (18), Inequality (19), Inequality (20), and Inequality (21), the following
inequality holds with probability at least 1− δ/2:

sup
f1,f2,...,fq∈F

(
R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)

)
≤

q∑
k=1

(
(2− 2π̄k)LℓRnU

k ,p
U
k
(F)

+(1− π̄k)Cℓ

√
ln (2/δ)

2nUk
+ (4− 4πk − 2π̄k)LℓRnN

k ,p
N
k
(F) + (2− 2πk − π̄k)Cℓ

√
ln (2/δ)

2nNk

)
.

(22)

In the same way, we have the following inequality with probability at least 1− δ/2:

sup
f1,f2,...,fq∈F

(
R̂(f1, f2, . . . , fq)−R(f1, f2, . . . , fq)

)
≤

q∑
k=1

(
(1− π̄k)Cℓ

√
ln (2/δ)

2nUk

+(2− 2π̄k)LℓRnU
k ,p

U
k
(F) + (4− 4πk − 2π̄k)LℓRnN

k ,p
N
k
(F) + (2− 2πk − π̄k)Cℓ

√
ln (2/δ)

2nNk

)
.

(23)

By combining Inequality (22) and Inequality (23), we have the following inequality with probability
at least 1− δ:

sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)
∣∣∣ ≤ q∑

k=1

(
(1− π̄k)Cℓ

√
ln (2/δ)

2nUk

+(2− 2π̄k)LℓRnU
k ,p

U
k
(F) + (4− 4πk − 2π̄k)LℓRnN

k ,p
N
k
(F) + (2− 2πk − π̄k)Cℓ

√
ln (2/δ)

2nNk

)
,

(24)

which concludes the proof.

Finally, the proof of theorem 2 is given.

Proof of Theorem 2.

R(f̂1, f̂2, . . . , f̂q)−R(f∗1 , f
∗
2 , . . . , f

∗
q )

=R(f̂1, f̂2, . . . , f̂q)− R̂(f̂1, f̂2, . . . , f̂q) + R̂(f̂1, f̂2, . . . , f̂q)− R̂(f∗1 , f
∗
2 , . . . , f

∗
q )

+ R̂(f∗1 , f
∗
2 , . . . , f

∗
q )−R(f∗1 , f

∗
2 , . . . , f

∗
q )

≤R(f̂1, f̂2, . . . , f̂q)− R̂(f̂1, f̂2, . . . , f̂q) + R̂(f∗1 , f
∗
2 , . . . , f

∗
q )−R(f∗1 , f

∗
2 , . . . , f

∗
q )

≤2 sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)
∣∣∣ (25)

The first inequality is deduced because (f̂1, f̂2, . . . , f̂q) is the minimizer of R̂(f1, f2, . . . , fq). Com-
bining Inequality (25) and Lemma 2, the proof is completed.

F PROOF OF THEOREM 4

Let D+
k (fk) =

{(
DN
k ,DU

k

)
|R̂P
k (fk) ≥ 0

}
and D−

k (fk) =
{(

DN
k ,DU

k

)
|R̂P
k (fk) < 0

}
denote the

sets of NU data pairs having positive and negative empirical risk respectively. Then we have the
following lemma.
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Lemma 3. The probability measure of D−
k (fk) can be bounded as follows:

P
(
D−
k (fk)

)
≤ exp

(
−2β2

(1− πk − π̄k)2C2
ℓ /n

N
k + (1− π̄k)2C2

ℓ /n
U
k

)
. (26)

Proof. Let

p
(
DN
k

)
= p

(
xN
k,1|ȳk = 1

)
p
(
xN
k,2|ȳk = 1

)
. . . p

(
xN
k,nN

k
|ȳk = 1

)
and

p
(
DU
k

)
= p

(
xU
k,1|ȳk = 0

)
p
(
xU
k,2|ȳk = 0

)
. . . p

(
xU
k,nU

k
|ȳk = 0

)
denote the probability density of DN

k and DU
k respectively. The joint probability density of DN

k and
DU
k is

p
(
DN
k ,DU

k

)
= p

(
DN
k

)
p
(
DU
k

)
.

