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Abstract

We present ReasonBert, a pre-training method001
that augments language models with the ability002
to reason over long-range relations and multi-003
ple, possibly hybrid contexts. Unlike existing004
pre-training methods that only harvest learn-005
ing signals from local contexts of naturally oc-006
curring texts, we propose a generalized notion007
of distant supervision to automatically connect008
multiple pieces of text and tables to create pre-009
training examples that require long-range rea-010
soning. Different types of reasoning are sim-011
ulated, including intersecting multiple pieces012
of evidence, bridging from one piece of evi-013
dence to another, and detecting unanswerable014
cases. We conduct a comprehensive evalua-015
tion on a variety of extractive question answer-016
ing datasets ranging from single-hop to multi-017
hop and from text-only to table-only to hy-018
brid that require various reasoning capabilities019
and show that ReasonBert achieves remark-020
able improvement over an array of strong base-021
lines. Few-shot experiments further demon-022
strate that our pre-training method substan-023
tially improves sample efficiency.1024

1 Introduction025

Recent advances in pre-trained language models026

(LMs) have remarkably transformed the landscape027

of natural language processing. Pre-trained to re-028

construct naturally occurring utterances sampled029

from massive text corpora with unsupervised ob-030

jectives such as autoregressive language modeling031

(Radford and Narasimhan, 2018; Radford et al.,032

2019; Brown et al., 2020) and masked language033

modeling (MLM) (Devlin et al., 2019; Liu et al.,034

2019b; Joshi et al., 2020), PLMs encode a great035

deal of knowledge about language and significantly036

boost model performance on a wide range of down-037

stream tasks (Liu et al., 2019a; Wang et al., 2018,038

2019) ranging from spell checking (Awasthi et al.,039

1The pre-trained model is available in Huggingface
https://huggingface.co/Anonymous

2019) to sentiment analysis (Xu et al., 2019) and 040

semantic parsing (Rongali et al., 2020). 041

Existing unsupervised objectives for LM pre- 042

training primarily focus on consecutive, naturally 043

occurring text. For example, MLM enables LMs 044

to correctly predict the missing word “daugh- 045

ters” in the sentence “Obama has two __ , Malia 046

and Sasha.” based on the local context and the 047

knowledge stored in the parameters. However, 048

many tasks require reasoning beyond local con- 049

texts: multi-hop question answering (QA) (Yang 050

et al., 2018; Welbl et al., 2018) and fact verification 051

(Jiang et al., 2020) require reasoning over multi- 052

ple pieces of evidence, hybrid QA (Chen et al., 053

2020) requires simultaneously reasoning over un- 054

structured text and structured tables, and dialogue 055

systems require reasoning over the whole dialogue 056

history to accurately understand the current user 057

utterance (Semantic Machines et al., 2020). 058

To address this limitation in existing LM pre- 059

training, we propose ReasonBert, a pre-training 060

method to augment LMs to explicitly reason over 061

long-range relations and multiple contexts. Unlike 062

existing pre-training objectives that predict indi- 063

vidual masked tokens or spans within a contigu- 064

ous paragraph of text, ReasonBert pairs a query 065

sentence with multiple relevant pieces of evidence 066

drawn from possibly different places and defines 067

a new LM pre-training objective, span reasoning, 068

to recover entity spans that are masked out from 069

the query sentence by jointly reasoning over the 070

relevant evidence (Figure 1). In addition to text, we 071

also include tables as evidence to further empower 072

LMs to reason over hybrid contexts. 073

One major challenge in developing ReasonBert 074

lies in how to create a large set of query-evidence 075

pairs for pre-training. Unlike existing unsupervised 076

pre-training methods, examples with complex rea- 077

soning cannot be easily harvested from naturally oc- 078

curring texts. Instead, inspiration was drawn from 079

distant supervision (Mintz et al., 2009a), which 080
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Figure 1: Examples of our pre-training data acquired via distant supervision, which covers a wide range of topics
with both textual and tabular evidence. For each query sentence, we first select two pairs of entities (underlined)
to find two pieces of evidence via distant supervision. We then randomly mask one entity from each selected pair
and aim to recover it by reasoning over the evidence. Note that the two selected pairs may share a common entity;
in case this entity is masked, we can mimic different types of multi-hop reasoning, e.g., intersection (Ex. 1) and
bridging (Ex. 2). To simulate unanswerable cases, we additionally mask one entity (in blue) that does not exist in
the evidence. Figure best viewed in color.

