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Figure 1: Multivariate time-series forecasting results comparing our method with the state-of-the-art
baselines, i.e., Informer (Zhou et al., 2021), N-BEATS (Oreshkin et al., 2020), and SCINet (Liu et al.,
2021). The analysis is conducted on electricity consuming load (ECL) dataset, with a prediction
length of seven days. The predictions of the baselines are inaccurately (a) shifted and (b) scaled.
When adopted to the baselines, our method significantly improves their forecasting performance
and better aligns the distribution of the prediction results with the groundtruth values.

ABSTRACT

Statistical properties such as mean and variance often change over time in time
series, i.e., time-series data suffer from a distribution shift problem. This change
in temporal distribution is one of the main challenges that prevent accurate time-
series forecasting. To address this issue, we propose a simple yet effective nor-
malization method called reversible instance normalization (RevIN), a generally-
applicable normalization-and-denormalization method with learnable affine trans-
formation. The proposed method is symmetrically structured to remove and re-
store the statistical information of a time-series instance, leading to significant
performance improvements in time-series forecasting, as shown in Fig. 1. We
demonstrate the effectiveness of RevIN via extensive quantitative and qualitative
analyses on various real-world datasets, addressing the distribution shift problem.

∗Both authors contributed equally. The order of the first authors was determined by coin flip.
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1 INTRODUCTION

Time-series forecasting plays a significant role in addressing various daily problems, including
health care, economics, and traffic data analyses (Kim et al., 2021a; Ahmadi et al., 2019; Park
et al., 2020). Recently, time-series forecasting models have achieved outstanding performance on
these problems, overcoming several challenges, such as long-term forecasting (Zhou et al., 2021;
Liu et al., 2021) and missing value imputation (Zhang et al., 2021; Kim et al., 2021b). However, the
time-series forecasting models often suffer badly from a unique characteristic in time-series data:
their statistical properties, e.g., mean and variance, can change over time. This is widely known as
the distribution shift problem, and it can yield discrepancies between the distributions of the training
and test data of the forecasting models. In time-series forecasting tasks, the training and test data
are usually divided from the original data based on a specific point in time. Accordingly, they often
hardly overlap, which is a common reason for model performance degradation. Furthermore, the in-
put sequences to the model can have different underlying distributions as well. We can assume that
the discrepancy between different input sequences can significantly degrade the model performance.

Under this assumption, if we remove non-stationary information from the input sequences, specifi-
cally, the mean and standard deviation of the instances, the discrepancy in the data distributions will
be reduced, thereby improving model performance. However, applying such normalization to the
model input can cause another problem since it can prevent the model from capturing the original
data distribution. It removes non-stationary information that can be important to predict future values
in the forecasting task. The model would need to reconstruct the original distribution only using the
normalized input, which degrades its forecasting performance due to the inherent limitation. Thus,
if we explicitly return the information removed by input normalization back to the model, the model
will not have to rebuild the original distribution by itself while keeping the advantage of normalizing
the input. To accomplish this, we propose to reverse the normalization applied to the input data in
the output layer, i.e., to denormalize the model output using the normalization statistics.

Inspired by this, we propose a simple yet effective normalization-and-denormalization method, re-
versible instance normalization (RevIN), which first normalizes the input sequences and then de-
normalizes the model output sequences to solve the time-series forecasting problems against distri-
bution shift. RevIN is symmetrically structured to return the original distribution information to the
model output by scaling and shifting the output in the denormalization layer in an amount equivalent
to the shifting and scaling of the input data in the normalization layer. To verify the effectiveness of
RevIN, we conduct extensive quantitative evaluations using several state-of-the-art time-series fore-
casting methods as the baselines: Informer (Zhou et al., 2021), N-BEATS (Oreshkin et al., 2020),
and SCINet (Liu et al., 2021). We also provide an in-depth analysis of the behavior of the proposed
approach, including verification of the assumptions on reversible instance normalization.

RevIN is a flexible, end-to-end trainable layer that can be applied to any arbitrarily chosen layers,
effectively suppressing non-stationary information (mean and variance of the instance) in one layer
and restoring it in another layer at a virtually symmetric position, e.g., input and output layers. De-
spite its remarkable performance, there has been no work on generalizing and expanding instance-
wise normalization-and-denormalization as a flexibly applicable, trainable layer in the time-series
domain. Recently, deep learning-based time-series forecasting approaches, such as Informer (Zhou
et al., 2021) and N-BEATS (Oreshkin et al., 2020), have shown outstanding performance in time-
series forecasting. However, they have overlooked the importance of normalization, merely using
simple global preprocessing of the model input without further exploration and expecting their end-
to-end deep learning model to replace the role. Despite the simplicity of our method, there have
been no cases of using such techniques in modern deep-learning-based time-series forecasting ap-
proaches (Zhou et al., 2021; Liu et al., 2021; Oreshkin et al., 2020). In this sense, we introduce the
importance of an appropriate normalization method for deep-learning-based time-series approaches.
We propose a carefully designed, deep-learning-friendly module for time-series forecasting by com-
bining the method with the learnable affine transformation, which has been widely accepted in recent
deep-learning-based normalization work (Ulyanov et al., 2016).

In summary, our contributions are as follows:

• We propose a simple yet effective normalization-and-denormalization method for time-
series, called RevIN, which is symmetrically structured to remove and restore the statisti-
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cal information of a time-series instance. The proposed method is generally applicable to
arbitrary deep neural networks with negligible cost.

• By adding RevIN to the baseline, we achieve state-of-the-art performance on seven large-
scale real-world datasets by a significant margin.

• We conduct extensive evaluations of RevIN using quantitative analysis and qualitative vi-
sualizations to verify its effectiveness, addressing the distribution shift problem.

2 RELATED WORK

Time-series forecasting. Time-series forecasting methods are mainly categorized into three dis-
tinct approaches: (1) statistical methods, (2) hybrid methods, and (3) deep learning-based methods.
Statistical models are theoretically well guaranteed and have several advantages, including inter-
pretability. As an example of the statistical models, exponential smoothing forecasting (Holt, 2004;
Winters, 1960) is a well-established benchmark for predicting future values. To further boost perfor-
mance, recent work proposed a hybrid model (Smyl, 2020) that incorporates a deep learning module
with a statistical model. It achieved better performance than statistical methods in the M4 time-
series forecasting competition. The deep learning-based method basically follows the sequence-
to-sequence framework to model the time-series forecasting. Initially, deep learning-based models
utilized variations of recurrent neural networks (RNNs). However, to overcome the limitation of the
limited receptive field, several studies utilized advanced techniques, such as the dilatation and at-
tention module. For instance, SCINet (Liu et al., 2021) and Informer (Zhou et al., 2021) modified
the sequence-to-sequence-based model to improve performance for long sequences. However, most
previous deep learning-based models are hard to interpret compared to statistical models. Thus, in-
spired by statistical models, N-BEATS (Oreshkin et al., 2020) designed an interpretable layer for
time-series forecasting by encouraging the model to learn trend, seasonality explicitly, and residual
components. This model shows superior performance on the M4 competition dataset.

Distribution shift. Although there are various models for time-series forecasting, they often suf-
fer from non-stationary time-series, where the data distribution changes over time. Domain adapta-
tion (Tzeng et al., 2017; Ganin et al., 2016; Wang et al., 2018) and domain generalization (Wang
et al., 2021; Li et al., 2018; Muandet et al., 2013) are common ways to alleviate the distribution
shift. A domain adaptation algorithm attempts to reduce the distribution gap between source and
target domains. A domain generalization algorithm only relies on the source domain and hopes to
generalize on the target domain. Both domain adaptation and generalization have a common ob-
jective, which bridges the gap between source and target distributions. However, defining a domain
is not straightforward in non-stationary time series since the data distribution shifts over time. Re-
cently, Du et al. (Du et al., 2021) proposed Adaptive RNNs to handle the distribution shift problems
of non-stationary time-series data. It first characterizes the distribution information by splitting the
training data into periods. Then, it matches the distributions of the discovered periods to general-
ize the model. However, unlike Adaptive RNNs, which is costly, RevIN is simple yet effective and
model-agnostic. The method can be easily adopted to any deep neural network.

3 PROPOSED METHOD

This section proposes reversible instance normalization to alleviate the distribution shift problem in
time-series, which is known to cause a substantial discrepancy between the training and test data
distributions. Section 3.1 describes the proposed method in detail, and Section 3.2 discusses how
our approach mitigates the distribution discrepancy in time-series data.

3.1 REVERSIBLE INSTANCE NORMALIZATION

Given a set of input X = {x(i)}Ni=1 and the corresponding target Y = {y(i)}Ni=1, we consider a mul-
tivariate time-series forecasting task in discrete time, where N denotes the number of sequences.
Let K,Tx, and Ty denote the number of variables, the input sequence length, and the model predic-
tion length, respectively. Given an input sequence x(i) ∈ RK×Tx , we aim to solve the time-series
forecasting problem, which is to predict the subsequent values y(i) ∈ RK×Ty . In RevIN, the input
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Figure 2: Overview of the proposed method. We illustrate an example of a univariate case, where
x(i) ∈ R1×Tx ; the input data x(i) is actually multivariate (See Section 3.1). In RevIN, the (a-1)
instance normalization and (a-2) denormalization are symmetrically structured to remove (a-3) non-
stationary information from one layer and restore it on the other layer. Here, RevIN is applied to
the input and output layers. The (a-3) non-stationary information includes statistical properties from
the input data: mean µ, variance σ2, and learnable affine parameters γ, β. The normalization layer
transforms the (b-1) original data distribution into a (b-2) mean-centered distribution, where the
distribution discrepancy between different instances is reduced. Using x̂, the model predicts the
future values ỹ following the (b-3) distribution where non-stationary information is eliminated. To
restore it (b-4), RevIN reverses the instance normalization in the output layer.

sequence length Tx and the prediction length Ty can be different since the observations are normal-
ized and denormalized across the temporal dimension, as will be explained below. Our proposed
method, RevIN, consists of symmetrically structured normalization-and-denormalization layers, as
illustrated in Fig. 2. First, we normalize the input data x(i) using its instance-specific mean and stan-
dard deviation, which is widely accepted as instance normalization (Ulyanov et al., 2016). The mean
and standard deviation are computed for every instance x(i)k· ∈ RTx of the input data (Fig. 2(a-3)) as

Et[x(i)kt ] =
1

Tx

Tx∑
j=1

x
(i)
kj and Var[x

(i)
kt ] =

1

Tx

Tx∑
j=1

(
x
(i)
kj − Et[x(i)kt ]

)2
. (1)

Using these statistics, we normalize the input data x(i) (Fig. 2(a-1)) as

x̂
(i)
kt = γk

(
x
(i)
kt − Et[x(i)kt ]√
Var[x

(i)
kt ] + ε

)
+ βk, (2)

where γ, β ∈ RK are learnable affine parameter vectors. The normalized sequences can have a
more consistent mean and variance, where the non-stationary information is reduced. As a result, the
normalization layer allows the model to accurately predict the local dynamics within the sequence
while receiving inputs of consistent distributions in terms of the mean and variance.