Then, the probability measure P
(
D−
k (fk)

)
is defined as

P
(
D−
k (fk)

)
=

∫
(DN

k ,D
U
k )∈D−

k (fk)

p
(
DN
k ,DU

k

)
d
(
DN
k ,DU

k

)
=

∫
(DN

k ,D
U
k )∈D−

k (fk)

p
(
DN
k ,DU

k

)
dxN

k,1 . . . dx
N
k,nN

k
dxU

k,1 . . . dx
U
k,nU

k
.

When a negative example in DN
k is substituted by another different negative example, the change

of the value of R̂P
k (fk) is no more than (1 − πk − π̄k)Cℓ/n

N
k ; when an unlabeled example in DU

k

is substituted by another different unlabeled example, the change of the value of R̂P
k (fk) is no

more than (1 − π̄k)Cℓ/n
U
k . Therefore, by applying the McDiarmid’s inequality, we can obtain the

following inequality:

P
(
E
[
R̂P
k (fk)

]
− R̂P

k (fk) ≥ β
)
≤ exp

(
−2β2

(1− πk − π̄k)2C2
ℓ /n

N
k + (1− π̄k)2C2

ℓ /n
U
k

)
. (27)

Therefore, we have

P
(
D−
k (fk)

)
=P
(
R̂P
k (fk) ≤ 0

)
≤P
(
R̂P
k (fk) ≤ E

[
R̂P
k (fk)

]
− β

)
=P
(
E
[
R̂P
k (fk)

]
− R̂P

k (fk) ≥ β
)

≤ exp

(
−2β2

(1− πk − π̄k)2C2
ℓ /n

N
k + (1− π̄k)2C2

ℓ /n
U
k

)
, (28)

which concludes the proof.

Based on it, the proof of Theorem 3 is provided.

Proof of Theorem 3. First, we have

E
[
R̃(f1, f2, . . . , fq)

]
−R(f1, f2, . . . , fq) = E

[
R̃(f1, f2, . . . , fq)− R̂(f1, f2, . . . , fq)

]
.

Since R̃(f1, f2, . . . , fq) is an upper bound of R̂(f1, f2, . . . , fq), we have

E
[
R̃(f1, f2, . . . , fq)

]
−R(f1, f2, . . . , fq) ≥ 0.
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Besides, we have

E
[
R̃(f1, f2, . . . , fq)

]
−R(f1, f2, . . . , fq)

=

q∑
k=1

∫
(DN

k ,D
U
k )∈D−

k (fk)

(
g
(
R̂P
k (fk)

)
− R̂P

k (fk)
)
p
(
DN
k ,DU

k

)
d
(
DN
k ,DU

k

)
≤

q∑
k=1

sup
(DN

k ,D
U
k )∈D−

k (fk)

(
g
(
R̂P
k (fk)

)
− R̂P

k (fk)
)∫

(DN
k ,DU)∈D−

k (fk)

p
(
DN
k ,DU

k

)
d
(
DN
k ,DU

k

)
=

q∑
k=1

sup
(DN

k ,D
U
k )∈D−

k (fk)

(
g
(
R̂P
k (fk)

)
− R̂P

k (fk)
)
P
(
D−
k (fk)

)
≤

q∑
k=1

sup
(DN

k ,D
U
k )∈D−
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∣∣∣+ ∣∣∣R̂P
k (fk)

∣∣∣)P (D−
k (fk)

)
.

Besides, ∣∣∣R̂P
k (fk)

∣∣∣ =
∣∣∣∣∣∣ π̄k + πk − 1

nNk

nN
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ℓ
(
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N
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)
+
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≤

∣∣∣∣∣∣ π̄k + πk − 1

nNk
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k∑

i=1

ℓ
(
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N
k,i)
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nUk
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(
fk(x

U
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≤(1− πk − π̄k)Cℓ + (1− π̄k)Cℓ = (2− 2π̄k − πk)Cℓ.

