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ABSTRACT

Large language models (LLMs) are trained on extensive text data to gain general
comprehension capability. Current LLM agents leverage this ability to make zero-
or few-shot decisions but fail in making optimal decisions, as LLMs inherently per-
form next-token prediction based on pre-trained probability distributions rather than
maximizing expected future rewards. In contrast, agents trained via reinforcement
learning (RL) could make optimal decisions but require extensive environmental
data. In this work, we develop an algorithm that combines the zero-shot capabilities
of LLMs with the optimal decision-making advantages of RL, referred to as the
Model-based LLM Agent with Q-Learning (MLAQ). MLAQ employs Q-learning
to derive optimal policies from transitions within memory. However, unlike RL
agents that collect data from environmental interactions, MLAQ constructs an imag-
ination space fully based on LLM to perform imaginary interactions for deriving
zero-shot policies. Our proposed UCB variant generates imaginary data through
interactions with the LLM-based world model, enabling a balance between explo-
ration and exploitation while ensuring a sub-linear regret bound guaranteed by a
theorem. Moreover, MLAQ employs a mixed-examination mechanism that utilizes
environmental interactions and LLM-based self-examine to enhance the quality
of imaginary data. We evaluate MLAQ in benchmarks that present significant
challenges for existing LLM agents. Results show that MLAQ achieves a optimal
rate of over 90% in tasks where other methods struggle to succeed. Additional
experiments are conducted to reach the conclusion that introducing model-based
RL into LLM agents shows significant potential for current LLMs to improve their
optimal decision-making ability. Our interactive website is available at this link.

1 INTRODUCTION

Large language models (LLMs) exhibit impressive comprehension capabilities and are widely utilized
to address decision-making tasks as an LLM agent(Guo et al., 2024) in a zero- or few-shot manner.
Most existing LLM agents improve decision-making through prompt optimization (Wei et al., 2022;
Mandi et al., 2023), which heavily relies on the inherent decision-making capabilities of the LLM
itself, lacking the optimal decision-making ability to maximize expected future rewards. In contrast,
recent studies have introduced the Markov Decision Process (MDP) framework to leverage MDP-
based planning (Hao et al., 2023). Figure 1 (a) illustrates a framework encompassing most existing
MDP-based LLM agents, in which the domain description (manual) in natural language is necessary
for the LLM to comprehend the problem to be solved (Yao et al., 2023a). In this work, a domain
represents an environment characterized by unique state and action spaces (e.g., block cubes and
robotic arm control are different domains), while a task within this domain entails guiding the
agent from the original state to the target state of the task (e.g., assembling a beef sandwich and
a bacon sandwich are different tasks within the same domain). Among existing LLM agents, the
most common framework combines an Monte Carlo Tree Search (MCTS (Kocsis & Szepesvári,
2006))-Planner with a task-specific Replay Buffer to derive the optimal policy and interact with
the environment (Zhang et al., 2024d). The replay buffer includes multiple transitions within the
same task, sourced either from environmental interactions (Murthy et al., 2023; Ding et al., 2023) or
imaginary interactions (Hao et al., 2023; Yao et al., 2023a; Zhao et al., 2023) derived from the model-
based RL architecture. In the imagination space, an LLM-based Basic Policy generates actions and
an LLM-based World Model predicts next state under state-action pairs. The interactions between
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Figure 1: (a) A typical framework of MDP-based LLM agent, where the gray arrows represent
processes used by most MDP-based LLM agents and the red arrows and blocks depict processes and
modules unique to MLAQ. (b) The overall MLAQ framework. MLAQ interacts with the environment
through the Q-Planner, which is supported by the domain-specific memory that extracts a task-specific
replay buffer for Q-Update. The environment provides a domain description for the agent, where the
agent expands memory and replay buffer through LLM-based imaginary interactions.

them could generate imaginary transitions, significantly reducing the demand for environmental
interactions. However, generating imaginary data using only LLMs presents a significant challenge.
Instead, most of existing methods sacrifice algorithms’ generality by utilizing environmental functions
as environmental tools, including dynamics (Zhao et al., 2024), available actions (Ding et al., 2023),
and reward functions (Hao et al., 2023). For example, Ding et al. (2023) use scripts to determine
which actions are available under current state. Moreover, these existing LLM agents make decisions
based on MDP but do not perform RL-based optimization on the numerous transitions stored in a
domain-specific Memory, resulting in a lack of capability to maximize expected future rewards.

In this work, we empower the LLM agent with zero-shot optimal decision-making capability by
combining the advantages of the RL and LLM. As shown in Figure 1 (b), we introduce Model-
based LLM Agent with Q-Learning (MLAQ), a novel LLM agent framework without accessing
any environmental tools. The main contribution is three-fold. (1) MLAQ integrates a Q-planner,
memory, and imagination space to implement decision-making and optimization paradigms with
MDP properties in natural language. This allows for generating imaginary transitions with LLMs to
minimize reliance on environmental interactions, and facilitates Q-learning to optimize the policy for
maximizing future rewards. (2) An MCTS-style planning approach is proposed to balance exploration
and exploitation within the imagination space. By introducing the concept of virtual nodes, this
approach efficiently guides the exploration without the need for environmental tools, ensuring a
sub-linear regret bound by a rigorous theorem. (3) A mixed-examine mechanism is proposed to
improve the quality of imaginary transitions. It uses LLM-based self-examine to eliminate erroneous
transitions from the memory and refines the world model with environmental transitions.

Empirically, we evaluate MLAQ on well-known benchmarks for LLM agents (BlocksWorld
(Valmeekam et al., 2022) and RoCo-benchmark (Mandi et al., 2023)), which require optimal decision-
making for long horizons. There is no existing LLM agent has successfully obtained the optimal
policy, while MLAQ achieves over 90% optimal / success rate across most difficulty levels. The
comparison with methods including RoCo (Mandi et al., 2023) and RAP (Hao et al., 2023) fully
demonstrates MLAQ’s superior performance in optimal decision-making. Through comparative and
ablation experiments, we get a key conclusion: integrating the model-based RL framework with an
LLM agent in the form of MLAQ can effectively achieve zero-shot optimal decision-making.

2 BACKGROUND

MDP-based framework for an agent. An MDP can be defined as a tuple U = {S,A,T,R, γ},
where st is the state in state space S at timestep t, and at is the action in action space A, T(st+1|st, at)
is the dynamics function, R is the reward function, and γ is the discount factor (Sutton & Barto, 2018).
The agent receives a reward rt = R(st, at, st+1) based on changes in state. For single-agent scenarios
the agent policy is denoted as at ∼ π(·|st). For multi-agent scenarios with agent number n, the
policy in a centralized manner takes the system as a unified agent to make joint decisions according
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to global states at = {ai,t}ni=1 ∼ π(·|st). The policy in a decentralized manner allows each agent
i making decisions ai,t ∼ πi(·|oi,t, ρi,t) according to its local observation oi,t and communication
message ρi,t, which can be observations (Hu et al., 2023), features (Ding et al., 2024; Chai et al.,
2024), or natural language-based dialogues (Mandi et al., 2023; Chen et al., 2024). The state value is
defined as the discounted accumulated return under state st: V π(st) = E[

∑∞
k=0 γ

krt+k].

LLM-based framework for an agent. Existing approaches construct the above MDP using natural
language sentences or paragraphs, benefiting from the autoregressive nature of the Transformer
architecture (Vaswani et al., 2017), without the need to align the state and action space dimensions
across different domains (Yao et al., 2023a). An LLM-based world model T̂(st+1|st, at; τ) is utilized
to approximate the dynamics function, and an LLM-based basic policy π(·|st; τ) is utilized to
interact with either the world model or the environment, where τ is a brief domain description in
nature language (Hao et al., 2023). In addition, due to the current limitation of LLMs in accurately
evaluating state values, this work adopts a sparse reward setting, meaning that the environment
provides a non-zero reward only when the agent reaches a terminal state.

Q-learning. Q-learning is a traditional RL algorithm, in which the Q-value indicates the expected
return obtained by executing a under s. The update rule of the Q function at k-th iteration is:

Qk+1(st, at) = Qk(st, at) + α
(
rt + γmax

a′
Qk(st+1, a

′)−Qk(st, at)
)
, (1)

where α is the learning rate. As an off-policy approach, Q-learning can use a replay buffer to store
transitions (s, a, r, s′), enabling policy update through them. With enough iterations and a sufficiently
diverse replay buffer, the Q function and its greedy policy can converge to optimality.

Multi-Armed Bandit. Given state s with m available actions δ(s), the successive plays on
action i yields (i.i.d.) Q-values, which are sampled from an unknown distribution with an un-
known expectation Q(s, i) (Auer et al., 2002). The player aims to minimize the expected regret∑

j:∆j>0 ∆jE[Cj(N(s))], where ∆i = Q∗ −Q(s, i), Q∗ .
= maxi{Q(s, i)}, N(s) is the visit count

of s, and Ci(N(s)) is the selection number of action i. The Upper Confidence Bound (UCB) (Auer
et al., 2002) could achieve a sub-linear regret bound by selecting actions through the following rule:

a∗ = argmax
a∈δ(s)

UCB
(
s, a

)
= argmax

a∈δ(s)

[
V
(
c(s, a)

)
+ w

√
N(s)/N(c(s, a))

]
, (2)

where c(s, a) is the child node of applying a in s, and w is a coefficient.

3 METHOD

The essence of MLAQ is to enable LLM agents with both zero-shot and optimal decision-making
capabilities. While integrating RL-based optimization into LLM agents is relatively straightforward,
the key challenge lies in preserving their zero- or few-shot abilities when incorporating RL. In this
section, we first illustrate how our agent uses RL approaches to achieve task-specific optimal decision-
making under the fully LLM-based framework (Section 3.1). We then introduce how to achieve fully
LLM-based imaginary interactions without any environmental tools (Section 3.2). Finally, we present
a mixed-examine mechanism to improve the quality of imaginary transitions (Section 3.3).

3.1 OPTIMIZING LLM AGENT WITH Q-PLANNER

As shown in Figure 1 (b), we develop an RL-style LLM agent framework, which contains a memory
module, a Q-Planner, and an LLM-based imagination space. The RL-based optimization is achieved
by Q-Planner, which utilizes the transitions (s, a, r, s′) in the memory module to optimize the
agent through Q-learning. These transitions are generated from both environmental and imaginary
interactions. The overall algorithm is detailed in Appendix F.1.

Q-Planner. It serves as the core of the decision-making process, utilizing the optimal decision-making
advantage of RL to output the action with the highest Q-value for a given state, where these values
are derived from Q-learning iterations in Eq. (1). We perform tabular Q-learning not directly on the
domain-specific memoryM but rather a task-specific replay buffer D extracted from it, aiming to
reduce the exploration space in imaginary interactions. Assuming there are ten available actions, but
only two lead to the target state of the current task, exploring the others is completely meaningless.

3
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Figure 2: (a) Imaginary interaction process, which expands the memory and replay buffer through two
phases: node selection and transition imagination (might be triggered). (b) Imagine a new transition
with self-examine mechanism, where the checkers identify the validity of actions and predictions.

Replay Buffer. When a new task starts, a Q function Q(·, ·) is obtained by performing Q-learning on
M, and the initial replay buffer stores the transitions along the optimal trajectory (if exists) produced
by Q(·, ·). If this trajectory does not exist or is demonstrated to be non-optimal through environmental
interactions, the agent keeps exploring in the imagination space to expand the replay buffer until the
best trajectory is demonstrated to be optimal. This process can be seen in Appendix F.

Imaginary Interaction. As shown in Figure 1 (b), an LLM-based basic policy and world model are
established to perform imaginary interactions. Without accessing the environment, their understanding
of the domain is entirely reliant on the given domain description (manual). Therefore, MLAQ could
preserve the zero-shot decision-making capabilities of LLM agents while satisfying the training data
requirements of Q-learning. The details will be described in the subsequent section.

Environmental Interaction. MLAQ agent obtains the current state and domain description τ from
the environment, explores the imagination space to derive the optimal policy using the Q-planner, and
then outputs actions to interact with the environment. The domain description τ includes the domain
goal, state/action definitions, and also some detailed constraints for decision-making and predicting.
Please refer to Appendix J for more detail.

3.2 LLM-BASED IMAGINATION FOR MLAQ

This section presents an MCTS-style planning method that balances exploration and exploitation
while using only LLMs to generate imaginary transitions, thereby efficiently expanding the memory
and replay buffer. Given a new task, MLAQ performs multiple rounds for imagination, with each
imagination round consisting of a sequence of imaginary interactions transitioning from the original
state to the target state. An imagination round comprises two major phases: node selection and
transition imagination. Please refer to Appendix F.2 for pseudo-codes.

Node selection. This phase involves balancing exploration and exploitation through a novel selection
rule. As denoted in Figure 2 (a), the transitions (s, a, r, s′) in the replay buffer adopt a tree-like
structure, wherein two nodes s→ s′ are linked by an action and reward edge (a, r). The original UCB
treats planning as a multi-armed bandit problem, but using LLMs for planning without environmental
tools presents a variation, as the ground-truth available actions δ(s) are unknown. Therefore, we
begin with an empty available action set δ̂(s) and introduce the concept of virtual nodes to gradually
expand it. Within the replay buffer, a actual (state) node is created based on a state s, and a virtual
node is appended as its first child node, with the edge is a virtual action. Then, MLAQ starts with the
empty δ̂(s) and iteratively leverages LLMs to explore potential actions and expand it. This process
can be modeled as follows:

A Variant of Multi-Armed Bandit. In a scenario with m available actions (a = {1, 2, . . . ,m})
in state s, initially only the virtual node y can be selected. Selecting y enables the least-indexed
non-selectable node in a to be selectable, while selecting other node involves estimating its Q-value.