assumes that “any sentence containing a pair of081

entities that are known to participate in a relation082

is likely to express that relation,” and generalize to083

our setting of multiple possibly hybrid pieces of084

evidence. Specifically, given a query sentence con-085

taining an entity pair, if we mask one of the entities,086

another sentence or table that contains the same087

pair of entities can likely be used as evidence to088

recover the masked entity. Moreover, to encourage089

deeper reasoning, we collect multiple examples of090

evidence that are jointly used to recover the masked091

entities in the query sentence, allowing us to scat-092

ter the masked entities among different pieces of093

evidence to mimic different types of reasoning. Fig-094

ure 1 illustrates several examples using such distant095

supervision. In Ex. 1, a model needs to check mul-096

tiple constraints (i.e., intersection reasoning type)097

and find “the beach soccer competition that is es-098

tablished in 1998.” In Ex. 2, a model needs to099

find “the type of the band that released Awaken the100

Guardian,” by first inferring the name of the band101

“Fates Warning” (i.e., bridging reasoning type).102

We replace the masked entities in a query sen-103

tence with the [QUESTION] tokens, and the new104

pre-training objective, span reasoning, is then to105

extract the masked entities from the provided evi-106

dence. We augment existing LMs like BERT (De-107

vlin et al., 2019) and RoBERTa (Liu et al., 2019b)108

by continuing to train them with the new objec-109

tive, which leads to ReasonBert, a new LM with110

better reasoning capabilities. We use a transformer 111

based encoder (Devlin et al., 2019) to encode the 112

concatenated query sentence and textual evidence. 113

When tabular evidence is present, we use the recent 114

structure-aware transformer from TAPAS (Herzig 115

et al., 2020) as the encoder to help capture the table 116

structure. 117

We evaluate ReasonBert on the extractive QA 118

task, which is arguably the most representative task 119

requiring reasoning about world knowledge. We 120

conduct a comprehensive evaluation using a variety 121

of popular datasets: MRQA (Fisch et al., 2019), a 122

single-hop QA benchmark including six datasets 123

from different domains; HotpotQA (Yang et al., 124

2018), a multi-hop QA dataset; NQTables, a sub- 125

set of the Natural Questions dataset (Kwiatkowski 126

et al., 2019) where answers can be found in ta- 127

bles; and HybridQA (Chen et al., 2020), a hybrid 128

multi-hop QA dataset that requires reasoning over 129

both tables and text. Under the few-shot setting, 130

ReasonBert substantially outperforms the baselines 131

in almost all datasets, demonstrating that the rea- 132

soning ability learned from pre-training can easily 133

transfer to downstream QA tasks and generalize 134

well across domains. Under the full-data setting, 135

ReasonBert obtains substantial gains in multi-hop 136

and hybrid QA datasets. Despite its simple model 137

architecture, ReasonBert achieves similar or bet- 138

ter performance compared with more sophisticated 139

state-of-the-art models for each dataset. 140
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2 Background141

Language model pre-training. Existing pre-142

training objectives such as MLMs (Devlin et al.,143

2019; Joshi et al., 2020) tend to implicitly memo-144

rize the learned knowledge in the parameters of the145

underlying neural network. In this work, we aim146

to augment pre-training by encouraging a model to147

reason about (instead of memorizing) world knowl-148

edge over the given contexts.149

Extractive question answering. To measure a150

model’s reasoning ability about world knowledge,151

we select extractive QA as a downstream task,152

which is perhaps one of the most representative153

tasks for this purpose. Given a question q and154

provided evidence E, an extractive QA model155

pθ(a|q, E) aims to select a contiguous span a from156

E that answers the question, or output a special157

token if E is not sufficient to answer the question.158

Our approach, ReasonBert, is inspired by this159

formulation and extends it to language model pre-160

training. The challenge in defining such a self-161

supervised task is in the creation of question-162

evidence pairs from unlabeled data. Moreover, we163

aim for a generic approach that works for a wide164

range of extractive QA settings including single-165

hop and multi-hop reasoning, hybrid contexts with166

both unstructured texts and structured tables, as167

well as few-shot settings. We discuss how to ad-168

dress the challenge and achieve this goal in the next169

two sections.170

3 Distant Supervision (DS) for171

Pre-training172

We use English Wikipedia as our data source for173

pre-training. We first extract sentences and tables174

from Wikipedia pages and then identify salient175

spans (such as named entities) from them. We176

apply the idea of distant supervision and match the177

sentences and tables to form query-evidence pairs,178

which are used to create pre-training examples.179

3.1 Data Collection180

Text. We first extract paragraphs from Wikipedia181

pages and split them into sentences. We consider182

named entities including both real-world entities183

(e.g., person, location) and temporal and numeric184

expressions (e.g., date and quantity) as potential185

answer entities for pre-training. We first identify186

real-world entities using existing hyperlinks. Since187

Wikipedia pages generally do not contain links188

Setting # queries # sent. # tab. # ent. pairs

Text-only 7.6M 8.4M - 5.5M
Hybrid 3.2M 4.3M 0.9M 6.0M

Table 1: Statistics about the pre-training data.

to themselves, we additionally detect such self- 189

mentions by searching the names and aliases of the 190

topic entity for each page. Temporal and numeric 191

expressions are identified using existing NER tool. 192

Table. We extract tables that are labeled as <wik- 193

itable> from Wikipedia, and only consider tables 194

with no more than 500 cells. First, real-world enti- 195

ties are detected using existing hyperlinks. Unlike 196

our method employed for textual sentences, we 197

do not use traditional NER tools here as they are 198

not tailored to work well on tables. Instead, for a 199

cell that does not contain hyperlinks, we match the 200

complete cell value with sentences that are closely 201

related to the table, sourced either from the same 202

page or a page containing a hyperlink pointing to 203

the current page. If the matched span in the sen- 204

tence contains a named entity, we consider the same 205

entity as being linked to the cell as well. Otherwise 206

we consider this cell as a unique entity in the table. 207

Please see Appendix A.1 for details about the 208

tools and resources we use. 209

3.2 Query-Evidence Pairing via DS 210

As described in Section 2, a standard QA sample is 211

composed of a question, an answer and evidence. 212

The model infers the relationship between the an- 213

swer and other entities in the question, and extract it 214

from the evidence. In this work, we try to simulate 215

such samples in pre-training. Given a sentence with 216

entities, it can be viewed as a question by masking 217

some entities as answers for prediction. The key 218

issue is then how to find evidence that contains not 219

only the answer entity, but also the relational infor- 220

mation for inference. Here we borrow the idea of 221

distant supervision (Mintz et al., 2009b). 222

Given a sentence as a query, we first extract pairs 223

of entities in it. For each entity pair, we then find 224

other sentences and tables that also contain the 225

same pair as evidence. Since we do not have the 226

known relation constraint in the original assump- 227

tion of distant supervision, we use the following 228

heuristics to collect evidence that has high quality 229

relational knowledge about the entities and is rel- 230

evant to the query. First, we only consider entity 231

pairs that contain at least one real-world entity. For 232

textual evidence, the entity pair needs to contain 233
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the topic entity of the Wikipedia page, which is234