Therefore, we have

E
[
R̃(f1, f2, . . . , fq)

]
−R(f1, f2, . . . , fq)

≤
q∑

k=1

sup
(DN

k ,D
U
k )∈D−

k (fk)

(Lg

∣∣∣R̂P
k (fk)

∣∣∣+ ∣∣∣R̂P
k (fk)

∣∣∣)P(D−
k (fk)).

≤
q∑

k=1

(2− 2π̄k − πk) (Lg + 1)Cℓ exp

(
−2β2

(1− πk − π̄k)2C2
ℓ /n

N
k + (1− π̄k)2C2

ℓ /n
U
k

)

=

q∑
k=1

(2− 2π̄k − πk) (Lg + 1)Cℓ∆k,

which concludes the first part of the proof of Theorem 3. Before giving the proof for the second part,
we give the upper bound of

∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)
∣∣∣. When an unlabeled exam-

ple from DU
k is substituted by another unlabeled example, the value of R̃(f1, f2, . . . , fq) changes at

most (1− π̄k)CℓLg/n
U
k . When a negative example from DN

k is substituted by a different example,
the value of R̃(f1, f2, . . . , fq) changes at most ((1− πk − π̄k)Lg + 1− πk)Cℓ/n

N
k . By applying

McDiarmid’s inequality, we have the following inequalities with probability at least 1− δ/2:

R̃(f1, f2, . . . , fq)− E
[
R̃(f1, f2, . . . , fq)

]
≤

q∑
k=1

(1− π̄k)CℓLg

√
ln (2/δ)

2nUk

+

q∑
k=1

((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (2/δ)

2nNk
,

E
[
R̃(f1, f2, . . . , fq)

]
− R̃(f1, f2, . . . , fq) ≤

q∑
k=1

(1− π̄k)CℓLg

√
ln (2/δ)

2nUk

+

q∑
k=1

((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (2/δ)

2nNk
.
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Then, with probability at least 1− δ, we have∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)
∣∣∣ ≤ q∑

k=1

(1− π̄k)CℓLg

√
ln (2/δ)

2nUk

+

q∑
k=1

((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (2/δ)

2nNk
.

Therefore, with probability at least 1− δ we have∣∣∣R̃(f1, f2, . . . , fq)−R(f1, f2, . . . , fq)
∣∣∣

=
∣∣∣R̃(f1, f2, . . . , fq)− E[R̃(f1, f2, . . . , fq)] + E[R̃(f1, f2, . . . , fq)]−R(f1, f2, . . . , fq)

∣∣∣
≤
∣∣∣R̃(f1, f2, . . . , fq)− E[R̃(f1, f2, . . . , fq)]

∣∣∣+ ∣∣∣E[R̃(f1, f2, . . . , fq)]−R(f1, f2, . . . , fq)
∣∣∣

=
∣∣∣R̃(f1, f2, . . . , fq)− E[R̃(f1, f2, . . . , fq)]

∣∣∣+ E[R̃(f1, f2, . . . , fq)]−R(f1, f2, . . . , fq)

≤
q∑

k=1

(1− π̄k)CℓLg

√
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2nUk
+

q∑
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√
ln (2/δ)

2nNk

+

q∑
k=1

(2− 2π̄k − πk) (Lg + 1)Cℓ∆k,

which concludes the proof.

G PROOF OF THEOREM 5

In this section, we adopt an alternative definition of Rademacher complexity:

R′
n,p(F) = EXn

Eσ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
]
. (29)

Then, we introduce the following lemmas.

Lemma 4. Without any composition, for any F , we have R′
n,p(F) ≥ Rn,p(F). If F is closed under

negation, we have R′
n,p(F) = Rn,p(F).

Lemma 5 (Theorem 4.12 in (Ledoux & Talagrand, 1991)). If ψ : R → R is a Lipschitz continuous
function with a Lipschitz constant Lψ and satisfies ψ(0) = 0, we have

R′
n,p(ψ ◦ F) ≤ 2LψR

′
n,p(F),

where ψ ◦ F = {ψ ◦ f |f ∈ F}.

Before giving the proof of Theorem 5, we give the following lemma.

