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Abstract

We present ReasonBert, a pre-training method
that augments language models with the ability
to reason over long-range relations and multi-
ple, possibly hybrid contexts. Unlike existing
pre-training methods that only harvest learn-
ing signals from local contexts of naturally oc-
curring texts, we propose a generalized notion
of distant supervision to automatically connect
multiple pieces of text and tables to create pre-
training examples that require long-range rea-
soning. Different types of reasoning are sim-
ulated, including intersecting multiple pieces
of evidence, bridging from one piece of evi-
dence to another, and detecting unanswerable
cases. We conduct a comprehensive evalua-
tion on a variety of extractive question answer-
ing datasets ranging from single-hop to multi-
hop and from text-only to table-only to hy-
brid that require various reasoning capabilities
and show that ReasonBert achieves remark-
able improvement over an array of strong base-
lines. Few-shot experiments further demon-
strate that our pre-training method substan-
tially improves sample efficiency.!

1 Introduction

Recent advances in pre-trained language models
(LMs) have remarkably transformed the landscape
of natural language processing. Pre-trained to re-
construct naturally occurring utterances sampled
from massive text corpora with unsupervised ob-
jectives such as autoregressive language modeling
(Radford and Narasimhan, 2018; Radford et al.,
2019; Brown et al., 2020) and masked language
modeling (MLM) (Devlin et al., 2019; Liu et al.,
2019b; Joshi et al., 2020), PLMs encode a great
deal of knowledge about language and significantly
boost model performance on a wide range of down-
stream tasks (Liu et al., 2019a; Wang et al., 2018,
2019) ranging from spell checking (Awasthi et al.,
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2019) to sentiment analysis (Xu et al., 2019) and
semantic parsing (Rongali et al., 2020).

Existing unsupervised objectives for LM pre-
training primarily focus on consecutive, naturally
occurring text. For example, MLM enables LMs
to correctly predict the missing word “daugh-
ters” in the sentence “Obama has two __, Malia
and Sasha.” based on the local context and the
knowledge stored in the parameters. However,
many tasks require reasoning beyond local con-
texts: multi-hop question answering (QA) (Yang
etal., 2018; Welbl et al., 2018) and fact verification
(Jiang et al., 2020) require reasoning over multi-
ple pieces of evidence, hybrid QA (Chen et al.,
2020) requires simultaneously reasoning over un-
structured text and structured tables, and dialogue
systems require reasoning over the whole dialogue
history to accurately understand the current user
utterance (Semantic Machines et al., 2020).

To address this limitation in existing LM pre-
training, we propose ReasonBert, a pre-training
method to augment LMs to explicitly reason over
long-range relations and multiple contexts. Unlike
existing pre-training objectives that predict indi-
vidual masked tokens or spans within a contigu-
ous paragraph of text, ReasonBert pairs a query
sentence with multiple relevant pieces of evidence
drawn from possibly different places and defines
a new LM pre-training objective, span reasoning,
to recover entity spans that are masked out from
the query sentence by jointly reasoning over the
relevant evidence (Figure 1). In addition to text, we
also include tables as evidence to further empower
LMs to reason over hybrid contexts.

One major challenge in developing ReasonBert
lies in how to create a large set of query-evidence
pairs for pre-training. Unlike existing unsupervised
pre-training methods, examples with complex rea-
soning cannot be easily harvested from naturally oc-
curring texts. Instead, inspiration was drawn from
distant supervision (Mintz et al., 2009a), which
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Figure 1: Examples of our pre-training data acquired via distant supervision, which covers a wide range of topics
with both textual and tabular evidence. For each query sentence, we first select two pairs of entities (underlined)
to find two pieces of evidence via distant supervision. We then randomly mask one entity from each selected pair
and aim to recover it by reasoning over the evidence. Note that the two selected pairs may share a common entity;
in case this entity is masked, we can mimic different types of multi-hop reasoning, e.g., intersection (Ex. 1) and
bridging (Ex. 2). To simulate unanswerable cases, we additionally mask one entity (in blue) that does not exist in

the evidence. Figure best viewed in color.

assumes that “any sentence containing a pair of
entities that are known to participate in a relation
is likely to express that relation,” and generalize to
our setting of multiple possibly hybrid pieces of
evidence. Specifically, given a query sentence con-
taining an entity pair, if we mask one of the entities,
another sentence or table that contains the same
pair of entities can likely be used as evidence to
recover the masked entity. Moreover, to encourage
deeper reasoning, we collect multiple examples of
evidence that are jointly used to recover the masked
entities in the query sentence, allowing us to scat-
ter the masked entities among different pieces of
evidence to mimic different types of reasoning. Fig-
ure 1 illustrates several examples using such distant
supervision. In Ex. 1, a model needs to check mul-
tiple constraints (i.e., intersection reasoning type)
and find “the beach soccer competition that is es-
tablished in 1998 In Ex.2, a model needs to
find “the type of the band that released Awaken the
Guardian,” by first inferring the name of the band
“Fates Warning” (i.e., bridging reasoning type).