When y is selected for the j-th times, i.e., |δ̂(s)| = j, the actual nodes {1, 2, . . . , j} can be selected
by the planning policy. Moreover, due to the introduction of virtual nodes, we propose a variant of
the original UCB algorithm by modifying its selection rule as follows:

a∗ = argmax
a∈δ̂(s)

vUCB
(
s, a

)
= argmax

a∈δ̂(s)

[
V
(
c(s, a)

)
+ f

(
N(s), N(c(s, a))

)]
, (3)
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where f(N(s), N(c)) is the confidence bound, defined as w
√

N(st)/N(c(st, a)) for actual nodes

and g(|δ̂(st)|)
√
N(st)/|δ̂(st)| for virtual nodes. g(x) is a coefficient function that must satisfy some

properties, which are discussed in the Appendix C. However, since we do not know the number of
available actions, it is set to g(x) = wg(e

−x2−ϵg) in practice, where ϵg and wg are hyper-parameters.
Theorem 1. Suppose the player employs the node selection rule defined in (2). Then, in a scenario
with m available actions in state s, the bound of the expected cumulative regret is:

Regret =
∑

j:∆j>0

∆jE[Cj(N(s))] ≤ [8
∑

i:∆i>0

(
lnN(s)

∆i
)] + (1 +

π2

3
)(

m∑
i=1

∆i), (4)

where ∆i = Q∗ −Q(s, i) for action index i in {1, 2, ...,m} and Q∗ .
= maxi{Q(s, i)}, N(s) is the

visit count of s, and Ci(N(s)) is the selection number of action i.

This theorem demonstrates that our proposed variant of UCB shares the same sub-linear regret
bound, enabling efficient exploration and exploitation without environmental tools. Please refer to
the Appendix C for the proof. MLAQ turns to the transition imagination phase if virtual nodes are
selected. Otherwise, it iterates until a terminal state is reached. A terminal state denotes either success
states when reaching target states or failure states when the LLM-based basic policy determines no
actions are available. When a terminal state is reached, an imagination round ends.

Transition imagination. This phase is triggered when selecting virtual nodes and generates an
imaginary transition. Beginning from st, we first mark the existing actions in δ̂(st) as forbidden,
where the specific prompt can be found in Appendix G. We then instruct the basic policy to output an
action at excluding forbidden actions to explore and expand δ̂(st). If the pair (st, at) could be queried
inM, we directly re-utilize the stored next state c(st, at) as its child state to skip LLM queries.
Otherwise, we employ the LLM-based world model to predict the next state st+1 ∼ T̂(st, at; τ).
The reward is also calculated by LLMs, following a sparse reward setting. In addition, if the basic
policy determines that no available action exists except forbidden actions, we select the best action
in δ(s) to continue the imaginary interaction. Since we cannot confirm if the available actions are
exhausted, the virtual node always remains after the addition of the next state node.

3.3 MIXED-EXAMINATION FOR IMAGINARY TRANSITIONS

Within the imagination space, we propose a mixed-examination mechanism to improve the quality of
imaginary transitions without accessing any environmental tools.

Env-examination. MLAQ treats environmental transitions as ground truth to correct the imaginary
transitions and refine the LLM-based world model. When using domain descriptions to understand
the environment for LLMs, both LLM’s comprehensions and descriptions could be incomplete,
leading to a gap between the LLM-based world model and the environment dynamics. To address this,
during interactions with the environment, MLAQ corrects the transitions stored in memory based on
environmental transitions and records the discrepancies into the world model’s prompt for refinement.

Self-examination. Considering the hallucinations inherent in LLMs, even when the prompt contains
complete information about the environment, the model may still produce incorrect outputs. To
this end, as shown in Figure 2 (b), MLAQ adopts an LLM-based action checker and prediction
checker to check the validity of the outputs of the basic policy and world model. Current models
(e.g., GPT-4) already possess the ability to improve output accuracy through self-examination, which
will be validated in subsequent experiments. Prompt templates of the two checkers are provided in
Appendix G. Take the action checker as an example, given the current state and the action should be
checked, it queries the LLM to check if the action breaks any constraint following the instructions.
The checkers continuously check and provide feedback until the outputs are correct.

4 EXPERIMENTS

In this section, we conduct experiments in several challenging environments for LLM agents to
answer the following questions: (A) Does the introduction of a complete RL framework improve the
optimal decision-making capabilities of LLM agents? (B) Can the MLAQ agent preserve zero- or
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Figure 3: An instance with an optimal step of 6. It illustrates that MLAQ, due to its ability to leverage
transitions across multiple tasks within the same domain, can obtain an optimal policy through
RL-based optimization without requiring any search in the imagination space when given a new task.

few-shot decision-making capabilities? (C) Does the current LLM have the potential to improve
its output performance through self-examination? (D) Does expanding the memory scope from
task-specific to domain-specific improve the agent performance?

4.1 EXPERIMENTAL SETUP

We conduct experiments on the BlocksWorld benchmark (Valmeekam et al., 2022) for the single-agent
setting and the RoCo-benchmark (Mandi et al., 2023) for the multi-agent setting. Agents in these
domains require multi-step decision-making to achieve the final goal, necessitating the ability to
maximize expected future rewards. Additionally, the decision-making space for LLM agents in the
RoCo-benchmark is significantly larger than that in BlocksWorld due to the presence of multiple
agents. The details of these benchmarks can be found in Appendix D.

We compare MLAQ with CoT (Wei et al., 2022), RAP (Hao et al., 2023), Rex (Murthy et al., 2023),
RAFA (Liu et al., 2023), and RoCo (Mandi et al., 2023). In line with RAP (Hao et al., 2023), we
group all tasks by their optimal steps, indicating the length of the tasks’ optimal decision sequences.
Within a domain, the experiments are conducted from the tasks with smaller optimal steps to those
with larger steps. Consequently, only the memory size of MLAQ would increase gradually with the
experiments due to its domain scope, empowering the MLAQ agent with zero-shot optimal decision-
making capability with Q-Planner. Furthermore, we also conduct exhaustive ablation experiments
to verify the effect of our domain-specific memory module, further expansion in memory, and the
mixed-examination mechanism. The details of hyper-parameters can be found in Appendix I.

4.2 MAIN RESULTS
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Figure 4: Tendency of memory re-utilization
ratio and token consumption.

Single-agent scenario. As shown in Table 1, the
optimal steps of BlocksWorld vary from 2 to 12. The
optimal rate in this table denotes that the agent could
reach the target state under the optimal steps. Our
agent achieves more than 90% optimal rate across all
difficulty levels, indicating an affirmative response
to Question A. In contrast, the other LLM agent can
only succeed in tasks with smaller optimal steps. In
order to qualitatively provide an affirmative answer
to Question D, we use a task with 6 optimal steps in
Figure 3 as an example to backtrack the transitions in
memory. In this case, MLAQ agent finds an optimal
decision sequence, represented by black solid arrows,
from the initial replay buffer without querying LLMs. The colored dashed arrows indicate existing
trajectories stored in memory. This 6-step sequence is aggregated from trajectories of multiple tasks,
including two 2-step and three 4-step trajectories. This clearly demonstrates the effectiveness of
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Table 1: The optimal rate of experimental methods in BlocksWorld domain.

Methods 2-step 4-step 6-step 8-step 10-step 12-step

CoT (Wei et al., 2022) 0.22 0.14 0.02 0.02 0.00 0.00
REX (Murthy et al., 2023) 0.80 0.45 0.25 - - -
RAFA (Liu et al., 2023) - 0.97 0.75 - - -
RAP (Hao et al., 2023) 0.67 0.76 0.74 0.48 0.17 0.09

MLAQ 1.00 1.00 1.00 0.97 0.93 0.90

our domain memory in enhancing the agents’ decision-making capabilities in long-horizon tasks.
Quantitative analysis will be provided in the ablation experiments.

Besides, we also investigate the memory re-utilization ratio in transition imagination phase. As
shown in Figure 4, higher re-utilization ratio commonly leads to a lower average consumed tokens.
As the increase of the optimal step, the ratio of memory re-utilization increases from 19% to 90%.
Meanwhile, the average token consumption of each task first increases and then decreases significantly.
The increase of tokens from 2-step task to 4-step task is attributed to the increased task difficulty,
requiring the agent to employ more imagination to make optimal decisions. Then, as the memory
becomes enriched with the data collected from resolved tasks within the same domain, the probability
of re-utilizing stored transitions increases, leading to a reduction in average token consumption.

Multi-agent scenario. In RoCo-benchmark, robotic arms need to efficiently allocate tasks internally
and collaborate to achieve the final goal. Table 2 shows the experimental results of RoCo and MLAQ
on Sort domain. MLAQ achieves a success rate approaching 100% across all difficulty levels and
maintains an optimal performance exceeding 50% across most tasks, further giving an affirmative
response to Question A. In this table, we introduce "success rate" as an additional metrics as the
expanded search space from the presence of multiple agents significantly reduces their optimal rate.
The notation "MLAQ−" denotes that MLAQ agent terminates its imagination upon reaching the target
state, without further exploring to get a better policy. A detailed analysis of "MLAQ−" is provided
in the ablation section. The optimal steps for Sort range from 1 to 6, with MLAQ consistently
achieving higher success and optimal rates than RoCo, especially in long-horizon tasks. Due to space
limitations, the results and analysis on Sandwich domain are provided in Appendix H.2.

Table 2: Comparison of multiple metrics between MLAQ and RoCo in Sort domain.

Metrics Methods 1-step 2-step 3-step 4-step 5-step 6-step Average

Success Rate RoCo 1.00 0.64 0.47 0.10 0.03 0.00 0.35
MLAQ 1.00 0.96 0.97 1.00 0.93 1.00 0.98

Env Replans
(n-shot)

RoCo 0.30 6.30 5.60 9.74 7.67 6.92 6.41
MLAQ 0.00 0.04 0.03 0.10 0.10 0.04 0.06

Optimal Rate
RoCo 0.80 0.36 0.27 0.00 0.00 0.00 0.21
MLAQ− 0.95 0.64 0.57 0.67 0.33 0.43 0.58
MLAQ 1.00 0.86 0.77 0.73 0.50 0.75 0.75

Average Token
RoCo 10605 530817 332730 305175 345762 320045 322630
MLAQ− 7093 15104 16436 22197 18133 8220 15216
MLAQ 8491 66367 156490 119916 409495 243151 175560

Optimal Gap
RoCo 0.35 3.37 3.43 3.33 2.97 2.00 2.72
MLAQ− 0.10 0.64 0.73 0.53 1.20 0.46 0.65
MLAQ 0.00 0.32 0.40 0.43 0.80 0.25 0.39

Memory Re-Util. Ratio 0.27 0.61 0.71 0.72 0.73 0.83 0.66

In Table 2, the average token consumption of each task still shows a trend of increasing first
and then decreasing, and is lower than RoCo’s in Sort. The Env Replans metric denotes the
frequency of environment feedback, which reflects the zero-shot decision-making ability of the
LLM agent. A smaller Env Replans indicates that the agent requires less ground-truth information
from the environment to refine its decisions. The results show that the number of environmental
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Table 3: The optimal rate for optimizing multiple epochs in Sort domain.

Methods 1-step 2-step 3-step 4-step 5-step 6-step

MLAQ-1st epoch 1.00 0.86 0.77 0.73 0.50 0.75
MLAQ-2nd epoch 1.00 0.93 0.90 0.77 0.57 0.88
MLAQ-3rd epoch 1.00 0.93 0.90 0.77 0.57 0.92

replans for MLAQ has decreased by approximately two orders of magnitude compared to RoCo,
indicating that the MLAQ agent almost does not require environmental transitions to correct imaginary
transitions. In contrast, existing methods require the environment to verify action’s validity and
provide environmental feedback, facilitating LLM agents to replan until actions are available (Mandi
et al., 2023; Shinn et al., 2023). This result indicates an affirmative answer to the Question B. In
addition, since we provide two types of basic policy (central and dialogue) in multi-agent scenarios,
we also conduct experiments to compare them in Appendix H.1.

4.3 MLAQ WITH MULTIPLE EPOCHS
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Figure 5: Tendency of optimal rates
and tokens with epochs.

This experiment aims to demonstrate the potential of MLAQ
to enhance its optimal decision-making ability through iter-
ative optimization. In previous experiments, each domain’s
experiment starts with an empty memory. In this section, we
conduct multiple epochs of MLAQ experiments by perform-
ing MLAQ with a non-empty memory to further enhance its
decision-making capabilities and utilize memory re-utilization
to reduce token consumption. At the beginning of each epoch,
the input memory is the memory of the last MLAQ epoch after
finishing all given tasks of the domain. As shown in Table 3
and Figure 5, an additional training epoch results in an improve-
ment of the optimal rate while reducing token consumption.
Although MLAQ with multiple epochs no longer constitutes
zero-shot decision-making, the small magnitude of env replans
implies that minimal environmental information is injected into
subsequent epoch decisions. Consequently, it still provides a more definitive affirmative answer to
Question A and Question B.

4.4 ABLATION RESULTS

The key components of MLAQ are the Q-planner, memory, and imagination space. In this section,
we validate their effects by individually diminishing their capabilities. The ablation experiments are
conducted under 8-step tasks in the BlocksWorld domain. This is primarily because the task difficulty
at this optimal step is moderate for an appropriate comparison.

Table 4: Ablation results in BlocksWorld domain.