Lemma 6. For any δ > 0, the inequalities below hold with probability at least 1− δ:

sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̃(f1, f2, . . . , fq)
∣∣∣

≤
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k=1

(1− π̄k)CℓLg

√
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2nUk
+
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√
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2nNk

+
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(
(4− 4π̄k)LgLℓRnU

k ,p
U
k
(F) + ((4− 4πk − 4π̄k)Lg + 4− 4πk)LℓRnN

k ,p
N
k
(F)

)
+

q∑
k=1

(2− 2π̄k − πk) (Lg + 1)Cℓ∆k.
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Proof. Similar to previous proofs, we can observe that when an unlabeled ex-
ample from DU

k is substituted by another unlabeled example, the value of

supf1,f2,...,fq∈F

∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)
∣∣∣ changes at most (1− π̄k)CℓLg/n

U
k .

When a negative example from DN
k is substituted by a different example, the

value of supf1,f2,...,fq∈F

∣∣∣E [R̃(f1, f2, . . . , fq)]− R̃(f1, f2, . . . , fq)
∣∣∣ changes at most

((1− πk − π̄k)Lg + 1− πk)Cℓ/n
N
k . By applying McDiarmid’s inequality, we have the fol-

lowing inequality with probability at least 1− δ:
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Besides, we have

E

[
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∣∣∣] , (31)

where the last inequality is deduced by applying Jensen’s inequality twice since the absolute value
function and the supremum function are both convex. Here, R̃(f1, f2, . . . , fq; D̄) denotes the value
of R̃(f1, f2, . . . , fq) calculated on D̄. To ensure that the conditions in Lemma 5 hold, we introduce
ℓ̃(z) = ℓ(z)− ℓ(0). It is obvious that ℓ̃(0) = 0 and ℓ̃(z) is also a Lipschitz continuous function with
a Lipschitz constant Lℓ. Then, we have∣∣∣R̃(f1, f2, . . . , fq; D̄)− R̃(f1, f2, . . . , fq; D̄′)
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Besides, we can observe ℓ(z1)− ℓ(z2) = ℓ̃(z1)− ℓ̃(z2). Therefore, the RHS of Inequality (32) can
be expressed as
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Then, it is a routine work to show by symmetrization (Mohri et al., 2012) that
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, (33)

where the second inequality is deduced according to Lemma 5 and the last equality is based on
the assumption that F is closed under negation. By combing Inequality (30), Inequality (31), and
Inequality (33), we have the following inequality with probability at least 1− δ:

sup
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∣∣∣

≤
q∑

k=1

(1− π̄k)CℓLg

√
ln (1/δ)

2nUk
+

q∑
k=1

((1− πk − π̄k)Lg + 1− πk)Cℓ

√
ln (1/δ)

2nNk

+

q∑
k=1

(
(4− 4π̄k)LgLℓRnU

k ,p
U
k
(F) + ((4− 4πk − 4π̄k)Lg + 4− 4πk)LℓRnN

k ,p
N
k
(F)

)
. (34)

Then, we have

sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̃(f1, f2, . . . , fq)
∣∣∣
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]
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]
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∣∣∣ . (35)

Combining Inequality (35) with Inequality (34) and Inequality (10), the proof is completed.

Then, we give the proof of Theorem 5.
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Proof of Theorem 5.

R(f̃1, f̃2, . . . , f̃q)−R(f∗1 , f
∗
2 , . . . , f

∗
q )

=R(f̃1, f̃2, . . . , f̃q)− R̃(f̃1, f̃2, . . . , f̃q) + R̃(f̃1, f̃2, . . . , f̃q)− R̃(f∗1 , f
∗
2 , . . . , f

∗
q )

+ R̃(f∗1 , f
∗
2 , . . . , f

∗
q )−R(f∗1 , f

∗
2 , . . . , f

∗
q )

≤R(f̃1, f̃2, . . . , f̃q)− R̃(f̃1, f̃2, . . . , f̃q) + R̃(f∗1 , f
∗
2 , . . . , f

∗
q )−R(f∗1 , f

∗
2 , . . . , f

∗
q )

≤2 sup
f1,f2,...,fq∈F

∣∣∣R(f1, f2, . . . , fq)− R̃(f1, f2, . . . , fq)
∣∣∣ . (36)

The first inequality is deduced because (f̃1, f̃2, . . . , f̃q) is the minimizer of R̃(f1, f2, . . . , fq). Com-
bining Inequality (36) and Lemma 6, the proof is completed.