more likely to have relations to other entities. For235

tabular evidence, we consider only entity pairs that236

are in the same row of the table, but they do not237

need to contain the topic entity, as in many cases238

the topic entity is not present in the tables. In both239

cases, the query and evidence should come from240

the same page, or the query contains a hyperlink241

pointing to the evidence page. For tabular evidence,242

we also allow for the case where the table contains243

a hyperlink pointing to the query page.244

3.3 Pre-training Data Generation245

Given the query-evidence pairs, a naive way to246

construct pre-training examples is to sample a sin-247

gle piece of evidence for the query, and mask a248

shared entity as “answer”, like Glass et al. (2020).249

However, this only simulates simple single-hop250

questions. In this work, we construct complex251

pre-training examples that require the model to252

conduct multi-hop reasoning. Here we draw inspi-253

ration from how people constructed multi-hop QA254

datasets. Take HotpotQA (Yang et al., 2018) as255

an example. It first collected candidate evidence256

pairs that contain two paragraphs (A,B), with a257

hyperlink from A to B so that the topic entity of B258

is a bridging entity that connects A and B. Crowd259

workers then wrote questions based on each evi-260

dence pair. Inspired by this process, we combine261

multiple pieces of evidence in each pre-training262

example and predict multiple masked entities si-263

multaneously. The detailed process is described264

below. Figure 1 shows two examples.265

We start by sampling up to two entity pairs266

from the query sentence and one evidence piece267

(sentence or table) for each entity pair. We then268

mask one entity in each pair as the “answer” to269

predict. The resulting pre-training examples fall270

into three categories: (1) Two disjoint entity pairs271

{(a, b), (c, d)} are sampled from the query, and272

one entity from each pair, e.g., {a, c}, is masked.273

This is similar to a combination of two single-274

hop questions. (2) The two sampled entity pairs275

{(a, b), (b, c)} share a common entity b, and b is276

masked. The model needs to find two sets of enti-277

ties that respectively satisfy the relationship with278

a and c, and take an intersection (Type II in Hot-279

potQA; see Ex. 1 in Figure 1). (3) The two sampled280

entity pairs {(a, b), (b, c)} share a common entity281

b, and {b, c} are masked. Here b is the bridging282

entity that connects a and c. The model needs to283

first identify b and then recover c based on its rela- 284

tionship with b (Type I and Type III in HotpotQA; 285

see Ex. 2 in Figure 1). We also mask an entity 286

from the query that is not shown in the evidence to 287

simulate unanswerable cases. All sampling is done 288

randomly during pre-training. 289

We prepare pre-training data for two settings: (1) 290

one with only textual evidence (text-only) and (2) 291

the other including at least one tabular evidence 292

in each sample (hybrid). For the text-only setting, 293

approximately 7.6M query sentences, each con- 294

taining 2 entity pairs and paired with 3 different 295

textual evidence on average are extracted. For the 296

hybrid setting, we select approximately 3.2M query 297

sentences, each containing 3.5 entity pairs that are 298

paired with 5.8 different evidence on average. 299

4 Pre-training 300

4.1 Encoder 301

In this work, textual and tabular evidence is consid- 302

ered. For the text-only setting, we use the standard 303

transformer encoder in BERT (Devlin et al., 2019). 304

For settings where the input contains tables, we 305

adopt the transformer variant recently introduced 306

in TAPAS (Herzig et al., 2020), which uses extra 307

token-type embeddings (indicating the row/column 308

position of a token) to model the table structure. 309

4.2 Span Reasoning Objective 310

Now we describe our span reasoning objective, 311

which can advance the reasoning capabilities of a 312

pre-trained model. 313

Given a sample collected for pre-training as de- 314

scribed in Section 3.3, we replace the masked enti- 315

tiesA = {a1, . . . , an} (n≤3) in the query sentence 316

q with special [QUESTION] tokens. The task then 317

becomes recovering these masked entities from the 318

given evidence E (concatenation of the sampled ev- 319

idence). Specifically, we first concatenate q, E and 320

add special tokens to form the input sequence as 321

[[CLS], q,[SEP], E], and get the contextualized 322

representation x with the encoder. Since we have 323

multiple entities in q masked with [QUESTION], 324

for each ai, we use its associated [QUESTION] 325

representation as a dynamic query vector xai to 326

extract its start and end position s, e of ai in E (i.e., 327

question-aware answer extraction). 328

P (s|q, E) =
exp

(
x>
s Sxai

)∑
k exp

(
x>
k Sxai

)
P (e|q, E) =

exp
(
x>
e Exai

)∑
k exp

(
x>
k Exai

) (1) 329

330
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Here S,E are trainable parameters. xai is the331