Ablation Methods Optimal Rate Token Env Replans

RAP 0.48 - -
MLAQ w/o domain memory 0.87 378941 0.02
MLAQ w/o self-examine 0.57 20115 0.81
MLAQ w/o env-examine 0.95 40772 0.05
MLAQ 1.00 39688 0.02

Removing further optimization. This experiment evaluates the impact of the Q-planner’s inability
to further optimize. In our framework, if the best decision sequence derived from the Q-Planner
is determined to non-optimal through environmental interactions, the MLAQ agent would keep
exploring in the imagination space to continually expand the memory and replay buffer for further
optimization. Within the imagination space, we allow the MLAQ agent to complete only one
successful imagination round by terminating the exploration process upon reaching the target state,
referring to this method as MLAQ−. As demonstrated in Tables 2, this deletion of further optimization
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decreases token consumption while concurrently diminishing the optimal rate. The ‘Optimal Gap
(OG)’ represents the gap between average completion steps and optimal steps. The results indicate
that MLAQ achieves lower OG than MLAQ−, which fully demonstrates the effectiveness of the
expansion of the replay buffer and the optimization based on Q-Planner. The experiments on the
Sandwich domain presented in Appendix H.2 also yields the similar results.

Removing LLM-based self-examine and env-examine. This experiment reduces the quality of
transitions generated in the imaginative space by separately removing self-examine and env-examine,
thereby evaluating their effect. (1) The self-examine utilizes an LLM-based action checker and
prediction checker to enable error correction within the imagination space. We remove it from MLAQ
agent to directly output the actions and predictions without LLM-based examination, which is denoted
as MLAQ w/o self-examine in Table 4. Note that the initial memory stores transitions from the 2-step
to 6-step experiments rather than starting from scratch. The results demonstrate a notable reduction
in token consumption alongside a significant decrease in the optimal rate. Moreover, the frequency
of environmental feedback has significantly increased, providing support for affirmative answers
to Question C. (2) The env-examine corrects the imagination process by treating environmental
transitions as ground truth. Removing it allows for an evaluation of the imagination capability using
only the LLMs. The results of MLAQ w/o env-examine indicate only a slight performance decline
compared to MLAQ. Combined with the env replans metrics of MLAQ, this leads to the conclusion
that the current LLMs (e.g., GPT-4) possess the capability to efficiently generate imaginary transitions
through self-examination, resulting in a relatively low dependency on ground truth, answering
Question C from the opposing viewpoint. Removing both of them will lead to a decline in the quality
of imaginary transitions, thereby reducing the decision-making performance of our MLAQ agent.

Narrowing memory scope. This experiment narrows the scope of the memory module from domain-
specific to task-specific like existing methods (Hao et al., 2023) in order to evaluate the effect of
constructing memory in an RL manner. This approach is denoted as MLAQ w/o domain memory
in Table 4. The results indicate a significant increase in token consumption alongside a decrease
in the agent’s optimal rate, quantitatively answering the Question C. This decline stems from the
MLAQ agent’s inability to leverage prior decision-making experiences to solve new tasks within the
same domain. However, the optimal rate of the MLAQ agent still exceeds that of RAP, owing to the
influence of other components within the MLAQ framework.

4.5 SELF-EXAMINATION ANALYSIS

This section quantitatively evaluates the LLM-based self-examination, showing that while hallucina-
tions may occur during the examining process, performing multiple checks in transition imagination
significantly reduces the erroneous transitions. In the self-examination process, the LLM-based
checkers may erroneously identify correct outputs as incorrect, and vice versa. We sample 128
random states from the Sort domain, providing correct actions for 64 states and incorrect actions for
the others, with each incorrect action breaking only one constraint. The testing for the prediction
follows a similar approach, where each incorrect prediction only violates one constraint.

Table 5: Results on identification capability of the checkers.

Checker Type TP ↑ FN ↓ FP ↓ TN ↑ Precision ↑
Action Checker 63 1 6 58 91.3%
Prediction Checker 64 0 10 54 86.5%

As shown in Table 5, we evaluate the performance of the checkers using five metrics. True Positives
(TP) identify correct outputs (actions or predictions) as correct, False Negatives (FN) identify correct
outputs as incorrect, False Positives (FP) identify incorrect outputs as correct, True Negatives (TN)
identify incorrect outputs as incorrect, and Precision = TP / (TP + FP) is a proportion of correctly
identified correct cases among all cases identified as correct. Results in Table 5 suggest that while
both checkers accurately identify correct outputs, they may misidentify incorrect outputs as correct
ones, leading to inaccuracies in imaginary transitions and subsequent impacts on agent performance.

To further investigate the impact of inaccuracies in self-examination, similar methods are used to
test the accuracy of the basic policy and world model. Without forbidden actions, the accuracy of
the basic policy is 84.4%, while the accuracy of the world model is 100%. Therefore, the combined
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calculation yields a probability of 1.36% = (1 - 84.4%) * [6 / (6 + 63)] for an wrong transition to be
stored in memory. Compared to the probability of 15.6% = (1 - 84.4%) without self-examination,
MLAQ can greatly improve the quality of imaginary transitions. These results provide support for
affirmative answers to Question C. Furthermore, some erroneous transitions stored in memory could
be excluded from the best policy derived from RL-based optimization due to their low values, while
the others could be corrected by env-examination. Experimental data in Table 2 also indicate that
these errors minimally impact the decision-making capabilities of LLM agents.

5 RELATION TO OTHER METHODS

In this section, we compare the MLAQ framework with several representative works in LLM agents.
Table 6 presents the interaction between Agent, World Model (WM), and Environment (Env) in
existing approaches, as well as the forms of their memory. (1) The Agent-Env interaction is central
to most LLM agents, with efforts to optimize agents through techniques like self-reflect (Shinn et al.,
2023) and dialogue (Mandi et al., 2023) for prompt enhancing, and Monte Carlo Tree Search (MCTS)
for transition-level optimization (Ding et al., 2023). (2) The Agent-WM interaction is originated from
model-based RL (Hafner et al., 2020) to expand memory through the agent’s imaginary interactions.
RAP (Hao et al., 2023) and ToT (Yao et al., 2023a) construct an LLM-based world model for MCTS-
based planning in a single task, but they still not try to narrow the gap between the world model
and environment. (3) The WM-Env interaction requires using the environmental data to correct the
mistakes made by LLM-based world model, which is achieved by LATS (Zhou et al., 2023a). (4)
Finally, the memory modules of LLM agents differ in the level and scope. Insight-level memory
stores agents’ natural language summaries of their insights (Ding et al., 2023), while transition-level
memory retains RL-like transitions (Hao et al., 2023). The scope here represents the time span of the
data in memories, encompassing (a) Step: the single transition, (b) Task: multiple transitions within
the same task, and (c) Domain: multiple transitions in multiple tasks within the same domain. We
present different scopes of memory in Appendix A, and detailed related works in Appendix B.

Table 6: Different interactions in existing LLM-based decision-making methods.

Method Agent-Env Agent-WM WM-Env Memory Level-Scope

Reflexion (Shinn et al., 2023) Self-reflection - - Insight-Task
Expel (Zhao et al., 2024) Self-reflection - - Insight-Domain
RoCo (Mandi et al., 2023) Dialog Feedback - - Transition-Step
XoT (Ding et al., 2023) MCTS Extraction - - Transition-Task
RAP (Hao et al., 2023) Direct MCTS - Transition-Task
ToT (Yao et al., 2023a) Direct MCTS - Transition-Task
LATS (Zhou et al., 2023a) Self-reflection MCTS Env-examine Transition-Task

MLAQ (Ours) Q-Planner UCB-guided Mixed-examine Transition-Domain

6 CONCLUSION

This work introduces MLAQ, a powerful MDP-based LLM agent framework that achieves zero-shot
optimal decision-making. MLAQ consists of a memory module, a Q-planner, and an imagination
space to fully leverage the general comprehension capabilities of LLMs and the optimization capabil-
ities of RL. The imagination space is entirely based on LLM to generate imaginary transitions, which
are then provided to the Q-planner for RL-based optimization. The proposed planning algorithm
balances the exploration and exploitation by introducing the concept of virtual nodes, while ensuring
a sub-linear regret bound guaranteed by a theorem. Moreover, a mixed-examine mechanism is em-
ployed to improve the quality of the imaginary transitions. We evaluate MLAQ on both single-agent
BlocksWorld and multi-agent RoCo-benchmark domains, comparing it with several advanced LLM
agents. Results indicate that MLAQ outperforms existing methods, especially in tasks involving long-
horizon decision-making. Furthermore, we conduct exhaustive additional experiments to investigate
how MLAQ enables LLM agents to achieve zero-shot optimal decision-making capabilities. The core
conclusion of this work is that constructing a model-based RL framework in natural language for
current LLMs can further enhance the decision-making abilities of LLM agents. In future work, we
intend to deploy this method on physical robotic platforms to fully exploit its advantages.
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A DETAILED DESCRIPTIONS OF MEMORY SCOPE

MLAQ employs a memory module with domain scope. In order to better illustrate its difference from
the memory scope in previous LLM agents, we present the memory module under different scopes
in Figure 6. Figure 6 (a) shows a memory with Step scope, which only retains the interaction data
between the agent and the environment at the current time step. For instance, when refining LLM
agent’s decisions, RoCo (Mandi et al., 2023) only relies on the feedback provided by the environment
in the current state. Figure 6 (b) shows a memory with Task scope, which focuses on solving the
current given task and retains the data obtained from the interactions between the agent and the
environment in this task. Most LLM agents adopt this form of memory, which is called a replay
buffer in Figure 1. Take the RAP (Hao et al., 2023) agent as an example, it explores within an
LLM-based imagination space and retains visited trajectories to avoid repeated LLM-based state
predictions. However, the memory for each task is unique and contains only information relevant to
this single task, meaning that the agent cannot gain experience from the decision histories of other
tasks within the same domain to solve the current task. Instead, our memory with domain scope stores
environmental and imaginary interaction data from all tasks in the domain, effectively reducing the
need for LLM queries and improving the efficiency of the reinforcement learning through Q-planner.
Besides, one point to clarify is that in Figure 6 (c), cylinders are depicted in different colors only to
illustrate that they have transitions from different tasks. The transitions stored in our memory do not
contain any task-specific labeling, and are always stored in the format of (s, a, r, s′).
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Figure 6: Memory modules with different scope. (a) Step. (b) Task. (c) Domain.

B RELATED WORK

Leveraging the Transformer network architecture, recent advancements in Large Language Models
(LLMs) have highlighted their potential in decision-making tasks. These approaches are commonly
referred as LLM agents. The research on LLM agents originated from GPT-3, an LLM with 175
billion parameters (Brown et al., 2020). Its authors found that the inference and decision-making
ability of LLM can be improved by simply adjusting the input prompt without adjusting the model
parameters. This insight leads to the development of the Chain-of-Thought (CoT) approach, which
improves the LLM’s reasoning capabilities by integrating step-by-step reasoning examples into the
prompts (Wei et al., 2022). Subsequent studies have focused on further enhancing LLM reasoning
capability through prompt engineering. Techniques such as task decomposition, exemplified by least-
to-most (Zhou et al., 2023b) and DecomP (Khot et al., 2022) prompting, are proposed to simplify the
task complexity. The aforementioned methods also could address some traditional problems in natural
language processing, such as cloze and completion task and reasoning task (Turpin et al., 2023). With
the development of LLMs, OpenAI’s O1 has been characterized as a Large Reasoning Model (LRM),
demonstrating preliminary planning capabilities (a success rate of 97.8% in BlocksWorld as reported
by Valmeekam et al. (2024)). However, due to our experiments employ a more challenging optimal
rate as the metric, the direct comparison is not presented in the main text.

LLM agents with prompt optimization. As research progresses, an increasing number of studies
focus on developing an LLM agent to tackle decision-making tasks with higher complexity. Most
methods adopt the existing paradigm, aiming to indirectly enhance the decision-making capabilities
of LLM agents by optimizing the prompts given to LLMs (Brown et al., 2020). These approaches
typically involve enriching the prompt’s informational content through environmental or human
feedback and employing some techniques to summarize these information into some insights, thereby
minimizing the prompt’s length (Zhang et al., 2024d). Huang et al. (2022b) enable the LLM agent
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to understand many semantic aspects of the world by leveraging environmental feedbacks to form
an inner monologue, acknowledging what, when, and how to do skills in embodied environments.
DEPS (Wang et al., 2023b) involves the description and self-explanation of the agent’s plans to
improve the accuracy of multi-step reasoning in long-horizon tasks. It also provides a trainable goal
selector to rank the sub-goals based on the estimated steps of completion, thus refining the agent’s
plans. Furthermore, as shown in Table 6, the self-reflect is a widely-used technique to improve
LLM agent’s decision-making capability. Reflexion (Shinn et al., 2023) empowers autonomous
LLM agents to iteratively revise their actions based on feedback, thereby optimizing their behavior.
ReAct (Yao et al., 2023b) introduces a closed-loop reasoning process by alternately generating
verbal reasoning traces and actions to achieve self-correction of knowledge. Additionally, it acquires
additional information from external sources through the execution of actions. AgentVerse (Chen
et al., 2024) involves multiple LLM agents with different roles to orchestrate a collaborative group
of expert agents. These agents evaluate their executed actions to adjusting the group and discuss
collaboratively for making better decisions. There are also numerous approaches aimed at addressing
decision-making problems in multi-agent environments. ProAgent (Zhang et al., 2024a) considers
scenarios involving cooperation with human players. It performs cooperative reasoning and planning
based on inference of teammates’ behavior, corrects the agents’ beliefs using actual decisions, and
stores acquired knowledge into a task memory. Mandi et al. (2023) proposes a multi-agent benchmark
RoCo-benchmark with multiple robotic arms solving a cooperative task. It also constructs a dialog-
based multi-agent framework RoCo to address the proposed benchmark. CoELA (Zhang et al.,
2024b) aims to address the multi-agent cooperation problem with decentralized control by providing
communication between LLM agents to exchange their information and knowledge. Its framework
extensively utilizes the potential of LLM in perception, communication, planning, memory and
execution.