The model then receives the transformed data x̂(i) as input and forecasts their future values. How-
ever, the input data have different statistics than the original distribution, and by observing only
the normalized input x̂(i), it is difficult to capture the original distribution of the input x(i). Thus,
to make this easier for the model, we explicitly return the non-stationary properties removed from
the input data to the model output by reversing the normalization step at a symmetric position, the
output layer. A denormalization step can return the model output to the original time-series value as
well (Ogasawara et al., 2010). Accordingly, we denormalize the model output ỹ(i) by applying the
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Figure 3: Effect of RevIN on distribution discrepancy between training and test data. From left
to right columns, we compare the training and test data distributions of a variable on each step of the
sequential process in RevIN: (a) the original input x, (b) the input x̂ normalized by RevIN, (c) the
model prediction output ỹ, and (d) the output ŷ denormalized by RevIN, the final prediction. The
analysis is conducted on the ETT and ECL datasets using SCINet (Liu et al., 2021) as the baseline.

reciprocal of the normalization in Eq. 2 (Fig. 2(a-3)) as

ŷ
(i)
kt =

√
Var[x

(i)
kt ] + ε ·

(
ỹ
(i)
kt − βk
γk

)
+ Et[x(i)kt ]. (3)

The same statistics used in the normalization step in Eq. 2 are used for the scaling and shifting. Now,
ŷ(i) is the final prediction of the model instead of ỹ(i).

Simply added to virtually symmetric positions in a network, RevIN can effectively alleviate dis-
tribution discrepancy in time-series data, as a generally-applicable trainable normalization layer to
arbitrary deep neural networks. Indeed, the proposed method is a flexible, end-to-end trainable layer
that can be applied to any arbitrarily chosen layers, even to several layers. We verify its effectiveness
as a flexible layer by adding it to the intermediate layers in the model in Table 7 in Appendix A.4.
Nevertheless, RevIN is most effective when applied to virtually symmetric layers of encoder-decoder
structure. In a typical time-series forecasting model, the boundary between the encoder and the de-
coder is often unclear. Thus, we apply RevIN to the input and output layers of a model as they can
be interpreted as an encoder-decoder structure, generating subsequent values, given input data.

3.2 EFFECT OF REVERSIBLE INSTANCE NORMALIZATION ON DISTRIBUTION SHIFT

This section verifies that RevIN can alleviate the distribution discrepancy problem by removing
non-stationary information in the input layer and then restoring it in the output layer. We analyze the
distributions of the training and test data at each step of the proposed approach, as shown in Fig. 3.

When comparing the distribution of training and test data in each example (Fig. 3(a-b)), we can
observe that RevIN significantly reduces their discrepancy. To be specific, in the original input
(Fig. 3(a)), the training and test data distributions hardly overlap (especially ETTm1), which is
caused by the distribution shift problem. Also, each data distribution has multiple peaks (especially
the test data of ETTh1 and ECL), implying that sequences in the data might have severe discrepan-
cies in their distributions. However, in the proposed approach, the normalization step transforms
each data distribution into mean-centered distributions (Fig. 3(b)). This result supports that the
original multimodal distributions (Fig. 3(a)) are caused by discrepancies in distributions between
different sequences in the data. Even more, the proposed approach makes training and test data dis-
tributions overlapped. This verifies that the normalization step of RevIN can alleviate the distribution
shift problem, reducing the distribution discrepancy between training and test data.
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Taking the normalized data as the input, the model can retain aligned training and test data distri-
butions in the prediction output (Fig. 3(c)). As expected, these are then returned back to the orig-
inal distribution by the denormalization step of RevIN (Fig. 3(d)). Without denormalization, the
model needs to reconstruct the values that follow the original distributions (Fig. 3(d)) using only
the normalized input that follows the transformed distributions where non-stationary information is
removed (Fig. 3(b)). Additionally, we hypothesize that the distribution discrepancy will be reduced
in the intermediate layers of the model as well, when RevIN is applied at the input and output layers
only, which will be discussed in Section 4.2.3. As a result, this RevIN procedure can be considered
to first make problems easier, and then restore them back to the original state, rather than directly
solving the challenging problem where the distribution shift problem exists.

4 EXPERIMENTS

This section describes the experimental setup and provides extensive experimental results of RevIN.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our methods mainly on four large-scale real-world time-series datasets. Ad-
ditionally, we provide experimental results on three more datasets, including the air quality and Nas-
daq datasets taken from the UCI repository and M4 competition dataset (Makridakis et al., 2020)
in Appendix A.1. (i) Electricity transformer temperature (ETT)1 data consists of seven features,
including power load features and oil temperature. It is collected from two different regions in China
for two years. Following the same protocol as Informer (Zhou et al., 2021), we split the data into
three datasets: ETTh1, ETTh2, and ETTm1. The ETTh1 and ETTh2 datasets are hourly data ob-
tained from different regions. The ETTm1 dataset has a value every 15 minutes. For each dataset,
we split the first 12 months, the middle four months, and the last four months as training, validation,
and test data, respectively. (ii) Electricity Consuming Load (ECL)2 data contains the electricity
consumption (kWh) collected from 321 clients. Following the prior work (Zhou et al., 2021), data
from each client is used as a variable on an hourly basis in the multivariate forecasting setting. For
the ECL dataset, we use 15, 3, and 4 months as training, validation, and test data, respectively.

Experimental details. We set the prediction lengths to be one day (1d), 2d, 7d, 14d, 30d, and 40d
for the hourly-basis datasets, ETTh1, ETTh2, and ECL. For the ETTm1 dataset, we chose six hours
(6h), 12h, 3d, 7d, and 14d as the prediction window lengths. We evaluate the time-series forecasting
performance on the mean squared error (MSE) and mean absolute error (MAE). Following the same
evaluation procedure used in the previous study (Zhou et al., 2021), we compute the MSE and MAE
on z-score normalized data to measure different variables on the same scale. More details on exper-
imental settings, including training details and hyperparameters, are provided in Appendix A.11.

Baselines compared. RevIN is a model-agnostic method, generally applicable to any deep neural
network. In this paper, we verify the effectiveness of RevIN by adopting it to three state-of-the-art
time-series forecasting models: Informer (Zhou et al., 2021), N-BEATS (Oreshkin et al., 2020), and
SCINet (Liu et al., 2021). These are non-autoregressive forecasting models. The reproduction details
for the baselines are provided in Appendix A.12. Unless stated otherwise, we compare RevIN and
the baselines under the same hyperparameter settings, including the input and prediction lengths.

4.2 RESULTS AND ANALYSES

This section provides the quantitative analysis and qualitative visualization results of RevIN in com-
parison with the state-of-the-art time-series forecasting baselines.

4.2.1 EFFECTIVENESS OF REVERSIBLE INSTANCE NORMALIZATION ON VARIOUS
TIME-SERIES FORECASTING MODELS

Table 1 compares the forecasting accuracy of the baselines and RevIN. The results show that RevIN
consistently outperforms all three baselines, Informer, N-BEATS, and SCINet, by a large margin,

1https://github.com/zhouhaoyi/ETDataset
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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Table 1: Comparison of forecasting errors between the baselines and RevIN. The analysis on the
four datasets, ETTh1, ETTh2, ETTm1, and ECL, is conducted by increasing the prediction length
from 24 to 960/1344. We report the average errors for five runs. The complete results are provided
in Appendix A.14, including standard deviation and the originally reported values for the baselines.

Method Informer + RevIN N-BEATS + RevIN SCINet + RevIN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h 1

24 0.550 0.536 0.504 0.472 0.478 0.505 0.330 0.373 0.338 0.373 0.308 0.347
48 0.772 0.668 0.646 0.547 0.536 0.542 0.372 0.400 0.436 0.459 0.365 0.389

168 1.138 0.853 0.655 0.561 1.005 0.782 0.466 0.452 0.459 0.461 0.406 0.416
336 1.278 0.909 1.058 0.758 0.932 0.743 0.515 0.483 0.527 0.513 0.467 0.471
720 1.357 0.945 0.926 0.717 1.389 0.926 0.576 0.534 0.596 0.571 0.507 0.505
960 1.470 0.990 0.902 0.715 1.383 0.932 0.678 0.575 0.604 0.574 0.545 0.526

E
T

T
h 2

24 0.450 0.520 0.238 0.325 0.403 0.472 0.192 0.276 0.199 0.295 0.180 0.263
48 2.171 1.200 0.361 0.404 1.330 0.918 0.254 0.320 0.350 0.422 0.231 0.302

168 8.157 2.558 0.859 0.649 7.174 2.329 0.410 0.418 0.559 0.518 0.337 0.378
336 4.746 1.844 0.890 0.673 4.859 1.863 0.449 0.447 0.664 0.583 0.357 0.403
720 3.190 1.529 0.576 0.546 5.656 2.012 0.496 0.482 1.546 0.944 0.411 0.445
960 2.972 1.441 0.600 0.570 6.408 2.077 0.471 0.481 1.862 1.066 0.438 0.462

E
T

T
m

1

24 0.330 0.382 0.309 0.352 0.443 0.437 0.403 0.392 0.130 0.231 0.106 0.196
48 0.499 0.486 0.390 0.391 0.453 0.472 0.328 0.371 0.155 0.262 0.135 0.222
96 0.605 0.554 0.405 0.411 0.603 0.581 0.379 0.406 0.195 0.291 0.162 0.247

288 0.906 0.738 0.563 0.502 0.849 0.702 0.451 0.445 0.361 0.419 0.265 0.321
672 0.943 0.760 0.663 0.550 0.860 0.726 0.555 0.511 1.020 0.756 0.357 0.380

1344 1.095 0.823 0.824 0.632 14.613 1.948 0.631 0.556 1.841 1.044 0.412 0.422

E
C

L

24 0.250 0.358 0.148 0.257 0.279 0.372 0.176 0.285 0.138 0.246 0.112 0.207
48 0.300 0.386 0.171 0.279 0.309 0.388 0.194 0.301 0.163 0.265 0.126 0.222

168 0.345 0.423 0.261 0.354 0.333 0.410 0.218 0.320 0.177 0.281 0.153 0.249
336 0.429 0.473 0.356 0.414 0.326 0.406 0.241 0.337 0.202 0.308 0.162 0.262
720 0.851 0.719 0.834 0.700 0.420 0.467 0.303 0.383 0.234 0.333 0.183 0.281
960 0.930 0.750 0.894 0.741 0.399 0.455 0.325 0.398 0.235 0.330 0.200 0.292

Table 2: Comparison of long sequence forecasting performance. We analyze the forecasting error
of the baselines and RevIN by increasing the prediction length from 48 to 960 while the input length
is fixed to 48. The experiment is conducted on ETTh1. The average errors for five runs are reported,
and the complete results, including standard deviation, are provided in Appendix A.14.

Prediction length 48 168 336 720 960

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Informer 0.687 0.628 0.982 0.795 1.212 0.893 1.157 0.863 1.203 0.888
+ RevIN 0.540 0.481 0.680 0.574 0.939 0.696 1.021 0.752 1.061 0.775

N-BEATS 0.512 0.523 0.804 0.690 1.001 0.773 1.022 0.765 0.901 0.728
+ RevIN 0.365 0.389 0.454 0.438 0.526 0.477 0.568 0.514 0.638 0.544
SCINet 0.376 0.396 0.600 0.556 0.841 0.695 0.875 0.721 0.900 0.737

+ RevIN 0.349 0.370 0.445 0.426 0.509 0.461 0.533 0.494 0.557 0.510

achieving state-of-the-art performance on the four datasets. Moreover, the effectiveness of RevIN
is more evident for the long sequence prediction, where it remarkably reduces the errors of the
baselines. RevIN shows a stable performance in contrast to the baselines, which show a high increase
in error as prolonging the prediction length. For example, when the prediction length increases from
24 to 960 on the ETTh2 dataset, the forecasting error of N-BEATS significantly increases from
0.403 to 6.408. In contrast, RevIN shows a much slight increase in error, i.e., from 0.192 to 0.471.
A similar tendency appears with the other prediction lengths, datasets, and baseline models as well.
These results demonstrate that RevIN makes the baseline model more robust to prediction length.
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Figure 4: Forecasting error for each time step. We compare the error of predicting 1∼960 steps
ahead between the baselines and RevIN on ETTh1 when the prediction length is 960 (40 days).