We replace the masked entities in a query sen-
tence with the [QUESTION] tokens, and the new
pre-training objective, span reasoning, is then to
extract the masked entities from the provided evi-
dence. We augment existing LMs like BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019b)
by continuing to train them with the new objec-
tive, which leads to ReasonBert, a new LM with

better reasoning capabilities. We use a transformer
based encoder (Devlin et al., 2019) to encode the
concatenated query sentence and textual evidence.
When tabular evidence is present, we use the recent
structure-aware transformer from TAPAS (Herzig
et al., 2020) as the encoder to help capture the table
structure.

We evaluate ReasonBert on the extractive QA
task, which is arguably the most representative task
requiring reasoning about world knowledge. We
conduct a comprehensive evaluation using a variety
of popular datasets: MRQA (Fisch et al., 2019), a
single-hop QA benchmark including six datasets
from different domains; HotpotQA (Yang et al.,
2018), a multi-hop QA dataset; NQTables, a sub-
set of the Natural Questions dataset (Kwiatkowski
et al., 2019) where answers can be found in ta-
bles; and HybridQA (Chen et al., 2020), a hybrid
multi-hop QA dataset that requires reasoning over
both tables and text. Under the few-shot setting,
ReasonBert substantially outperforms the baselines
in almost all datasets, demonstrating that the rea-
soning ability learned from pre-training can easily
transfer to downstream QA tasks and generalize
well across domains. Under the full-data setting,
ReasonBert obtains substantial gains in multi-hop
and hybrid QA datasets. Despite its simple model
architecture, ReasonBert achieves similar or bet-
ter performance compared with more sophisticated
state-of-the-art models for each dataset.



2 Background

Language model pre-training.  Existing pre-
training objectives such as MLMs (Devlin et al.,
2019; Joshi et al., 2020) tend to implicitly memo-
rize the learned knowledge in the parameters of the
underlying neural network. In this work, we aim
to augment pre-training by encouraging a model to
reason about (instead of memorizing) world knowl-
edge over the given contexts.
Extractive question answering. To measure a
model’s reasoning ability about world knowledge,
we select extractive QA as a downstream task,
which is perhaps one of the most representative
tasks for this purpose. Given a question ¢ and
provided evidence FE, an extractive QA model
po(algq, E) aims to select a contiguous span a from
FE that answers the question, or output a special
token if F is not sufficient to answer the question.
Our approach, ReasonBert, is inspired by this
formulation and extends it to language model pre-
training. The challenge in defining such a self-
supervised task is in the creation of question-
evidence pairs from unlabeled data. Moreover, we
aim for a generic approach that works for a wide
range of extractive QA settings including single-
hop and multi-hop reasoning, hybrid contexts with
both unstructured texts and structured tables, as
well as few-shot settings. We discuss how to ad-
dress the challenge and achieve this goal in the next
two sections.

3 Distant Supervision (DS) for
Pre-training

We use English Wikipedia as our data source for
pre-training. We first extract sentences and tables
from Wikipedia pages and then identify salient
spans (such as named entities) from them. We
apply the idea of distant supervision and match the
sentences and tables to form query-evidence pairs,
which are used to create pre-training examples.

3.1 Data Collection

Text. We first extract paragraphs from Wikipedia
pages and split them into sentences. We consider
named entities including both real-world entities
(e.g., person, location) and temporal and numeric
expressions (e.g., date and quantity) as potential
answer entities for pre-training. We first identify
real-world entities using existing hyperlinks. Since
Wikipedia pages generally do not contain links

Setting # queries #sent. #tab. # ent. pairs
Text-only 7.6M 8.4M - 5.5M
Hybrid 3.2M 43M 09M 6.0M

Table 1: Statistics about the pre-training data.

to themselves, we additionally detect such self-
mentions by searching the names and aliases of the
topic entity for each page. Temporal and numeric
expressions are identified using existing NER tool.
Table. We extract tables that are labeled as <wik-
itable> from Wikipedia, and only consider tables
with no more than 500 cells. First, real-world enti-
ties are detected using existing hyperlinks. Unlike
our method employed for textual sentences, we
do not use traditional NER tools here as they are
not tailored to work well on tables. Instead, for a
cell that does not contain hyperlinks, we match the
complete cell value with sentences that are closely
related to the table, sourced either from the same
page or a page containing a hyperlink pointing to
the current page. If the matched span in the sen-
tence contains a named entity, we consider the same
entity as being linked to the cell as well. Otherwise
we consider this cell as a unique entity in the table.

Please see Appendix A.1 for details about the
tools and resources we use.

3.2 Query-Evidence Pairing via DS

As described in Section 2, a standard QA sample is
composed of a question, an answer and evidence.
The model infers the relationship between the an-
swer and other entities in the question, and extract it
from the evidence. In this work, we try to simulate
such samples in pre-training. Given a sentence with
entities, it can be viewed as a question by masking
some entities as answers for prediction. The key
issue is then how to find evidence that contains not
only the answer entity, but also the relational infor-
mation for inference. Here we borrow the idea of
distant supervision (Mintz et al., 2009b).