representation of special token [QUESTION] cor-332

responding to ai; xk is the k-th token in E. If no333

answer can be found in the provided evidence, we334

set s, e to point to the [CLS] token.335

The span reasoning loss is then calculated as336

follows:337

LGSS = −
∑
ai∈A

(logP (sai |q, E) + logP (eai |q, E)) (2)338

We name this objective as span reasoning, as339

it differs from the span prediction/selection objec-340

tives in existing pre-training work such as SpanBert341

(Joshi et al., 2020), Splinter (Ram et al., 2021), and342

SSPT (Glass et al., 2020) in the following ways:343

(1) Unlike SpanBert and Splinter that use single344

contiguous paragraph as context, where the models345

may focus on local cues, we encourage the model346

to do long-range contextualization by including347

both query and evidence as input, which can come348

from different passages, and recovering the masked349

entities by grounding them on the evidence E. (2)350

Unlike SSPT, we improve the model’s ability to351

reason across multiple pieces of evidence by in-352

cluding two disjoint pieces of evidence in a single353

sample and scattering the answer entities among354

them to mimic different types of reasoning chains.355

(3) Unlike all existing works, we mimic the sce-356

nario where a span cannot be inferred based on the357

given contexts, by masking entities in q that do not358

appear in E, in which case the model is trained to359

select the special [CLS] token.360

4.3 Final Objective361

We also include the masked language modeling362

(MLM) objective in pre-training to leverage other363

tokens in the input that are not entities. In particular,364

we randomly mask tokens that are not an entity365

or token in the header row for tables, and use an366

MLM objective to recover them. Following the367

default parameters from BERT, we use a masking368

probability of 15%.369

The final loss is the sum of grounded span selec-370

tion loss and masked language modeling loss. Fol-371

lowing previous works (Glass et al., 2020; Herzig372

et al., 2020), we initialize with a pre-trained en-373

coder, and extend the pre-training with our objec-374

tives. For the text part, we pre-train two mod-375

els with BERT-Base (denoted as ReasonBertB)376

and RoBERTa-Base (denoted as ReasonBertR); for377

the table part, we use TAPAS-Base (denoted as378

ReasonBertT). More implementation details of pre-379

training are included in Appendix A.2.380

MRQA HotpotQA NQTables HybridQA

# train 86136.5 88881 17112 62686
# dev - 1566 1901 3466
# test 9704 7405 1118 3463
# evidence 1 10 8.7 34.7
# tokens* 374.9 89.1 289.6 156.3
has text/table 3/7 3/7 7/3 3/3

Table 2: Dataset statistics. The statistics for MRQA are
averaged over all 6 datasets. # tokens* is the average
number of tokens per evidence.

5 Experiments 381

5.1 Datasets 382

We conduct thorough experiments with a wide 383

range of extractive QA datasets. Statistics are sum- 384

marized in Table 2. 385

MRQA (Fisch et al., 2019). A single-hop extrac- 386

tive QA benchmark that unifies various existing 387

QA datasets into the same format. Here we use the 388

in-domain subset that contains 6 datasets: SQuAD 389

(Rajpurkar et al., 2016), NewsQA (Trischler et al., 390

2017), TriviaQA (Joshi et al., 2017), SearchQA 391

(Dunn et al., 2017), HotpotQA (Yang et al., 2018) 392

and Natural Questions (Kwiatkowski et al., 2019). 393

Similar to Ram et al. (2021), we adapt these 394

datasets to the few-shot setting by randomly sam- 395

pling smaller subsets from the original training set 396

for training, and use the original development set 397

for testing. 398

HotpotQA (Yang et al., 2018). A multi-hop QA 399

dataset that requires reasoning over multiple pieces 400

of evidence. Here we follow the distractor set- 401

ting, where 10 paragraphs are provided to answer a 402

question while only two of them contain relevant 403

information. We split 10% of the original train- 404

hard split for development, and use the original 405

development set for testing. 406

NQTables (Kwiatkowski et al., 2019). A subset of 407

the Natural Questions dataset, where at least one 408

answer to the question is present in a table. We ex- 409

tract 19,013 examples from the original training set 410

(307,373 examples) and split them with a 9:1 ratio 411

for training and development. The test set is then 412

created from the original development split (7,830 413

examples) and contains 1,118 examples. Here we 414

only keep tables from the original Wikipedia article 415

as evidence. Similar subsets are also used in Herzig 416

et al. (2021) and Zayats et al. (2021). 417

HybridQA (Chen et al., 2020). A multi-hop QA 418

dataset with hybrid contexts. Each example con- 419

tains a table and several linked paragraphs. 420
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Train. Size Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA Average

16

BERT 9.9±0.6 15.4±1.3 20.5±1.5 6.5±1.2 16.8±1.2 9.6±1.6 13.1
RoBERTa 10.3±1.1 21.0±3.1 22.5±2.1 6.7±2.0 23.4±3.5 11.2±1.0 15.9
SpanBERT 15.7±3.6 27.4±4.1 24.3±2.1 8.1±1.4 24.1±3.2 16.3±2.0 19.3
SSPT 10.8±1.2 21.2±3.8 23.7±4.1 6.5±1.9 25.8±2.6 9.1±1.5 16.2
Splinter 16.7±5.9 23.9±3.8 25.1±2.8 11.6±1.0 23.6±4.5 15.1±3.5 19.3
Splinter* 54.6 18.9 27.4 20.8 26.3 24.0 28.7
ReasonBertB 33.2±4.0 37.2±2.6 33.1±2.7 11.8±2.3 46.1±5.2 22.4±2.8 30.6
ReasonBertR 41.3±5.5 45.5±5.8 33.6±3.9 16.2±3.2 45.8±4.5 34.1±2.9 36.1