Table 3: Comparison with classical and state-of-the-art normalization methods. The mean
squared errors are compared on the four datasets, using N-BEATS as the baseline for all experiments.
Here, every normalization method is applied to the input data. DAIN, deep adaptive input normal-
ization (Passalis et al., 2019); RevBN, the reversible batch normalization, i.e., the modified version
of RevIN. Complete results, including different prediction lengths, are provided in Appendix A.7.

Dataset ETTh1 ETTh2 ETTm1 ECL

Prediction length 168 960 168 960 96 1344 168 960

Min-max norm 1.074 1.224 2.987 3.308 1.035 1.320 0.374 0.387
z-score norm 0.953 1.043 3.329 3.087 1.016 1.274 0.335 0.377
Layer norm 0.871 1.303 4.092 5.822 0.502 2.488 0.343 0.379
DAIN 0.996 1.032 1.982 2.802 0.672 1.348 0.347 0.381

Batch norm 0.851 1.691 6.206 7.755 0.505 1.147 0.320 0.422
RevBN 0.717 0.779 0.729 2.148 0.601 0.991 0.327 0.414

Instance norm 0.946 1.090 3.240 3.145 1.021 1.329 0.333 0.386
RevIN (ours) 0.515 0.697 0.419 0.465 0.388 0.602 0.220 0.329

We further quantitatively analyze the effect of RevIN on long sequence prediction in Table 2. When
the model prediction length is increased from 48 to 960, RevIN reduces the prediction error com-
pared to the baseline, showing robust performance against the prediction length. The difference in
the forecasting error between SCINet and RevIN is relatively small when the prediction length is
short (e.g., 48), but RevIN remarkably surpasses SCINet by a significant margin when the prediction
length is long (e.g., 336, 720, and 960). These results substantiate that adopting RevIN can make a
model robust to the prediction length.

Additionally, to study how RevIN can perform well in long sequence prediction, we visualize
the forecasting error for each time step in Fig. 4. The error at the t-th time step is computed as
MSE-t = 1

N

∑N
i=1

1
K

∑K
k=1(ŷ

(i)
kt − y

(i)
kt )2. Overall, RevIN shows superior performance compared

to the baselines; the performance degradation is significantly slower, showing low error even when
forecasting 960 steps ahead. Specifically, for N-BEATS and SCINet, the error extremely increases
as predicting the distant future values. RevIN alleviates this significant increase in error, showing
remarkable performance compared to the baselines. Informer also shows unstable performance for
the different time steps. The error is substantial in the early steps and becomes relatively small in
the distant steps. RevIN allows the models to have consistently minor errors in every time step, even
where the baselines originally show high error (early steps for Informer, distant steps for N-BEATS
and SCINet). The results demonstrate the effectiveness of RevIN when forecasting long sequences.

4.2.2 COMPARISON WITH EXISTING NORMALIZATION METHODS

We compare RevIN with classical and state-of-the-art normalization methods, including min-
max normalization, z-score normalization, layer normalization (Ba et al., 2016), batch normaliza-
tion (Ioffe & Szegedy, 2015), instance normalization (Ulyanov et al., 2016), and deep adaptive input
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Figure 5: Feature divergence between the training and test data in the intermediate layers of the
model The feature divergences are computed on the ETTh1, ETTh2, ETTm1, and ECL datasets using
the features obtained from the first (Layer-1) and the second (Layer-2) encoder layers in Informer.

normalization (DAIN) (Passalis et al., 2019) in Table 3. Here, we compute the statistics for min-max
and z-score normalization methods for every input instance, not for the entire data. Additionally, we
attempt to use batch normalization as the input normalization method in RevIN, named reversible
batch normalization (RevBN). Layer normalization cannot be used in a similar manner since it is
not reversible when the input and prediction lengths are different, as in our experimental settings.

As a result, RevIN shows outstanding performance compared to the other normalization methods,
especially on ETTh2 and ETTm1 datasets. Also, RevBN improves forecasting performance of batch
normalization. Specifically, the error considerably decreases in the long sequence prediction, such as
960 and 1344. This result supports that the denormalization step of RevIN is essential as a key com-
ponent of the proposed method for improving long sequence forecasting. However, batch normal-
ization applies identical normalization to all the input sequences, using the global statistics obtained
from the entire training data; it can not reduce the discrepancy between the training and test data
distributions. Consequently, RevIN, which transforms the data in the instance level, outperforms
RevBN by a significant margin, demonstrating that successfully reducing the discrepancy between
distributions of different input sequences can effectively improve performance. Moreover, RevIN not
only shows the best performance but also has the advantage of being lightweight compared to the
baselines. For example, when K is the number of variables, DAIN requires at least 3K2 additional
parameters, whereas RevIN only requires 2K additional parameters.

4.2.3 ANALYSIS OF DISTRIBUTION SHIFT IN THE INTERMEDIATE LAYERS

In Fig. 5, we analyze the feature divergence between the training and test data to verify that RevIN
can reduce the distribution shift at the intermediate feature level as well. We conduct the experiment
using Informer as the baseline; it comprises two encoder layers and one decoder layer. Thus, we an-
alyze the features of the first (Layer-1) and the second (Layer-2) encoder layers. Following the prior
work (Pan et al., 2018), we compute the average feature divergence using symmetric KL divergence
(See Appendix A.10). The results show that RevIN significantly reduces the feature divergence be-
tween the training and test data in both layers, demonstrating that the proposed approach, when
added only to the input and output layers, successfully alleviates the distribution shift problem in the
intermediate layers. Moreover, this strengthens RevIN as a generally-applicable flexible layer. An
arbitrary model can adopt RevIN by adding it to input and output layers without any architectural
modifications. Note that our approach still can be added to any arbitrarily chosen layers, significantly
improving the model performance, as shown in Appendix A.4.

5 CONCLUSION

This paper aims to address the distribution shift problem in time series, proposing a simple yet ef-
fective normalization-and-denormalization method, reversible instance normalization (RevIN). The
proposed approach effectively alleviates the discrepancy between training and test data distribu-
tions, leading to significant performance improvements in time-series forecasting. As a generally-
applicable layer to arbitrary deep neural networks, the proposed approach achieves state-of-the-art
performance on seven real-world time-series datasets by a significant margin. The extensive quanti-
tative and qualitative experiments with in-depth analysis demonstrate the effectiveness of RevIN for
accurate time-series forecasting against the distribution shift problem.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the source code of our method publicly, including the pre-
trained model weights. In the main manuscript, Section 4.1 describes how we conduct data prepro-
cessing on the datasets used in the experiments. Appendix A.11 explains the experimental details,
including random seed values for the experiments. Appendix A.12 provides a detailed explanation
of hyperparameter configurations with the reproduction details of the baselines.
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A APPENDIX

This section provides additional information, visualizations, and experimental results that support
the main manuscript. Section A.1 shows the experimental results on additional real-world datasets
along with a qualitative analysis on one of the datasets to verify the effectiveness of our method
on obvious non-stationary time series. Section A.2 addresses the potential of RevIN on solving the
cross-domain time-series forecasting task. Section A.3 and Section A.4 present the hyperparame-
ter sensitivity analysis and the ablation study on the proposed method, respectively. Section A.5
evaluates our method using complementary metrics, which measure the similarity between two se-
quences. Section A.6 and Section A.7 compare the forecasting results using the proposed method
and existing normalization methods. Section A.8, Section A.9, and Section A.10 provide the algo-
rithm for RevIN, the theoretical justification of RevIN, and the calculation details of the feature
divergence used in Section 4.2.3, respectively. Section A.11 and Section A.12 describe additional
implementation details and the reproduction details of the baselines where RevIN is applied, respec-
tively. Section A.13 illustrates additional quantitative results for RevIN and the baselines. Lastly,
Section A.14 provides complete quantitative results, including the standard deviation values for five
experiments, which can not be included in the main manuscript due to the lack of space.

A.1 EXPERIMENTAL RESULTS ON ADDITIONAL REAL-WORLD TIME-SERIES DATASETS

Table 4: Forecasting performance on the air quality, Nasdaq, and M4 competition datasets.
The results on the M4 dataset (*) are multiplied by ten for readability. The average value and
the standard deviation value for five runs are reported.

Methods Informer + RevIN N-BEATS + RevIN SCINet + RevIN

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

A
ir

qu
al

ity

24 0.802
± 0.178

0.671
± 0.084

0.585
± 0.033

0.539
± 0.023

0.698
± 0.064

0.626
± 0.029

0.527
± 0.005

0.498
± 0.003

0.512
± 0.029

0.514
± 0.019

0.490
± 0.006

0.474
± 0.004

48 0.966
± 0.054

0.761
± 0.023

0.859
± 0.086

0.668
± 0.041

0.955
± 0.106

0.740
± 0.035

0.705
± 0.019

0.600
± 0.009

0.712
± 0.091

0.627
± 0.047

0.659
± 0.013

0.566
± 0.007

168 1.328
± 0.107

0.923
± 0.040

1.036
± 0.056

0.761
± 0.020

1.079
± 0.108

0.818
± 0.046

0.789
± 0.008

0.660
± 0.005

0.957
± 0.067

0.737
± 0.031

0.794
± 0.025

0.645
± 0.014

336 1.278
± 0.074

0.901
± 0.032

1.145
± 0.032

0.801
± 0.010

1.105
± 0.052

0.835
± 0.021

0.860
± 0.017

0.685
± 0.006

0.989
± 0.111

0.760
± 0.046

0.854
± 0.029

0.676
± 0.010

720 2.028
± 0.216

1.104
± 0.061

1.161
± 0.028

0.810
± 0.009

1.538
± 0.419

0.968
± 0.110

0.842
± 0.015

0.686
± 0.008

1.228
± 0.048

0.858
± 0.021

0.839
± 0.024

0.680
± 0.013

N
as

da
q

30 5.318
± 0.052

1.093
± 0.017

1.273
± 0.078

0.630
± 0.009

5.500
± 0.647

1.254
± 0.086

1.023
± 0.034

0.577
± 0.007

1.742
± 0.111

0.739
± 0.028

0.985
± 0.018

0.564
± 0.005

60 5.525
± 0.022

1.098
± 0.016

1.573
± 0.098

0.666
± 0.011

5.226
± 0.424

1.236
± 0.032

1.207
± 0.044

0.617
± 0.009

2.304
± 0.062

0.790
± 0.010

1.161
± 0.021

0.601
± 0.003

120 5.793
± 0.140

1.090
± 0.012

2.648
± 0.186

0.762
± 0.016

6.023
± 0.382

1.197
± 0.034

1.959
± 0.062

0.714
± 0.006

3.227
± 0.236

0.853
± 0.007

1.869
± 0.037

0.697
± 0.003

M
4∗ average 0.099

± 0.002
0.258

± 0.020
0.008

± 0.005
0.074

± 0.005
2.241

± 0.037
2.065

± 0.029
2.082

± 0.014
1.974

± 0.006
2.180

± 1.943
1.943

± 0.011
2.079

± 0.011
1.892

± 0.004

We evaluate the proposed method on the four large-scale real-world time-series datasets, the ETTh1,
ETTh2, ETTm1, and ECL datasets in the main manuscript. Additionally, this section provides ex-
perimental results on three more datasets, including two real-world datasets taken from the UCI
repository, the air quality dataset and the Nasdaq dataset, and the M4 competition dataset (Makri-
dakis et al., 2020). In total, our proposed method is evaluated on seven datasets in this paper.