Given a sentence as a query, we first extract pairs
of entities in it. For each entity pair, we then find
other sentences and tables that also contain the
same pair as evidence. Since we do not have the
known relation constraint in the original assump-
tion of distant supervision, we use the following
heuristics to collect evidence that has high quality
relational knowledge about the entities and is rel-
evant to the query. First, we only consider entity
pairs that contain at least one real-world entity. For
textual evidence, the entity pair needs to contain



the topic entity of the Wikipedia page, which is
more likely to have relations to other entities. For
tabular evidence, we consider only entity pairs that
are in the same row of the table, but they do not
need to contain the topic entity, as in many cases
the topic entity is not present in the tables. In both
cases, the query and evidence should come from
the same page, or the query contains a hyperlink
pointing to the evidence page. For tabular evidence,
we also allow for the case where the table contains
a hyperlink pointing to the query page.

3.3 Pre-training Data Generation

Given the query-evidence pairs, a naive way to
construct pre-training examples is to sample a sin-
gle piece of evidence for the query, and mask a
shared entity as “answer”, like Glass et al. (2020).
However, this only simulates simple single-hop
questions. In this work, we construct complex
pre-training examples that require the model to
conduct multi-hop reasoning. Here we draw inspi-
ration from how people constructed multi-hop QA
datasets. Take HotpotQA (Yang et al., 2018) as
an example. It first collected candidate evidence
pairs that contain two paragraphs (A, B), with a
hyperlink from A to B so that the topic entity of B
is a bridging entity that connects A and B. Crowd
workers then wrote questions based on each evi-
dence pair. Inspired by this process, we combine
multiple pieces of evidence in each pre-training
example and predict multiple masked entities si-
multaneously. The detailed process is described
below. Figure 1 shows two examples.

We start by sampling up to two entity pairs
from the query sentence and one evidence piece
(sentence or table) for each entity pair. We then
mask one entity in each pair as the “answer” to
predict. The resulting pre-training examples fall
into three categories: (1) Two disjoint entity pairs
{(a,b), (¢,d)} are sampled from the query, and
one entity from each pair, e.g., {a, c}, is masked.
This is similar to a combination of two single-
hop questions. (2) The two sampled entity pairs
{(a,b), (b,c)} share a common entity b, and b is
masked. The model needs to find two sets of enti-
ties that respectively satisfy the relationship with
a and ¢, and take an intersection (Type II in Hot-
potQA; see Ex. 1 in Figure 1). (3) The two sampled
entity pairs {(a, b), (b, ¢)} share a common entity
b, and {b, c} are masked. Here b is the bridging
entity that connects a and c. The model needs to

first identify b and then recover ¢ based on its rela-
tionship with b (Type I and Type III in HotpotQA;
see Ex. 2 in Figure 1). We also mask an entity
from the query that is not shown in the evidence to
simulate unanswerable cases. All sampling is done
randomly during pre-training.

We prepare pre-training data for two settings: (1)
one with only textual evidence (text-only) and (2)
the other including at least one tabular evidence
in each sample (hybrid). For the text-only setting,
approximately 7.6M query sentences, each con-
taining 2 entity pairs and paired with 3 different
textual evidence on average are extracted. For the
hybrid setting, we select approximately 3.2M query
sentences, each containing 3.5 entity pairs that are
paired with 5.8 different evidence on average.

4 Pre-training

4.1 Encoder

In this work, textual and tabular evidence is consid-
ered. For the text-only setting, we use the standard
transformer encoder in BERT (Devlin et al., 2019).
For settings where the input contains tables, we
adopt the transformer variant recently introduced
in TAPAS (Herzig et al., 2020), which uses extra
token-type embeddings (indicating the row/column
position of a token) to model the table structure.

4.2 Span Reasoning Objective

Now we describe our span reasoning objective,
which can advance the reasoning capabilities of a
pre-trained model.

Given a sample collected for pre-training as de-
scribed in Section 3.3, we replace the masked enti-
ties A = {a1,...,a,} (n<3)in the query sentence
q with special [QUESTION] tokens. The task then
becomes recovering these masked entities from the
given evidence E (concatenation of the sampled ev-
idence). Specifically, we first concatenate ¢, E' and
add special tokens to form the input sequence as
[[CLS],q, [SEP], E], and get the contextualized
representation x with the encoder. Since we have
multiple entities in ¢ masked with [QUESTION],
for each a;, we use its associated [QUESTION]
representation as a dynamic query vector x,, to
extract its start and end position s, e of a; in F (i.e.,
question-aware answer extractTion).

exp (Xs SXa;

P(sla, B) = >k eXE) (x];erii)
exp x;rExa,i

Plelg, B) = > exi) (x;Exii)
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Here S, E are trainable parameters. x,, is the
representation of special token [QUESTION] cor-
responding to a;; Xy is the k-th token in E. If no
answer can be found in the provided evidence, we
set s, e to point to the [CLS] token.