H DETAILS OF EXPERIMENTAL SETUP

H.1 DETAILS OF SYNTHETIC BENCHMARK DATASETS

For the “uniform” setting, a label other than the ground-truth label was sampled randomly following
the uniform distribution to be the complementary label.

For the “biased-a” and “biased-b” settings, we adopted the following row-normalized transition
matrices of p(ȳ|y) to generate complementary labels:

biased-a:



0 0.250 0.043 0.040 0.043 0.040 0.250 0.040 0.250 0.043
0.043 0 0.250 0.043 0.040 0.043 0.040 0.250 0.040 0.250
0.250 0.043 0 0.250 0.043 0.040 0.043 0.040 0.250 0.040
0.040 0.250 0.043 0 0.250 0.043 0.040 0.043 0.040 0.250
0.250 0.040 0.250 0.043 0 0.250 0.043 0.040 0.043 0.040
0.040 0.250 0.040 0.250 0.043 0 0.250 0.043 0.040 0.043
0.043 0.040 0.250 0.040 0.250 0.043 0 0.250 0.043 0.040
0.040 0.043 0.040 0.250 0.040 0.250 0.043 0 0.250 0.043
0.043 0.040 0.043 0.040 0.250 0.040 0.250 0.043 0 0.250
0.250 0.043 0.040 0.043 0.040 0.250 0.040 0.250 0.043 0


,

biased-b:



0 0.220 0.080 0.033 0.080 0.033 0.220 0.033 0.220 0.080
0.080 0 0.220 0.080 0.033 0.080 0.033 0.220 0.033 0.220
0.220 0.080 0 0.220 0.080 0.033 0.080 0.033 0.220 0.033
0.033 0.220 0.080 0 0.220 0.080 0.033 0.080 0.033 0.220
0.220 0.033 0.220 0.080 0 0.220 0.080 0.033 0.080 0.033
0.033 0.220 0.033 0.220 0.080 0 0.220 0.080 0.033 0.080
0.080 0.033 0.220 0.033 0.220 0.080 0 0.220 0.080 0.033
0.033 0.080 0.033 0.220 0.033 0.220 0.080 0 0.220 0.080
0.080 0.033 0.080 0.033 0.220 0.033 0.220 0.080 0 0.220
0.220 0.080 0.033 0.080 0.033 0.220 0.033 0.220 0.080 0


.

For each example, we sample a complementary label from a multinomial distribution parameterized
by the row vector of the transition matrix indexed by the ground-truth label.

For the “SCAR-a” and “SCAR-b” settings, we followed the generation process in Section 3.1 with
the following class priors of complementary labels:

SCAR-a: [0.05, 0.05, 0.2, 0.2, 0.1, 0.1, 0.05, 0.05, 0.1, 0.1] ,
SCAR-b: [0.1, 0.1, 0.2, 0.05, 0.05, 0.1, 0.1, 0.2, 0.05, 0.05] .

We repeated the sampling procedure to ensure that each example had a single complementary label.

H.2 DESCRIPTIONS OF COMPARED APPROACHES

The compared methods in the experiments of synthetic benchmark datasets:
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• PC (Ishida et al., 2017): A risk-consistent complementary-label learning approach using the pair-
wise comparison loss.

• NN (Ishida et al., 2019): A risk-consistent complementary-label learning approach using the non-
negative risk estimator.

• GA (Ishida et al., 2019): A variant of the non-negative risk estimator of complementary-label
learning by using the gradient ascent technique.

• L-UW (Gao & Zhang, 2021): A discriminative approach by minimizing the outputs corresponding
to complementary labels.

• L-W Gao & Zhang (2021): A weighted loss based on L-UW by considering the prediction uncer-
tainty.

• OP (Liu et al., 2023): A classifier-consistent complementary-label learning approach by minimiz-
ing the outputs of complementary labels.