Air quality3 dataset contains hourly averaged responses collected from five metal oxide chemical
sensors located in Italy. The data consist of 13 variables of length 9537. We set the prediction length
as {24, 48, 168, 336, 720} and the corresponding input length as {48, 96, 168, 168, 360} so that
their ratios become {2x, 2x, 1x, 0.5x, 0.5x}.
Nasdaq4 dataset consists of 82 variables, including important indices of markets around the world,
the price of major companies in the U.S. market, treasury bill rates, etc. It is measured daily, having
a total of 1984 data samples for each variable. We prolong the prediction length as {30, 60, 120}
and set the corresponding input length as 60 for all.

3https://archive.ics.uci.edu/ml/datasets/Air+Quality
4https://archive.ics.uci.edu/ml/datasets/CNNpred%3A+CNN-based+stock+market+prediction+using+

a+diverse+set+of+variables
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Figure 6: Prediction results on the Nasdaq dataset. The results on three variables in the data,
Close, DTB6, and DE1, are shown. The prediction length is 60 days, and the seventh value is illus-
trated to show the results on the entire test set. We compare RevIN with N-BEATS.

M45 competition dataset consists of six different hourly, daily, weekly, monthly, quarterly, and
yearly sets, containing 100,000 test data. We follow the original experimental protocol of the M4
competition (Makridakis et al., 2020). For evaluation, we measure the micro-averaged mean ab-
solute error and mean squared error: we first compute the metric independently for each set, i.e.,
hourly, daily, weekly, monthly, quarterly, and yearly sets, and then calculate the weighted average of
the metrics using the contributions of each set as the weights.

As shown in Table 4, RevIN significantly improves the forecasting performance of the baselines on
all three datasets. Notably, RevIN shows outstanding performance on the Nasdaq dataset, reducing
the prediction errors by more than half compared to the baselines.

Additionally, we conduct a qualitative analysis on the Nasdaq dataset to verify the effectiveness
of our method on obvious non-stationary time series. As shown in Fig. 6, the Nasdaq index (the
variable ’Close’) has steadily increased since 2010. Accordingly, when data are divided into the
training and test data based on a specific point in time (vertical dashed line in Fig. 6), the test data
values tend to be higher than the training data values. In other words, the data severely suffers
from the distribution shift problem, where the training and test data show a discrepancy in their
distribution. As a result, even existing state-of-the-art models often cannot predict the future values
appropriately, as shown in Fig. 6. The baseline fails to keep up with the trend in data, whose mean
value continues to increase, and thus the prediction results are shifted. However, RevIN mitigates
this distribution discrepancy and remarkably increases the prediction performance of the baseline.

5https://mofc.unic.ac.cy/m4/
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Similarly, RevIN shows superior performance on the other rapidly increasing data (’DTB6’ in Fig. 6)
and the decreasing test data (‘DE1’ in Fig. 6), accurately predicting the changing mean of the data.

A.2 CROSS-DOMAIN TIME-SERIES FORECASTING

Table 5: Cross-domain time-series forecasting results. We conduct a cross-domain evaluation on
the ETT datasets, ETTh1, ETTh2, and ETTm1. We train RevIN using SCINet as the baseline. We
report the average errors and the standard deviation values for five runs.

Train ETTh1 ETTh2 ETTm1

Test ETTh2 ETTm1 ETTh1 ETTm1 ETTh1 ETTh2

Prediction length 336 960 336 960 336 960 336 960 288 1344 288 1344

SCINet
MSE 0.471

± 0.034
0.741
± 0.056

0.471
± 0.043

0.765
± 0.029

0.614
± 0.020

0.671
± 0.061

0.608
± 0.049

1.668
± 0.110

0.659
± 0.032

0.654
± 0.026

0.518
± 0.009

1.813
± 0.166

MAE 0.450
± 0.024

0.640
± 0.027

0.427
± 0.032

0.636
± 0.013

0.507
± 0.014

0.607
± 0.035

0.487
± 0.031

1.004
± 0.046

0.562
± 0.015

0.608
± 0.016

0.509
± 0.004

1.027
± 0.078

+ RevIN
MSE 0.350

± 0.010
0.419
± 0.007

0.346
± 0.008

0.452
± 0.004

0.501
± 0.006

0.586
± 0.015

0.321
± 0.009

0.441
± 0.001

0.478
± 0.003

0.542
± 0.013

0.387
± 0.005

0.506
± 0.010

MAE 0.383
± 0.006

0.451
± 0.004

0.331
± 0.005

0.449
± 0.001

0.449
± 0.004

0.542
± 0.007

0.331
± 0.004

0.445
± 0.001

0.477
± 0.002

0.531
± 0.006

0.417
± 0.002

0.503
± 0.006

As RevIN can alleviate the distribution discrepancy between the training and test data, we investigate
the ability of RevIN in mitigating distribution discrepancy between different domains through cross-
domain time-series forecasting task. In time series, a domain can be a location of a sensor where
the data is collected. We use the ETT datasets for the experiment since they have the same feature
categories. However, their distributions can exhibit significant discrepancy because the ETTh1 and
ETTh2 datasets are collected from different locations, and the ETTh and ETTm1 datasets have dif-
ferent measurement time intervals. Thus, we alternately use each ETT dataset as a source domain
for training and a target domain for testing. The goal of cross-domain time-series forecasting is to
alleviate the data distribution discrepancy between the source and target domains, e.g., between the
ETTh1 and ETTh2 datasets.

In Table 5, despite the difference in the data distributions, RevIN shows remarkable performance in
cross-domain time-series forecasting. In particular, RevIN outperforms SCINet by a large margin
when the model needs to reduce the discrepancy between the ETTh2 and ETTm1 datasets. The
results demonstrate that RevIN successfully solves the distribution shift problem by alleviating data
distribution discrepancy between different domains, leading to better generalization performance.

A.3 HYPERPARAMETER SENSITIVITY ANALYSIS

We analyze the hyperparameter sensitivity of the proposed method compared with the baseline mod-
els. Input sequence length can be a crucial hyperparameter to RevIN since the method computes the
mean and the standard deviation across the entire input sequence and then uses the statistics at its

informer - ours (input length 조절) scinet - ours (input length 조절)

5 run mean stdev
5 run
mean stdev

5 run
mean stdev

input
length

MSE MAE MSE MAE MSE MAE
N-BEATS+RevIN 48 0.654 0.552 0.048 0.022 1.107621 0.795153 0.051652 0.028718 0.557 0.51 0.01518 0.007796

168 0.701 0.58 0.059 0.022 1.054384 0.789533 0.060217 0.032052 0.629 0.55 0.029848 0.015965
336 0.652 0.567 0.013 0.005133 1.011444 0.7638 0.030177 0.018922 0.657 0.572 0.033888 0.01808
480 0.678 0.575 0.019 0.009 0.902 0.715 0.545 0.526
720 0.755 0.608 0.089 0.038 0.932926 0.721999 0.035302 0.015506 0.75 0.624 0.040144 0.019514

960 0.767 0.626 0.082 0.031 1.074106 0.782313 0.075402 0.030497 0.846 0.679 0.085333 0.036964

48 0.907 0.73 1.225 0.893 0.894 0.731
168 1.046 0.805 1.318 0.947 0.942 0.744
336 1.495 0.959 1.39 0.966 1.059 0.787
480 1.383 0.932 1.47 0.99 0.604 0.574
720 2.714 1.15 1.314 0.936 1.205 0.845

960 4.161 1.364 1.351 0.959 1.07 0.802

N-BEATS +RevIN Informer +RevIN SCINet +RevIN

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
48 2 48 0.907 0.73 0.654 0.552 48 1.225 0.893 1.107621 0.795153 48 0.894 0.731 0.557 0.51
168 7 168 1.046 0.805 0.701 0.58 168 1.318 0.947 1.054384 0.789533 168 0.942 0.744 0.629 0.55
336 14 336 1.495 0.959 0.652 0.567 336 1.39 0.966 1.011444 0.7638 336 1.059 0.787 0.657 0.572
480 20 480 1.383 0.932 0.678 0.575 480 1.47 0.99 0.902 0.715 480 0.604 0.574 0.545 0.526
720 30 720 2.714 1.15 0.755 0.608 720 1.314 0.936 0.932926 0.721999 720 1.205 0.845 0.75 0.624

960 4.161 1.364 0.767 0.626 960 1.351 0.959 1.074106 0.782313 960 1.07 0.802 0.846 0.679

stdev

0.026 0.014 0.048 0.022 0.054 0.021 0.052 0.029 0.038 0.02 0.015 0.008
0.072 0.032 0.059 0.022 0.043 0.021 0.06 0.032 0.05 0.025 0.03 0.016
0.333 0.113 0.013 0.005133 0.099 0.046 0.03 0.019 0.117 0.041 0.034 0.018
0.033 0.025 0.019 0.009 0.124 0.052 0.033 0.025 0.017 0.014 0.01 0.005
1.35 0.125 0.089 0.038 0.047 0.029 0.035 0.016 0.185 0.061 0.04 0.02

0.64 0.082 0.031 0.062 0.036 0.075 0.03 0.109 0.044 0.085 0.037
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Figure 7: Impacts of the input sequence length on RevIN compared with the baselines. We
prolong the input length from 48 (two days) to 960 (40 days) when the prediction length is set as
960 (40 days) on the ETTh1 dataset. The average errors for five runs, with standard deviation values,
are reported. In N-BEATS, the standard deviation value for the mean squared error is too large to
visualize when the prediction length is 960; we write the value as “±4.955” instead.
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normalization and denormalization steps. Thus, the input sequence length would play a crucial role
in the prediction accuracy and stability of the training process. Accordingly, we prolong the model
input sequence length to see its impact on the forecasting performance of RevIN, as shown in Fig. 7.
As a result, RevIN consistently outperforms the baseline for various input sequence lengths. More
importantly, RevIN makes the baseline models more robust to the input length. In other words,
RevIN shows stable performance for various input lengths in contrast to the baseline models, which
shows the high variance in their performance according to the input length. Notably, in N-BEATS,
the average error, as well as the standard deviation of the error, significantly increase as prolonging
the input length. This is because the trend in data is expressed as a linear function in N-BEATS.
As the input length becomes prolonged, there is a chance that the variance (or non-stationarity) in
the time-series values will become higher, decreasing the accuracy of the linear trend to fit the data
unless the data is monotonically increasing or decreasing. Also, the mispredicted trends linearly
increase the error in future values. However, when N-BEATS adopts the RevIN layer, it removes
the non-stationary statistics from the input, and thus, the model shows robust performance against
the input length. Removing the variability, i.e., normalizing its mean and standard deviation, before
feeding it to the model and returning it to the output makes the model learning stable.

A.4 ABLATION STUDY

Table 6: Ablation study results. We ablate the affine transformation (affine.) from RevIN and evalu-
ate forecasting performance on the six datasets. N-BEATS is used as the baseline for all experiments.
We report the average and the standard deviation values for the five runs.