The span reasoning loss is then calculated as
follows:

Lass = — Z (logP (sa;lq, E) +10gP (eq;|q, E)) (2)
a; €A

We name this objective as span reasoning, as
it differs from the span prediction/selection objec-
tives in existing pre-training work such as SpanBert
(Joshi et al., 2020), Splinter (Ram et al., 2021), and
SSPT (Glass et al., 2020) in the following ways:
(1) Unlike SpanBert and Splinter that use single
contiguous paragraph as context, where the models
may focus on local cues, we encourage the model
to do long-range contextualization by including
both query and evidence as input, which can come
from different passages, and recovering the masked
entities by grounding them on the evidence F. (2)
Unlike SSPT, we improve the model’s ability to
reason across multiple pieces of evidence by in-
cluding two disjoint pieces of evidence in a single
sample and scattering the answer entities among
them to mimic different types of reasoning chains.
(3) Unlike all existing works, we mimic the sce-
nario where a span cannot be inferred based on the
given contexts, by masking entities in ¢ that do not
appear in FE, in which case the model is trained to
select the special [CLS] token.

4.3 Final Objective

We also include the masked language modeling
(MLM) objective in pre-training to leverage other
tokens in the input that are not entities. In particular,
we randomly mask tokens that are not an entity
or token in the header row for tables, and use an
MLM objective to recover them. Following the
default parameters from BERT, we use a masking
probability of 15%.

The final loss is the sum of grounded span selec-
tion loss and masked language modeling loss. Fol-
lowing previous works (Glass et al., 2020; Herzig
et al., 2020), we initialize with a pre-trained en-
coder, and extend the pre-training with our objec-
tives. For the text part, we pre-train two mod-
els with BERT-Base (denoted as ReasonBerts)
and RoBERTa-Base (denoted as ReasonBertr); for
the table part, we use TAPAS-Base (denoted as
ReasonBertr). More implementation details of pre-
training are included in Appendix A.2.

MRQA HotpotQA NQTables HybridQA
# train 86136.5 88881 17112 62686
# dev - 1566 1901 3466
# test 9704 7405 1118 3463
# evidence 1 10 8.7 34.7
# tokens* 374.9 89.1 289.6 156.3
has text/table vIX vIX X IV

Table 2: Dataset statistics. The statistics for MRQA are
averaged over all 6 datasets. # tokens* is the average
number of tokens per evidence.

S Experiments

5.1 Datasets

We conduct thorough experiments with a wide
range of extractive QA datasets. Statistics are sum-
marized in Table 2.

MRQA (Fisch et al., 2019). A single-hop extrac-
tive QA benchmark that unifies various existing
QA datasets into the same format. Here we use the
in-domain subset that contains 6 datasets: SQUAD
(Rajpurkar et al., 2016), NewsQA (Trischler et al.,
2017), TriviaQA (Joshi et al., 2017), SearchQA
(Dunn et al., 2017), HotpotQA (Yang et al., 2018)
and Natural Questions (Kwiatkowski et al., 2019).
Similar to Ram et al. (2021), we adapt these
datasets to the few-shot setting by randomly sam-
pling smaller subsets from the original training set
for training, and use the original development set
for testing.

HotpotQA (Yang et al., 2018). A multi-hop QA
dataset that requires reasoning over multiple pieces
of evidence. Here we follow the distractor set-
ting, where 10 paragraphs are provided to answer a
question while only two of them contain relevant
information. We split 10% of the original train-
hard split for development, and use the original
development set for testing.

NQTables (Kwiatkowski et al., 2019). A subset of
the Natural Questions dataset, where at least one
answer to the question is present in a table. We ex-
tract 19,013 examples from the original training set
(307,373 examples) and split them with a 9:1 ratio
for training and development. The test set is then
created from the original development split (7,830
examples) and contains 1,118 examples. Here we
only keep tables from the original Wikipedia article
as evidence. Similar subsets are also used in Herzig
et al. (2021) and Zayats et al. (2021).

HybridQA (Chen et al., 2020). A multi-hop QA
dataset with hybrid contexts. Each example con-
tains a table and several linked paragraphs.