LLM agents with action optimization under MDP framework. Those methods, which only aim
at optimizing prompts, cannot achieve satisfactory performance in long-horizon decision-making
tasks (Hao et al., 2023), which are more challenging to LLM agents. Firstly, the inherent reasoning
capabilities of these methods, bounded by the fixed parameters of the base LLM, fall short in
complex tasks necessitating long-horizon decision sequences. Secondly, adjusting input prompts
may improve reasoning to some extent but does not fundamentally optimize the policy of the
LLM agent for acquiring optimal decision sequences. Recent researches have explored using
broader language applications to model the environmental dynamics and reward functions, employing
planning algorithms to guide decision-making (Liu et al., 2023; Zhang et al., 2024d). They formulate
the LLM agent under the Markov Decision Process (MDP) framework by decomposing original
long-horizon decision sequences into atomized state transitions. Yao et al. (2023a) propose Tree-of-
Thoughts (ToT), which establishes an incomplete MDP framework limited to state space, action space,
and value function components. ToT employs depth-first and breadth-first search techniques to derive
optimal sequences of thoughts in the decomposed "thought space". RAP (Hao et al., 2023) leverages
LLMs to explicitly construct a world model, serving as the dynamics function within the MDP. RAP
employs an LLM-based policy to generate decision trajectories by interacting with the world model
within the imagination space and utilizes the MCTS algorithm to effectively balance exploration and
exploitation, thus optimizing decision sequences. REX (Murthy et al., 2023) introduces an additional
layer of rewards and incorporates principles akin to Upper Confidence Bound (UCB) values to further
enrich exploration within the action space, resulting in more robust and efficient agent performance.
Everything-of-thought (XoT) (Ding et al., 2023) emphasizes the "Penrose triangle" in traditional
LLM agents, indicating that Performance, Efficiency, and Flexibility cannot simultaneously exist. It
utilizes LLM for thought generation and employs RL and MCTS algorithms to revise the generated
thought tree, thereby enhancing the agent’s performance. Zhao et al. (2023) establish an LLM-based
commonsense world model and basic policy to conduct MCTS-based searches. External knowledge
is obtained through datasets or interactions with human players, enabling updates to the belief of
environmental states and consequently making optimal decisions. Kong et al. (2024) integrates an
API Retriever, LLM Finetuner, and Demo Selector within a unified framework to tackle the challenges
of task planning and tool usage in complex real-world systems. Expel (Zhao et al., 2024) maintains
an insight-level memory for the LLM agent. After interacting with the environment, the agent
learns from successful trajectories and avoids failed trajectories to summarize a series of insights.
These insights are used to enrich the LLM agent’s prompts, thereby enhancing its decision-making
capabilities. However, most of them require the environmental functions to enhance decision-making
and lack the capability to leverage experiences from other tasks within the same domain.
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There are also some LLM agents aiming to be a zero-shot planner. Kwon et al. (2024) design many
task-agnostic prompts to investigate which design choices in this prompt are the most important,
thus developing a zero-shot robot manipulator. Huang et al. (2022a) decompose high-level tasks
into mid-level plans without any further training of pre-trained LLMs, and propose a procedure to
semantically translate the plans to available actions in a zero-shot manner. Hashemzadeh et al. (2024)
also adopt the similar sub-goal decomposition approach to facilitate decision-making. PS Prompting
improves upon zero-shot-CoT at the prompt level, enabling LLMs to implement planning capabilities
(Wang et al., 2023a). Gkanatsios et al. (2023) present an energy-based framework that converts
language instructions into optimizable functions to guide object rearrangement through visual-motor
policies. However, these approaches mostly design prompts for specific domains and still cannot
achieve optimal decision-making.

RL approaches in agents. Traditional RL and MARL approaches require RL-based optimization
techniques to update the parameters of agent policies. These methods either collect interaction data
between agents and the environment (Rashid et al., 2018; Schrittwieser et al., 2020; Hu et al., 2023)
or use supervised learning to construct a world model that serves as a digital replica of the real
environment (Chai et al., 2024; Egorov & Shpilman, 2022), providing imagined interaction data
(Hafner et al., 2020). In contrast, the training of LLMs involves a vast and diverse dataset, enabling
the construction of task-specific basic policies and world models through task descriptions in natural
language (Hao et al., 2023; Yao et al., 2023a), thereby eliminating the need for parameter updates of
traditional methods. Reflextion (Shinn et al., 2023) maintains an RL-like framework, which includes
Actor and Critic modules used for action output and action evaluation, respectively. However, it does
not employ RL-based optimization at the transition level based on the Bellman equation. Instead, it
heavily relies on the decision-making capabilities of the LLM itself, leading to poor performance
in long-horizon tasks. Zhang et al. (2024c) utilize RL-based critic regression to learn a sequential
advantage function and treat the LLM planner as an optimizer to generate actions that maximize
this function. Xu et al. (2023) propose an LLM agent for Werewolf game, which utilizes LLM to
generate candidate actions in the current state, and then uses a one-step population-based RL training
process to select the optimal action from these actions. MCTS is also a traditional RL approach, but
it requires prior knowledge about environmental functions and focuses more on the search process.
Some of the previously introduced methods (Hao et al., 2023; Zhao et al., 2023) use MCTS for
planning and achieve optimal decision-making based on some strong assumptions, but still do not
perform satisfactory performance in long-horizon tasks.
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C PROOF FOR THEOREM 1

Before presenting the proof of Theorem 1, we first introduce Theorem 2 from (Auer et al., 2002)
and provide part of the derivation to facilitate the subsequent steps. It is important to note that some
variables in this section may cause confusion with similarly defined variables in the main text. These
variables are introduced temporarily to improve the readability of the derivation and are only valid
within the proof of this section. For instance, while t denotes the time in the main text, it will be used
here to denote the number of UCB rounds.
Theorem 2. For all m > 1, if policy UCB is run on state s with m available action, performing each
action yields arbitrary Q-value distributions P1, ..., Pm with support in [0, 1], then its expected regret
after any round number of T is at most:

[8
∑

i:∆i>0

(
lnN(s)

∆i
)] + (1 +

π2

3
)(

m∑
i=1

∆i), (5)

where Q(s, 1), ..., Q(s,m) are the expected values of P1, ..., Pm.

Proof. The regret is defined as follows:

Regret =
∑

j:∆j>0

∆jE[Cj(T )], (6)

where ∆i = Q∗−Q(s, i), Q∗ .
= maxi{Q(s, i)}, and Ci(T ) denotes the selection number of machine

i over the first T rounds. The key of the derivation lies in the decomposition of E[Ci(T )]. Due to the
initial evaluation conducted by UCB for each machine, Ci(T ) can be rearranged as:

Ci(T ) =

T∑
t=1

{It = i} = 1 +

T∑
t=m+1

{It = i}, (7)

where {·} is an indicator function. If the event {It = i} occurs, meaning that the UCB policy selects
machine i in round t, then the indicator function outputs 1. Otherwise, it outputs 0.

Auer et al. (2002) derived the conclusion of the theorem through a step-wise approach using this
equation. For a detailed derivation process, please refer to the original proof in (Auer et al., 2002).
The subsequent derivations in this paper require only the few steps outlined above.

Theorem 1. Suppose the player employs the node selection rule defined in (2). Then, in a scenario
with m available actions in state s, the bound of the expected cumulative regret is:

Regret =
∑

j:∆j>0

∆jE[Cj(N(s))] ≤ [8
∑

i:∆i>0

(
lnN(s)

∆i
)] + (1 +

π2

3
)(

m∑
i=1

∆i), (8)

where ∆i = Q∗ −Q(s, i) for action index i in {1, 2, ...,m} and Q∗ .
= maxi{Q(s, i)}, N(s) is the

visit count of s, and Ci(N(s)) is the selection number of action i.

Proof. Since the definition of regret has not changed, we will continue our derivation starting from the
decomposition of Ci(T ), where T has the same meaning with N(s). We will ultimately demonstrate
that, due to the presence of the virtual node y, the player can achieve the same upper bound on regret
as UCB. In the multi-armed bandit variant, action i can be selected only if y has been selected at least
i times. Thus, we define the selection number of y at round t as A(t), and we have:

Ci(T ) =

T∑
t=1

{It = i, A(t) ≥ i} =
T∑

t=i+1

{It = i, A(t) ≥ i}

=

T∑
t=i+1

{It = i, A(t− 1) ≥ i} ∪ {It = i, ξ(t− 1, i)}

=

T∑
t=i+2

{It = i, A(t− 1) ≥ i}+
T∑

t=i+1

{It = i, ξ(t− 1, i)},

(9)
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where ξ(t, i) denotes the event in which player select y for the i-th time at round t. The derivation
in the first line follows from the fact that A(1) = 0 and A(t) ≤ t − 1. Therefore, when t ≤ i, the
event A(t) ≥ i cannot occur. The derivation from the first line to the second line primarily relies on
rewriting the original event A(t) ≥ i as the union of two mutually exclusive events, A(t− 1) ≥ i
and ξ(t− 1, i). By repeatedly applying the above decomposition operation to the first term of the
formula, we have:

Ci(T ) =

n−i∑
k=1

n∑
t=i+k

{It = i, ξ(t− k, i)} =
n∑

t=i+1

t−i∑
k=1

{It = i, ξ(t− k, i)}

=

n∑
t=i+1

t−1∑
x=i

{It = i, ξ(x, i)} =
n−1∑
x=i

n∑
t=x+1

{It = i, ξ(x, i)}

(10)

By setting x = t− k and exchanging a series of inner and outer loops, we obtain a more interpretable
formula. This formula first determines the round in which y is selected for the i-th time by iterating
the variable x over the interval [i, n− 1], followed by iterating the time t to compute the selection
number of action i. Clearly, the above expression is less than n, leading directly to a linear regret
bound. However, to achieve the goal of deriving a sub-linear bound, we should use the following fact:

Ci(T ) ≤ max
x

n∑
t=x+1

{It = i, ξ(x, i)} = max
x

∑
t=x+1,n

{It = i}

≤
n∑

t=1

{It = i}
(11)

Thus, we can directly proceed to Equation (7) and its subsequent derivations, ultimately proving that
in this case, the player can still achieve the same regret bound:

[8
∑

i:∆i>0

(
lnN(s)

∆i
)] + (1 +

π2

3
)(

m∑
i=1

∆i), (12)

where N(s) is equivalent to T .

In the calculation of the vUCB value in (3), the confidence bound for virtual nodes includes an
additional coefficient g(x) compared to that of actual nodes. Assuming the number of available
actions is m, we expect the virtual node to be selected at most m times, and the coefficient should
decrease as the size of δ̂(s) increases. Therefore, it should possess the following characteristics:

g(m) = 0 and
∂g

∂x
<= 0 (13)

However, since the number of available actions cannot be known in advance when planning in the
LLM-based imagination space without environmental tools, the first property cannot be satisfied.
Therefore, in practice, we use g(x) = wg(e

−x2 − ϵg) as a substitute, whose value rapidly diminishes
as the size of δ̂(s) increases.

Theorem 3. Let the expected TV-distance between two transition distributions be bounded at each
timestep by ϵm and the policy divergence be bounded by ϵπ . Then the true returns and model returns
of the policy are bounded as:

η[π] ≥ η̂[π]− [
2γ(ϵm + 2ϵπ)

(1− γ)2
+

4rmaxϵπ
(1− γ)

]. (14)

In the above theorem, η is the returns of the policy in the true environment, η̂ is the returns of
the policy under the LLM-based world model. rmax is the maximum value of rewards, ϵm =
max(s,a)∼M[DTV(T(·|s, a))||(T(·|s, a; θ))] is the generalization error of the LLM-based world
model, (s, a) is sampled from MLAQ’s memory module M, and T(·|s, a; θ)) is the transition
distribution of the LLM-based world model. ϵπ ≥ DTV(π||πM) is the policy divergence between
greedy policy π derived from Q-learning (output argmax actions) and the data-collecting policy in
the imagination space πM. Please refer to the proof of Theorem 3.1 in (Janner et al., 2019).
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D EXPERIMENTAL ENVIRONMENTS

(a) (b) (c)

Figure 7: Experimental environments. (a) BlocksWorld. (b) Sandwich domain of RoCo-benchmark.
(c) Sort domain of RoCo-benchmark.

As shown in Figure 7, we evaluate the methods in BlocksWorld (single-agent) and RoCo (multi-agent)
benchmarks. Next, we will provide a detailed description of each task, as well as the state and action
space.

D.1 BLOCKSWORLD

BlocksWorld is a well-known single-agent benchmark for evaluating LLM agents (Valmeekam et al.,
2022), where an agent should rearrange some blocks into multiple stacks in a particular order. In this
work, we choose the tasks with four blocks to evaluate our methods. Hao et al. (2023) has grouped
all tasks according to the optimal step, and we randomly choose up to 30 tasks from each group for
evaluation. As shown in Figure 8 (a), the state space in the original BlocksWorld’s codes has a lot of
redundant information, which may help agents make better decisions, but may lead to errors when
making predictions by the world model. Therefore, as shown in Figure 8 (b), we adjust the format of
them in a more concise and clear manner without affecting the validity of states.

The state records what the agent’s hand is holding: (‘Empty’ or ‘Holding <block>’) and what each
block is on (‘on <block>’, ‘on table’, or ‘in hand’). The action is an instruction that moves one block,
which is one of STACK, UNSTACK, PUT, and PICK UP.

1. PICK UP <object>: Execute if hand is empty, and <object> is on table and no block is on it.
Pick up <object> from table. After execution, the agent will be holding the <object>.

2. UNSTACK <object>: Execute if hand is empty, <object> is on another block and no block
is on it. UNSTACK <object> from another block. After execution, the agent will be holding
the <object>.

3. PUT DOWN <object>: Execute if hand is holding <object>. Put down <object> on table.
After execution, the agent’s hand will be empty.