Method + RevIN w/o affine. + RevIN w/ affine. (ours)

Metric MSE MAE MSE MAE

ETTh1
48 0.370 ± 0.006 0.393 ± 0.003 0.363 ± 0.005 0.389 ± 0.003
960 0.675 ± 0.038 0.576 ± 0.014 0.638 ± 0.035 0.559 ± 0.017

ETTh2
48 0.257 ± 0.003 0.322 ± 0.002 0.255 ± 0.008 0.321 ± 0.005
960 0.483 ± 0.012 0.487 ± 0.007 0.471 ± 0.015 0.481 ± 0.008

ETTm1
96 0.384 ± 0.013 0.408 ± 0.009 0.378 ± 0.011 0.406 ± 0.007

1344 0.664 ± 0.085 0.567 ± 0.039 0.631 ± 0.061 0.556 ± 0.020

ECL 48 0.197 ± 0.002 0.302 ± 0.002 0.195 ± 0.002 0.301 ± 0.001
960 0.347 ± 0.034 0.415 ± 0.026 0.325 ± 0.019 0.398 ± 0.015

Air
quality

48 0.707 ± 0.009 0.601 ± 0.002 0.705 ± 0.019 0.600 ± 0.009
720 0.852 ± 0.025 0.689 ± 0.013 0.842 ± 0.015 0.686 ± 0.008

Nasdaq 30 0.983 ± 0.017 0.565 ± 0.005 0.981 ± 0.017 0.564 ± 0.005
60 1.163 ± 0.010 0.610 ± 0.002 1.155 ± 0.020 0.608 ± 0.005

We ablate the affine transformation from RevIN to analyze its impact on forecasting performance.
We conduct the analysis on the ETTh1, ETTh2, ETTm1, ECL, Nasdaq, and air quality datasets using
N-BEATS as the baseline. The results in Table 6 show that the affine transformation consistently
contributes to performance improvement on a variety of datasets. As mentioned earlier, a model
can add RevIN in an intermediate layer, even to several layers. While existing approaches are a
preprocessing-and-postprocessing method applied outside of the main prediction model, RevIN is
an end-to-end trainable layer that can be added to any layer in the model as batch normalization (Ioffe
& Szegedy, 2015) and instance normalization (Ulyanov et al., 2016), which are recently proposed
deep learning-based normalization layers. Thus, we verify that adopting RevIN in the intermediate
layers instead of the input and output layers can improve the forecasting performance as well. We
add RevIN to the first stack of N-BEATS and SCINet and evaluate their performance on the six
datasets. The results in Table 7 demonstrate that even when added to the intermediate layers, RevIN
improves the performance of the baselines, as a learnable normalization layer. We mainly focus on
adding RevIN to the input and output of a model since it shows robust performance on average.
Nevertheless, the model adopting RevIN in the intermediate layers consistently outperforms the
baseline without RevIN, frequently achieving the best performance among all. This performance
is even better than the dynamic normalization methods, LSTNet∗ and ES-RNN∗, when they are
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adopted to N-BEATS as well (See Table 9 in Appendix A.6). For example, when the prediction
length is 960, the mean squared errors of LSTNet∗, ES-RNN∗, RevIN (inter.), and RevIN (i/o) are
5.627, 1.338, 0.523, and 0.471, on average. In conclusion, RevIN is a flexible, end-to-end trainable

Table 7: Effectiveness of RevIN when added to the intermediate layers in the model. We add
RevIN to the first stack of N-BEATS and SCINet and evaluate their performance on the six datasets.
We report the average value and standard deviation of five experiments. RevIN (inter.) indicates
the model where RevIN is added to the intermediate layers of the baseline network. RevIN (i/o)
indicates the model where RevIN is added to the input and output layer of the baseline network.

Method N-BEATS + RevIN (inter.) + RevIN (i/o) SCINet + RevIN (inter.) + RevIN (i/o)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h 1