The compared methods in the experiments of real-world benchmark datasets:

• CC (Feng et al., 2020b): A classifier-consistent partial-label learning approach based on the uni-
form distribution assumption of partial labels.

• PRODEN (Lv et al., 2020): A risk-consistent partial-label learning approach using the self-
training strategy to identify the ground-truth labels.

• EXP (Feng et al., 2020a): A classifier-consistent multiple complementary-label learning approach
by using the exponential loss function.

• MAE (Feng et al., 2020a): A classifier-consistent multiple complementary-label learning ap-
proach by using the Mean Absolute Error loss function.

• Phuber-CE (Feng et al., 2020a): A classifier-consistent multiple complementary-label learning
approach by using the Partially Huberised Cross Entropy loss function.

• LWS (Wen et al., 2021): A partial-label learning approach by leveraging a weight to account for
the tradeoff between losses on partial and non-partial labels.

• CAVL (Zhang et al., 2022): A partial-label learning approach by using the class activation value
to identify the true labels.

• IDGP (Qiao et al., 2023): A instance-dependent partial-label learning approach by modeling the
generation process of partial labels.

H.3 DETAILS OF MODELS AND HYPERPARAMETERS

The logistic loss was adopted to instantiate the binary-class loss function l, and the absolute value
function was used as the risk correction function g for CONU.

For CIFAR-10, we used 34-layer ResNet (He et al., 2016) and 22-layer DenseNet (Huang et al.,
2017) as the model architectures. For the other three datasets, we used a multilayer perceptron
(MLP) with three hidden layers of width 300 equipped with the ReLU (Nair & Hinton, 2010) acti-
vation function and batch normalization (Ioffe & Szegedy, 2015) and 5-layer LeNet (LeCun et al.,
1998) as the model architectures.

For CLCIFAR-10 and CLCIFAR-20, we adopted the same data augmentation techniques for all the
methods, including random horizontal flipping and random cropping. We used 34-layer ResNet (He
et al., 2016) and 22-layer DenseNet (Huang et al., 2017) as the model architectures.

All the methods were implemented in PyTorch (Paszke et al., 2019). We used the Adam optimizer
(Kingma & Ba, 2015). The learning rate and batch size were fixed to 1e-3 and 256 for all the
datasets, respectively. The weight decay was 1e-3 for CIFAR-10, CLCIFAR-10, and CLCIFAR-20
and 1e-5 for the other three datasets. The number of epochs was set to 200, and we recorded the
mean accuracy in the last ten epochs.

I A BRIEF REVIEW OF PU LEARNING APPROACHES

The goal of PU learning is to learn a binary classifier from positive and unlabeled data only. PU
learning methods can be broadly classified into two groups: sample selection methods and cost-
sensitive methods. Sample selection methods try to identify negative examples from the unlabeled
dataset and then use supervised learning methods to learn the classifier (Wang et al., 2023; Dai
et al., 2023; Garg et al., 2021). Cost-sensitive methods are based on the unbiased risk estimator,
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which rewrites the classification risk as that only on positive and unlabeled data (Kiryo et al., 2017;
Jiang et al., 2023; Zhao et al., 2022).

J MORE EXPERIMENTAL RESULTS

J.1 EXPERIMENTAL RESULTS ON CIFAR-10

Table 6: Classification accuracy (mean±std) of each method on CIFAR-10 with single complemen-
tary label. The best performance is shown in bold (pairwise t-test at the 0.05 significance level).
Setting Uniform Biased-a Biased-b SCAR-a SCAR-b

Model ResNet DenseNet ResNet DenseNet ResNet DenseNet ResNet DenseNet ResNet DenseNet