Train. Size Model SQuAD  TriviaQA NQ NewsQA SearchQA HotpotQA  Average
BERT 9.9+0.6 15.4+13  20.5+15  6.5+1.2 16.8+1.2 9.6+1.6 13.1
RoBERTa 10.3+1.1 21.0431  22.5421 6.7+20 23.443.5 11.2+1.0 15.9
SpanBERT 157436  27.4441 243+21  8.1+14 24.1+3.2 16.3+2.0 19.3
16 SSPT 10.8+1.2  21.2438 23.7+41  6.5+1.9 25.8+2.6 9.1+15 16.2
Splinter 16.7459  23.9+38 25.1+28 11.6+1.0  23.6+45 15.1+355 19.3
Splinter* 54.6 18.9 27.4 20.8 26.3 24.0 28.7
ReasonBerts  33.2+40 37.2+26 33.1+2.7 11.8+23 46.1+5.2 22.442.8 30.6
ReasonBertr  41.3+55 45.5+58 33.6+3.9 16.2+32  45.8+45 34.1+29 36.1
BERT 21.5+1.4 239408 31.7+08 11.3+13  32.6+23 14.0+0.8 22.5
RoBERTa 48.8+4.2  36.0+2.9 36.4+20 22.8+24 41.3+2.0 35.2+1.4 36.7
SpanBERT 61.24+47 488466 38.8426 31.0+53  50.0+3.7 44.0+2.3 45.7
128 SSPT 41.545.0 30.3+37 35.0+24 14.0436  42.8+35 23.7+3.4 31.2
Splinter 55.0+103 45.7+41  41.1+27 339428  48.8+3.7 46.9+7.1 45.2
Splinter* 72.7 44.7 46.3 43.5 47.2 54.7 51.5
ReasonBerts  58.5+22  56.2+06 46.742.6 27.8+06  60.8+1.7 45.2+2.3 49.2
ReasonBertr  66.7+29  62.1+09 49.8+1.6 35.7+15 62.3+1.7 57.2+0.6 55.6
BERT 64.1+0.9 41.6+26 50.1+06 43.0+03  53.1+1.0 46.5+1.9 49.7
RoBERTa 779+05 622413 60.3+06 55.0+05  67.5+08 63.4+0.8 64.4
SpanBERT 81.1+0.7  67.0+1.0 632409 56.4+0.4 70.0+0.8 67.6+1.1 67.5
1024 SSPT 77.6£1.4  60.1+20 58.7+0.7 52.8+1.1 65.9+0.8 63.3+1.6 63.1
Splinter 79.8435  67.3415 63.8405 54.6+14  68.9403 68.4+1.2 67.1
Splinter* 82.8 64.8 65.5 57.3 67.3 70.3 68.0
ReasonBerts 76.9+05 67.4+05 63.6+06 52.2+05 70.6+0.6 67.8+0.5 66.4
ReasonBertr  79.7+03  70.1+02 65.0+09 54.7+06  72.8+0.4 69.7+0.6 68.7

Table 3: Few-shot learning results on MRQA datasets. Best and Second Best results are highlighted. We report
the average F1 score over five runs. Splinter* is the result reported in the original paper, where the authors use a
deeper model with additional transformation layers on top of the encoder.

5.2 Baselines

We conduct a comprehensive comparison of
ReasonBert with existing pre-training methods.
BERT (Devlin et al., 2019). A deep transformer
model pre-trained with masked languge model
(MLM) and next sentence prediction objectives.
RoBERTa (Liu et al., 2019b). An optimized ver-
sion of BERT that is pre-trained with enlarged text
corpus.

SpanBERT (Joshi et al., 2020). A pre-training
method designed to better represent and predict
spans of text. It extends BERT by masking contigu-
ous random spans, and training the span boundary
representation to predict the entire masked span.
SSPT (Glass et al., 2020). A pre-training method
designed to improve question answering by train-
ing on cloze-like training instances. Unlike
ReasonBert, SSPT only masks a single span in the
query sentence and predicts it based on an evidence
paragraph provided by a separated retriever.
Splinter (Ram et al., 2021). A pre-training method
optimized for few-shot question answering, where
the model is pre-trained by masking and predicting
recurring spans in a passage.

TAPAS (Herzig et al., 2020). A pre-training

method designed to learn representations for ta-
bles. The model is pre-trained with MLM on tables
and surrounding texts extracted from Wikipedia.

For fair comparison, in each task, we use the
same model architecture with different pre-trained
encoders, which is similar to the one used for
span reasoning in pre-training. We append the
[QUESTION] token to a question and construct
the input sequence the same way as in pre-training.
We then score all the start, end locations and rank
all spans (s, e) (See Eqn. 3 and 4 in Appendix). We
use a pre-trained encoder and learn the answer ex-
traction layers (S, E in Eqn. 1) from scratch during
fine-tuning.

Unless otherwise stated, we use the pre-trained
base version so that all models have similar ca-
pacity (110M parameters for ReasonBerts, 125M
parameters for ReasonBertr, and 111M parameters
for ReasonBertr).

5.3 Few-shot Single-hop Text QA

We first experiment with the easier, single-hop
MRQA benchmark under the few-shot setting to
show that our pre-training approach learns gen-
eral knowledge that can be transferred to down-
stream QA tasks effectively. Results are shown in



Table 3. We can see that ReasonBert outperforms
pre-trained language models like BERT, RoBERTa
and SpanBERT by a large margin on all datasets,
particularly with an average absolute gain of 20.3%
and 14.5% over BERT and RoBERTa respectively.
Compared with pre-training methods like SSPT
and Splinter, ReasonBert also shows superior per-
formance and obtains the best results on average.
Under the full-data setting, ReasonBert performs
competitively and all methods achieve similarly
high accuracy. Please refer to Table 8 in Appendix
for more details.

5.4 Multi-hop Text QA

To demonstrate that our approach is useful in con-
ducting deep reasoning over multiple contexts, we
experiment with the HotpotQA dataset. Here we
design a simplified multi-hop QA model that first
selects relevant paragraphs as evidence, and then
extracts the answer from the top selected evidence.
In addition to comparing ReasonBert with other
pre-training methods using the same base model,
we also show results for HGN (Fang et al., 2020),
which is one of the top ranked models on the Hot-
potQA leaderboard that uses a more sophisticated
model design.