24 0.478
± 0.022

0.505
± 0.012

0.347
± 0.006

0.389
± 0.004

0.330
± 0.006

0.373
± 0.004

0.338
± 0.012

0.373
± 0.009

0.306
± 0.004

0.347
± 0.004

0.308
± 0.003

0.347
± 0.002

48 0.536
± 0.060

0.542
± 0.041

0.375
± 0.008

0.407
± 0.005

0.372
± 0.001

0.400
± 0.002

0.436
± 0.025

0.459
± 0.021

0.363
± 0.004

0.394
± 0.004

0.365
± 0.005

0.389
± 0.003

168 1.005
± 0.146

0.782
± 0.064

0.495
± 0.086

0.481
± 0.062

0.466
± 0.030

0.452
± 0.014

0.459
± 0.015

0.461
± 0.013

0.415
± 0.001

0.424
± 0.002

0.406
± 0.003

0.416
± 0.003

336 0.932
± 0.079

0.743
± 0.042

0.538
± 0.043

0.508
± 0.027

0.515
± 0.013

0.483
± 0.008

0.527
± 0.010

0.513
± 0.006

0.552
± 0.002

0.516
± 0.001

0.467
± 0.005

0.471
± 0.003

720 1.389
± 0.230

0.926
± 0.066

0.608
± 0.016

0.572
± 0.009

0.576
± 0.035

0.534
± 0.018

0.596
± 0.015

0.571
± 0.013

0.560
± 0.007

0.550
± 0.005

0.507
± 0.006

0.505
± 0.004

960 1.383
± 0.380

0.932
± 0.120

0.664
± 0.033

0.604
± 0.015

0.678
± 0.019

0.575
± 0.009

0.604
± 0.017

0.574
± 0.014

0.619
± 0.005

0.582
± 0.002

0.545
± 0.010

0.526
± 0.005

E
T

T
h 2

24 0.403
± 0.185

0.472
± 0.101

0.199
± 0.002

0.291
± 0.002

0.192
± 0.003

0.276
± 0.002

0.199
± 0.026

0.295
± 0.027

0.186
± 0.003

0.272
± 0.001

0.180
± 0.004

0.263
± 0.002

48 1.330
± 0.240

0.918
± 0.073

0.263
± 0.007

0.335
± 0.005

0.254
± 0.011

0.320
± 0.008

0.350
± 0.025

0.422
± 0.027

0.313
± 0.045

0.373
± 0.032

0.231
± 0.006

0.302
± 0.006

168 7.174
± 0.449

2.329
± 0.049

0.425
± 0.015

0.434
± 0.010

0.410
± 0.010

0.418
± 0.005

0.559
± 0.044

0.518
± 0.025

0.338
± 0.003

0.380
± 0.001

0.337
± 0.007

0.378
± 0.003

336 4.859
± 0.268

1.863
± 0.043

0.446
± 0.007

0.456
± 0.005

0.449
± 0.011

0.447
± 0.006

0.664
± 0.073

0.583
± 0.030

0.422
± 0.001

0.443
± 0.001

0.357
± 0.003

0.403
± 0.002

720 5.656
± 1.053

2.012
± 0.186

0.505
± 0.022

0.501
± 0.013

0.496
± 0.008

0.482
± 0.002

1.546
± 0.378

0.944
± 0.141

0.634
± 0.010

0.564
± 0.005

0.411
± 0.003

0.445
± 0.002

960 6.408
± 2.039

2.077
± 0.242

0.523
± 0.040

0.522
± 0.025

0.471
± 0.015

0.481
± 0.008

1.862
± 0.153

1.066
± 0.055

0.734
± 0.014

0.603
± 0.005

0.438
± 0.007

0.462
± 0.004

E
T

T
m

1

24 0.443
± 0.043

0.437
± 0.035

0.387
± 0.018

0.391
± 0.012

0.403
± 0.006

0.392
± 0.005

0.130
± 0.003

0.231
± 0.003

0.108
± 0.002

0.203
± 0.004

0.106
± 0.002

0.196
± 0.001

48 0.453
± 0.034

0.472
± 0.018

0.341
± 0.008

0.388
± 0.007

0.328
± 0.010

0.371
± 0.007

0.155
± 0.004

0.262
± 0.004

0.142
± 0.011

0.241
± 0.013

0.135
± 0.003

0.222
± 0.002

96 0.603
± 0.051

0.581
± 0.027

0.401
± 0.007

0.428
± 0.004

0.379
± 0.011

0.406
± 0.007

0.195
± 0.012

0.291
± 0.013

0.192
± 0.016

0.285
± 0.017

0.162
± 0.001

0.247
± 0.001

288 0.849
± 0.095

0.702
± 0.051

0.502
± 0.032

0.483
± 0.018

0.451
± 0.016

0.445
± 0.008

0.361
± 0.008

0.419
± 0.004

0.264
± 0.002

0.323
± 0.001

0.265
± 0.003

0.321
± 0.002

672 0.860
± 0.057

0.726
± 0.026

0.553
± 0.020

0.512
± 0.009

0.555
± 0.011

0.511
± 0.008

1.020
± 0.040

0.756
± 0.025

0.663
± 0.081

0.583
± 0.033

0.357
± 0.004

0.380
± 0.002

1344 14.613
± 26.108

1.948
± 1.655

0.722
± 0.064

0.594
± 0.027

0.631
± 0.061

0.556
± 0.020

1.841
± 0.242

1.044
± 0.100

0.989
± 0.211

0.717
± 0.081

0.412
± 0.008

0.422
± 0.003

E
C

L

24 0.279
± 0.007

0.372
± 0.003

0.182
± 0.001

0.300
± 0.001

0.176
± 0.002

0.285
± 0.001

0.138
± 0.004

0.246
± 0.005

0.111
± 0.000

0.207
± 0.001

0.112
± 0.001

0.207
± 0.001

48 0.309
± 0.007

0.388
± 0.004

0.207
± 0.003

0.318
± 0.002

0.194
± 0.001

0.301
± 0.001

0.163
± 0.007

0.265
± 0.007

0.124
± 0.001

0.221
± 0.001

0.126
± 0.001

0.222
± 0.001

168 0.333
± 0.016

0.410
± 0.012

0.237
± 0.007

0.340
± 0.004

0.218
± 0.002

0.320
± 0.001

0.177
± 0.003

0.281
± 0.005

0.154
± 0.002

0.248
± 0.001

0.153
± 0.003

0.249
± 0.002

336 0.326
± 0.004

0.406
± 0.001

0.245
± 0.011

0.348
± 0.007

0.241
± 0.005

0.337
± 0.002

0.202
± 0.004

0.308
± 0.004

0.161
± 0.002

0.261
± 0.002

0.162
± 0.001

0.262
± 0.001

720 0.420
± 0.094

0.467
± 0.058

0.308
± 0.019

0.393
± 0.016

0.303
± 0.012

0.383
± 0.011

0.234
± 0.006

0.333
± 0.004

0.184
± 0.003

0.283
± 0.003

0.183
± 0.003

0.281
± 0.002

960 0.399
± 0.022

0.455
± 0.017

0.335
± 0.018

0.413
± 0.015

0.325
± 0.019

0.398
± 0.015

0.235
± 0.011

0.330
± 0.008

0.196
± 0.005

0.295
± 0.005

0.200
± 0.003

0.292
± 0.002

A
ir

qu
al

ity

24 0.698
± 0.064

0.626
± 0.029

0.558
± 0.011

0.537
± 0.008

0.527
± 0.005

0.498
± 0.003

0.512
± 0.029

0.514
± 0.019

0.488
± 0.006

0.486
± 0.009

0.490
± 0.006

0.474
± 0.004

48 0.955
± 0.106

0.740
± 0.035

0.722
± 0.013

0.629
± 0.005

0.705
± 0.019

0.600
± 0.009

0.712
± 0.091

0.627
± 0.047

0.651
± 0.032

0.578
± 0.023

0.659
± 0.013

0.566
± 0.007

168 1.079
± 0.108

0.818
± 0.046

0.819
± 0.007

0.691
± 0.004

0.789
± 0.008

0.660
± 0.005

0.957
± 0.067

0.737
± 0.031

0.787
± 0.020

0.648
± 0.012

0.794
± 0.025

0.645
± 0.014

336 1.105
± 0.052

0.835
± 0.021

0.902
± 0.018

0.721
± 0.010

0.860
± 0.017

0.685
± 0.006

0.989
± 0.111

0.760
± 0.046

0.870
± 0.022

0.695
± 0.011

0.854
± 0.029

0.676
± 0.010

720 1.538
± 0.419

0.968
± 0.110

0.945
± 0.030

0.757
± 0.012

0.842
± 0.015

0.686
± 0.008

1.228
± 0.048

0.858
± 0.021

0.939
± 0.064

0.730
± 0.025

0.839
± 0.024

0.680
± 0.013

N
as

da
q

30 5.500
± 0.647

1.254
± 0.086

0.940
± 0.055

0.581
± 0.037

1.023
± 0.034

0.577
± 0.007

1.742
± 0.111

0.739
± 0.028

1.111
± 0.095

0.599
± 0.020

0.985
± 0.018

0.564
± 0.005

60 5.226
± 0.424

1.236
± 0.032

0.989
± 0.025

0.578
± 0.008

1.207
± 0.044

0.617
± 0.009

2.304
± 0.062

0.790
± 0.010

1.280
± 0.023

0.630
± 0.004

1.161
± 0.021

0.601
± 0.003

120 6.023
± 0.382

1.197
± 0.034

1.166
± 0.014

0.615
± 0.003

1.959
± 0.062

0.714
± 0.006

3.227
± 0.236

0.853
± 0.007

2.585
± 0.374

0.776
± 0.031

1.869
± 0.037

0.697
± 0.003
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layer that can significantly increase the performance of a model in time series forecasting, applied
to any arbitrarily chosen layers.

A.5 PERFORMANCE EVALUATION ON SIMILARITY METRICS FOR TIME SERIES

We evaluate the forecasting performance of RevIN mainly on the mean squared error and the mean
absolute error. Additionally, we use complementary metrics that measure the similarity between two
sequences, dynamic time warping (DTW) and temporal distortion index (TDI) (Le Guen & Thome,
2019; Frı́as-Paredes et al., 2017). Table 8 shows that our approach significantly improves the base-
line models across all datasets in terms of the DTW and TDI. Notably, RevIN exhibits outstanding
performance by a large margin compared to the baselines for long prediction length. For example,
when RevIN is added, the average DTW decreases from 38.348 to 15.240 for Informer, from 53.148
to 12.766 for N-BEATS, and from 20.498 to 11.080 for SCINet when the prediction length is 960 on
ETTh2. There are a few cases where the proposed method predicts a less similar sequence than the
baseline. However, the margin is minimal in terms of either DTW or TDI compared to the significant
margin found when our method outperforms the baseline. These results demonstrate that adopting
RevIN can generate a sequence more similar to the groundtruth than the baseline, especially showing
better prediction accuracy on the longer sequences.

Table 8: Comparison results on similarity metrics for time series. We assess the model forecast-
ing results in terms of the shape and temporal errors using the DTW and the TDI, respectively (the
lower, the better). The experiments are conducted for the four datasets, using the three baselines. We
report the average value and standard deviation of five experiments.

Method Informer + RevIN N-BEATS + RevIN SCINet + RevIN

Metric TDI DTW TDI DTW TDI DTW TDI DTW TDI DTW TDI DTW

E
T

T
h 1

24 1.602
± 0.093

2.515
± 0.121

1.207
± 0.037

2.206
± 0.097

1.309
± 0.147

2.361
± 0.048

1.031
± 0.021

1.830
± 0.012

1.136
± 0.113

1.784
± 0.037

0.969
± 0.017

1.672
± 0.007

48 3.932
± 0.796

4.178
± 0.333

2.762
± 0.190

3.401
± 0.063

2.430
± 0.386

3.564
± 0.230

1.592
± 0.055

2.745
± 0.012

2.418
± 0.297

2.873
± 0.117

1.456
± 0.045

2.508
± 0.012

168 31.569
± 4.652

10.384
± 0.420

9.459
± 1.173

6.532
± 0.227

19.369
± 3.679

8.937
± 0.490

6.190
± 1.033

5.756
± 0.161

4.913
± 1.085

5.344
± 0.170

3.791
± 0.075

5.017
± 0.008

336 72.959
± 6.769

14.850
± 0.514

45.215
± 17.098

11.605
± 1.321

47.961
± 8.500

11.782
± 0.531

14.302
± 2.127

8.532
± 0.162

6.120
± 0.329

7.723
± 0.087

6.973
± 0.292

7.319
± 0.025

720 167.254
± 13.008

23.295
± 0.244

98.648
± 18.571

18.483
± 0.346

143.832
± 28.984

20.494
± 0.952

26.265
± 8.439

12.383
± 0.458

20.351
± 3.588

11.550
± 0.246

11.337
± 0.296

10.511
± 0.056

960 182.008
± 16.076

28.848
± 1.217

128.152
± 9.174

22.018
± 0.204

148.671
± 48.669

23.810
± 2.418

40.774
± 13.985

15.107
± 0.744

24.067
± 3.383

13.551
± 0.270

14.148
± 0.461

12.508
± 0.063

E
T

T
h 2

24 2.016
± 0.152

2.481
± 0.353

1.528
± 0.142

1.601
± 0.029

1.476
± 0.230

2.307
± 0.488

1.128
± 0.084

1.409
± 0.007

1.210
± 0.128

1.350
± 0.095

1.088
± 0.022

1.250
± 0.015

48 4.462
± 0.567

8.194
± 0.397

4.802
± 0.342

2.806
± 0.081

4.244
± 0.470

6.131
± 0.542

2.529
± 0.165

2.207
± 0.010

3.368
± 0.380

2.362
± 0.183

2.374
± 0.058

1.906
± 0.019

168 24.016
± 3.355

32.496
± 1.563

24.516
± 1.705

6.950
± 0.313

42.270
± 1.708

28.487
± 0.642

14.759
± 1.149

5.242
± 0.104

12.307
± 1.637

4.899
± 0.229

10.205
± 0.533

4.225
± 0.083

336 74.168
± 9.015

29.549
± 2.453

55.817
± 3.180

9.572
± 0.270

95.645
± 6.432

30.837
± 1.115

42.654
± 3.450

8.063
± 0.155

28.823
± 2.681

7.447
± 0.350

15.831
± 0.141

5.975
± 0.022

720 129.440
± 22.426

35.908
± 2.230

111.842
± 18.634

13.109
± 0.391

185.321
± 17.061

47.461
± 6.122

92.521
± 33.126

11.953
± 0.977

142.118
± 36.524

16.428
± 2.748

26.577
± 0.987

8.989
± 0.035

960 177.336
± 18.126

38.348
± 1.665

170.218
± 14.187

15.240
± 0.246

281.720
± 75.629

53.148
± 9.408

100.142
± 29.742

12.766
± 0.734

218.477
± 27.365

20.498
± 1.979

43.028
± 2.007

11.080
± 0.108

E
T

T
m

1

24 2.343
± 0.130

1.730
± 0.098

2.478
± 0.094

1.590
± 0.040

3.109
± 0.135

2.062
± 0.178

3.368
± 0.067

1.882
± 0.026

2.618
± 0.096

1.194
± 0.023

2.134
± 0.034

0.995
± 0.007

48 4.818
± 0.122

3.133
± 0.097

4.116
± 0.093

2.457
± 0.038

5.223
± 0.340

3.036
± 0.083

4.400
± 0.084

2.426
± 0.061

4.176
± 0.355

1.661
± 0.077

3.317
± 0.045

1.470
± 0.015

96 8.550
± 0.671

4.813
± 0.228

5.837
± 0.098

3.586
± 0.085

9.686
± 1.050

5.220
± 0.162

6.803
± 0.271

3.803
± 0.090

5.479
± 0.349

2.409
± 0.093

4.782
± 0.045

2.180
± 0.009

288 32.918
± 2.223

11.054
± 0.341

17.231
± 0.759

7.403
± 0.122

42.809
± 3.710

10.706
± 0.513

15.942
± 0.531

7.285
± 0.064

22.650
± 2.713

5.365
± 0.072

15.457
± 0.273

4.436
± 0.033

672 80.546
± 17.739

16.365
± 0.749

38.265
± 6.209

12.030
± 0.455

111.531
± 13.075

16.601
± 0.649

45.064
± 5.369

12.482
± 0.311

149.483
± 10.180

13.980
± 0.350

44.721
± 1.867

8.040
± 0.126

1344 161.539
± 16.808

23.822
± 1.203

77.844
± 7.652

17.293
± 0.606

444.199
± 59.765

69.125
± 63.858

161.725
± 99.382

19.490
± 3.115

397.100
± 39.675

27.319
± 2.824

98.890
± 4.495

12.779
± 0.156

E
C

L

24 0.517
± 0.007

1.610
± 0.015

0.339
± 0.005

1.234
± 0.006

0.506
± 0.004

1.702
± 0.017

0.384
± 0.002

1.368
± 0.010

0.368
± 0.017

1.171
± 0.016

0.281
± 0.001

1.058
± 0.053

48 0.677
± 0.029

2.375
± 0.038

0.383
± 0.006

1.806
± 0.012

0.676
± 0.025

2.444
± 0.028

0.446
± 0.008

1.972
± 0.011

0.466
± 0.034

1.752
± 0.038

0.318
± 0.006

1.527
± 0.004

168 1.338
± 0.017

4.364
± 0.071

0.785
± 0.024

3.709
± 0.054

1.738
± 0.166

4.576
± 0.087

0.839
± 0.013

3.828
± 0.016

0.955
± 0.077

3.379
± 0.033

0.730
± 0.029

3.122
± 0.026

336 2.276
± 0.046

6.358
± 0.148

1.495
± 0.044

5.640
± 0.126

3.555
± 0.562

6.448
± 0.049

1.661
± 0.083

5.702
± 0.038

2.336
± 0.209

5.103
± 0.033

1.194
± 0.034

4.591
± 0.012

720 23.481
± 15.963

16.561
± 5.353

22.117
± 12.615

17.227
± 3.790

12.379
± 4.196

10.841
± 1.204

5.583
± 1.060

9.239
± 0.230

4.576
± 0.806

7.913
± 0.102

2.830
± 0.092

7.162
± 0.056

960 32.548
± 18.405

21.065
± 3.649

28.328
± 8.781

21.717
± 3.002

15.866
± 3.309

12.128
± 0.377

9.198
± 1.400

11.140
± 0.347

6.972
± 0.678

9.255
± 0.108

4.502
± 0.233

8.560
± 0.064
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Table 9: Forecasting performance of RevIN in comparison with existing dynamic normaliza-
tion methods. LSTNet∗ indicates the model where the autoregressive linear bypass module of LST-
Net is added to the baseline network. ES-RNN∗ indicates the model where the exponential smooth-
ing of ES-RNN is added to the baseline network. The experiments are conducted on the ETTh1,
ETTh2, ETTm1, ECL, and the M4 datasets using N-BEATS as the baseline. The missing perfor-
mances in the table are where the model fails to converge.