4. STACK <object> ON <target>: Execute if hand is holding <object>, and no block is on
<target>. Stack <object> on the top of <target>. After execution, the agent’s hand will be
empty.

D.2 ROCO-BENCHMARK

RoCo-benchmark is built upon the Mujoco engine (Todorov et al., 2012) to construct several multi-
arm scenarios. RoCo-benchmark provides 6 different tasks, including those containing two agents
and those containing three agents, and the robotic arms in them have their own movable range and
require full cooperation to complete the given task. We choose two of these tasks, Sort and Sandwich,
to evaluate our method. In Roco-benchmark’s codes, there is no fixed format for the state space, and
the states are intermingled in the form of information within the agent’s prompt. Therefore, we have
constructed the state spaces for these two tasks in a concise manner, while keeping the action spaces
consistent with the original codes.
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I have that, the orange block is 
clear, the yellow block is clear, 
the hand is <state>, the blue 
block is <state>, the orange 
block is <state>, the red block is 
<state> and the yellow block is 
<state>.

[State]

[Block States]
blue block: <block state>
orange block: <block state>
red block: <block state>
yellow block: <block state>

[Hand State]
<hand state>

[State]

[Food States]
bread_slice1: <food state>
bread_slice2: <food state>
bacon: <food state>
cheese: <food state>
tomato: <food state>
cucumber: <food state>
ham: <food state>
beef_patty: <food state>

[Robot States]
1. Chad's gripper is <gripper state>
2. Dave's gripper is <gripper state>

[State]
[Cube States]
blue_square is on <location>
pink_polygon is on <location>
yellow_trapezoid is on <location>

(a)

(b)

(c)

(d)

Figure 8: State templates. (a) Template in original BlocksWorld codes. (b) Modified Template in
BlocksWorld. (c) Template in Sandwich domain of RoCo-benchmark. (d) Template in Sort domain
of RoCo-benchmark.

Sandwich domain. There are two robots, Chad and Dave, trying to make a sandwich following
the given recipe order. Chad can only reach for food items on the right side of the table, while
Dave can only reach for food items on the left side, with each food item starting in a fixed position.
The robots need to place the food items on the cutting board in the middle of the table one by one,
following the order given in a recipe. Different types of sandwiches contain different combinations
of food items. Take the ‘bacon’ sandwich as an example, it requires ‘bread_slice1’, ‘bacon’, ‘cheese’,
‘tomato’, and ‘bread_slice2’. In a bacon recipe, apart from the fixed positions of ‘bread_slice1’ and
‘bread_slice2’ as the two ends of the sandwich, the order of the other food items can vary across
different recipes. Therefore, one type of sandwich may have multiple different recipes. We group
all the recipes according to the optimal step to evaluate the agents. In the decision-making process,
robots cannot execute PUT actions simultaneously within one timestep to avoid collisions.

As shown in Figure 8 (c), the state records the state of each food item (‘on left/right side’, ‘atop
<another food item> or <cutting_board>’, or ‘gripped by <robot>’) and the state of each robot’s
gripper (‘holding <food item>’ or ‘empty’). The action is an instruction for each agent to interact
with the food items, which is one of PICK, PUT, and WAIT.

1. PICK <obj>: Execute if gripper is empty and the food item’s state is not ‘atop <obj>’. Pick
the <obj> from the table. After execution, the robot’s gripper will be holding <obj>.

2. PUT <obj1> <obj2>: Execute if gripper is holding <obj1>. Put <obj1> on the top of <obj2>.
After execution, the robot’s gripper will be empty.

3. WAIT: Do nothing.

The action checker in the Sandwich environment strictly limiting the placement of food items to
follow the recipe, rather than allowing it to be placed in an incorrect order. Therefore, the size of
agents’ available action set in each state is relatively small. The agent can only choose to wait, pick
up the next food item, or place the food item from the gripper according to the recipe, so that RoCo
could achieve a high success rate in this task, but the optimal rate is still low.
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Sort domain. There are three robots, Alice, Bob, and Chad, trying to sort three cubes onto their
corresponding panels. There are a total of seven panels. Alice can access panels 1 to 3, Bob can
access panels 3 to 5, and Chad can access panels 5 to 7. The three cubes are a blue square, a pink
polygon, and a yellow trapezoid, with their respective target panels being panel2, panel4, and panel6.
In the decision-making process, a panel cannot contain two or more cubes, and a cube cannot be
grasped by two robots simultaneously.

As shown in Figure 8 (d), the state records the state of three cubes (on <panel>) and the action is an
instruction for each agent to interact with the cubes, which is one of PICK & PLACE and WAIT.

1. PICK <object> PLACE <target>: Pick up <object> and place it onto <target>, where
<object> is a cube and <target> is a panel.

2. WAIT: Do nothing.

Given the complexity of this domain involving more agents and expansive available action spaces, its
difficulty surpasses that of the Sandwich domain. In the Sandwich domain, decision trajectories are
linear and decision loops are non-existent, meaning that the multi-agent system cannot revert to its
initial state after a series of decisions. However, in the Sort domain, the occurrence of loops adds to
the challenge of reaching target states. MLAQ could address this challenge by leveraging RL-based
optimization to make long-term optimal decisions.

E EXPERIMENTS ON CRAFTER

To validate MLAQ’s performance in partially observable scenarios with high complexity, we chose
Crafter (Hafner, 2022) (a 2D version of MineCraft) as our experimental environment.

In Crafter, players need to mine diamonds on a 64 * 64 map. To achieve this goal, there are 16 sub-
goals to complete (collecting woods, stones, make wood pickaxe, etc.), of which 9 are essential for
diamond mining, making it a challenging task with extremely long decision sequences. Additionally,
this is an extremely difficult sparse reward problem, where reward signals are only provided when
successfully achieving a sub-goal.

Players can only observe a 9 * 9 local map centered on their position, and we adopted SmartPlay’s
(Wu et al., 2024) natural language observation setting: for multiple items within the field of view,
only the nearest one will be shown in the observation. For example, even if there are 3 trees in view,
the observation will only show "tree is 3 steps to your north-east", which further intensifies the partial
observability of Crafter.

To achieve optimal decision-making in this task (and other stochastic problems), mainly because the
same state-action pair may lead to different next states, we made two minor modifications to MLAQ:

1. We remove the Prediction Checker, as it’s difficult to provide effective verification in the
cases with stochasticity.

2. We remove MLAQ’s re-utilization of memory transitions during planning, because the
same state-action pair may lead to multiple next states, and direct re-utilization would lose
stochasticity. However, this can be adjusted as needed in practical, such as starting random
re-utilization when the number of next states corresponding to the same state-action pair
exceeds a threshold.

In table 7, we compare MLAQ with several existing LLM agents, including EnvGen (Zala et al.,
2024) and DiVE (Sun et al., 2024), and the results of RL agents and human are from (Sun et al.,
2024).

Table 7: Different interactions in existing LLM-based decision-making methods.

Method Human MLAQ-gt MLAQ-script MLAQ DiVE EnvGen Dreamer-V3 PPO Random

Scores 50.5% 46.2% 42.6% 39.9% 35.9% 32.2% 14.5% 4.6% 1.6%
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We calculate The scores using the same methodology as existing works, which is determined by the
ratio of unblocked achievements. The data of MLAQ are obtained using the same testing methods
as SmartPlay (Wu et al., 2024). In Crafter, the move action exhibits strong stochasticity, making it
impossible for players to infer post-movement observations from local information. We conducted
three experiments:

1. MLAQ-gt utilizes ground-truth environment simulation for move actions, providing the exact
next state for given state-action pair, thus effectively eliminating movement stochasticity.

2. MLAQ-script generates post-movement observations through scripted randomization (e.g.,
after moving north, nine unknown areas appear at the northernmost position, with randomly
assigned items like stone, sand).

3. MLAQ reconstructs the aforementioned script into prompts, allowing LLM to fully imple-
ment an LLM-based World Model.

The results align with expectations: MLAQ-gt achieves best performance using ground-truth environ-
ment, consistently crafting iron pickaxes but struggling to explore the location of diamonds within
limited steps in 64 * 64 maps. MLAQ-script and MLAQ perform similarly but significantly below
MLAQ-gt, indicating stochasticity substantially impacts MLAQ, though still outperforming other
existing LLM agents and RL agents. It’s worth noting that these experimental dat are averaged from
eight tests, serving to demonstrate to reviewers the potential of MLAQ in complex environments. We
commit to supplementing more comprehensive data in the camera-ready version and incorporating it
into the revised manuscript.
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F PSEUDO-CODE FOR THE OVERALL ALGORITHM

We present detailed pseudo-code for our MLAQ framework in this section, and these algorithms are
used to fully describe the overall process presented in Figure 1 and Figure 2. We have simplified
the entire algorithm process into the flowchart in Figure 9 to facilitate a better understanding of how
MLAQ makes optimal decisions for new a task.

Extract & Expand Replay Buffer from Memory

Perform the Best Policy in Environment

Expand Memory & Replay Buffer via LLM Imagination

If  Optimal

Obtain the Best Policy from Q-Planner & Replay Buffer

New Task 
(Orginal and Target States)

Q function

No

Yes

Figure 9: Flowchart of MLAQ agent to obtain the optimal decision sequence for a new task, with the
input being the domain description and domain-specific memory and the output being the Q function.

F.1 OVERALL ALGORITHM FOR MLAQ AGENT

At first, Algorithm 1 shows how MLAQ agent obtains a optimal decision sequence in a given task.
Its inputs are the environment dynamics and reward function with the domain description in natural
language τ to provide interaction between the true environment and the agent (or multi-agent system),
which is also depicted in the left side of Figure 1 (a). At the beginning of the optimization of MLAQ
agent, we initialize an empty memory M and a Q function Q(·, ·) to set all Q values to -1. As
described in the experiment section, we then scan all tasks of a domain to gradually expand the
memory module through environmental and imaginary interactions.

For each single task, we have a unique pair of original state s0 and target state s̄, and initialize a
replay buffer D for this task. Before making decisions in this task, MLAQ agent will try to find
this task’s best trajectory from the memory to expand the empty replay buffer, and a task-specific
Q function Q(·, ·) will be obtained based on D. If the agent fails in finding an available trajectory
from the memory, meaning that the Q(s0, a) is no larger than the threshold Q̃ for any action a, we
would skip the following environmental interaction phase to directly perform the imagination process
until an available decision sequence is found. Otherwise, the agent interacts with the environment by
making best decisions according to Q(·, ·) to evaluate the optimality 1(s0, s̄) of the resulting decision
sequence. The indicator 1(s0, s̄) is set to True only if the environmental sequence is optimal.

In order to expand the memory and replay buffer to optimize the agent, we keep performing imaginary
interactions until the optimal sequence is obtained for the indicator 1(s0, s̄) is True or the maximum
trial number Kc is reached. As more tasks are scanned, the size of memoryM will gradually increase,
and we will finally output it to assist the MLAQ agent in making optimal decisions under any tasks in
this domain. While for the tasks have not been scanned before, MLAQ would also use the transitions
stored inM to reduce LLM queries and obtain the optimal decision sequence much easier.

F.2 LLM-BASED IMAGINATION FOR MLAQ

Algorithm 2 input the original state s0 and target state s̄ with domain description τ . The memoryM
contains transitions from other tasks and the temporary replay buffer D is specific to the current task.
At the beginning, we should first add a virtual node (if does not exist) for the original state s0 to start
the imaginary interactions. Then, we perform the phases of node selection and transition imagination
to expand the memory and replay buffer, and the overall process has already described in section 3.
The outputs of the imaginary interaction are the expanded memory and replay buffer. It should be
noted that after each step of transition imagination, we would perform an "Expand-Buffer" method to
find an available trajectory with better optimality withinM and add nodes along this trajectory to D.
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Algorithm 1: Obtaining optimal decision sequence for MLAQ agent
1 Inputs:
2 The environment, including dynamics s′ = T(s, a) and reward function r = R(s, a, s′);
3 Task description in natural language τ ;
4 Initialize:
5 memoryM and Q function Q(·, ·) = −1;
6 for task = 1, 2, 3, ... do
7 # Each task has a unique original state s0 and target state s̄
8 Initialize a replay buffer D for this task;
9 Set the optimal sequence indicator for this task 1(s0, s̄) to be False;

10 while 1(s0, s̄) is not True AND trial < Kc do
11 # Expand the replay buffer and get a task-specific Q function based on the memory
12 D = Expand-Buffer(s0, s̄;M,D);
13 Q(·, ·) =Q-Update(s0, s̄;D);
14 if maxa Q(s0, a) < Q̃ then
15 # An available trajectory does not exist based on D
16 Skip the environmental interaction phase and turn to the next trial of imagination;
17 end
18 # Environmental Interaction Phase
19 while st is not s̄ AND t < T do
20 Get the optimal action at = argmaxa Q(st, a);
21 if at is available for the environment then
22 Perform action to the environment st+1 = T(st, at) and rt = R(st, at, st+1);
23 else
24 Remove transition

(
st, at, r(st, at), c(st, at)

)
fromM and D;

25 Get environmental feedback F and store
(
st, at,F

)
intoM and D;

26 end
27 Store transition (st, at, rt, st+1) intoM and correct the wrong transition;
28 st ← st+1;
29 end
30 if st is s̄ then
31 1(s0, s̄) is True if length of decision sequence is optimal else False;
32 else
33 1(s0, s̄) is False;
34 end
35 if 1(s0, s̄) is not True then
36 # Perform a round of imaginary interaction to expand the replay buffer and memory
37 M,D =Imagination(s0, s̄; τ,M,D);
38 end
39 end
40 end
41 Outputs:
42 memoryM;
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Algorithm 2: Imagination(s0, s̄; τ,M,D) guided by UCB values
1 Inputs:
2 Original state s0 and target state s̄ of this task with domain description in natural language τ ;
3 The memoryM and replay buffer D;
4 Initialize:
5 Add a virtual node as the first child node of the original state s0, and N(s0)← N(s0) + 1;
6 while st is not s̄ AND t < T do
7 # Node Selection Phase
8 Get the optimal action at = argmaxa vUCB

