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ABSTRACT

Large Language Models (LLMs) using Chain-of-Thought (CoT) prompting excel
at complex reasoning but generate verbose thought processes with considerable
redundancy, leading to increased inference costs and reduced efficiency. We in-
troduce a novel CoT compression framework based on step entropy, a metric that
quantifies the informational contribution of individual reasoning steps to identify
redundancy. Through theoretical analysis and extensive empirical validation on
mathematical reasoning benchmarks, we demonstrate that steps with low entropy
are indeed highly redundant. Our experiments reveal that an astonishing 80% of
low-entropy intermediate steps can be pruned with minor degradation in the fi-
nal answer accuracy across DeepSeek-R1-7B, 14B and Qwen3-8B. This finding
sharply contrasts with random or high-entropy pruning, which severely impairs
reasoning performance. Building on this, we propose a novel two-stage training
strategy combining Supervised Fine-Tuning (SFT) and Group Relative Policy Op-
timization (GRPO) reinforcement learning. This approach enables LLMs to au-
tonomously learn to generate compressed COTs during inference by strategically
incorporating [SKIP] tokens. Our method significantly improves LLM inference
efficiency while preserving accuracy, paving the way for more scalable LLM de-
ployments and a better understanding of their internal reasoning.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in complex reasoning
tasks, particularly when employing techniques like Chain-of-Thought (COT) (Wei et al., 2022).
By generating explicit intermediate reasoning steps, often referred to as “slow thinking”, Large
Reasoning Model (LRM) such as the DeepSeek-R1 (Guo et al., 2025) Series and Qwen3 (Yang
et al., 2025) significantly enhance performance on multi-step problems in domains like mathematics,
coding and symbolic logic. This process allows the model to break down complex problems into
more manageable components, leading to more reliable and accurate outcomes.

However, a notable drawback of current slow thinking COT implementations is the considerable
redundancy often present within the generated thought processes (Deng et al., 2023; Zhong et al.,
2025a). These verbose reasoning paths, while thorough, lead to increased inference latency, higher
computational costs, and diminished overall efficiency. As models become larger and are deployed
at scale, these inefficiencies present a significant bottleneck for practical applications.

To mitigate this, prior research has explored several compression strategies. One prominent direction
focuses on making the CoT process implicit or latent, finetuning the model to internalize reasoning
steps without verbalizing them (Deng et al., 2024; Hao et al., 2024) or dynamically compressing
them in latent space (Tan et al., 2025). Other work has focused on compressing the reasoning
chain at different granularities, from pruning tokens in the input context (Li et al., 2023), enabling
controllable token-level skipping during generation (Xia et al., 2025), to chunk-based compression
(Wang et al., 2025a). While these methods improve efficiency, they do not offer a principled way to
identify and remove entire reasoning steps that are semantically redundant.

Intuitively, when humans tackle complex problems, they record only key milestones, omitting obvi-
ous thoughts. Recent work has sought to teach LLMs a similar ability to skip steps (Liu et al., 2024;
Jiang et al., 2025) or tune for length-compressible CoTs (Ma et al., 2025b). However, a fundamental
question persists: how can we systematically identify which steps in a reasoning chain are crucial
versus superfluous?
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In this paper, we propose a novel, entropy-based method to identify and quantify the significance of
each step within an LLM’s Chain-of-Thought. We introduce the concept of step entropy, a metric
that measures the informational contribution of individual reasoning steps by aggregating token-
level entropy during generation. Our core hypothesis is that steps with lower entropy represent more
predictable, and therefore less informative, parts of the reasoning chain that can be safely pruned
without compromising accuracy.

To validate this approach, we conduct systematic empirical analysis by calculating step entropy for
reasoning trajectories and investigating the impact of pruning varying proportions of steps (10% to
100%) using three strategies: low-entropy pruning, high-entropy pruning, and random pruning. Our
findings, as shown in Figure 1, reveal that pruning up to 80% of low-entropy steps maintains accu-
racy while achieving substantial token reductions (16-45% across multiple benchmarks), whereas
high-entropy step removal causes immediate performance degradation. Cross-model validation on
DeepSeek-R1 (7B, 14B) and Qwen3-8B demonstrates the universality of our entropy-based ap-
proach across different architectures. To demonstrate the superiority of step-level pruning, we com-
pare our method with direct token-level pruning in the experimental section.

Building on this validation, we introduce a two-stage training strategy combining Supervised Fine-
Tuning (SFT) with Group Relative Policy Optimization (GRPO) (Shao et al., 2024) that enables
models to autonomously generate compressed reasoning trajectories. The SFT stage teaches models
to predict when to use [SKIP] tokens based on entropy-compressed training data, while GRPO
optimizes a composite reward function balancing accuracy, compression ratio, and response length.
Our trained models achieve 35-57% token reductions while maintaining or improving accuracy,
demonstrating that LLMs can learn to perform efficient reasoning without sacrificing quality.

The main contributions of our work are summarized as follows:

• We introduce step entropy as a principled metric for quantifying the contribution of each
step in the Chain-of-Thought thinking trajectory.

• We provide strong empirical evidence that low-entropy steps are largely redundant and can
be pruned up to 80% without significant loss of accuracy.

• We propose a two-stage training strategy that enables LLM to learn the efficient com-
pressed reasoning policy, significantly improving inference efficiency while maintaining
performance.

2 RELATED WORK

2.1 LLM REASONING WITH REINFORCEMENT LEARNING

Reinforcement Learning (RL) has emerged as a powerful paradigm for enhancing the reasoning
capabilities of Large Language Models (LLMs). Recent advancements, such as those demonstrated
in Shao et al. (2024) and Xie et al. (2025), showcase RL’s efficacy in refining LLMs’ ability to
tackle complex reasoning tasks. Furthermore, strategies involving “long COT” Yeo et al. (2025)
and “slow thinking” Zhong et al. (2025b) (which involves extending inference time) Comanici et al.
(2025); Guo et al. (2025); OpenAI (2025) have been shown to significantly improve LLM reasoning
performance by allowing for more elaborate and deliberate thought processes.

However, the increased length and computational overhead associated with these verbose COTs have
led to concerns regarding efficiency. Wang et al. (2025b); Cuadron et al. (2025); Sui et al. (2025)
highlight the phenomenon of “overthinking,” where excessively long COTs can paradoxically lead to
diminished efficiency without proportional gains in accuracy. This emphasizes the need for methods
that can optimize the length and content of reasoning trajectories.

2.2 COT COMPRESSION AND LATENT REASONING

To address the inefficiency of verbose reasoning, researchers have pursued two main avenues: com-
pressing the explicit CoT and making the reasoning process entirely implicit.