128

BERT 21.5±1.4 23.9±0.8 31.7±0.8 11.3±1.3 32.6±2.3 14.0±0.8 22.5
RoBERTa 48.8±4.2 36.0±2.9 36.4±2.0 22.8±2.4 41.3±2.0 35.2±1.4 36.7
SpanBERT 61.2±4.7 48.8±6.6 38.8±2.6 31.0±5.3 50.0±3.7 44.0±2.3 45.7
SSPT 41.5±5.0 30.3±3.7 35.0±2.4 14.0±3.6 42.8±3.5 23.7±3.4 31.2
Splinter 55.0±10.3 45.7±4.1 41.1±2.7 33.9±2.8 48.8±3.7 46.9±7.1 45.2
Splinter* 72.7 44.7 46.3 43.5 47.2 54.7 51.5
ReasonBertB 58.5±2.2 56.2±0.6 46.7±2.6 27.8±0.6 60.8±1.7 45.2±2.3 49.2
ReasonBertR 66.7±2.9 62.1±0.9 49.8±1.6 35.7±1.5 62.3±1.7 57.2±0.6 55.6

1024

BERT 64.1±0.9 41.6±2.6 50.1±0.6 43.0±0.3 53.1±1.0 46.5±1.9 49.7
RoBERTa 77.9±0.5 62.2±1.3 60.3±0.6 55.0±0.5 67.5±0.8 63.4±0.8 64.4
SpanBERT 81.1±0.7 67.0±1.0 63.2±0.9 56.4±0.4 70.0±0.8 67.6±1.1 67.5
SSPT 77.6±1.4 60.1±2.0 58.7±0.7 52.8±1.1 65.9±0.8 63.3±1.6 63.1
Splinter 79.8±3.5 67.3±1.5 63.8±0.5 54.6±1.4 68.9±0.3 68.4±1.2 67.1
Splinter* 82.8 64.8 65.5 57.3 67.3 70.3 68.0
ReasonBertB 76.9±0.5 67.4±0.5 63.6±0.6 52.2±0.5 70.6±0.6 67.8±0.5 66.4
ReasonBertR 79.7±0.3 70.1±0.2 65.0±0.9 54.7±0.6 72.8±0.4 69.7±0.6 68.7

Table 3: Few-shot learning results on MRQA datasets. Best and Second Best results are highlighted. We report
the average F1 score over five runs. Splinter* is the result reported in the original paper, where the authors use a
deeper model with additional transformation layers on top of the encoder.