(
st, a, c(st, a)

)
;

9 if c(st, at) is a virtual node then
10 # Transition Imagination Phase
11 Action available indicator 1̂(at)← False;
12 # Basic policy makes decisions and action checker verifies if the output is available
13 while 1(at) is not True AND trial < Ka do
14 Get a non-virtual action through LLM-based basic policy at ∼ π(st; τ,M);
15 if (st, at) in memoryM then
16 Retrieve transition data

(
st, at, r(st, at), c(st, at)

)
fromM to D;

17 1̂(at) = True;
18 else
19 Check the action 1̂(at) = ξa(st, at; τ,M);
20 end
21 end
22 ▷ This trajectory is failed and terminated if 1(at) is False;
23 if 1(at) is True then
24 # World model predicts and prediction checker verifies if the output is available
25 Prediction available indicator 1̂(st+1)← False;
26 while 1̂(st+1) is not True AND trial < Ks do
27 Predict the next state st+1 ∼ T̂(st, at; τ,M);
28 Check the prediction 1̂(st+1) = ξs(st, at, st+1; τ,M);
29 end
30 end
31 ▷ This trajectory is failed and terminated if 1(st+1) is False;
32 else
33 st+1 = c(st, at);
34 if st+1 is not in D then
35 Add a virtual node as the first child node of st+1;
36 end
37 end
38 st ← st+1 and N(st)← N(st) + 1;
39 if st is s̄ then
40 rt = +1;
41 else if st is a failure state then
42 rt = −1;
43 else
44 rt = 0;
45 end
46 # Expand the replay buffer and memory
47 Store transition (st, at, rt, st+1) into the replay buffer and memory (if does not exist);
48 # Expand the replay buffer from memory if possible
49 D = Expand-Buffer(s0, s̄;M,D);
50 end
51 Outputs:
52 The expanded memoryM and replay buffer D;
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F.3 EXPAND THE REPLAY BUFFER FROM THE MEMORY

Algorithm 3 is used to expand the task-specific replay buffer based on the transitions in the memory.
It firstly finds an available trajectory with better optimality fromM and then store the transitions
of this trajectory in the replay buffer D. This will effectively improve the exploration efficiency of
the MLAQ agent within the imagination space. For example, if the replay buffer is empty and there
exists an available trajectory from s0 to s̄, then the nodes and edges in this trajectory will be added to
D. Therefore, the first trial in Algorithm 1 would not require any LLM queries to get an available
policy for this task.

Furthermore, ifD is not empty, this algorithm could also help the MLAQ agent to aggregate transitions
from memory for enhancing optimal decision-making capability in complex tasks. For example, if the
agent explores a new transition and the next state corresponding to this transition has a trajectory with
better optimality towards the target state s̄, the MLAQ agent could add the nodes in this subsequent
trajectory to D without extra exploration within the imagination space.

Algorithm 3: Expand-Buffer(s0, s̄;M,D)
1 Inputs:
2 Original state s0 and target state s̄ of this task with task description in natural language τ ;
3 The memoryM;
4 Q(·, ·) =Q-Update(s0, s̄;M);
5 if maxa Q(s0, a) > Q̃ then
6 st ← s0;
7 while st is not s̄ do
8 Get the optimal action at = argmaxa Q(st, a);
9 Retrieve transition data

(
st, at, r(st, at), c(st, at)

)
fromM to D (if does not exist);

10 st ← c(st, at);
11 end
12 end
13 Outputs:
14 The expanded replay buffer D;
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F.4 Q FUNCTION UPDATE

Algorithm 4 is employed to get a Q function for the given task s0 and s̄ on the basis of X , where
X could be the memoryM and the replay buffer D. At first, we initialize the Q function to set all
Q values to -1, and assign rewards for all transitions based the target state s̄. Then, the algorithm
would perform multiple loops of Q-learning process to get the approximated Q function Q(·, ·). This
algorithm will be used by the Q-Planner in Algorithm 1 and the replay buffer expansion process in
Algorithm 3.

Algorithm 4: Q-Update(s0, s̄;X )
1 Inputs:
2 The original state s0 and target state s̄ of the given task;
3 The memory module or replay buffer X ;
4 Initialize:
5 Initialize a Q function Q(·, ·) = −1;
6 For all transition (s, a, r, s′) in X , if s′ is s̄, then r = +1; if s′ is a failure state, then r = −1;

otherwise, r = 0;
7 for loop k = 1, 2, 3, ... do
8 for (st, at, rt, st+1) ∈ X do
9 Perform the following Q-learning update rule for this transition;

10

Qk+1(st, at) = Qk(st, at) + α
(
rt + γmax

a′
Qk(st+1, a

′)−Qk(st, at)
)

11 end
12 end
13 Outputs:
14 The Q function Q(·, ·);
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G DETAILED PROMPT TEMPLATE

This section presents the detailed prompt templates for the basic policy, world model, action checker,
and prediction checker. The prompt template has multiple parts to provide different types of informa-
tion for the modules. The prompts in the purple cube are the component-specific prompts to guide the
agent in making decisions, predicting next states, checking actions or predictions. In the prompt, we
guide the corresponding modules step-by-step to enhance the accuracy of their outputs. The prompts
in the green cube contain some task-specific information, and prompts in the blue cube contain some
self-provided information generated from self-examinations and vUCB-based planning. The prompts
in grey cube is the ‘user prompt’, which contains the current information for the modules.

G.1 BASIC POLICY PROMPT

The prompt shown in Figure 10 requires the current state and target state in natural language to make
decisions. In the [Detailed Instruction for Policy] part, we decompose the decision-making process
into five parts: [Action Planning], [Action Conclusion], [Action Constraints Check], [Forbidden
Action Check], and [Action Output], gradually guiding the agent to make decisions that satisfy
the constraints. As for the basic policy of multi-agent systems, we directly follow the prompt
design of RoCo, and the prompts can be found in (Mandi et al., 2023). The policy mistakes are the
environmental feedbacks of previous wrong actions stored in the memoryM. The policy feedbacks
are the temporary feedbacks provided by the self-examination only under the current state. The
forbidden actions are the non-virtual actions of the current state node’s child nodes.

Policy

You are a planner. You have received a [State] from the external environment. Now, you need to output 
an action to reach the target [State] from current [State]. Follow the [Detailed Instruction for Policy] 
strictly.

[Detailed Instruction for Policy] ... 
You should output your thinking process step-by-step in the following order: [Action Planning], [Action 
Conclusion], [Action Constraints Check], [Forbidden Action Check], and [Action Output] ...

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description] ...
[State Space Definition] ...
[Action Space Definition] ...

[Policy Mistakes] (long-term)
In the current state, you have chosen a wrong [Action], and the environment provides the [Feedback]: 
[Wrong actions and feedbacks] ...

[Policy Feedbacks] (short-term)
The following actions are the wrong actions you have made. These feedbacks are from the previous 
imagination, and may not be correct. However, you still need to pay attention to them and avoid making 
the same or similar mistakes.
[Wrong actions and feedbacks] ...

[Forbidden Actions]
You should try your best to output an action that is not in the list below ...
[Action List] 

Now you should output your action according to the following current state and target state. 
{state}
{target_state}

You are an action checker. You should check if the [Action] is valid based on the given [State]. You 
should follow the [Checker Instruction] to check the [Action]. 

[Checker Instruction] ... 
You should output your thinking process step-by-step to follow these steps: [Action Constraints Check], 
[Conclusion Justification], and [Checker Conclusion] ...

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description] ...
[State Space Definition] ...
[Action Space Definition] ...

[Action Mistakes] (long-term)
In the current state, you mistakenly believed that a wrong action was the correct one:  
[Wrong actions and feedbacks] ...

Action Checker

Now you should check the following [Action] based on the given [State]. You have to check the 
instructions step-by-step strictly rather than your own thoughts.
{state}
{action}

Figure 10: A simplified template for the basic policy prompt.
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G.2 ACTION CHECKER PROMPT

The prompt shown in Figure 11 requires the current state and the action should be checked. In the
[Checker Instruction] part, we decompose the checking process into three parts: [Action Constraints
Check], [Conclusion Justification], and [Checker Conclusion]. We provide the previous mistakes and
the corresponding feedbacks stored in the memory under this current state for the action checker to
avoid the same mistakes.

Policy

You are a planner. You have received a [State] from the external environment. Now, you need to output 
an action to reach the target [State] from current [State]. Follow the [Detailed Instruction for Policy] 
strictly.

[Detailed Instruction for Policy] ... 
You should output your thinking process step-by-step in the following order: [Action Planning], [Action 
Conclusion], [Action Constraints Check], [Forbidden Action Check], and [Action Output] ...

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description] ...
[State Space Definition] ...
[Action Space Definition] ...

[Policy Mistakes] (long-term)
In the current state, you have chosen a wrong [Action], and the environment provides the [Feedback]: 
[Wrong actions and feedbacks] ...

[Policy Feedbacks] (short-term)
The following actions are the wrong actions you have made. These feedbacks are from the previous 
imagination, and may not be correct. However, you still need to pay attention to them and avoid making 
the same or similar mistakes.
[Wrong actions and feedbacks] ...

[Forbidden Actions]
You should try your best to output an action that is not in the list below ...
[Action List] 

Now you should output your action according to the following current state and target state. 
{state}
{target_state}

You are an action checker. You should check if the [Action] is valid based on the given [State]. You 
should follow the [Checker Instruction] to check the [Action]. 

[Checker Instruction]
You should follow the check instructions in [Detailed Constraints for Action] to check the [Action] step-
by-step. Take the mistakes in the [Action Mistakes] into consideration.

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description] ...
[Action Space Definition] ...

[Action Mistakes] (long-term)
In the current state, you mistakenly believed that a wrong action was the correct one:  
[Wrong actions and feedbacks] ...

Action Checker

Now you should check the following [Action] based on the given [State]. You have to check the 
instructions step-by-step strictly rather than your own thoughts.
{state}
{action}

Figure 11: A simplified template for the action checker prompt.

G.3 WORLD MODEL PROMPT

The prompt shown in Figure 12 requires the current state and action to predict the next state. In the
[Predicting Instruction] part, we decompose the predicting process into three parts: [Interaction Item
Pool], [Action Forward Rule] and [Prediction Conclusion]. The prompt also contains the feedbacks
from the long-term and replay buffer. In fact, LLM can better handle the task of predicting with
step-by-step reasoning, and we also find the prediction accuracy of the world model to be nearly
100% in the experimental section.

G.4 PREDICTION CHECKER PROMPT

The prompt shown in Figure 13 requires the current state, executed action, and the prediction should
be checked. In the [Checker Instruction] part, we decompose the checking process into three parts:
[Prediction Format Check], [Prediction Rule Check], and [Checker Conclusion]. We also provide the
previous mistakes and the corresponding feedbacks stored in the memory under this state-action pair
for the prediction checker to avoid the same mistakes.
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You are a state predictor. You will be given a [State] and an [Action] as input. should predict the [State] 
after the [Action] is applied to the given [State]. You should follow the [Predicting Instruction] to 
predict the [State].

[Predicting Instruction] 
Please output your thinking process step-by-step by following theses steps: [Interaction Item Pool], 
[Action Forward Rule] and [Prediction Conclusion] ...

The following lists the [State Space Definition]. 
[State Space Definition] ...
[State Template] ...
[Detailed Constraints for State] ...

[Prediction Mistakes] (long-term)
In the current state and action, you have outputted a wrong prediction as follows:
[Wrong predcitions and feedbacks] ...

[Prediction Feedbacks] (short-term)
I have send your prediction to a GPT-based checker to check whether your prediction is correct. The 
checker said that your prediction is incorrect ...
[Feedbacks] ...

Now, you should predict the next [State] after the following [Action] is applied to the given [State]. You 
have to follow the instructions strictly rather than your own thoughts.
{state}
{action}

World Model

Prediction Checker

Now you should check the following [Prediction] based on the given [State] and [Action]. You have to 
check the instructions step-by-step strictly rather than your own thoughts.
{state}
{action}
{predicion}

You are a prediction checker. You will receive a [State], an [Action], and the subsequent [Prediction]. 
You should check if the [Prediction] is valid based on the given [State] and [Action].  You should follow 
the [Checker Instruction] to check the [Action]. 

[Checker Instruction] ... 
You should output your thinking process step-by-step to follow these steps: [Prediction Format Check], 
[Prediction Rule Check], and [Checker Conclusion] ...

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description] ...
[State Space Definition] ...
[Action Space Definition] ...

[Prediction Mistakes] (long-term)
In the current state, you mistakenly believed that a wrong prediction was the correct one:  
[Wrong predictions and feedbacks] ...

Figure 12: A simplified template for the world model prompt.

You are a state predictor. You will be given a [State] and an [Action] as input. should predict the [State] 
after the [Action] is applied to the given [State]. You should follow the [Predicting Instruction] to 
predict the [State].

[Predicting Instruction] 
Please output your thinking process step-by-step by following theses steps: [Interaction Item Pool], 
[Action Forward Rule] and [Prediction Conclusion] ...

The following lists the [State Space Definition]. 
[State Space Definition] ...
[State Template] ...
[Detailed Constraints for State] ...

[Prediction Mistakes] (long-term)
In the current state and action, you have outputted a wrong prediction as follows:
[Wrong predcitions and feedbacks] ...

[Prediction Feedbacks] (short-term)
I have send your prediction to a GPT-based checker to check whether your prediction is correct. The 
checker said that your prediction is incorrect ...
[Feedbacks] ...