Explicit compression methods aim to shorten the generated text at various granularities. At the
finest level, some works enable controllable token-level skipping (Xia et al., 2025) or explore the
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Figure 1: Comprehensive Performance of COT Compression via Step Entropy. (a) Accuracy vs.
Mask Ratio on 50 samples from DeepScaleR. This plot illustrates the impact of different pruning
strategies (Random, High-Entropy Steps, Low-Entropy Steps) on final answer accuracy as the mask
ratio of intermediate COT steps increases. Note that pruning up to 80% low-entropy steps main-
tains Complete COT accuracy (b) Accuracy vs. Tokens Usage Ratio on other benchmarks. This plot
compares the accuracy and token usage ratio of the Full COT against our Compressed COT (80%
low-entropy steps pruning) across Math500, AIME 2024, and AIME 2025 on DeepSeek-R1-7B.

information-theoretic minimum number of tokens required for a solution (Lee et al., 2025). At a
coarser grain, R1-Compress introduces chunk-based compression and search (Wang et al., 2025a).
Other strategies use length-constrained tuning, integrating penalties into RL reward functions (Shen
et al., 2025; Hou et al., 2025) or developing specific architectures for length-compressible CoTs
like CoT-Valve (Ma et al., 2025b). Our work advances this line by proposing a more semantically
grounded approach: we operate at the step level, arguing it better mimics human cognition (skipping
entire thoughts, not words). Furthermore, our method is guided by an explicit information-theoretic
signal—step entropy—teaching the model not just to be shorter, but to selectively discard what is
verifiably uninformative.

An alternative, more radical approach is to make reasoning implicit or latent. Methods like iCOT
(Deng et al., 2024) and COCONUT (Hao et al., 2024) fine-tune models to internalize reasoning
steps, while others use knowledge distillation to embed the process in the model’s hidden states
(Deng et al., 2023). More recently, dynamic latent compression performs reasoning entirely within
these hidden states, avoiding explicit generation altogether (Tan et al., 2025). While these latent
strategies offer maximum efficiency, they sacrifice the critical interpretability and verifiability of an
explicit CoT. Our work carves a distinct path by focusing on optimizing the explicit reasoning chain,
preserving its benefits while drastically improving its efficiency.

3 COT COMPRESSION VIA STEP ENTROPY

This section details our framework for CoT compression, which is built on a novel, entropy-based
metric. We begin by formally defining step entropy and providing its theoretical justification as a
measure of a reasoning step’s importance. We then describe our primary contribution: the low-
entropy steps pruning strategy and the process for performing LLM inference with the compressed
CoT.

3.1 STEP ENTROPY

The foundational premise of our work is that not all steps in a CoT contribute equally to the final
answer. To formalize this, we introduce step entropy as a measure of the informational contribution
of each reasoning step. We hypothesize that steps generated with high confidence (low uncertainty)
by the model are more likely to be redundant. Information entropy provides a natural way to quantify
this uncertainty.
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Given a CoT sequence generated by a LRM, we first segment it into a series of distinct steps,
C = (S1, S2, . . . , SN ), where each step Si is a sequence of tokens, Si = (ti,1, ti,2, . . . , ti,Mi

).
During autoregressive generation, for each token ti,j , the model produces a probability distribution
p(·|ci,j) over its entire vocabulary V , where ci,j is the context consisting of the input prompt and all
previously generated tokens.

The entropy of this distribution, which represents the model’s uncertainty at that generation step, is
calculated using the standard Shannon entropy formula:

H(ti,j |ci,j) = −
∑
w∈V

p(w|ci,j) log2 p(w|ci,j) (1)

We define the step entropy H(Si|S<i) as the sum of token-level entropy across all tokens within
that step:

H(Si|S<i) =

Mi∑
j=1

H(ti,j |ci,j) = H(ti,1, ..., ti,Mi |S<i) (2)

A high step entropy H(Si) indicates that the model was, on average, highly uncertain when gener-
ating step Si, while a low step entropy indicates the deterministic generation.
Lemma 1 (Entropy-Bounded Information). Given a reasoning process where a sequence of steps
C = (S1, S2, . . . , SN ) leads to a final answer A, the conditional mutual information I(Sj ;A|S̄j)
between the step and the answer, conditioned on all other steps S̄j = C \ {Sj}, is bounded by the
step entropy H(Sj |S<j) of the step itself. Specifically:

I(Sj ;A|S̄j) ≤ H(Sj |S<j)

The formal proof is provided in Appendix B.1. This result demonstrate that when the entropy of step
Sj is low, the conditional mutual information of Sj and the final answer A, i.e. the relation of Sj

and A is minor.
Theorem 1 (Entropy-Bounded Information on Subset). For any subset of K + 1 steps S̃ =
{Sk0 , Sk1 , . . . , SkK

} ⊆ C, the conditional information contribution of this subset to the final answer
is bounded by the sum of the step entropies of the steps within it:

I(S̃;A|C \ S̃) ≤
K∑
i=0

H(Ski
|S<ki

)

The formal proof is provided in Appendix B.2 The result denotes that steps Sk0 , Sk1 , ..., SkK
could

have minor relation to the final solution A. This observation implies that, a step with low entropy
suggesting the deterministic thinking, which has minor relation to the finally solution, thus denotes
such step could be less informative, and potentially redundant.

While step entropy theoretically serves as an upper bound on the mutual information between the
CoT steps and the response, in practice, it suffers from bias introduced by step length. To mitigate
this issue, we propose to use the length-normalized step entropy, as defined in Definition 1.
Definition 1 (Length-normalized Step Entropy). Given a reasoning step Si consisting of Mi tokens
and the preceding context S<i, we define the length-normalized step entropy as:

H(Si | S<i) =
1

Mi

Mi∑
j=1

H(ti,j | ci,j) (3)

where ti,j represents the j-th token of step i and ci,j represents the context up to that token.

3.2 LOW-ENTROPY STEPS PRUNING STRATEGY FOR COT COMPRESSION

Based on the observation established above, we propose a practical CoT compression approach
that selectively removes low-entropy steps while preserving the essential reasoning structure. Our
method operates on the principle that steps with low entropy are more likely to be redundant and
can be safely pruned without significantly impacting the final answer quality.
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Step7

Step6

Step5

Step4

Step3

Step2

Step1

Step Entropy

First, I need to calculate the sum of the numbers 991, 993, 995, 997, and 999. 

These numbers are close to 1000, I'll express each number as 1000 minus a 

small value

Next, I'll sum these expressions:\n5000 - (9 + 7 + 5 + 3 + 1)

Now, add the small values:\n9 + 7 = 16\n16 + 5 = 21\n21 + 3 = 24\n24 + 1 = 25

Substituting back into the equation:\n5000 - 25 = 4975 

Finally, I'll set up the equation to solve for N:\n4975 = 5000 - N 

Subtracting 4975 from both sides gives:\nN = 25\n

[SKIP]

[SKIP]

[SKIP]

[SKIP]

<think> 

</think> 

(a) The case of Low-Entropy steps pruning strategy for COT com-
pression, and replacing each selected low-entropy step with a spe-
cial ‘[SKIP]’ token.

Inference with Compressed
Thinking COT

User Query / Problem
↓

<think>
↓

“S1, [SKIP], S3, [SKIP],
[SKIP], . . . , SN”

↓
</think>

↓
Final Answer Generation

(b) The compressed CoT sequence
(<think>...</think>) is concate-
nated with the user query in the prompt
context.