Results are shown in Table 4. All models per-
form very well for evidence selection, with over
96% top 3 recall, but ReasonBert still maintains a
slim lead over baselines. ReasonBert provides a
5.3% improvement for BERT and a 1.8% improve-
ment for ROBERTa on overall F1 score, and outper-
forms all other pre-training methods. ReasonBert
also outperforms the HGN model with BERT, but
is lower than the one using RoOBERTa-Large, which
is probably due to simpler design and smaller size
of the model. We further experiment under the few-
shot setting. Here we focus on the QA performance,
so we reuse the evidence selector trained with full
data for each model, and train the QA module with
different fractions of training data. We can see that
the advantage of using ReasonBert is more obvi-
ous with limited training data. With 1% of training
data, ReasonBertr obtains F1 score of 63.1%, a
7.1% absolute gain over ROBERTa. Please see Ap-
pendix A.3 and B.2 for implementation details and
the full few-shot results.

5.5 Table QA

We demonstrate our approach also works with
structured data like tables using the NQTables
dataset. We first use a text based RoBERTa en-

Model Recall 1% Full
Top2 Top3 FI EM F1 EM
HGNRoBERTa-Large - - - - 82.2
HGNBERT - - - - 74.8 -
BERT 924 969 398 28.6 719 579
RoBERTa 93.1 97.5 56.0 43.1 763 629
SpanBERT 93.6 977 565 441 763 629
SSPT 939 979 547 418 754 615
Splinter 94.1 979 57.0 442 765 62.5
ReasonBerts 93.8 97.8 576 453 772 634

ReasonBertr 940 980 631 502 781 64.8

Table 4: Results on HotpotQA.

Dev Test
Model FI EM Fl EM
RoBERTa 589 528 63.6 58.1
ReasonBertk 619 564 663 60.9
TAPAS 649 578 659 59.6
ReasonBertr 69.2 63.5 72.5 67.3

Table 5: Results on NQTables.

coder as baseline, which linearizes a table as a text
sequence, by concatenating tokens row by row and
separating cells with the [SEP] token. We then
experiment with the structure-aware encoder from
TAPAS and compare the pre-trained TAPAS en-
coder with the one pre-trained using ReasonBert.
Results are shown in Table 5. First, we can see that
TAPAS outperforms RoBERTa by 2.3%, demon-
strating the importance of modeling the table struc-
ture. ReasonBertr slightly outperforms TAPAS
on test set, but ReasonBertr further boosts F1 to
72.5%, resulting in at least 6.6% absolute gains
over existing methods.

5.6 Hybrid QA

We further evaluate our approach on HybridQA, a
multi-hop question answering dataset using both
text and tables as evidences. Chen et al. (2020) pro-
poses a baseline model HYBRIDER that divides
the problem into four tasks: linking, ranking, hop-
ping and reading comprehension. We follow their
design but simplify the model by merging ranking
and hopping into a single cell selection task. We
use the linking results from Chen et al. (2020), and
then train a table based cell selector to select the
cell which is the answer or is linked to the pas-
sage that contains the answer. Finally, we train a
text based QA model to extract the final answer by
taking the table snippet that contains the selected
cell, and concatenating it with the hyperlinked pas-
sage as evidence. Results are shown in Table 6.
First, we can see that our simplified architecture
works surprisingly well, with TAPAS for cell se-



Model Cell Selection Dev Test
ode Topl Top2 FI EM Fl EM
HYBRIDERBERT-Base - - 50.9 437 502 425
HYBRIDERBERT-Large ~ 68.5 - 50.7 440 506 43.8
TAPAS+RoBERTa 73.3 797 640 573 633 56.1
ReasonBert 76.1 81.3 67.2 603 653 58.0

Table 6: Results on HybridQA.
1024 Full

Model FI EM Fl EM
ReasonBertr 65.2 528 79.2 658
- MLM 63.7 513 777 64.0
— Unanswerable Ent. 644 51.8 784 65.0
— Multiple Evidences 60.8 48.6 77.8 64.5

Table 7: Ablation study on HotpotQA.

lection and RoBERTa for QA, we already outper-
forms HYBRIDER. The performance is further im-
proved by replacing the encoders with ReasonBertr
and ReasonBertr, and substantially outperforms
the best model on the leaderboard (52.04 EM) at
the time of submission.

6 Ablation Study

We further conduct ablation studies on HotpotQA
to verify our design choices in Table 7. Here we
remove different components of ReasonBertr and
test them under both the full-data and few-shot
setting (with 1024 examples). To save comput-
ing resources, here all models are pre-trained with
5 epochs. We can see that combining multiple
evidences and predicting multiple masked spans
simultaneously brings the most gain, especially un-
der the few-shot setting. This is probably because
the setting allows us to simulate complex reasoning
chains and encourage the model to do deep reason-
ing. Masking unanswerable entities and utilizing
MLM also help to improve performance.