Methods N-BEATS + LSTNet∗ + ESRNN∗ + RevIN

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h 1

24 0.478
± 0.022

0.505
± 0.012

0.462
± 0.047

0.497
± 0.035

0.547
± 0.031

0.515
± 0.021

0.330
± 0.006

0.373
± 0.004

48 0.536
± 0.060

0.542
± 0.041

0.587
± 0.063

0.576
± 0.043

0.662
± 0.027

0.567
± 0.012

0.372
± 0.001

0.400
± 0.002

168 1.005
± 0.146

0.782
± 0.064

1.031
± 0.099

0.795
± 0.054

0.698
± 0.044

0.600
± 0.018

0.466
± 0.030

0.452
± 0.014

336 0.932
± 0.079

0.743
± 0.042

0.964
± 0.047

0.760
± 0.023

0.768
± 0.041

0.640
± 0.022

0.515
± 0.013

0.483
± 0.008

720 1.389
± 0.230

0.926
± 0.066

1.549
± 0.061

0.994
± 0.022

0.966
± 0.084

0.742
± 0.022

0.576
± 0.035

0.534
± 0.018

960 1.383
± 0.380

0.932
± 0.120

1.293
± 0.059

0.897
± 0.026 - - 0.678

± 0.019
0.575

± 0.009

E
T

T
h 2

24 0.403
± 0.185

0.472
± 0.101

0.394
± 0.099

0.485
± 0.068

0.614
± 0.010

0.522
± 0.004

0.192
± 0.003

0.276
± 0.002

48 1.330
± 0.240

0.918
± 0.073

1.261
± 0.214

0.907
± 0.075

0.654
± 0.009

0.543
± 0.007

0.254
± 0.011

0.320
± 0.008

168 7.174
± 0.449

2.329
± 0.049

7.053
± 0.428

2.290
± 0.095

0.962
± 0.129

0.696
± 0.054

0.410
± 0.010

0.418
± 0.005

336 4.859
± 0.268

1.863
± 0.043

5.070
± 0.336

1.914
± 0.083

1.204
± 0.158

0.789
± 0.050

0.449
± 0.011

0.447
± 0.006

720 5.656
± 1.053

2.012
± 0.186

6.311
± 2.057

2.049
± 0.225

1.284
± 0.145

0.810
± 0.033

0.496
± 0.008

0.482
± 0.002

960 6.408
± 2.039

2.077
± 0.242

5.627
± 1.670

1.965
± 0.314

1.338
± 0.535

0.809
± 0.127

0.471
± 0.015

0.481
± 0.008

E
T

T
m

1

24 0.443
± 0.043

0.437
± 0.035

0.412
± 0.026

0.426
± 0.024

0.564
± 0.015

0.477
± 0.009

0.403
± 0.006

0.392
± 0.005

48 0.453
± 0.034

0.472
± 0.018

0.420
± 0.028

0.455
± 0.018

0.615
± 0.093

0.531
± 0.049

0.328
± 0.010

0.371
± 0.007

96 0.603
± 0.051

0.581
± 0.027

0.572
± 0.039

0.553
± 0.030

0.668
± 0.031

0.555
± 0.015

0.379
± 0.011

0.406
± 0.007

288 0.849
± 0.095

0.702
± 0.051

0.789
± 0.069

0.677
± 0.039

0.795
± 0.070

0.623
± 0.032

0.451
± 0.016

0.445
± 0.008

672 0.860
± 0.057

0.726
± 0.026

0.958
± 0.183

0.758
± 0.076

1.657
± 1.116

0.890
± 0.290

0.555
± 0.011

0.511
± 0.008

1344 14.613
± 26.108

1.948
± 1.655

5.592
± 7.032

1.497
± 0.671 - - 0.631

± 0.061
0.556

± 0.020

E
C

L

24 0.279
± 0.007

0.372
± 0.003

0.198
± 0.005

0.310
± 0.003

0.242
± 0.005

0.332
± 0.006

0.176
± 0.002

0.285
± 0.001

48 0.309
± 0.007

0.388
± 0.004

0.245
± 0.009

0.343
± 0.007

0.275
± 0.007

0.352
± 0.006

0.194
± 0.001

0.301
± 0.001

168 0.333
± 0.016

0.410
± 0.012

0.285
± 0.006

0.375
± 0.004 - - 0.218

± 0.002
0.320

± 0.001

336 0.326
± 0.004

0.406
± 0.001

0.304
± 0.019

0.393
± 0.013 - - 0.241

± 0.005
0.337

± 0.002

720 0.420
± 0.094

0.467
± 0.058

0.378
± 0.083

0.443
± 0.056 - - 0.303

± 0.012
0.383

± 0.011

960 0.399
± 0.022

0.455
± 0.017

0.360
± 0.037

0.433
± 0.027 - - 0.325

± 0.019
0.398

± 0.015

M
4 average 0.224

± 0.004
0.207

± 0.003
0.223

± 0.004
0.206

± 0.003
0.223

± 0.001
0.204

± 0.001
0.208

± 0.001
0.197

± 0.001
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(a) model input (b) normalized input (c) model output (d) denormalized output
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Figure 8: Effect of RevIN on distribution discrepancy on training and test data compared to
existing dynamic normalization methods. We compare RevIN with LSTNet∗, which adds the
autoregressive linear bypass module of LSTNet to the baseline and ES-RNN∗, which adds the expo-
nential smoothing of ES-RNN to the baseline. The analysis is conducted on the ETTh2 dataset with
a prediction length of 960 using N-BEATS as the baseline. From left to right, the columns compare
the training and test data distributions of each step of the sequential process in each method.

A.6 COMPARISON WITH EXISTING DYNAMIC NORMALIZATION METHODS

We compare RevIN with the dynamic normalization methods proposed in LSTNet (Lai et al., 2017)
and ES-RNN (Smyl, 2020). Similar to adding RevIN to the baseline model, we add the autoregres-
sive linear bypass module of LSTNet and the modified Holt-Winters exponential smoothing of ES-
RNN to the baseline model, respectively. As shown in Table 9, RevIN consistently achieves the best
performance among the normalization methods adopted on N-BEATS by a significant margin. When
we replace RevIN with the other normalization methods, the autoregressive linear bypass module of
LSTNet (LSTNet∗) also consistently reduces the prediction error compared to the baseline. How-
ever, the performance improvement is smaller than our method. For example, when the prediction
length is 960 on the ETTh2 dataset, N-BEATS shows an average error of 6.408, and LSTNet∗ re-
duces the error to 5.627. But this is still much worse than RevIN, which reduces the error to 0.471.
Similarly, when the prediction length is 1344 on the ETTm1 dataset, the baseline shows an average
error of 14.613 and LSTNet∗ largely decreases the error to 5.592, but RevIN more significantly de-
creases the error to 0.631. In the case of ES-RNN∗, the training of the model is unstable, failing to
converge for several cases. Also, ES-RNN∗ often degrades the baseline performance, e.g., when the
prediction length is either 24 or 48 on the ETTh1 and ETTm1 datasets. It significantly reduces the
error for long prediction length much better than LSTNet∗, but still worse than RevIN, for example,
when the prediction length is 960 on the ETTh2 dataset.

Additionally, we further analyze the data distributions of the dynamic normalization methods on the
ETTh2 dataset, as shown in Fig. 8. We compare the training and test data distributions of each step
of the sequential process in each method.

ES-RNN∗ shows the distributions of (a) the original model input, (b) the normalized input where the
level and seasonality are removed by its proposed method, (c) the model prediction output, (d) the
denormalized output where the level and seasonality is multiplied back to the original distribution.

LSTNet∗ shows the distributions of (a) the original model input, (b) the same original input since
the method does not transform the input data before feeding them to the main prediction model, the
model prediction output (c) before, and (d) after adding the output of the autoregressive network.

RevIN shows the distributions of (a) the original model input, (b) the normalized input by RevIN,
(c) the model prediction output, and (d) the denormalized output by RevIN.
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In Fig. 8(a), the original training and test data show a discrepancy in their distributions. Also, they
have several peaks, not being centered on the mean. This implies that sequences in the data will
have different mean values. In Fig. 8(b), both RevIN and ES-RNN∗ transform data distributions
into mean-centered distributions. Particularly, ES-RNN∗ extremely concentrates the distribution on
the mean, with only a small variance. Both RevIN and ES-RNN∗ result in data sequences with
similar statistics, thereby alleviating the distribution shift problem in the input data. This leads to
outstanding performance on long prediction sequences, in contrast to LSTNet∗. LSTNet∗ cannot
resolve the distribution discrepancy because it does not have any module that can change the input
statistics. Also, in LSTNet∗, the distributions of the model output (Fig. 8(c)) completely differ from
the input data distributions (Fig. 8(b)). The method cannot make the input and output distribution
to be consistent. In addition, its proposed autoregressive model barely affects the model output
distributions, as shown in Fig. 8(c-d); there is almost no difference between the model output and
the final output distributions.

Most importantly, the distributions of the final output (Fig. 8(d)) significantly differ from the original
data (Fig. 8(a)) in LSTNet∗. Similarly, although ES-RNN∗ alleviates the distribution discrepancy
in the input data, it fails to return the model output (Fig. 8(d)) back to the original distribution
(Fig. 8(a)), especially with the test data. These results imply that LSTNet∗ and ES-RNN∗ fail to
learn the appropriate data distribution, and this could be the main reason why their prediction error
is higher than RevIN. On the other hand, in RevIN, the distributions of the final output (Fig. 8(d)) are
successfully returned to the original distributions (Fig. 8(a)). Also, with RevIN, the input and output
of the model maintain consistent distributions, as well as the training and test data be overlapped.
As a result, RevIN shows superior performance than the other dynamic normalization methods.

Table 10: Additional results on the comparison with classical and state-of-the-art normaliza-
tion methods in Table 3 in the main manuscript. The mean squared error is measured on the
ETTh1, ETTh2, ETTm1, and ECL datasets. Ty indicates the prediction length. RevBN is the modi-
fied version of RevIN, where the input normalization is replaced by batch normalization.