1. Generate Full CoT: For each problem instance x, we use DeepSeek-R1-Distill-Qwen-7B
to generate a complete CoT trajectory, the response format is <think> C </think>
final answer . The reasoning steps S1, S2, . . . , SN , delimited by \n\n, are ex-
tracted from thinking content C between the <think> and </think> tags, C =
(S1, S2, . . . , SN ).

2. Calculate Step Entropy: For each step Si ∈ C, we compute its step entropy H(Si) using
Equation 2.

3. Entropy-Based Pruning: We rank all steps in ascending order of their entropy scores
and identify the κ × N lowest-entropy steps for pruning, where κ is the pruning ratio
hyperparameter. The compressed CoT C ′ is constructed by replacing each selected low-
entropy step with a special ‘[SKIP]’ token, while preserving high-entropy steps in their
original form. The example of this process is shown in Figure 2a.

4. Inference with Compressed CoT: The compressed sequence C ′ is concatenated with the
user query and the </think> delimiter to prompt the model to generate only the final
answer, as illustrated in Figure 2b.

This approach allows us to systematically compress CoT sequences while maintaining reasoning
coherence. The pruning ratio κ provides a flexible control mechanism for balancing compression
efficiency and answer quality, with optimal values determined empirically across different datasets
and problem types. The upper bound of steps pruning ratio κ will be discussed in Experiment 4.1.

3.3 AUTONOMOUS COMPRESSION VIA TWO-STAGE TRAINING

While our entropy-based pruning strategy effectively compresses existing CoT sequences, enabling
models to autonomously generate compressed reasoning trajectories during inference represents a
more practical advancement. Our two-stage training methodology successfully achieves this goal
by teaching models to balance accuracy with efficiency through learning when to skip redundant
reasoning steps.

Stage 1: Supervised Fine-Tuning (SFT) We first train the model on (problem, compressed CoT,
answer) pairs of the dataset in the Experiment 4.2 using our low entropy-based pruning strategy.
The model learns to predict compressed reasoning paths and generate [SKIP] tokens by minimizing
cross-entropy loss, providing robust initialization for reinforcement learning.

Stage 2: Group Relative Policy Optimization (GRPO) While SFT teaches static imitation of
compressed traces, it does not explicitly optimize the accuracy-efficiency trade-off. We employ
Group Relative Policy Optimization (GRPO)(Shao et al., 2024) to further optimize this behavior
through reward-driven learning.

5
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For each input prompt, we sample a group of K completions. The model’s goal is to learn a policy
πθ that maximizes a composite reward function R(C) for each generated completion C. The total
reward is the sum of four components designed to balance correctness with efficiency:

R(C) = [Rcorrectness, Rskip ratio, Rskip num, Rresponse length] (4)

Let Tthink(C) be the thinking content within the completion C. The reward components are defined
as follows:

1. Correctness Reward (Rcorrectness): A large positive reward for generating the correct final
answer. Let Aextracted(C) be the answer extracted from completion C and A∗ be the ground
truth.

Rcorrectness(C,A
∗) =

{
2.0 if A∗ == Aextracted(C)

0.0 otherwise
(5)

2. Skip Ratio Reward (Rskip ratio): A tiered reward for achieving a high ratio of skipped
steps, encouraging compression. Let Nskip be the count of ‘[SKIP]’ tokens and Nsteps be
the total number of steps in Tthink(C). The skip ratio is Ratioskip = Nskip/max(1, Nsteps).

Rskip ratio(C) =


1.0 if Ratioskip ≥ κhigh

0.5 if κlow ≤ Ratioskip < κhigh

0.0 otherwise
(6)

3. Skip Number Penalty (Rsn): Penalty -1.0 when [SKIP] tokens exceed τskip num to pre-
vent degenerate behavior.

4. Response Length Penalty (Rrl): Penalty -1.0 for responses exceeding τlength tokens to
encourage conciseness.

This two-stage process trains the model to strategically decide when to perform detailed reasoning
versus when to skip steps, achieving efficient reasoning while preserving accuracy. The experiments
of training and evaluation results are presented in Section 4.3, with an ablation study of the reward
components available in Appendix F.

4 EXPERIMENTS

This section presents experiments validating our entropy-based CoT compression method. We first
conduct controlled studies to establish an optimal pruning ratio. We then demonstrate the effective-
ness and generalizability of this strategy across multiple benchmarks and model sizes, justifying our
step-level approach over token-level alternatives. Finally, we evaluate a two-stage training method
that enables a model to autonomously generate compressed reasoning trajectories.

Table 1: Comparing the full COT baseline with our proposed step-entropy based pruning (Our)
method, which prunes 80% of the lowest-entropy steps for DeepSeek-R1-7B, 14B and Qwen-8B. We
conduct experiments to get the Pass@1 Accuracy(ACC)(%) and the number of Average Thinking
Tokens per answer (contains the Unicode characters) during the inference on GSM8k, Math500,
AIME2024 and AIME2025.

Method GSM8k Math500 AIME 2024 AIME 2025
ACC (%) Avg Tokens ACC (%) Avg Tokens ACC (%) Avg Tokens ACC (%) Avg Tokens

DeepSeek-R1-7B 78.54 298.33 88.17 3703.83 63.33 15843.43 35.71 18203.23
DeepSeek-R1-7B (Our) 80.82 294.29 (↓1.3%) 88.17 2604.23 (↓29.7%) 56.67 10092.80 (↓36.3%) 35.71 11471.17 (↓37.0%)

DeepSeek-R1-14B 82.64 283.63 84.37 2853.73 65.52 15414.83 58.62 18000.10
DeepSeek-R1-14B (Our) 84.00 278.29 (↓1.9%) 82.16 1980.97 (↓30.6%) 58.62 8705.57 (↓43.5%) 51.72 10842.07 (↓39.8%)

Qwen3-8B 94.46 3053.67 91.37 7138.49 79.31 20936.57 76.92 19902.43
Qwen3-8B (Our) 94.39 2557.47 (↓16.2%) 91.13 5209.24 (↓27.0%) 81.48 11533.57 (↓44.9%) 76.00 11716.63 (↓41.1%)

4.1 DETERMINING THE OPTIMAL PRUNING RATIO

To identify the safe threshold for step pruning, we conduct a controlled experiment using 50 samples
from DeepScaleR (Luo et al., 2025) dataset on DeepSeek-R1-7B. And we investigate the impact on
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final answer accuracy by pruning steps using three distinct strategies with a mask ratio varying from
10% to 100% (“no-thinking” mode (Ma et al., 2025a)), shown in Figure 1 (left). In our methodology,
pruned steps are replaced with a special “[SKIP]” token. This choice is informed by an ablation
study detailed in Appendix E, which confirms that an explicit placeholder is more robust at high
compression ratios than alternatives like direct removal.

• Low-Entropy Steps Pruning: Steps with the lowest entropy are replaced by “[SKIP]”.

• High-Entropy Steps Pruning: Steps with the highest entropy are replaced by “[SKIP]”.

• Random Steps Pruning: Steps are replaced by “[SKIP]”. at random, serving as a control.