5.2 Baselines421

We conduct a comprehensive comparison of422

ReasonBert with existing pre-training methods.423

BERT (Devlin et al., 2019). A deep transformer424

model pre-trained with masked languge model425

(MLM) and next sentence prediction objectives.426

RoBERTa (Liu et al., 2019b). An optimized ver-427

sion of BERT that is pre-trained with enlarged text428

corpus.429

SpanBERT (Joshi et al., 2020). A pre-training430

method designed to better represent and predict431

spans of text. It extends BERT by masking contigu-432

ous random spans, and training the span boundary433

representation to predict the entire masked span.434

SSPT (Glass et al., 2020). A pre-training method435

designed to improve question answering by train-436

ing on cloze-like training instances. Unlike437

ReasonBert, SSPT only masks a single span in the438

query sentence and predicts it based on an evidence439

paragraph provided by a separated retriever.440

Splinter (Ram et al., 2021). A pre-training method441

optimized for few-shot question answering, where442

the model is pre-trained by masking and predicting443

recurring spans in a passage.444

TAPAS (Herzig et al., 2020). A pre-training445

method designed to learn representations for ta- 446

bles. The model is pre-trained with MLM on tables 447

and surrounding texts extracted from Wikipedia. 448

For fair comparison, in each task, we use the 449

same model architecture with different pre-trained 450

encoders, which is similar to the one used for 451

span reasoning in pre-training. We append the 452

[QUESTION] token to a question and construct 453

the input sequence the same way as in pre-training. 454

We then score all the start, end locations and rank 455

all spans (s, e) (See Eqn. 3 and 4 in Appendix). We 456

use a pre-trained encoder and learn the answer ex- 457

traction layers (S,E in Eqn. 1) from scratch during 458

fine-tuning. 459

Unless otherwise stated, we use the pre-trained 460

base version so that all models have similar ca- 461

pacity (110M parameters for ReasonBertB, 125M 462

parameters for ReasonBertR, and 111M parameters 463

for ReasonBertT). 464

5.3 Few-shot Single-hop Text QA 465

We first experiment with the easier, single-hop 466

MRQA benchmark under the few-shot setting to 467

show that our pre-training approach learns gen- 468

eral knowledge that can be transferred to down- 469

stream QA tasks effectively. Results are shown in 470

6



Table 3. We can see that ReasonBert outperforms471

pre-trained language models like BERT, RoBERTa472

and SpanBERT by a large margin on all datasets,473

particularly with an average absolute gain of 20.3%474

and 14.5% over BERT and RoBERTa respectively.475

Compared with pre-training methods like SSPT476

and Splinter, ReasonBert also shows superior per-477

formance and obtains the best results on average.478

Under the full-data setting, ReasonBert performs479

competitively and all methods achieve similarly480

high accuracy. Please refer to Table 8 in Appendix481

for more details.482

5.4 Multi-hop Text QA483

To demonstrate that our approach is useful in con-484

ducting deep reasoning over multiple contexts, we485

experiment with the HotpotQA dataset. Here we486

design a simplified multi-hop QA model that first487

selects relevant paragraphs as evidence, and then488

extracts the answer from the top selected evidence.489

In addition to comparing ReasonBert with other490

pre-training methods using the same base model,491

we also show results for HGN (Fang et al., 2020),492

which is one of the top ranked models on the Hot-493

potQA leaderboard that uses a more sophisticated494

model design.495

Results are shown in Table 4. All models per-496

form very well for evidence selection, with over497

96% top 3 recall, but ReasonBert still maintains a498

slim lead over baselines. ReasonBert provides a499

5.3% improvement for BERT and a 1.8% improve-500

ment for RoBERTa on overall F1 score, and outper-501

forms all other pre-training methods. ReasonBert502

also outperforms the HGN model with BERT, but503

is lower than the one using RoBERTa-Large, which504

is probably due to simpler design and smaller size505

of the model. We further experiment under the few-506

shot setting. Here we focus on the QA performance,507

so we reuse the evidence selector trained with full508

data for each model, and train the QA module with509

different fractions of training data. We can see that510

the advantage of using ReasonBert is more obvi-511

ous with limited training data. With 1% of training512

data, ReasonBertR obtains F1 score of 63.1%, a513

7.1% absolute gain over RoBERTa. Please see Ap-514

pendix A.3 and B.2 for implementation details and515

the full few-shot results.516

5.5 Table QA517

We demonstrate our approach also works with518

structured data like tables using the NQTables519

dataset. We first use a text based RoBERTa en-520

Model
Recall 1% Full

Top 2 Top 3 F1 EM F1 EM

HGNRoBERTa-Large - - - - 82.2 -
HGNBERT - - - - 74.8 -
BERT 92.4 96.9 39.8 28.6 71.9 57.9
RoBERTa 93.1 97.5 56.0 43.1 76.3 62.9
SpanBERT 93.6 97.7 56.5 44.1 76.3 62.9
SSPT 93.9 97.9 54.7 41.8 75.4 61.5
Splinter 94.1 97.9 57.0 44.2 76.5 62.5
ReasonBertB 93.8 97.8 57.6 45.3 77.2 63.4
ReasonBertR 94.0 98.0 63.1 50.2 78.1 64.8

Table 4: Results on HotpotQA.

Model
Dev Test

F1 EM F1 EM

RoBERTa 58.9 52.8 63.6 58.1
ReasonBertR 61.9 56.4 66.3 60.9
TAPAS 64.9 57.8 65.9 59.6
ReasonBertT 69.2 63.5 72.5 67.3

Table 5: Results on NQTables.

coder as baseline, which linearizes a table as a text 521

sequence, by concatenating tokens row by row and 522

separating cells with the [SEP] token. We then 523

experiment with the structure-aware encoder from 524

TAPAS and compare the pre-trained TAPAS en- 525

coder with the one pre-trained using ReasonBert. 526

Results are shown in Table 5. First, we can see that 527

TAPAS outperforms RoBERTa by 2.3%, demon- 528

strating the importance of modeling the table struc- 529

ture. ReasonBertR slightly outperforms TAPAS 530

on test set, but ReasonBertT further boosts F1 to 531

72.5%, resulting in at least 6.6% absolute gains 532

over existing methods. 533

5.6 Hybrid QA 534

We further evaluate our approach on HybridQA, a 535

multi-hop question answering dataset using both 536

text and tables as evidences. Chen et al. (2020) pro- 537

poses a baseline model HYBRIDER that divides 538

the problem into four tasks: linking, ranking, hop- 539

ping and reading comprehension. We follow their 540

design but simplify the model by merging ranking 541

and hopping into a single cell selection task. We 542

use the linking results from Chen et al. (2020), and 543

then train a table based cell selector to select the 544

cell which is the answer or is linked to the pas- 545

sage that contains the answer. Finally, we train a 546

text based QA model to extract the final answer by 547

taking the table snippet that contains the selected 548

cell, and concatenating it with the hyperlinked pas- 549

sage as evidence. Results are shown in Table 6. 550

First, we can see that our simplified architecture 551

works surprisingly well, with TAPAS for cell se- 552
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Model
Cell Selection Dev Test
Top 1 Top 2 F1 EM F1 EM

HYBRIDERBERT-Base - - 50.9 43.7 50.2 42.5
HYBRIDERBERT-Large 68.5 - 50.7 44.0 50.6 43.8
TAPAS+RoBERTa 73.3 79.7 64.0 57.3 63.3 56.1
ReasonBert 76.1 81.3 67.2 60.3 65.3 58.0

Table 6: Results on HybridQA.

Model
1024 Full

F1 EM F1 EM

ReasonBertR 65.2 52.8 79.2 65.8
– MLM 63.7 51.3 77.7 64.0
– Unanswerable Ent. 64.4 51.8 78.4 65.0
– Multiple Evidences 60.8 48.6 77.8 64.5

Table 7: Ablation study on HotpotQA.