7 Related Work

Language Model pre-training. Contextualized
word representations pre-trained on large-scale un-
labeled text corpus have been widely used in NLP
lately. Most prevalent approaches are variants of
pre-trained language models like BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019b).
More recently, generative language models like
BART (Lewis et al., 2020) and GPT-3 (Brown et al.,
2020) have also achieved great success in both
generation and comprehension tasks. Meanwhile,
there have also been works that use pre-training to
accommodate specific needs of downstream NLP
tasks, like REALM (Guu et al., 2020) for open-

domain retrieval and SpanBERT (Joshi et al., 2020)
for representing and predicting spans of text.
Machine Reading Comprehension. Machine
reading comprehension (MRC) or extractive QA
has become an important testbed for natural lan-
guage understanding evaluation (Fisch et al., 2019).
The conventional method to train an MRC model
usually relies on large-scale supervised training
data (Chen et al., 2017; Zhang et al., 2020). Re-
cently, more and more works have focused on de-
veloping self-supervised methods that can reduce
the need of labeled data for more efficient domain
adaptation, while achieving the same or even better
performance. One direction is question genera-
tion (Liangming Pan, 2021), which automatically
generates questions and answers from unstructured
and structured data sources using rules or neural
generators. Recent works also try to directly sim-
ulate questions with cloze-like query sentences.
Splinter (Ram et al., 2021) proposes to pre-train the
model by masking and predicting recurring spans.
However, this limits the query and context to come
from the same passage. In contrast, SSPT (Glass
et al., 2020) also pre-trains with a span selection
objective, but uses a separate document retriever to
get relevant paragraphs as context.

Our work is most related to SSPT, but uses dis-
tant supervision to collect query-evidence pairs and
thus obviate the need for retriever. Meanwhile, to
encourage the model to learn complex reasoning,
we mimic different types of reasoning chains by
masking multiple entities, including unanswerable
ones, and simultaneously inferring them from dis-
joint pieces of evidence. Our method also works
with heterogeneous sources including both text and
tables, while most existing works consider only
text-based question answering.

8 Conclusion and Future Work

We propose ReasonBert, a novel pre-training
method to enhance the reasoning ability of lan-
guage models. The resulting model obtains sub-
stantial improvements on multi-hop and hybrid QA
tasks that require complex reasoning, and demon-
strates superior few-shot performance. In the fu-
ture, we plan to use our query-evidence pairs col-
lected by distant supervision to improve the re-
trieval performance for open-domain QA, as well
as empower ReasonBert to handle more types of
reasoning, like comparison and numeric reasoning,
in natural language understanding.
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A Implementation Details

A.1 Pre-training Data Collection Details

We extract paragraphs from Wikipedia XML
dump? use JWPL? and tables use wikitextparser®.
The paragraphs are then processed with SparkNLP>
for sentence boundary detection and named entity

recognition.

A.2 Pre-training Details

We set the max length of query sentences to 100
tokens and the max length of each evidence sam-
ple to 200 if there are two evidence selections or
400 if there is only one. For textual evidence, we
include the neighbouring sentences from the same
paragraph as extra context for the selected evidence
sentence and clip to the max evidence length. For
tabular evidences, we take a snippet of the original
table, and truncate the cells to 20 tokens. We al-
ways keep the first row and column in the table, as
they often contain important information such as
headers and subject entities. Based on the selected
entity pair, we sample up to 5 columns and include
as many rows as possible until reaching the budget.

We initialize our encoder with BERT-Base® and
RoBERTa-Base’ for the text part, and TAPAS-
base® for the table part. We train ReasonBert us-
ing AdamW (Loshchilov and Hutter, 2019) for 10
epochs with batches of 256 sequences of length
512; this is approximately 290k steps with text-
only data, and 120k steps with hybrid data. We
base our implementation on Huggingface Trans-
formers (Wolf et al., 2020), and train on a single
eight-core TPU on the Google Cloud Platform.

A.3 Fine-tuning Details

To extract the answer span from given evidence,
we score all the start, end locations and rank all
spans (s, e) by g(s, e|q, F) as follows:

2https:
3https:
4https:

//dumps.wikimedia.org/
//dkpro.github.io/dkpro-jwpl/
//github.com/5j9/wikitextparser
Shttps://nlp.johnsnowlabs.com/
®https://huggingface.co/
bert-base-uncased/tree/main
7https://huggingface.co/roberta—base/
tree/main
$https://huggingface.co/google/
tapas—-base/tree/no_reset
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fstart = XSTSXW fena = XeTEXq
g(s,elq, E) = fstart(slq, E)
+ fena(elq, E)
— fetart([CLS]|q, E)
— fena([CLS] ‘Q:E)

For all fine-tuning experiments, we set the batch
size to 20 and use a maximal learning rate of 5 -
1075, which warms up in the first 10% of the steps,
and then decays linearly. We use the development
set for model selection if it is present, otherwise
we use the last model checkpoint.

Single-hop text QA. We split the text sequence to
fit the max input length by sliding a window with a
stride of 128 tokens.

For the few-shot setting, we fine-tune the model

for either 10 epochs or 200 steps (whichever is
larger). For the fully supervised setting, we fine-
tune the model for 2 epochs.
Multi-hop text QA. We design a simplified multi-
hop QA model that first selects relevant paragraphs
as evidence, and then extracts the answer from the
selected evidence samples. Specifically, we first
generate all possible paragraphs by sliding a 200-
token window over all articles with a stride of 128
tokens. We then train an evidence selector to pick
the top 3 evidence samples. As the information for
answering a question in HotpotQA is scattered in
two articles, we list all possible combinations of
paragraphs that come from two different articles
and concatenate them together to form the final
evidence. We then use the base QA model to extract
the answer based on the question and the combined
evidence.