The results, illustrated in Figure 1, strongly validate our hypothesis. With Low-Entropy Steps
Pruning, we observe that final answer accuracy remains stable and unaffected even when up to 80%
of the lowest-entropy steps are masked. Beyond this 80% threshold, accuracy begins to decline,
eventually converging to the accuracy of the “no-thinking” mode. This provides powerful evidence
that a vast majority of low-entropy steps are indeed redundant. We found that with the best pruning
strategy, we can prune up to 80% lowest-entropy steps (40% tokens redundancy) when not affecting
the accuracy, shown in Figure 1 (right).

Conversely, with High-Entropy Steps Pruning, accuracy degrades immediately upon masking even
a small fraction of steps. When the mask ratio exceeds 40%, performance drops below that of the
“no-thinking” mode, indicating that removing these critical, high-information steps is more detri-
mental than providing no reasoning at all. The Random Steps Pruning strategy’s performance falls
between the two, beginning to decline at a 40% ratio.

Based on these findings, we establish our core strategy: pruning 80% of steps with the lowest entropy
(κ = 0.8), replacing them with [SKIP] tokens while preserving the remaining high-entropy steps.
Moreover, we validate this strategy also work on Deepseek-R1-14B and Qwen-8B.

4.2 VALIDATING LOW-ENTROPY STEPS PRUNING STRATEGY

With the 80% threshold established, we conduct extensive experiments to validate our strategy’s
effectiveness, generalizability, and scalability across different models and datasets.

Models and Datasets. We use models from the DeepSeek-R1 series (7B and 14B) and Qwen3-
8B (Yang et al., 2025), which are open-source Large Reasoning Models with strong mathematical
reasoning capabilities. To generate the initial CoT trajectories for our training data, we merged 40k
samples from the DeepScaleR dataset (Luo et al., 2025) with 90k samples from the OpenR1-Math
dataset (OpenR1-Math, 2025), creating a final composite dataset of 130k instances. To test the
effectiveness and generalizability of our compression method, we evaluate performance on several
standard mathematical benchmarks: GSM8k (Cobbe et al., 2021), Math500 (Lightman et al., 2023),
AIME2024 (dataset card AIME, 2024) and AIME2025 (dataset card AIME, 2025).

Performance and Generalizability on Benchmarks. To test the broader effectiveness of our
strategy, we applied the 80% low-entropy steps pruning strategy to multiple benchmarks across
both Deepseek-R1-7B, 14B and Qwen3-8B models.

Table 1 presents comprehensive results comparing our compressed CoT method against full CoT
baselines. Our approach consistently achieves substantial efficiency gains while maintaining or
improving accuracy across all models. The DeepSeek-R1 series shows remarkable token re-
ductions: 29.7-37.0% for the 7B model and 30.6-43.5% for the 14B model across mathemati-
cal benchmarks, with GSM8k showing slight accuracy improvements for both sizes. Notably,
Qwen3-8B demonstrates the strongest performance with impressive token reductions of 16.2-
44.9% while maintaining competitive accuracy and even achieving slight improvements on AIME
2024 (79.31%→81.48%). The cross-architecture consistency—spanning both DeepSeek-R1 and
Qwen3 model families—demonstrates that step entropy is a robust and generalizable principle for
identifying redundancy, independent of model architecture, size. For a detailed analysis of our
method’s performance across different domains, we conducted experiments on the MMLU bench-
mark (Hendrycks et al.). The results, presented in Appendix G, demonstrate that step entropy is a
generalizable metric for identifying redundancy beyond mathematical reasoning.
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Scalability and Dataset Creation. To ensure our method
scales beyond controlled experiments, we further validated
that the 80% low-entropy pruning strategy holds at a much
larger scale. To validate this strategy at scale, we applied
this compression pipeline to the entire DeepScaler (40k) and
OpenR1-Math datasets (90k). The results in Table 2 confirm
that even across these tens of thousands of examples, the
accuracy of the statically compressed CoTs remains almost
identical to that of the full CoTs. This large-scale valida-
tion not only proves the robustness of our method but also
serves as the direct procedure for Dataset Creation. The final
dataset (130K), consisting of (problem, compressed CoT,
answer) pairs our training strategy.

Table 2: Comparing the Accuracy
(%) of Full CoT (Full Chain of
Thought) against Our Compressed
CoT, based DeepSeek-R1-7B on
two large datasets: DeepScaleR
(40K) and OpenR1-Math (90K).

Model DeepScaleR OpenR1-Math
Full CoT 63.74 48.39
Compressed COT 62.17 47.31

Discussion of Our Method v.s. Directly Mask-
ing Tokens A crucial aspect of our methodol-
ogy is the decision to prune entire reasoning steps
rather than individual tokens. To justify this,
we compared our step-based pruning approach
against a token-based pruning baseline, where we
remove the lowest-entropy tokens from the think-
ing trace irrespective of the steps they belong to.
The results, shown in Figure 3, are unequivocal.
While our step-pruning method maintains base-
line accuracy even after removing up to 40% of
the total thinking tokens, the token-pruning ap-
proach leads to a sharp and immediate decline
in performance. Accuracy drops significantly af-
ter just a 20% token mask ratio. This demon-
strates that a reasoning step is the correct semantic
unit for compression. Removing individual low-
entropy tokens (e.g., common words or operators)
can break the syntactic and semantic integrity of a
critical reasoning step, rendering it incomprehen-
sible to the model. In contrast, removing an entire
low-entropy step preserves the structure of the re-
maining, more important steps, leading to a much
more robust compression strategy.
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Accuracy vs. Thinking Tokens Mask Ratio
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Our Method (Mask steps via step-entropy)
Directly Mask tokens via token-entropy

Full COT

Figure 3: Comparing the accuracy of
Our Method (via step-entropy) and Directly
Masking Tokens (via token-entropy) across
various thinking token mask ratios, with Full
COT serving as the baseline of Deepseek-
R1-14B on DeepScaleR dataset.

4.3 TRAINING AND EVALUATION FOR AUTONOMOUS COMPRESSION

We evaluate our two-stage training framework (detailed in Section 3.3) for autonomous CoT com-
pression. We analyze the trained model’s balance of accuracy and efficiency, and benchmark its
performance against advanced compression baselines to demonstrate its state-of-the-art capabilities.

Experimental Setup We use DeepSeek-R1-Distill-Qwen-7B with 130k mathematical problems
(DeepScaleR, OpenR1-Math) preprocessed using 80% entropy-based pruning, yielding 70k training
samples after filtering sequences exceeding 4096 tokens. Stage 1 (SFT): 3 epochs on 70k samples
using DeepSpeed Stage 2 and LoRA (r=16, α=16). Stage 2 (GRPO): 10k samples with reward
parameters τhigh = 0.8, τlow = 0.5, τskip = 100, τlength = 3500. Training uses DeepSpeed
Stage 3, LoRA (r=16, α=32), AdamW, G=14, KL=0.04 on 8×80GB GPUs. More details and the
descriptions of baselines can be found in Appendix C.

Training Experimental Analysis The results of our two-stage training process, presented in Table
3, demonstrate the effectiveness of our approach in creating an efficient yet powerful LRM.