lection and RoBERTa for QA, we already outper-553

forms HYBRIDER. The performance is further im-554

proved by replacing the encoders with ReasonBertT555

and ReasonBertR, and substantially outperforms556

the best model on the leaderboard (52.04 EM) at557

the time of submission.558

6 Ablation Study559

We further conduct ablation studies on HotpotQA560

to verify our design choices in Table 7. Here we561

remove different components of ReasonBertR and562

test them under both the full-data and few-shot563

setting (with 1024 examples). To save comput-564

ing resources, here all models are pre-trained with565

5 epochs. We can see that combining multiple566

evidences and predicting multiple masked spans567

simultaneously brings the most gain, especially un-568

der the few-shot setting. This is probably because569

the setting allows us to simulate complex reasoning570

chains and encourage the model to do deep reason-571

ing. Masking unanswerable entities and utilizing572

MLM also help to improve performance.573

7 Related Work574

Language Model pre-training. Contextualized575

word representations pre-trained on large-scale un-576

labeled text corpus have been widely used in NLP577

lately. Most prevalent approaches are variants of578

pre-trained language models like BERT (Devlin579

et al., 2019) and RoBERTa (Liu et al., 2019b).580

More recently, generative language models like581

BART (Lewis et al., 2020) and GPT-3 (Brown et al.,582

2020) have also achieved great success in both583

generation and comprehension tasks. Meanwhile,584

there have also been works that use pre-training to585

accommodate specific needs of downstream NLP586

tasks, like REALM (Guu et al., 2020) for open-587

domain retrieval and SpanBERT (Joshi et al., 2020) 588

for representing and predicting spans of text. 589

Machine Reading Comprehension. Machine 590

reading comprehension (MRC) or extractive QA 591

has become an important testbed for natural lan- 592

guage understanding evaluation (Fisch et al., 2019). 593

The conventional method to train an MRC model 594

usually relies on large-scale supervised training 595

data (Chen et al., 2017; Zhang et al., 2020). Re- 596

cently, more and more works have focused on de- 597

veloping self-supervised methods that can reduce 598

the need of labeled data for more efficient domain 599

adaptation, while achieving the same or even better 600

performance. One direction is question genera- 601

tion (Liangming Pan, 2021), which automatically 602

generates questions and answers from unstructured 603

and structured data sources using rules or neural 604

generators. Recent works also try to directly sim- 605

ulate questions with cloze-like query sentences. 606

Splinter (Ram et al., 2021) proposes to pre-train the 607

model by masking and predicting recurring spans. 608

However, this limits the query and context to come 609

from the same passage. In contrast, SSPT (Glass 610

et al., 2020) also pre-trains with a span selection 611

objective, but uses a separate document retriever to 612

get relevant paragraphs as context. 613

Our work is most related to SSPT, but uses dis- 614

tant supervision to collect query-evidence pairs and 615

thus obviate the need for retriever. Meanwhile, to 616

encourage the model to learn complex reasoning, 617

we mimic different types of reasoning chains by 618

masking multiple entities, including unanswerable 619

ones, and simultaneously inferring them from dis- 620

joint pieces of evidence. Our method also works 621

with heterogeneous sources including both text and 622

tables, while most existing works consider only 623

text-based question answering. 624

8 Conclusion and Future Work 625

We propose ReasonBert, a novel pre-training 626

method to enhance the reasoning ability of lan- 627

guage models. The resulting model obtains sub- 628

stantial improvements on multi-hop and hybrid QA 629

tasks that require complex reasoning, and demon- 630

strates superior few-shot performance. In the fu- 631

ture, we plan to use our query-evidence pairs col- 632

lected by distant supervision to improve the re- 633

trieval performance for open-domain QA, as well 634

as empower ReasonBert to handle more types of 635

reasoning, like comparison and numeric reasoning, 636

in natural language understanding. 637
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A Implementation Details895

A.1 Pre-training Data Collection Details896

We extract paragraphs from Wikipedia XML897

dump2 use JWPL3 and tables use wikitextparser4.898

The paragraphs are then processed with SparkNLP5899

for sentence boundary detection and named entity900

recognition.901

A.2 Pre-training Details902

We set the max length of query sentences to 100903

tokens and the max length of each evidence sam-904

ple to 200 if there are two evidence selections or905

400 if there is only one. For textual evidence, we906

include the neighbouring sentences from the same907

paragraph as extra context for the selected evidence908

sentence and clip to the max evidence length. For909

tabular evidences, we take a snippet of the original910

table, and truncate the cells to 20 tokens. We al-911

ways keep the first row and column in the table, as912

they often contain important information such as913

headers and subject entities. Based on the selected914

entity pair, we sample up to 5 columns and include915

as many rows as possible until reaching the budget.916

We initialize our encoder with BERT-Base6 and917

RoBERTa-Base7 for the text part, and TAPAS-918

base8 for the table part. We train ReasonBert us-919

ing AdamW (Loshchilov and Hutter, 2019) for 10920

epochs with batches of 256 sequences of length921

512; this is approximately 290k steps with text-922

only data, and 120k steps with hybrid data. We923

base our implementation on Huggingface Trans-924

formers (Wolf et al., 2020), and train on a single925

eight-core TPU on the Google Cloud Platform.926

A.3 Fine-tuning Details927

To extract the answer span from given evidence,928

we score all the start, end locations and rank all929

spans (s, e) by g(s, e|q, E) as follows:930

2https://dumps.wikimedia.org/
3https://dkpro.github.io/dkpro-jwpl/
4https://github.com/5j9/wikitextparser
5https://nlp.johnsnowlabs.com/
6https://huggingface.co/