We fine-tune the evidence selector model for 2

epochs, and the QA model for 5 epochs with full
data. For the few-shot setting, we fine-tune the QA
model for 10 epochs with 1&, 5% and 10% of the
training data, and for 5 epochs with 25% and 50%
of the training data.
Table QA. For the text based model, We split the
text sequence to fit the max input length by sliding
a window with a stride of 128 tokens. For the table
based model, we truncate each cell to 50 tokens,
and split the table into snippets horizontally. Same
as pre-training, we include the first row and column
in each table snippet.

We fine-tune the model for 5 epochs with full
data. For the few-shot setting, we fine-tune the QA
model for 10 epochs with 1&, 5% and 10% of the


https://dumps.wikimedia.org/
https://dkpro.github.io/dkpro-jwpl/
https://github.com/5j9/wikitextparser
https://nlp.johnsnowlabs.com/
https://huggingface.co/bert-base-uncased/tree/main
https://huggingface.co/bert-base-uncased/tree/main
https://huggingface.co/roberta-base/tree/main
https://huggingface.co/roberta-base/tree/main
https://huggingface.co/google/tapas-base/tree/no_reset
https://huggingface.co/google/tapas-base/tree/no_reset

training data, and for 5 epochs with 25% and 50%
of the training data.

Hybrid QA. Chen et al. (2020) proposes a baseline
model that divides the problem into four tasks: 1)
linking: link questions to their corresponding cells
use heuristics. 2) ranking: rank the linked cells
use a neural model. 3) hopping: based on the cell
selected in the last step, decide which neighboring
cell or itself contains the final answer. 4) reading
comprehension: extract the answer from the pre-
dicted cell or its linked paragraph. We follow their
design and simplify the model by merging ranking
and hopping into a single cell selection task. We
use the linking results from Chen et al. (2020). For
each linked cell, we take a snippet out of the origi-
nal table including the headers, the entire row of the
linked cell, and concatenate the evidence sentence
to the cell if it is linked through the hyperlinked pas-
sage. To select the cell, we train the model to select
separately on the token, row and column level, and
aggregate the final scores . More specifically, we
calculate the probability of selecting on the token
and row level as follows:

exp (xtT Sxai)

P(t|g,F) = =——F——*—~
DL exp (x;r Sxa;)
Scetr = meany,; ccell (X;rRxa> )
. €Xp (MaXceller, Seell
P(Ta =j | qu) ( J )

B Zk €xp (maXCEHE’I’k Scell)

Here S is the weight matrix of the token selection
header, we only consider the first token in each cell,
and ¢ is the first token of the selected cell. R is
the weight matrix of row selection header, and the
column selection probability is calculated similarly
with another column selection header. We first
score each cell by averaging over all tokens in that
cell. We then do a max pooling over all cells in
the row or column so the model can focus on the
strongest signal, for example the column header.
The final probability of selecting a cell is the sum
of token, row and column scores.

The input for the QA model then contains the
header of the table, the row of the selected cell, and
the hyperlinked passage.

We fine-tune the cell selection model for 2
epochs and the QA model for 3 epochs.

B More Results
B.1 Single-hop Text QA with Full Data

Results under the fully supervised setting is shown
is Table 8. ReasonBert performs competitively
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Figure 2: Few-shot learning results on HotpotQA.
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Figure 3: Few-shot learning results on NQTables.

and all methods achieve similarly high accuracy.
We still bring improvements upon BERT and
RoBERTa, and ReasonBertr get second best av-
erage score.

B.2 Few-shot Multi-hop Text QA

Results for training the QA model with different
fraction of training data is shown in Figure 2. We
can see that ReasonBert obtains larger gain under
the few-shot setting.

B.3 Few-shot Table QA

Results for training the Table QA model with
different fractions of training data is shown in
Figure 3. ReasonBertr consistently outperforms
TAPAS while ReasonBertr gradually matches the
performance of TAPAS with the increasing of train-
ing data.



# Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA Average

BERT 88.8 73.6 78.7 67.5 82.0 76.2 77.8
RoBERTa 92.0 78.1 80.6 71.9 85.2 79.1 81.2
All  SpanBERT 92.5 79.9 80.7 71.1 84.8 80.7 81.6
SSPT 91.1 77.0 80.0 69.7 83.3 79.7 80.1
Splinter 92.4 79.7 80.3 70.8 84.0 80.6 81.3
Splinter* 92.2 76.5 81.0 71.3 83.0 80.7 80.8
ReasonBerts 90.3 77.5 79.9 68.7 83.7 80.5 80.1
ReasonBertr 91.4 78.9 80.8 71.4 85.3 80.6 81.4

Table 8: F1 score on MRQA datasets with full data. Splinter* is the result reported in the original paper, where the
authors use a deeper model with additional transformation layers on top of the encoder.
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