The initial SFT stage provides a strong foundation by teaching the model to imitate compressed
reasoning paths, achieving significant token reductions (e.g., 43% on GSM8k). On AIME 2024, it
achieves a 42% token reduction with a moderate drop in accuracy. The subsequent GRPO stage
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optimizes this behavior through reward-driven learning, teaching the model to intelligently bal-
ance efficiency and correctness. The final “SFT + GRPO” model achieves impressive efficiency
gains across all benchmarks—a 44% token reduction on GSM8k, 35% on Math500, 57% on AIME
2024, and 41% on AIME 2025—while maintaining or even improving accuracy (e.g., GSM8k:
78.54%→79.15%). This result demonstrates that the model learns a nuanced, adaptive policy that
goes beyond static imitation (see Appendix F for reward components ablation).

Finally, comparing our trained model (SFT + GRPO) to the results of static pruning inference strat-
egy from Table 1 reveals the key advantage of our training methodology. While static pruning is
effective, our trained model learns a more dynamic and ultimately superior compression policy. On
the most complex benchmark, AIME 2024, our trained model not only achieves a far greater token
reduction (a 57.0% drop vs. 36.3% for static pruning) but also slightly improves accuracy (57.14%
vs. 56.67%). This indicates that by training the model, it learns a more sophisticated, context-aware
policy that can more effectively identify and prune redundancy in complex reasoning chains than
a fixed, static rule. While static pruning preserves slightly higher accuracy on simpler benchmarks
like Math500, the trained model’s ability to achieve state-of-the-art compression on challenging
problems makes it a more robust and powerful solution for practical deployment.

Table 3: Comparison of Pass@1 Accuracy (ACC %) and Average Thinking Tokens per answer
across baseline (DeepSeek-R1-7B), SFT, and SFT+GRPO training results on GSM8k, Math500,
AIME2024, and AIME2025 benchmarks.

Method GSM8k Math500 AIME 2024 AIME 2025
ACC (%) Avg Tokens ACC (%) Avg Tokens ACC (%) Avg Tokens ACC (%) Avg Tokens

DeepSeek-R1-7B 78.54 298.33 88.17 3703.83 63.33 15843.43 35.71 18203.23
SFT 78.47 169.65 (↓43%) 85.92 2776.48 (↓25%) 56.67 9231.40 (↓42%) 30.00 11771.80 (↓35%)

SFT + GRPO 79.15 168.05 (↓44%) 85.00 2439.42 (↓35%) 57.14 6839.37 (↓57%) 33.33 10750.03 (↓41%)

Table 4: Comparative analysis of various Chain-of-Thought (CoT) compression methods on
Math500 and AIME2024 benchmarks. All values represent the percentage change in accuracy
(ACC) and generated token count relative to an uncompressed Full-CoT baseline.

Method Math500 AIME 2024
ACC Tokens ACC Tokens

Full-CoT (Baseline) - - - -

Token-efficient Prompts (Lee et al., 2025) ↓6.4% ↓11.1% ↓0.0 ↑7.2%
LC-Prompt (Xia et al., 2025) ↓1.6% ↓9.8% ↓2.6% ↑16.5%
CoT-Valve (Ma et al., 2025b) ↓10.6% ↓48.4% ↓15.0% ↓34.6%
TokenSkip (Xia et al., 2025) ↓5.2% ↓11.1% ↓12.3% ↓27.5%
R1-Compress (Wang et al., 2025a) ↓3.2% ↓20.3% ↓6.2% ↓12.9%
Our Method (SFT + RL) ↓3.2% ↓35.0% ↓6.2% ↓57.0%

Comparison with Baselines To contextualize our performance, we compare our final trained
model against several state-of-the-art CoT compression methods in Table 4. While most existing ap-
proaches offer some token savings, they often come at the cost of a significant drop in accuracy. For
instance, CoT-Valve achieves a 48.4% token reduction on Math500 but with a steep 10.6% accuracy
penalty. Our method, however, establishes a new state-of-the-art in the accuracy-efficiency trade-off.
On Math500, our model matches the accuracy drop of the strongest baseline, R1-Compress (↓3.2%),
while delivering nearly double the token savings (↓35.0% vs. ↓20.3%). The advantage is even more
pronounced on AIME 2024. Our method again matches the accuracy performance of R1-Compress
(↓6.2%) but achieves a massive 57.0% reduction in tokens—more than four times the savings of-
fered by R1-Compress (↓12.9%). This robust performance across benchmarks validates that our
entropy-guided, two-stage training strategy is highly effective at producing models that reason both
accurately and efficiently, outperforming existing methods.
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5 CONCLUSION AND FUTURE WORK

Conclusion We introduced a novel framework using step entropy to identify and compress redun-
dant steps in LLM Chain-of-Thought reasoning. Our empirical validation, confirmed across multiple
model architectures, demonstrates that pruning up to 80% of low-entropy steps maintains accuracy
while achieving substantial token reductions (16-57%). Furthermore, our two-stage training strat-
egy successfully enables models to autonomously generate these compressed reasoning trajectories,
offering significant implications for efficient LLM deployment.
Limitations and Future Work Our work has several limitations that suggest avenues for future
research. First, our method’s reliance on newline characters (\n\n) generated by LLM to segment
reasoning steps and its validation primarily on mathematical and select MMLU domains may limit
its generalizability. Future work should explore more robust semantic segmentation and test the step
entropy framework on a broader range of open-ended and multimodal reasoning tasks. Second, the
fixed 80% pruning threshold, while empirically effective, may not be universally optimal across all
model architectures and problem types. Developing adaptive compression strategies that dynami-
cally adjust the pruning ratio based on task complexity or model characteristics presents a promising
direction. A more detailed discussion of these points is available in Appendix H.
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ETHICS STATEMENT

We have adhered to the ICLR Code of Ethics throughout the development of this research. Our
work focuses on improving the inference efficiency of large language models on publicly available
mathematical and multitask benchmarks (GSM8k, Math500, AIME, MMLU, etc.). We recognize
the dual-use potential of highly efficient reasoning models; while they can serve as valuable tools for
education and research, they could also be misused for tasks like automated academic dishonesty.
The primary goal of our research is to enhance the practical deployment of LLMs by reducing
their computational cost, making powerful reasoning tools more accessible and sustainable, and to
contribute to the scientific understanding of redundancy in machine-generated thought processes.
Our research utilizes publicly available pre-trained models. While our two-stage training process
fine-tunes these models, we have made no effort to alter or remove their inherent safety mechanisms.
We believe our work on creating more efficient and transparent reasoning systems aligns with the
principles of responsible AI development.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. All experiments were conducted
using publicly available large language models (DeepSeek-R1, Qwen3) and standard academic
benchmarks, the specifics of which are detailed in Section 4 and the Appendix G. To facilitate the
full reproduction of our findings, we will make our source code and training configurations publicly
available upon publication. This release will include: (1) the implementation for calculating step
entropy and performing static CoT pruning, (2) the scripts used to generate the compressed dataset
for training, and (3) the complete code for both the Supervised Fine-Tuning (SFT) and Group Rel-
ative Policy Optimization (GRPO) training stages. Key hyperparameters and experimental settings,
such as the pruning ratio ( κ=0.8), LoRA configurations, and the specific reward components for
GRPO, are described in detail in our Experimental Setup of Section 4.3 and the Training Details in
the Appendix C.
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A THE USE OF LARGE LANGUAGE MODELS

We use Large Language Models (LLMs), including ChatGPT and Gemini, solely for the purpose of
editing and polishing the writing in this paper.