PC 14.33
±0.73

17.44
±0.52

25.46
±0.69

34.01
±1.47

23.04
±0.33

29.27
±1.05

14.94
±0.88

17.11
±0.87

17.16
±0.86

21.14
±1.34

NN 19.90
±0.73

30.55
±1.01

24.88
±1.01

24.48
±1.50

26.59
±1.33

24.51
±1.24

21.11
±0.94

29.48
±1.05

23.56
±1.25

30.67
±0.73

GA 37.59
±1.76

46.86
±0.84

20.01
±1.96

22.41
±1.33

16.74
±2.64

21.48
±1.46

24.17
±1.32

29.04
±1.84

23.47
±1.30

30.72
±1.44

L-UW 19.58
±1.77

17.25
±3.03

24.83
±2.67

29.46
±1.03

20.73
±2.41

25.41
±2.61

14.56
±2.71

10.69
±0.94

10.39
±0.50

10.04
±0.09

L-W 18.05
±3.02

13.97
±2.55

22.65
±2.70

27.64
±0.80

22.70
±2.33

24.86
±1.34

13.72
±2.60

10.00
±0.00

10.25
±0.49

10.00
±0.00

OP 23.78
±2.80

39.32
±2.46

29.47
±2.71

41.99
±1.54

25.60
±4.18

39.61
±2.26

17.55
±1.38

27.12
±1.17

20.08
±2.96

27.24
±2.62

CONU 35.63
±3.23

42.65
±2.00

39.70
±3.79

51.42
±1.81

37.82
±2.72

50.52
±2.18

29.04
±3.70

36.38
±2.56

35.71
±1.16

38.43
±0.85

J.2 ANALYSIS OF EXPERIMENTAL RESULTS

On synthetic benchmark datasets, we can observe

• Out of 40 cases of different distributions and datasets, CONU achieves the best performance in
39 cases, which clearly validates the effectiveness of the proposed approach.

• Some consistent approaches based on the uniform distribution assumption can achieve compara-
ble or better or comparable performance to CONU for the ”uniform” setting. For example, GA
outperforms CONU on CIFAR-10. However, its performance drops significantly on other distri-
bution settings. This shows that methods based on the uniform distribution assumption cannot
handle more realistic data distributions.

• The variance of the classification accuracies of CONU is much smaller than that of the compared
methods, indicating that CONU is very stable.

• The strong performance of CONU is due to the milder distribution assumptions and the effective-
ness of the risk correction function in mitigating overfitting problems.

On real-world benchmark datasets, we can observe that

• CONU achieves the best performance in all cases, further confirming its effectiveness.
• The superiority is even more evident on CLCIFAR-20, a more complex dataset with extremely

limited supervision. It demonstrates the advantages of CONU in dealing with real-world datasets.
• The performance of many state-of-the-art partial-label learning methods degenerates strongly,

and many methods did not even work on CLCIFAR-20. The experimental results reveal their
shortcomings in handling real-world data.

26



Under review as a conference paper at ICLR 2024

J.3 EXPERIMENTAL RESULTS ON SYNTHETIC INSTANCE-DEPENDENT DATASETS

We followed Anonymous (2023) to generate synthetic complementary labels. First, we trained a
neural network on ordinary labels to generate labeling confidence for each instance. Then, we
sample a complementary label from the labels with the smallest K labeling confidence. Then, we
train a new model on the generated CL data. We used ResNet for CIFAR-10 and an MLP for other
datasets as the backbone model. The hyperparameters are the same as before. Table 7 shows the
experimental results with synthetic instance-dependent complementary labels. We found that our
proposed method is still superior in this setting, which further validates the effectiveness of our
method.

Table 7: Classification accuracy (mean±std) of each method with synthetic instance-dependent com-
plementary labels. The best performance is shown in bold.