Now, you should predict the next [State] after the following [Action] is applied to the given [State]. You 
have to follow the instructions strictly rather than your own thoughts.
{state}
{action}

World Model

Prediction Checker

Now you should check the following [Prediction] based on the given [State] and [Action]. You have to 
check the instructions step-by-step strictly rather than your own thoughts.
{state}
{action}
{predicion}

You are a prediction checker. You will receive a [State], an [Action], and the subsequent [Prediction]. 
You should check if the [Prediction] is valid based on the given [State] and [Action].  You should follow 
the [Checker Instruction] to check the [Action]. 

[Checker Instruction] ... 
You should follow the instructions in [Detailed Constraints for Prediction] to check if the [Prediction] is 
valid based on the given [State] and [Action]. Take the mistakes in the [Prediction Mistakes] into 
consideration.

The following lists the [Detailed Constraints for Prediction]. 
[Detailed Constraints for Prediction]

[Prediction Mistakes] (long-term)
In the current state, you mistakenly believed that a wrong prediction was the correct one:  
[Wrong predictions and feedbacks] ...

Figure 13: A simplified template for the prediction checker prompt.
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H DETAILED EXPERIMENT RESULTS

H.1 BASIC POLICY ANALYSIS FOR MULTI-AGENT TASKS

As mentioned in the experiment section, our MLAQ agent framework is compatible with both
single-agent and multi-agent scenarios. In multi-agent scenarios, it provides two basic policy
decision paradigms. The first one treats the entire multi-agent system as a whole for centralized
decision-making, where it takes the global state as inputs and outputs joint actions for the system.
The second one adopts RoCo’s dialog mechanism (Mandi et al., 2023), where the agents conduct
multiple rounds of dialogue with each other and determine the joint actions when reaching consensus:
ai,t ∼ πi(·|oi,t, ρi,t), where ρi,t = [di,1, ..., di−1,j ] is the chat history between agents. di,j represents
the message output by agent i at the dialog round j.

We evaluate the agents using these two basic policies in the Sort and Sandwich domains. As shown
in Table 8, the results indicate that, with similar token consumption, the performance of centralized
decision-making significantly decreases, with env replans increasing nearly tenfold in the Sandwich
domain. The complexity of centralized decision-making significantly surpasses that of decentralized
decision-making, thereby diminishing the effectiveness of basic policies in obtaining available or
optimal actions.

Table 8: Performance comparison of using dialog and central paradigms in multi-agent domains.

Task Methods Success Rate Optimal Rate Token Env Replans Optimal Gap

Sort dialog 0.98 0.75 175560 0.06 0.26
central 0.88 0.59 199753 0.04 0.57

Sandwich dialog 0.95 0.45 208024 0.07 0.61
central 0.81 0.24 131244 0.62 3.24

H.2 MAIN RESULTS IN THE SANDWICH DOMAIN

Due to space limitations in the main text, we provide the experimental results in the Sandwich domain
in this section for reference. As shown in Table 9, although MLAQ is superior to RoCo in success rate
and outperforms RoCo in long-horizon tasks (10-step), the token consumption of MLAQ is higher
than that of RoCo. This is mainly due to two reasons. Firstly, the similarity between state transitions
plays an essential role in token consumption, with tasks exhibiting higher similarity being better able
to leverage stored transition data in memory to reduce token consumption. The Sandwich domain,
with its relatively fixed trajectories compared to Sort, exhibits lower similarity across different tasks.
This is evidenced by the average memory re-utilization ratio between the two domains, notably lower
in Sort. This characteristic of the Sandwich domain not only contributes to RoCo achieving a higher
optimal rate but also diminishes MLAQ’s token saving capability. Secondly, MLAQ itself involves
world model prediction and self-examination, leading to an average token consumption per time step
exceeding RoCo’s.
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Table 9: Comparison of multiple metrics between MLAQ and RoCo in Sandwich domain.

Metrics Methods 6-step 8-step 10-step Average

Success Rate RoCo 1.00 0.64 0.92 0.75
MLAQ 1.00 0.92 1.00 0.95

Env Replans
(n-shot)

RoCo 2.50 3.87 4.33 3.86
MLAQ 0.00 0.11 0.00 0.07

Optimal Rate
RoCo 0.75 0.36 0.25 0.37
MLAQ− 0.00 0.08 0.83 0.29
MLAQ 0.25 0.31 0.83 0.45

Average Token
RoCo 20740 35072 65027 42266
MLAQ− 74881 63555 77949 68746
MLAQ 184609 220521 188752 208024

Optimal Gap
RoCo 0.50 1.13 1.83 1.27
MLAQ− 1.25 1.88 0.17 1.33
MLAQ 0.75 1.35 0.17 0.96

Memory Re-Util. Ratio 0.31 0.63 0.57 0.58

I HYPER-PARAMETERS

Table 10 shows the hyper-parameters presented in the MLAQ training process. Except for the
environmental horizon T , all other hyper-parameters remain constant across all experiments, where
T is set to 20 for the BlocksWorld experiment, 16 for the Sandwich experiment, and 8 for the Sort
experiment.

In this paper, all experiments are conducted using the GPT API interface, without involving CPU or
GPU usage. The total cost of the API resources used in this paper does not exceed 1500 US dollars,
including preliminary tests, comparative experiments, and ablation experiments.

Table 10: Hyper-parameters presented in the MLAQ training process

Hyper Parameter Value

LLM source gpt-4-0125-preview
Learning rate α 1.0
Discount γ 0.995
UCB weight wg 2
vUCB weight wg 4
vUCB threshold ϵg 0
Maximum trial number for imagination Kc 2
Maximum trial number for prediction Ks 2
Maximum trial number for policy Ka 2
Q threshold Q̃ 0.5
Q update loops 20
Environmental horizon T 20 / 8 / 16
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J PROMPT EXAMPLE

J.1 POLICY PROMPT AND RESPONSE OF THE STATE-BASED DECISION-MAKING

In the LLM agent constructed by our method MLAQ, both decision-making in single-agent scenarios
and centralized decision-making in multi-agent scenarios rely on the global state. We use the prompt
template in Figure 10 to query LLM and output agent actions or joint actions of the multi-agent
system. In the following, we provide an example of a policy prompt in the Sort domain, which
includes all the elements in the template shown.

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description]
Task: Cooperative Sorting in a Multi-Agent System

Agents: Alice, Bob and Chad
Alice - Can only PICK and PLACE cube items on panel1, panel2 and panel3.
Bob - Can only PICK and PLACE cube items on panel3, panel4 and panel5.
Chad - Can only PICK and PLACE cube items on panel5, panel6 and panel7.

Objective: Collaboratively place the cubes on the panels as follows: place blue_square on panel2, place 
pink_polygon on panel4, place yellow_trapezoid on panel6. The cube items will be placed randomly on all panels of 
the table at the beginning of an episode. 

[State Space Definition]
Define the state of the multi-agent system, which is composed of one category: [Cube States].
1. [Cube States]: Describe the status of the following three cube items: blue_square, pink_polygon, 
yellow_trapezoid.
2. The cube items must be listed in this order: blue_square, pink_polygon, yellow_trapezoid.

[State Template]
[State]
[Cube States]
blue_square is on <location>
pink_polygon is on <location>
yellow_trapezoid is on <location>

[Detailed Constraints for State]
You should specify the [State] according to the following constrains. A state is reasonable if it does not break the 
constraints one-by-one and step-by-step.
1. There must be three lines of [Cube States].
2. Check if their locations are one of: on panel1 - 7. 
3. It is not allowed to have two cubes on the same panel. Check if they satisfy constraints.
3. The panel name should not contain " " in the middle. For example, use "panel2" instead of "panel 2".

Detail the action space for each robot with the stipulated actions: PICK PLACE, WAIT.
- PICK <object> PLACE <target>: Execute if the gripper is empty. Pick up <object> and place it onto <target>, 
where <object> is a cube and <target> is a panel
- WAIT: Do nothing.

[Action Template]
EXECUTE
NAME Alice ACTION <action>
NAME Bob ACTION <action>
NAME Chad ACTION <action>

[Detailed Constraints for Action]
[Robot Reach Range] Before showing the constraints, you should note that each robot has its own reach range, and 
it cannot PICK or PLACE items outside its reach range.
  + Alice: panel1, panel2 and panel3
  + Bob: panel3, panel4, panel5
  + Chad: panel5, panel6, panel7
[Detailed Constraints] Then, you should follow the constraints one-by-one and step-by-step to check if the action 
is correct: [Basic Constraints] and [PICK & PLACE Constraints]. You have to follow these constraints strictly and 
do not have your own understanding of the constraints.
The most important thing: Follow the instructions step-by-step and ensure each step is completed precisely. Repeat 
the instructions and fill in the blanks '[]' without introducing any modifications or additional content.
[Basic Constraints] Output "[Basic Check]" and do as follows:
  + There must be three lines of actions. 
  + The agents cannot all perform WAIT. 
  + Agents are not allowed to PICK <object> other than blue_square, pink_polygon, yellow_trapezoid. 
  + Agents are not allowed to PICK the same <object> at the same time.
[PICK & PLACE Constraints] Now, output "[PICK & PLACE Check]" and do as follows:
  + For simplicity, we use [agent] to denote the agent's name: [Alice, Bob, Chad]. 
    - If action is PICK PLACE, follow the instructions step by step: [PICK Object Check], [PLACE Target Check].
      a. [PICK Object Check] Agents are not allowed to PICK objects out of its reach range.
      b. [PLACE Target Check] Agents are not allowed to PLACE objects out of its reach range.
  + For example: List Alice's action ... List Bob's action ... List Chad's action ...```

Policy

[Detailed Instruction for Policy]
You should output your thinking process step-by-step in the following order. You have to follow these steps one by 
one to plan the [Action]: [Action Planning], [Action Conclusion], [Action Constraints Check], [Forbidden Action 
Check], and [Action Output].
The most important thing: Follow the instructions step-by-step and ensure each step is completed precisely. Repeat 
the instructions and fill in the blanks '[]' without introducing any modifications or additional content.
  + [Action Planning]: Plan the [Action] of the multi-agent system step by step and list the thinking process.
  + [Action Conclusion]: Conclude the [Action] in the format of [Detailed Constraints for Action].
  + [Action Constraints Check]: Follow the steps in [Detailed Constraints for Action] to check the [Action] step by 
step.
  + [Action Revise]: If there is no incorrect checking result in the [Action Constraints Check], you can pass to the 
[Forbidden Action Check]. Otherwise, you should revise the action. Take the feedback from [Action Constraints 
Check] into consideration, and follow these steps to revise the action: [New Action Planning] and [ NewAction 
Constraints Check].
  + [Forbidden & Mistake Action Check]: I will provide some forbidden joint actions, and the robots cannot 
choose the forbidden and mistake actions. Note that what is forbidden are the joint actions of the multi-agent system, 
rather than the single agent actions that appear in these joint actions.
    - list the chosen action.
    - list all actions in the [Forbidden Actions] and [Policy Mistakes]. 
    - check if the [Action] is in the [Forbidden Actions] or [Policy Mistakes] one by one.
    If the [Action] is not in the [Forbidden Actions] and [Policy Mistakes]:
      - Pass to the [Action Output] part.
    Else:
      - Follow these instructions to plan a new [Actions] step by step and list the thinking process:
        - Go back to a new [Action Planning] and [Action Constraints Check] process again. You should note that what 
is forbidden are the joint actions rather than the single agent actions that appear in these joint actions. Therefore, the 
individual actions of each agent in the [Forbidden Actions] can still be chosen.
        - [Forbidden Action Check]: check if the [Action] satisfies the [Detailed Constraints for Action].
        - Re-plan the [Action] until a new [Action] is obtained or there is no available action anymore. You can try 2-
nd, 3-rd, 4-th ... Plan to get the final [Action].
  If there is no available action anymore, output [ERROR] to denote that there is no available action anymore.
  + [Action Output]: output the final action in the format of [Detailed Constraints for Action].
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[Policy Mistakes]
No policy mistakes.

[Temporary Mistakes]
You have made 2 mistakes. The following actions are the wrong actions you have made.
These feedbacks are from the previous imagination, and may not be correct. However, you still need to pay attention 
to them and avoid making the same or similar mistakes.
The wrong action 1 is as follows:
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION PICK yellow_trapezoid PLACE panel6
NAME Chad ACTION WAIT
The feedback is as follows:
[ERROR] The action is invalid because it violates the reach range constraint for Bob, who cannot PLACE the 
yellow_trapezoid on panel6 as it is outside of his range.Now, output your action below. You should follow the 
[Detailed Instruction for Policy] strictly and think step-by-step to plan the action.

[State Template]
[State]
[Cube States]
blue_square is on <location>
pink_polygon is on <location>
yellow_trapezoid is on <location>

[Detailed Constraints for State]
You should specify the [State] according to the following constrains. A state is reasonable if it does not break the 
constraints one-by-one and step-by-step.
1. There must be three lines of [Cube States].
2. Check if their locations are one of: on panel1 - 7. 
3. It is not allowed to have two cubes on the same panel. Check if they satisfy constraints.
3. The panel name should not contain " " in the middle. For example, use "panel2" instead of "panel 2".

[Action Space Definition]
Detail the action space for each robot with the stipulated actions: PICK PLACE, WAIT.
- PICK <object> PLACE <target>: Execute if the gripper is empty. Pick up <object> and place it onto <target>, 
where <object> is a cube and <target> is a panel
- WAIT: Do nothing.