B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF LEMMA 1

Proof. Now assume that the entropy of the step Sj is low, i.e., H(Sj |S<j) is low, we want to explore
the relation of Sj and final solution A. We consider the conditional mutual information

I(Sj ;A|S̄j) = I(Sj ;A|S1, ..., Sj−1, Sj+1, ..., SN ) (7)

= H(Sj |S̄j)−H(Sj |S̄j , A) (8)

≤ H(Sj |S̄j) = H(Sj |S<j , S>j) (9)
= H(Sj |S<j)− I(Sj ;S>j |S<j) (10)

Since I(Sj ;S>j |S<j) ≥ 0, we have I(Sj ;A|S̄j) ≤ H(Sj |S<j).

B.2 PROOF OF THEOREM 1

Proof. Assume that there are K+1 steps, S̃ = Sk0 , Sk1 , ..., SkK
, and we have

I(S̃;A | (C/S̃)) =

K∑
i=0

I(Ski
;A|(C/[Sk0

, ..., Ski
])) (11)

Without loss of generality, we assume the indices ki are arranged in descending order, i.e., ki <
ki−1. Therefore, we could split the sequence C/[Sk0 , ..., Ski ] into S<ki and S>ki/[Sk0 , ..., Ski−1 ].
Now consider the item with ki, according to Lemma 1, we have:

I(Ski ;A|(C/[Sk0 , ..., Ski ])) ≤ H(Ski |C/[Sk0 , ..., Ski ]) (12)
= H(Ski

|S<ki
, (S>ki

/[Sk0
, ..., Ski−1

])) (13)
≤ H(Ski |S<ki) (14)

Therefore, we conclude that

I(S̃;A | (C/S̃)) =

K∑
i=0

I(Ski
;A|(C/[Sk0

, ..., Ski
])) (15)

≤
K∑
i=0

H(Ski
|S<ki

) (16)

C TRAINING DETAILS

Our experiments utilize DeepSeek-R1-7B as the base Large Reasoning Model (LRM). For data
preparation, we began with an initial dataset of 130k (DeepScaleR and OpenR1-Math) mathematical
problems, which were pre-processed by masking 80% of their low-entropy steps. After filtering
out sequences exceeding 4096 tokens, we obtained a refined dataset of 70k samples for the initial
training stage.

Stage 1: Supervised Fine-Tuning (SFT). The 70k pre-processed samples were used for SFT. This
stage was conducted for 3 epochs using DeepSpeed Stage 2 for distributed training and LoRA PEFT
Hu et al. (2022) with parameters r=16 and α=16.
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Stage 2: Reinforcement Learning (RL). For the RL phase, a subset of 10k data samples was ran-
domly selected from the 70k SFT-trained samples. We employed Group Relative Policy Optimiza-
tion (GRPO) to further train the SFT-initialized model. This stage also utilized DeepSpeed Stage 3
for distributed training. The optimization objective involved a composite reward function designed
to balance accuracy, [SKIP] token ratio, [SKIP] token number, and overall response length. LoRA
PEFT was applied with parameters r=16 and α=32, and the AdamW optimizer Loshchilov & Hutter
(2017) was used. Key GRPO parameters included G=14 samples per input and a KL coefficient of
0.04. All experiments were performed on a cluster of 8 GPUs, each has 80GB RAM and over 300
TFLOPS of BF16 compute performance.

D BASELINES

To rigorously evaluate our proposed method, we compare it against several representative baselines
spanning different Chain-of-Thought (CoT) compression strategies. These baselines include zero-
shot prompting techniques that require no additional training, as well as more advanced, state-of-
the-art methods that involve fine-tuning or specialized architectures.

• Prompt-BeConcise: A zero-shot prompting technique, as explored in Lee et al. (2025), we
select the prompt of Be Concise to encourage the model to generate a more succinct
reasoning chain naturally.

• LC-Prompt (Length-Control Prompt): Another zero-shot approach, adapted from Xia et al.
(2025), that directly instructs the model to reduce the length of its reasoning by a fixed
proportion, using the prompt of Please reduce about 50% of the words in
the Chain-of-Thought process.

• Advanced Compression Methods: We also compare against recent, more sophisticated
techniques:
CoT-Valve (Ma et al., 2025b): A method that fine-tunes a model to generate CoTs of a
controllable length for adjusting reasoning verbosity.
TokenSkip (Xia et al., 2025): An approach that enables controllable, token-level skipping
during the generation process, allowing for fine-grained compression of the reasoning path.
R1-Compress (Wang et al., 2025a): This method performs compression at a coarser gran-
ularity by operating on “chunks” of the reasoning chain, combining compression with a
search algorithm to maintain logical coherence.

E ABLATION STUDY ON THE STATIC PRUNING STRATEGY

We conduct an ablation study to identify the optimal replacement strategy for pruned reasoning
steps, as simply deleting them may disrupt the model’s logical flow. We compare four strategies at
aggressive pruning ratios (80%, 85%, and 90%) on DeepSeek-R1-7B:

• Replace with “[SKIP]”: Our proposed method, using a distinct special token as a place-
holder.

• Replace with “[MASK]”: A generic mask token.

• Replace with “and then”: A natural language filler phrase.

• Directly Remove Steps: Deleting the pruned step entirely from the context.

As shown in Figure 4, all methods maintain full CoT accuracy (74%) at an 80% pruning ratio.
However, as compression increases, directly removing steps or using “[MASK]” leads to faster
accuracy degradation (68% at 90% pruning) compared to using explicit placeholders like “[SKIP]”
or “and then” (70% at 90% pruning).

This result indicates that explicitly signaling an omitted step is critical for reasoning coherence under
high compression. We selected “[SKIP]” as our primary strategy due to its superior token efficiency
(a single token) and its unambiguous semantic role as a placeholder, which avoids introducing po-
tentially confounding natural language.
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Full CoT Accuracy (74%)
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Figure 4: Ablation study on different replacement strategies for pruned low-entropy steps. The
experiment is conducted on DeepSeek-R1-7B with the same sampled data of DeepScaleR in Fig 1
(left), comparing four methods for handling pruned steps at high pruning ratios (80%, 85%, 90%).

F REWARD COMPONENTS ABLATION STUDY

Table 5: Ablation experiment for different rewards in GRPO on GSM8k and Math500 benchmarks.