bert-base-uncased/tree/main
7https://huggingface.co/roberta-base/

tree/main
8https://huggingface.co/google/

tapas-base/tree/no_reset

fstart = x>
s Sxq, fend = x>

e Exq (3) 931

g(s, e|q, E) = fstart(s|q, E) (4) 932

+ fend(e|q, E) 933

− fstart([CLS]|q, E) 934

− fend([CLS]|q, E) 935

936

For all fine-tuning experiments, we set the batch 937

size to 20 and use a maximal learning rate of 5 · 938

10−5, which warms up in the first 10% of the steps, 939

and then decays linearly. We use the development 940

set for model selection if it is present, otherwise 941

we use the last model checkpoint. 942

Single-hop text QA. We split the text sequence to 943

fit the max input length by sliding a window with a 944

stride of 128 tokens. 945

For the few-shot setting, we fine-tune the model 946

for either 10 epochs or 200 steps (whichever is 947

larger). For the fully supervised setting, we fine- 948

tune the model for 2 epochs. 949

Multi-hop text QA. We design a simplified multi- 950

hop QA model that first selects relevant paragraphs 951

as evidence, and then extracts the answer from the 952

selected evidence samples. Specifically, we first 953

generate all possible paragraphs by sliding a 200- 954

token window over all articles with a stride of 128 955

tokens. We then train an evidence selector to pick 956

the top 3 evidence samples. As the information for 957

answering a question in HotpotQA is scattered in 958

two articles, we list all possible combinations of 959

paragraphs that come from two different articles 960

and concatenate them together to form the final 961

evidence. We then use the base QA model to extract 962

the answer based on the question and the combined 963

evidence. 964

We fine-tune the evidence selector model for 2 965

epochs, and the QA model for 5 epochs with full 966

data. For the few-shot setting, we fine-tune the QA 967

model for 10 epochs with 1&, 5% and 10% of the 968

training data, and for 5 epochs with 25% and 50% 969

of the training data. 970

Table QA. For the text based model, We split the 971

text sequence to fit the max input length by sliding 972

a window with a stride of 128 tokens. For the table 973

based model, we truncate each cell to 50 tokens, 974

and split the table into snippets horizontally. Same 975

as pre-training, we include the first row and column 976

in each table snippet. 977

We fine-tune the model for 5 epochs with full 978

data. For the few-shot setting, we fine-tune the QA 979

model for 10 epochs with 1&, 5% and 10% of the 980
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training data, and for 5 epochs with 25% and 50%981

of the training data.982

Hybrid QA. Chen et al. (2020) proposes a baseline983

model that divides the problem into four tasks: 1)984

linking: link questions to their corresponding cells985

use heuristics. 2) ranking: rank the linked cells986

use a neural model. 3) hopping: based on the cell987

selected in the last step, decide which neighboring988

cell or itself contains the final answer. 4) reading989

comprehension: extract the answer from the pre-990

dicted cell or its linked paragraph. We follow their991

design and simplify the model by merging ranking992

and hopping into a single cell selection task. We993

use the linking results from Chen et al. (2020). For994

each linked cell, we take a snippet out of the origi-995

nal table including the headers, the entire row of the996

linked cell, and concatenate the evidence sentence997

to the cell if it is linked through the hyperlinked pas-998

sage. To select the cell, we train the model to select999

separately on the token, row and column level, and1000

aggregate the final scores . More specifically, we1001

calculate the probability of selecting on the token1002

and row level as follows:1003

P (t|q, E) =
exp

(
x>
t Sxai

)∑
k exp

(
x>
k Sxai

)
Scell = meanxi∈cell

(
x>
i Rxa

)
P (ra = j | q, E) =

exp
(
maxcell∈rj Scell

)∑
k exp (maxcell∈rk Scell)

(5)1004

Here S is the weight matrix of the token selection1005

header, we only consider the first token in each cell,1006

and t is the first token of the selected cell. R is1007

the weight matrix of row selection header, and the1008

column selection probability is calculated similarly1009

with another column selection header. We first1010

score each cell by averaging over all tokens in that1011

cell. We then do a max pooling over all cells in1012

the row or column so the model can focus on the1013

strongest signal, for example the column header.1014

The final probability of selecting a cell is the sum1015

of token, row and column scores.1016

The input for the QA model then contains the1017

header of the table, the row of the selected cell, and1018

the hyperlinked passage.1019

We fine-tune the cell selection model for 21020

epochs and the QA model for 3 epochs.1021

B More Results1022

B.1 Single-hop Text QA with Full Data1023

Results under the fully supervised setting is shown1024

is Table 8. ReasonBert performs competitively1025

Figure 2: Few-shot learning results on HotpotQA.

Figure 3: Few-shot learning results on NQTables.

and all methods achieve similarly high accuracy. 1026

We still bring improvements upon BERT and 1027

RoBERTa, and ReasonBertR get second best av- 1028

erage score. 1029

B.2 Few-shot Multi-hop Text QA 1030

Results for training the QA model with different 1031

fraction of training data is shown in Figure 2. We 1032

can see that ReasonBert obtains larger gain under 1033

the few-shot setting. 1034

B.3 Few-shot Table QA 1035

Results for training the Table QA model with 1036

different fractions of training data is shown in 1037

Figure 3. ReasonBertT consistently outperforms 1038

TAPAS while ReasonBertR gradually matches the 1039

performance of TAPAS with the increasing of train- 1040

ing data. 1041
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# Model SQuAD TriviaQA NQ NewsQA SearchQA HotpotQA Average

All

BERT 88.8 73.6 78.7 67.5 82.0 76.2 77.8
RoBERTa 92.0 78.1 80.6 71.9 85.2 79.1 81.2
SpanBERT 92.5 79.9 80.7 71.1 84.8 80.7 81.6
SSPT 91.1 77.0 80.0 69.7 83.3 79.7 80.1
Splinter 92.4 79.7 80.3 70.8 84.0 80.6 81.3
Splinter* 92.2 76.5 81.0 71.3 83.0 80.7 80.8
ReasonBertB 90.3 77.5 79.9 68.7 83.7 80.5 80.1
ReasonBertR 91.4 78.9 80.8 71.4 85.3 80.6 81.4

Table 8: F1 score on MRQA datasets with full data. Splinter* is the result reported in the original paper, where the
authors use a deeper model with additional transformation layers on top of the encoder.

14