Dataset MNIST Kuzushiji-MNIST Fashion-MNIST CIFAR-10

# Min 5 3 5 3 5 3 7 5

SCL-NL 61.01
± 2.04

37.22
±0.49

53.13
±3.18

34.06
±3.95

33.99
±18.8

19.99
±12.7

28.81
±1.79

26.76
±0.14

SCL-EXP 46.68
±4.98

29.64
±0.28

49.00
±1.59

31.63
±3.82

25.81
±18.4

16.23
±8.30

27.07
±0.27

25.53
±1.04

NN 49.34
±1.87

22.67
±2.00

38.54
±2.97

26.59
±2.23

40.42
±6.87

25.66
±5.04

38.28
±0.81

31.68
±1.60

L-W 35.29
±2.29

25.45
±0.98

32.59
±0.56

25.97
±1.56

21.52
±5.98

17.58
±2.54

29.59
±1.00

26.27
±0.80

L-UW 35.42
±1.83

26.32
±0.52

33.73
±0.37

25.06
±1.41

21.86
±7.60

17.31
±3.24

29.54
±1.24

27.00
±0.96

GA 44.26
±1.75

29.26
±1.91

39.75
±2.30

24.20
±0.59

30.50
±13.2

11.54
±1.47

37.88
± 1.61

26.96
±2.76

Forward 64.86
±4.96

37.16
±0.52

53.27
±3.28

34.26
±3.80

33.74
±18.7

21.11
±11.8

29.01
±1.27

26.43
±0.68

CONU 65.60
±0.94

46.38
±2.81

54.60
±1.92

43.40
±1.36

62.18
±10.5

42.75
±19.2

42.52
±0.92

35.60
±0.66

J.4 EXPERIMENTAL RESULTS OF THE CLASS-PRIOR ESTIMATION APPROACH

We assumed that the ground-truth class priors for all labels and datasets are 0.1, which means that
the test set was balanced. We generated complementary labels using the SCAR assumption with
π̄k = 0.5. We repeated the generation process with different random seeds for 5 times. Table 8
shows the experimental results of the proposed class-prior estimation approach in Appendix A. We
can observe that the class priors are accurately estimated in general with the proposed class-prior
estimation method.

J.5 COMPARISONS WITH FORWARD ON THE CLCIFAR DATASETS

Since there are three complementary labels for each example, following Wang et al. (2023), we used
them separately to generate single complementary-label datasets. Since the transition matrix for
Forward is unknown, we assume it to be a uniform distribution for a fair comparison. Table 9 shows
the experimental results of Forward and CONU on CLCIFAR. We can observe that CONU performs
better than Forward on the CLCIFAR datasets.
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Table 8: Estimated values (mean±std) of class priors.
Label Index 1 2 3 4 5

MNIST 0.104 ± 0.011 0.119 ± 0.012 0.110±0.009 0.099±0.008 0.101±0.010

Kuzushiji-MNIST 0.108±0.026 0.098±0.011 0.087±0.012 0.104±0.004 0.101±0.021

Fashion-MNIST 0.091±0.016 0.118±0.005 0.090±0.024 0.090±0.009 0.077±0.020

CIFAR-10 0.085±0.016 0.102±0.039 0.073±0.019 0.109±0.047 0.100±0.031

Label Index 6 7 8 9 10

MNIST 0.087±0.007 0.089±0.005 0.106±0.019 0.091±0.008 0.096±0.016

Kuzushiji-MNIST 0.095±0.010 0.105±0.025 0.095±0.007 0.094±0.016 0.113±0.035

Fashion-MNIST 0.117±0.007 0.070±0.010 0.114±0.023 0.117±0.016 0.117±0.016

CIFAR-10 0.098±0.013 0.115±0.023 0.120±0.033 0.097±0.041 0.100±0.013

Table 9: Experimental results of Forward and CONU on CLCIFAR-10 and CLCIFAR-20 with single
complementary labels. The CL Index indicates the used index of complementary labels.

Dataset CL Index Model Forward CONU

CLCIFAR-10 1 ResNet 16.71 33.42

CLCIFAR-10 1 DenseNet 17.70 37.53

CLCIFAR-10 2 ResNet 16.37 32.27

CLCIFAR-10 2 DenseNet 16.67 36.62

CLCIFAR-10 3 ResNet 16.58 34.84

CLCIFAR-10 3 DenseNet 17.15 36.41

CLCIFAR-20 1 ResNet 5.00 13.34

CLCIFAR-20 1 DenseNet 5.00 13.94

CLCIFAR-20 2 ResNet 5.00 13.22

CLCIFAR-20 2 DenseNet 5.00 13.24

CLCIFAR-20 3 ResNet 5.00 12.04

CLCIFAR-20 3 DenseNet 5.00 10.91
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