Method GSM8k Math500

ACC (%) Avg Tokens ACC (%) Avg Tokens

DeepSeek-R1-7B 78.54 296.09 88.17 3703.83
Rc +Rsr 75.93 557.17 51.00 4082.70
Rc +Rsr +Rsn 78.70 458.27 85.00 2693.91
Rc +Rsr +Rsn +Rrl 79.15 168.05 85.00 2439.42

Table 5 demonstrates the necessity of our multi-component reward design through systematic abla-
tion. Using only correctness and skip ratio rewards (Rc + Rsr) yields catastrophic results, severely
degrading performance (GSM8k: 78.54→75.93%, Math500: 88.17→51.00%) while paradoxically
increasing token usage by 88.2% and 10.2% respectively. This indicates that naive skip optimiza-
tion without constraints leads to degenerate policies generating excessive low-quality [SKIP] tokens.
Adding the skip number penalty (Rsn) restores competitive accuracy but token usage remains sub-
optimal. The complete reward function (Rc+Rsr+Rsn+Rrl) achieves optimal balance, maintain-
ing near-baseline accuracy while delivering substantial efficiency gains: 43.3% token reduction on
GSM8k and 34.1% on Math500. These results underscore that effective CoT compression requires
carefully balanced multi-objective optimization, where each component addresses specific failure
modes to enable robust compression without sacrificing reasoning quality.

G EXTENDED EXPERIMENTS

Model-aware Experiments To validate the generalizability and robustness of our step entropy-
based compression method across different model architectures and scales, we conducted compre-
hensive model-aware experiments on four distinct Large Reasoning Models: DeepSeek-R1-7B,
DeepSeek-R1-14B, Qwen3-8B, and QwQ-32B, across four mathematical reasoning benchmarks.
The results in Table 6 demonstrate remarkable consistency across diverse model architectures, with
our method showing consistent performance across three different model families—DeepSeek-R1,
Qwen3, and QwQ. This cross-architecture consistency indicates that step entropy captures funda-
mental properties of reasoning redundancy that transcend specific architectural choices or training
methodologies, making it a generalizable metric for identifying redundant reasoning steps. The
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compression benefits scale effectively across model sizes ranging from 7B to 32B parameters, with
token reduction percentages remaining relatively consistent within model families while absolute to-
ken savings increase with model scale. DeepSeek-R1 models achieve token reductions from 0.6% to
43.5% while maintaining or improving accuracy, with the 14B variant showing particularly impres-
sive performance gains on GSM8k (82.64%→84.00%). Qwen3-8B exhibits the most aggressive
compression capabilities with reductions ranging from 16.2% to 44.9%, even achieving accuracy
improvements on AIME 2024 (79.31%→81.48%). QwQ-32B, as the largest model, demonstrates
the highest compression potential with up to 55.1% token reduction on AIME 2024, indicating that
larger models generate proportionally more redundant reasoning steps. Benchmark-specific analysis
reveals distinct patterns: GSM8k shows the smallest token reductions but maintains accuracy, sug-
gesting elementary problems require fewer redundant steps; AIME benchmarks consistently show
the highest compression ratios (36.3% to 55.1%) across all models, indicating complex competition-
level problems generate the most redundancy; and Math500 demonstrates balanced performance
with 27.0-33.2% token reductions while maintaining high accuracy. The consistency of compres-
sion patterns across fundamentally different training methodologies provides strong evidence that
step entropy captures universal properties of reasoning redundancy rather than model-specific arti-
facts, making our compression framework broadly applicable to current Large Reasoning Models
while delivering substantial computational efficiency gains for practical deployment scenarios.

Table 6: Comparing the full COT baseline with our proposed step-entropy based pruning (Our)
method, which prunes 80% of the lowest-entropy steps for DeepSeek-R1-7B, 14B, Qwen-8B and
QwQ-32B. We conduct experiments to get the Pass@1 Accuracy(ACC)(%) and the number of Av-
erage Thinking Tokens Per Answer (contains the Unicode characters) during the inference on
GSM8k, Math500, AIME2024 and AIME2025.

Method GSM8k Math500 AIME 2024 AIME 2025
ACC (%) Avg Tokens ACC (%) Avg Tokens ACC (%) Avg Tokens ACC (%) Avg Tokens

DeepSeek-R1-7B 78.54 298.33 88.17 3703.83 63.33 15843.43 35.71 18203.23
DeepSeek-R1-7B (Our) 80.82 294.29 (↓1.3%) 88.17 2604.23 (↓29.7%) 56.67 10092.80 (↓36.3%) 35.71 11471.17 (↓37.0%)

DeepSeek-R1-14B 82.64 283.63 84.37 2853.73 65.52 15414.83 58.62 18000.10
DeepSeek-R1-14B (Our) 84.00 278.29 (↓1.9%) 82.16 1980.97 (↓30.6%) 58.62 8705.57 (↓43.5%) 51.72 10842.07 (↓39.8%)

Qwen3-8B 94.46 3053.67 91.37 7138.49 79.31 20936.57 76.92 19902.43
Qwen3-8B (Our) 94.39 2557.47 (↓16.2%) 91.13 5209.24 (↓27.0%) 81.48 11533.57 (↓44.9%) 76.00 11716.63 (↓41.1%)

QwQ-32B 94.09 1978.91 92.35 5955.39 79.13 21243.93 66.67 23711.60
QwQ-32B (Our) 93.56 1629.03 (↓17.7%) 91.75 3978.06 (↓33.2%) 74.07 9544.13 (↓55.1%) 65.52 13434.17 (↓43.4%)

Table 7: Comparing the full COT and No Thinking baseline with our proposed step-entropy based
pruning method, which prunes 80% and 90% of the lowest-entropy steps for QwQ-32B. We con-
duct experiments to get the Pass@1 Accuracy(ACC)(%) and the number of Average Thinking To-
kens Per Answer (contains the Unicode characters) during the inference on GSM8k, Math500,
AIME2024 and AIME2025.

Method GSM8k Math500 AIME 2024 AIME 2025
ACC (%) Avg Tokens ACC (%) Avg Tokens ACC (%) Avg Tokens ACC (%) Avg Tokens

QwQ-32B (Full COT) 94.09 1978.91 92.35 5955.39 79.13 21243.93 66.67 23711.60
QwQ-32B (80%) 93.56 1629.03 (↓17.7%) 91.75 3978.06 (↓33.2%) 74.07 9544.13 (↓55.1%) 65.52 13434.17 (↓43.4%)

QwQ-32B (90%) 93.56 1524.03 (↓23.0%) 90.95 3011.36 (↓49.4%) 70.37 7523.70 (↓64.6%) 66.67 6459.73 (↓72.8%)

QwQ-32B (No thinking) 93.86 - 88.53 - 62.07 - 56.67 -

Domain-aware Experiments To evaluate the domain generalizability of our step entropy-based
compression method beyond mathematical reasoning, we conducted experiments on MMLU (Mas-
sive Multitask Language Understanding) benchmarks, specifically focusing on College Medicine
and High School History tasks. Tables 9 and 8 present results for DeepSeek-R1-7B and QwQ-32B
models respectively, comparing different compression levels (80%, 90% low-entropy step pruning)
against full CoT and no-thinking baselines. The results reveal domain-specific compression char-
acteristics that differ significantly from mathematical reasoning tasks, with both models showing
varying degrees of compression tolerance across the two MMLU domains.