Dataset Ty
Min-max

norm
z-score
norm

Layer
norm DAIN Batch

norm RevBN Instance
norm

RevIN
(Ours)

E
T

T
h 1

24 0.885 0.959 0.472 0.652 0.451 0.574 0.989 0.322
48 1.010 0.898 0.741 1.389 0.557 0.649 0.999 0.373

168 1.074 0.953 0.871 0.996 0.851 0.717 0.946 0.515
336 1.083 0.969 0.827 0.979 0.828 0.775 1.078 0.509
720 1.226 0.978 1.184 1.014 0.916 0.705 0.986 0.567
960 1.224 1.043 1.303 1.032 1.691 0.779 1.090 0.697

E
T

T
h 2

24 2.659 3.152 0.478 1.437 0.336 0.550 2.976 0.192
48 2.772 3.232 1.335 1.476 1.018 1.058 3.175 0.244

168 2.987 3.329 4.092 1.982 6.206 0.729 3.240 0.419
336 2.914 3.288 4.207 2.631 5.422 0.546 3.186 0.452
720 3.092 3.031 5.822 2.954 7.062 1.552 3.079 0.492
960 3.308 3.087 5.204 2.802 7.755 2.148 3.145 0.465

E
T

T
m

1

24 0.981 0.930 0.515 0.431 0.477 0.680 0.926 0.395
48 0.998 1.005 0.555 0.747 0.489 0.531 1.005 0.337
96 1.035 1.016 0.502 0.672 0.505 0.601 1.021 0.388

288 0.974 0.988 0.773 0.877 0.677 0.656 1.056 0.444
672 1.157 1.029 0.795 1.043 0.620 0.670 1.157 0.549

1344 1.320 1.274 2.488 1.348 1.147 0.991 1.329 0.602

E
C

L

24 0.370 0.313 0.294 0.348 0.301 0.304 0.307 0.174
48 0.334 0.326 0.310 0.387 0.319 0.331 0.313 0.194

168 0.374 0.335 0.343 0.347 0.320 0.327 0.333 0.220
336 0.378 0.338 0.358 0.357 0.337 0.369 0.335 0.244
720 0.746 0.417 0.371 0.366 0.374 0.440 0.378 0.294
960 0.387 0.377 0.379 0.381 0.422 0.414 0.386 0.329
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A.7 ADDITIONAL RESULTS ON COMPARISON WITH EXISTING NORMALIZATION METHODS

This section provides complete results that compare with existing normalization methods, which are
not included in the main manuscript due to lack of space. The forecasting error of RevIN and existing
normalization methods are evaluated on the ETTh1, ETTh2, ETTm1, and ECL datasets in Table 10.
RevIN consistently outperforms the other normalization methods across all datasets. Interestingly,
when the denormalization step is added to batch normalization (RevBN) as RevIN, the model better
forecasts long sequences than batch normalization (Batch norm), e.g., when the prediction length is
960. The denormalization step of RevIN plays a critical role in improving model performance by
restoring the model prediction to the original distribution. However, a denormalization step cannot
be added to DAIN since it has the Hadamard multiplication operation in the last step, which is not
reversible when the input and prediction sequence lengths are different. These differences could
be the reason for its worse performance compared to RevIN despite that DAIN requires higher
computational costs and a larger amount of model parameters.

A.8 ALGORITHM OF REVERSIBLE INSTANCE NORMALIZATION

Algorithm 1 summarizes the procedure of the proposed approach. Reversible instance normalization
consists of the normalization (line 3-4) and denormalization layers (line 6-7). It transforms the input
and output of a model using identical statistics. As RevIN is generally applicable, gθ in Algorithm 1
(line 5) can be any arbitrary deep neural network.

Algorithm 1: RevIN, applied to input x and output y of a module in the model.

Input : Tx ∈ R1, the input sequence length; x(i)kt ∈ R1, the k-th feature at time step t
of the i-th item in a mini-batch; γ, β ∈ RK , learnable parameters for RevIN;
gθ, a module in the model parameterized by θ.

Output: γ, β, θ.

1 Compute µT ← 1
Tx

∑Tx

j=1 x
(i)
kj . instance mean

2 Compute σ2
T ← 1

Tx

∑Tx

j=1(x
(i)
kj − µT )2 . instance variance

3 Normalize x̂
(i)
kt ←

x
(i)
kt −µT√
σ2
T +ε

. normalization

4 Transform x̂
(i)
kt ← γk · x̂(i)kt + βk ≡ RevINn

γ,β(x
(i)
kt ) . scale and shift

5 Predict ỹ ← gθ(x̂) . forward propagation

6 Retransform ŷ
(i)
kt ←

ỹ
(i)
kt −βk

γk
. reverse scale and shift

7 Denormalize ŷ
(i)
kt ← µT + ŷ

(i)
kt

√
σ2
T + ε ≡ RevINdn

γ,β(ỹ
(i)
kt ) . denormalization

A.9 THEORETICAL JUSTIFICATION OF REVIN AGAINST DISTRIBUTION SHIFT

Let x(i) ∈ RK×Tx denote a time series comprising K variables of length Tx. Consider a univariate
case where K = 1 without the loss of generality. Then, x(i) ∈ RTx denotes the i-th time series
in the data. Consider training and test data, whose distributions are denoted as Ptra and Ptst, re-
spectively. We consider a distribution shift problem where the training and test data have different
distributions (Du et al., 2021). That is,

Ptra(x) 6= Ptst(x). (4)

In our work, we consider the distribution shift problem in terms of the mean and the variance. Then,
the distribution shift problem can be redefined as

E[xtra] 6= E[xtst] or Var[xtra] 6= Var[xtst], for xtra ∼ Ptra, xtst ∼ Ptst. (5)

Let’s assume that the given training and test data suffer from the distribution shift problem in terms
of the mean and variance. In order to solve this problem, RevIN first normalizes a training sample
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x(i) ∼ Ptra. Mathematically, a training sample is transformed as

x̂(i) =
x(i) − E[x(i)]√

Var[x(i)]
· γ + β. (6)

By the laws of expectation and variance,

E[x̂(i)] = β and Var[x̂(i)] = γ2, for all i. (7)

By symmetry, this also holds for x(i) ∼ Ptst, for all i. Therefore, the mean and variance of the
training and test data distributions become identical. Thus, by definition (Eq. 5), the distribution
shift problem for the training and test data is solved by the first step of RevIN.

Given the normalized time-series data, the forecasting model parameterized by θ, fθ : RTx → RTy ,
predicts the corresponding subsequent future values, ỹ = fθ(x̂). Then, the denormalization step of
RevIN returns the non-stationary information of the original data, i.e., E[x(i)] and Var[x(i)] in Eq. 6,
to the prediction output so that model does not have to reconstruct them from the normalized input.
In summary, the model prediction ỹ(i) is denormalized as

ŷ(i) =
ỹ(i) − β

γ
·
√

Var[x(i)] + E[x(i)]. (8)

By the laws of expectation and variance, the mean and variance of ŷ(i) can be expressed as

E[ŷ(i)] = ∆ + E[x(i)] and Var[ŷ(i)] = λ ·Var[x(i)]. (9)

The denormalization step allows the mean and variance of the final prediction values to be expressed
as the difference from the input statistics. Here, since the input data x(i) and the groundtruth future
values are consecutive sequences, we can assume that their difference in the mean and variance
can be expressed as Eq. 9 as well. Under this assumption, the model adopting RevIN only needs to
capture the difference from the input statistics, ∆ and λ, to accurately predict the statistics of the
future values. In conclusion, through the normalization and denormalization steps of RevIN, a model
can focus on learning the offset from the input distribution to the output distribution by removing
their common non-stationary statistics.

A.10 CALCULATION DETAILS ON FEATURE DIVERGENCE

This section explains how the feature divergence is computed in Section 4.2.3. Following the pre-
vious work (Pan et al., 2018), we calculate the average feature divergence between the training and
test data using symmetric KL divergence, assuming that the output features of the model layer will
follow a Gaussian distribution with mean µ and variance σ2. Then, the equation for the feature
divergence of the k-th feature fk can be expressed as

D(f train
k ||f test

k ) = KL(f train
k ||f test

k ) +KL(f test
k ||f train

k ), (10)

where KL(fAk ||fBk ) = log
σBk
σAk

+
σAk

2
+ (µAk − µBk )2

2σBk
2 − 1

2
. (11)

A.11 ADDITIONAL EXPERIMENTAL DETAILS

We train and evaluate the models using the following seeds: 12, 22, 32, 42, and 52. The experiments
using N-BEATS and Informer as the baseline are performed on NVIDIA TITAN RTX, and the
experiments using SCINet are conducted on NVIDIA TITAN Xp. Following the multivariate time-
series forecasting settings of the previous studies (Zhou et al., 2021; Liu et al., 2021), we select
input sequence length from two days (2d), 4d, 7d, 14d, 15d, 20d, 28d, 30d for the hourly datasets,
i.e., the ETTh1, ETTh2, and ECL datasets, and from half day, 1d, 3.5d, 7d for the ETTm1 dataset.
Particularly, we set the ratio of input length to prediction length to be smaller from 2.0 to 0.35 as the
prediction length becomes longer. In the case of SCINet, when the prediction length is 720, we set
its input length to be 736, unlike the other baselines. It is because the original paper of the method
requires its input sequence length to meet a specific condition. To be specific, the input length needs
to be a multiple of 32 due to its hierarchical architecture (Liu et al., 2021).
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A.12 REPRODUCTION DETAILS FOR BASELINE MODELS

This section describes the implementation details of the baselines, Informer, N-BEATS, and SCINet.
Note that we compare each baseline model and RevIN using the same hyperparameters except for
the presence of RevIN. We exactly follow the experimental settings of the baseline models by using
their official code to conduct experiments, except for N-BEATS that have no officially released code.
We reproduce the model and set hyperparameters as stated in the original N-BEATS paper.

Informer. We use the official open-source code of Informer 6. If provided, we follow the same hy-
perparameter settings in training the network, e.g., hidden dimension of the network or the learning
rate. For the ECL dataset, detailed hyperparameter settings are not officially provided in Informer;
we use the same settings with the ETTh1 dataset.

N-BEATS. We reproduce N-BEATS using the PyTorch framework (Paszke et al., 2019). We follow
the same hyperparameter settings of the N-BEATS-I model in the original paper. We train N-BEATS
to minimize the mean squared error between the model prediction and groundtruth values. For a fair
comparison with the other baselines, we use a single model instead of using the ensemble method
originally proposed in the N-BEATS paper. Since N-BEATS is a model tailored to univariate time-
series forecasting, we flatten each multivariate input sequence into a univariate sequence having a
single dimension for the feature before feeding it to the model. Additionally, we conduct a grid
search for the learning rate of N-BEATS with the range of [1e-5, 1e-3] and train the model using the
weight decay with the factor of 0.001 to stabilize training.

SCINet. We follow the experimental settings provided in the official code 7 of SCINet.

A.13 ADDITIONAL QUALITATIVE RESULTS

In Fig. 9, we illustrate the additional results comparing the predictions of RevIN and the baselines.
Overall, the prediction results of the baselines are inaccurately scaled and shifted. However, RevIN
shows remarkable performance, consistently improving the baselines to predict more precise results.
With RevIN, the forecasting results are better aligned with the groundtruth.

A.14 COMPLETE QUANTITATIVE RESULTS

Table 11 provides the standard deviation values of five independent experiments to compare long
sequence forecasting performance in Table 2 in the main manuscript. Table 12 shows the complete
results of the comparison of the forecasting errors between the baselines and RevIN in Table 1 in the
main manuscript. They include the standard deviation of five runs and the performance reported in
the original papers of the baselines. RevIN shows significant performance improvement compared
to the state-of-the-art forecasting baselines.

Table 11: Standard deviation values of the five runs for the comparison of long sequence fore-
casting performance in Table 2 in the main manuscript.

Prediction length 48 168 336 720 960

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Informer 0.056 0.035 0.052 0.024 0.085 0.031 0.037 0.024 0.034 0.022
+ RevIN 0.030 0.008 0.051 0.030 0.073 0.026 0.067 0.033 0.041 0.022

N-BEATS 0.042 0.030 0.056 0.027 0.081 0.037 0.072 0.029 0.067 0.030
+ RevIN 0.006 0.003 0.014 0.007 0.011 0.006 0.041 0.020 0.027 0.012

SCINet 0.008 0.007 0.063 0.042 0.115 0.064 0.033 0.022 0.049 0.029
+ RevIN 0.002 0.001 0.013 0.007 0.022 0.010 0.028 0.017 0.015 0.008

6https://github.com/zhouhaoyi/Informer2020
7https://github.com/cure-lab/SCINet
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Figure 9: Additional multivariate time-series forecasting results comparing RevIN and state-
of-the-art baselines. The analysis is conducted on the ETTh1, ETTh2, ETTm1, and ECL datasets.
We set the prediction length as 168 for the hour datasets and 288 for the ETTm1 dataset.
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