DeepSeek-R1-7B demonstrates robust performance on MMLU tasks with our compression method,
achieving accuracy improvements on College Medicine (61.73%→62.34%) and High School His-
tory (61.74%→64.32%) while reducing token usage by 18.6% and 7.1% respectively at 80% com-
pression. Notably, the model maintains or improves accuracy even at 90% compression levels,
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suggesting that knowledge-based reasoning tasks contain substantial redundancy that can be effec-
tively identified through step entropy. The dramatic performance drop in the no-thinking baseline
(52.46% and 47.82%) emphasizes the critical importance of maintaining some reasoning structure,
validating our selective pruning approach over complete reasoning elimination.

QwQ-32B exhibits even stronger compression capabilities on MMLU benchmarks, maintaining per-
fect accuracy preservation on High School History (92.83%) across all compression levels while
achieving substantial token reductions of up to 20.1% at 90% compression. On College Medicine,
the model shows minimal accuracy degradation (86.13%→84.97%) with significant efficiency gains
(15.0-20.1% token reduction). The domain-specific patterns—where History tasks show higher
compression tolerance than Medicine tasks—suggest that factual recall and historical reasoning
contain more redundant steps than medical reasoning, which may require more careful step-by-step
analysis. These results demonstrate that our step entropy method successfully generalizes beyond
mathematical domains while revealing important domain-specific characteristics that could inform
adaptive compression strategies.

Table 8: QwQ-32B performance on MMLU-College Medicine and MMLU-High School History
datasets showing accuracy and average tokens per answer across different pruning levels. Comparing
the full COT and No Thinking baseline with our proposed step-entropy based pruning method,
which prunes 80% and 90% of the lowest-entropy steps of per answer thinking tokens reduction
percentages.

Method MMLU-College Medicine MMLU-High School History

ACC (%) Avg Tokens Per Answer ACC (%) Avg Tokens Per Answer

QwQ-32B (Full COT) 86.13 2912.3 92.83 1703.9
QwQ-32B (80%) 84.97 2475.9 (↓15.0%) 92.83 1683.9 (↓1.2%)

QwQ-32B (90%) 84.97 2326.4 (↓20.1%) 92.83 1683.9 (↓1.2%)

QwQ-32B (No Thinking) 84.30 - 91.14 -

Table 9: DeepSeek-R1-7B performance on MMLU-College Medicine and MMLU-High School
History datasets showing accuracy and average tokens per answer across different pruning levels.
Comparing the full COT and No Thinking baseline with our proposed step-entropy based pruning
method, which prunes 80% and 90% of the lowest-entropy steps of per answer thinking tokens
reduction percentages.

Method MMLU-College Medicine MMLU-High School History
ACC (%) Avg Tokens Per Answer ACC (%) Avg Tokens Per Answer

DeepSeek-R1-7B (Full COT) 61.73 2612.7 61.74 2054.3
DeepSeek-R1-7B (80%) 62.34 2127.9 (↓18.6%) 64.32 1907.5 (↓7.1%)

DeepSeek-R1-7B (90%) 62.34 2069.4 (↓20.8%) 61.74 1936.2 (↓5.7%)

DeepSeek-R1-7B (No Thinking) 52.46 - 47.82 -

Key Findings and Analysis Our comprehensive experimental evaluation reveals several critical
insights about Chain-of-Thought compression via step entropy. The most significant finding is that
80% of low-entropy reasoning steps can be safely pruned without accuracy degradation across mul-
tiple model architectures and reasoning domains. This substantial redundancy indicates that current
Large Reasoning Models generate highly verbose thought processes, with the majority of steps con-
tributing minimal informational value to final answer quality. The cross-architectural consistency of
our results—spanning DeepSeek-R1 (7B, 14B), Qwen3-8B, and QwQ-32B—demonstrates that step
entropy captures fundamental properties of reasoning redundancy that transcend specific model de-
signs. Token reductions ranging from 16.2% to 55.1% across mathematical benchmarks, combined
with maintained or improved accuracy, provide strong evidence that our entropy-based metric suc-
cessfully identifies genuinely redundant reasoning components rather than model-specific artifacts.
Domain-specific compression patterns emerge from our MMLU experiments, revealing that factual
reasoning tasks (High School History) tolerate higher compression rates than analytical reasoning
tasks (College Medicine). QwQ-32B maintains perfect accuracy on History tasks while achieving
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20.1% token reduction, whereas medical reasoning shows more sensitivity to aggressive compres-
sion. This suggests that different cognitive processes exhibit varying degrees of redundancy, opening
avenues for adaptive, domain-aware compression strategies.

H EXTENDED DISCUSSION ON LIMITATIONS AND FUTURE WORK

Our framework provides a robust method for CoT compression, but it also highlights several impor-
tant areas for future investigation.

Sensitivity to Step Segmentation A core methodological choice in our work is the definition of
a ”reasoning step,” which we segment based on the (\n\n) delimiters generated by the LRM. This
approach is practical and effective, but the entropy patterns we identify might be sensitive to this
specific segmentation strategy. Different step boundaries—for instance, segmenting by sentences or
logical clauses—could potentially alter the calculated entropies and the resulting compression per-
formance. Future work should investigate the robustness of our findings to alternative segmentation
methods and explore more semantically grounded techniques for automatically identifying discrete
reasoning steps.

Domain and Modality Generalizability Our validation focuses primarily on mathematical rea-
soning and select knowledge-based tasks from MMLU. While we demonstrate strong performance
in these areas, the transferability of step entropy as a universal metric for redundancy is not yet
established for all reasoning types. The nature of redundancy in more open-ended, creative, or
commonsense reasoning tasks may differ significantly. Therefore, an important direction for future
work is to apply and adapt our framework to a broader range of domains. Furthermore, extending
this method to multimodal reasoning, where steps may involve interpreting images or data visual-
izations, represents a challenging but valuable next frontier.

Adaptive and Model-Aware Compression Our experiments establish an 80% low-entropy prun-
ing threshold that works remarkably well across several models. However, we acknowledge that this
fixed threshold may not be universally optimal. As shown in our own experiments, different models
or problem domains can exhibit unique redundancy patterns. This suggests a need for more dynamic
approaches. A promising area for future work is the development of an adaptive compression strat-
egy. Such a system could dynamically adjust the pruning ratio κ based on the model’s architecture,
the specific problem’s complexity, or the reasoning domain, moving from a static threshold to a
more intelligent, context-aware compression policy.

I BROADER IMPACT

Our work addresses the critical challenge of reasoning efficiency in practical LLM deployment,
where verbose Chain-of-Thought processes create significant computational bottlenecks. By pro-
viding a principled method for identifying and removing redundant reasoning steps, we enable more
sustainable and accessible deployment of Large Reasoning Models. The interpretability benefits of
maintaining explicit reasoning chains while achieving substantial compression offer advantages over
latent reasoning approaches. Practitioners can retain the transparency and verifiability of explicit
Chain-of-Thought while significantly reducing computational overhead. Our findings contribute to
the theoretical understanding of reasoning structures in Large Language Models, revealing that cur-
rent models generate substantial redundancy in their thought processes. This insight informs future
model design and training methodologies, potentially leading to more efficient reasoning architec-
tures.
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