[Action Template]
EXECUTE
NAME Alice ACTION <action>
NAME Bob ACTION <action>
NAME Chad ACTION <action>

[Detailed Constraints for Action]
[Robot Reach Range] Before showing the constraints, you should note that each robot has its own reach range, and 
it cannot PICK or PLACE items outside its reach range.
  + Alice: panel1, panel2 and panel3
  + Bob: panel3, panel4, panel5
  + Chad: panel5, panel6, panel7
[Detailed Constraints] Then, you should follow the constraints one-by-one and step-by-step to check if the action 
is correct: [Basic Constraints] and [PICK & PLACE Constraints]. You have to follow these constraints strictly and 
do not have your own understanding of the constraints.
The most important thing: Follow the instructions step-by-step and ensure each step is completed precisely. Repeat 
the instructions and fill in the blanks '[]' without introducing any modifications or additional content.
[Basic Constraints] Output "[Basic Check]" and do as follows:
  + There must be three lines of actions. 
  + The agents cannot all perform WAIT. 
  + Agents are not allowed to PICK <object> other than blue_square, pink_polygon, yellow_trapezoid. 
  + Agents are not allowed to PICK the same <object> at the same time.
  + Agents are not allowed to PLACE objects on the same panel.
[PICK & PLACE Constraints] Now, output "[PICK & PLACE Check]" and do as follows:
  + For simplicity, we use [agent] to denote the agent's name: [Alice, Bob, Chad]. 
    - If action is PICK PLACE, follow the instructions step by step: [PICK Object Check], [PLACE Target Check].
      a. [PICK Object Check] Agents are not allowed to PICK objects out of its reach range.
      b. [PLACE Target Check] Agents are not allowed to PLACE objects out of its reach range.
      c. [PLACE Target Check] Agents are not allowed to PLACE objects on the panel that already has an object 
except it is PICKed by one of the agents at the current timestep. 
  + For example: List Alice's action ... List Bob's action ... List Chad's action ...```
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Now you should output your action according to the following current state and target state. 
[State]
[Cube States]
blue_square is on panel2
pink_polygon is on panel4
yellow_trapezoid is on panel1
[Target State]
[Cube States]
blue_square is on panel2
pink_polygon is on panel4
yellow_trapezoid is on panel6

No policy mistakes.

You have made 2 mistakes. The following actions are the wrong actions you have made.
These feedbacks are from the previous imagination, and may not be correct. However, you still need to pay attention 
to them and avoid making the same or similar mistakes.
The wrong action 1 is as follows:
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT
The feedback is as follows:
[ERROR] The action is invalid because all agents cannot perform WAIT simultaneously.Now, output your action 
below. You should follow the [Detailed Instruction for Policy] strictly and think step-by-step to plan the action.

The wrong action 2 is as follows:
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION PICK yellow_trapezoid PLACE panel5
NAME Chad ACTION WAIT
The feedback is as follows:
[ERROR] Bob cannot PICK the yellow_trapezoid from its current location (panel1) because it is outside his reach 
range (panel3, panel4, panel5). This violates the PICK Range Check constraint.

[Forbidden Actions]
The following lists the forbidden actions:
[Action 1]
EXECUTE
NAME Alice ACTION PICK yellow_trapezoid PLACE panel3
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT

[Policy Mistakes]

[Temporary Mistakes]

[Action Planning]
  - For Alice, since all her cubes are in the correct position, she should WAIT.
  - For Bob, since all his cubes are in the correct position or being taken care of by Chad, he should WAIT.
  - For Chad, since yellow_trapezoid needs to be moved from panel5 to panel6, and it's within his reach, he should 
PICK yellow_trapezoid PLACE panel6.

[Action Conclusion]
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION WAIT
NAME Chad ACTION PICK yellow_trapezoid PLACE panel6

[Action Constraints Check]
[Basic Check]
+ There must be three lines of actions: [correct]. 
+ The agents cannot all perform WAIT: [correct]. 
+ Agents are not allowed to PICK <object> other than blue_square, pink_polygon, yellow_trapezoid: [correct]. 
+ Agents are not allowed to PICK the same <object> at the same time: [no agent has the same <object>, correct]. 
+ Agents are not allowed to PLACE objects on the same panel. [no agent has the same <target>, correct]. 

[PICK & PLACE Check]
+ For Chad:
  - Chad's action: [PICK yellow_trapezoid PLACE panel6]. 
    a. [PICK Range Check] Agents are not allowed to PICK objects out of its reach range (Chad's: [panel5, panel6, 
panel7]): [no, action is incorrect]. 

The response of the basic policy is shown below. Although it already outputs a forbidden action list
in the response, it finally outputs an action in this list, which indicates that the response of LLM is
actually imperfect. Therefore, our MLAQ agent try to optimize through RL methods.

Now you should output your action according to the following current state and target state. 
[State]
[Cube States]
blue_square is on panel2
pink_polygon is on panel4
yellow_trapezoid is on panel1
[Target State]
[Cube States]
blue_square is on panel2
pink_polygon is on panel4
yellow_trapezoid is on panel6

No policy mistakes.

You have made 2 mistakes. The following actions are the wrong actions you have made.
These feedbacks are from the previous imagination, and may not be correct. However, you still need to pay attention 
to them and avoid making the same or similar mistakes.
The wrong action 1 is as follows:
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT
The feedback is as follows:
[ERROR] The action is invalid because all agents cannot perform WAIT simultaneously.Now, output your action 
below. You should follow the [Detailed Instruction for Policy] strictly and think step-by-step to plan the action.

The wrong action 2 is as follows:
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION PICK yellow_trapezoid PLACE panel5
NAME Chad ACTION WAIT
The feedback is as follows:
[ERROR] Bob cannot PICK the yellow_trapezoid from its current location (panel1) because it is outside his reach 
range (panel3, panel4, panel5). This violates the PICK Range Check constraint.

[Forbidden Actions]
The following lists the forbidden actions:
[Action 1]
EXECUTE
NAME Alice ACTION PICK yellow_trapezoid PLACE panel3
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT

[Policy Mistakes]

[Temporary Mistakes]

[Action Planning]
  - For Alice, since all her cubes are in the correct position, she should WAIT.
  - For Bob, since all his cubes are in the correct position or being taken care of by Chad, he should WAIT.
  - For Chad, since yellow_trapezoid needs to be moved from panel5 to panel6, and it's within his reach, he should 
PICK yellow_trapezoid PLACE panel6.

[Action Conclusion]
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION WAIT
NAME Chad ACTION PICK yellow_trapezoid PLACE panel6

[Action Constraints Check]
[Basic Check]
+ There must be three lines of actions: [correct]. 
+ The agents cannot all perform WAIT: [correct]. 
+ Agents are not allowed to PICK <object> other than blue_square, pink_polygon, yellow_trapezoid: [correct]. 
+ Agents are not allowed to PICK the same <object> at the same time: [no agent has the same <object>, correct]. 
+ Agents are not allowed to PLACE objects on the same panel. [no agent has the same <target>, correct]. 

[PICK & PLACE Check]
+ For Chad:
  - Chad's action: [PICK yellow_trapezoid PLACE panel6]. 
    a. [PICK Range Check] Agents are not allowed to PICK objects out of its reach range (Chad's: [panel5, panel6, 
panel7]): [no, action is incorrect]. 

[Action Revise]
Since the [PICK Range Check] for Chad's action was incorrect, the action needs to be revised. Chad cannot PICK 
the yellow_trapezoid from panel1 because it's out of his reach range. The correct action should involve Alice, who is 
in the range to PICK the yellow_trapezoid from panel1.
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[Action Revise]
Since the [PICK Range Check] for Chad's action was incorrect, the action needs to be revised. Chad cannot PICK 
the yellow_trapezoid from panel1 because it's out of his reach range. The correct action should involve Alice, who is 
in the range to PICK the yellow_trapezoid from panel1.

[New Action Planning]
Given the mistake identified during the [Action Constraints Check], we need Alice to move the yellow_trapezoid 
closer to Chad's range for him to eventually place it on panel6.
- Alice can PICK the yellow_trapezoid from panel1 and PLACE it on panel3, which is within her range and makes 
it accessible for Bob or Chad in subsequent actions.
- Bob and Chad will WAIT in this round to avoid any conflict.

[New Action Conclusion]
EXECUTE
NAME Alice ACTION PICK yellow_trapezoid PLACE panel3
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT

[New Action Constraints Check]
[Basic Check]
+ There must be three lines of actions: [correct]. 
+ The agents cannot all perform WAIT: [correct]. 
+ Agents are not allowed to PICK <object> other than blue_square, pink_polygon, yellow_trapezoid: [correct]. 
+ Agents are not allowed to PICK the same <object> at the same time: [no agent has the same <object>, correct]. 
+ Agents are not allowed to PLACE objects on the same panel. [no agent has the same <target>, correct]. 

[PICK & PLACE Check]
+ For Alice's action: PICK yellow_trapezoid PLACE panel3. 
    a. [PICK Range Check] Agents are not allowed to PICK objects out of its reach range (Alice's: [panel1, panel2, 
panel3]): [correct]. 
    b. [PLACE Range Check] Agents are not allowed to PLACE objects out of its reach range: [correct].
    c. [PLACE Target Check] Agents are not allowed to PLACE objects on the panel that already has an object 
except it is PICKed by one of the agents at the current timestep: [The panel3 is empty, correct].

[Forbidden & Mistake Action Check]
- list the chosen action: EXECUTE NAME Alice ACTION PICK yellow_trapezoid PLACE panel3 NAME Bob 
ACTION WAIT NAME Chad ACTION WAIT
- repeat all actions and feedbacks in the [Forbidden Actions], [Policy Mistakes], and [Temporary Mistakes]:
     a. [EXECUTE NAME Alice ACTION PICK yellow_trapezoid PLACE panel3 NAME Bob ACTION WAIT 
NAME Chad ACTION WAIT, forbidden action], 
     b. [EXECUTE NAME Alice ACTION WAIT NAME Bob ACTION WAIT NAME Chad ACTION WAIT, 
[ERROR] The action is invalid because all agents cannot perform WAIT simultaneously.], 
     c. [EXECUTE NAME Alice ACTION WAIT NAME Bob ACTION PICK yellow_trapezoid PLACE panel5 
NAME Chad ACTION WAIT, [ERROR] Bob cannot PICK the yellow_trapezoid from its current location (panel1) 
because it is outside his reach range (panel3, panel4, panel5). This violates the PICK Range Check constraint.]]
- check if the [Action] is in the [Temporary Mistakes] one by one. If so, you should first judge whether the [Action] 
is correct or not. If the [Action] is correct, you can pass to the [Action Output] part. Otherwise, you should revise 
the [Action] step by step.
  + The chosen action is not listed in the [Temporary Mistakes].
- check if the [Action] is in the [Forbidden Actions] one by one.
  + The chosen action is not listed in the [Forbidden Actions].

[Action Output]
EXECUTE
NAME Alice ACTION PICK yellow_trapezoid PLACE panel3
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT

The prompt and response in other tasks are also similar under the setting of state-based decision
making.
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J.2 POLICY PROMPT AND RESPONSE OF THE OBSERVATION-BASED DECISION-MAKING

In the observation-based decision-making of LLM multi-agent systems, we fully utilize the RoCo’s
Policy Prompt to perform dialogues between agents, and only add an additional part to denote the
forbidden actions. Here is an example in the Sort domain. We take the Alice’s prompt as an example,
the prompts of the other agents are also similar.

Alice’s Policy
[Action Space Definition]
- PICK <object> PLACE <target>: pick up <object> and place it onto <target>, where <object> is a cube and 
<target> is a panel
- WAIT: Do nothing.

[Action Template]
EXECUTE
NAME Alice ACTION <action>
NAME Bob ACTION <action>
NAME Chad ACTION <action>

[Action Output Instructions]
1. Commence the output with 'EXECUTE
'. Follow with one distinct action per robot on separate lines. 
2. Alice's action should be listed first, followed by Bob's action, and then Chad's action.
3. Agents' reach ranges are as follows:   
  + Alice: zone1=[panel1, panel2, panel3]
  + Bob: zone2=[panel3, panel4, panel5]
  + Chad: zone3=[panel5, panel6, panel7]

You are robot Alice in front of panel2. You are collaborating with Bob, Chad to sort cubes into their target panels
Bob is tasked to place pink_polygon on panel4, and can reach panel3, panel4, panel5
Chad is tasked to place yellow_trapezoid on panel6, and can reach panel5, panel6, panel7
The task is NOT done until all three cubes are sorted correctly
There are 7 panels, ordered left to right: panel1,...,panel7. They form a straight assembly line, panel1 is closed to 
panel2 and farthest from panel7
Your goal is to place blue_square on panel2, but you can only reach panel1, panel2, panel3: this means you can only 
pick cubes from these panels, and can only place cubes on these panels
At current round: 
blue_square is on panel5
pink_polygon is on panel4
yellow_trapezoid is on panel6
Never forget you are Alice! 
1. You can only pick these reachable cubes: 
2. You can only place them on these reachable panels: panel1, panel2, panel3
Think step-by-step about the task and others' response. Carefully check and correct them if they made a mistake
Improve your plans if given [Environment Feedback]

When you respond, tell others about your goal and all constraints. Respond very concisely but informatively, and do 
not repeat what others have said
Discuss with others to come up with the best plan, e.g. if your cube is out of your reach, ask others for help, and you 
can do the same for them
Propose exactly one action for yourself at the **current** round, select from [Action Options]
End your response by either: 1) output PROCEED, if the plans require further discussion, or 2) If everyone has 
made proposals and got approved, output EXECUTE
 and the final plan, must strictly follow [Action Output Instruction]!

You are Alice, before you make decisions, you should check if the [Action] is violating the [Forbidden Actions].
Your response is:

Since my target is to PUT ... on ..., and other robots ...
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Here we provide a dialogue result from the above scenario, where three agents reach the consensus
on each other’s decisions through two rounds of dialogue. Finally, Bob summarizes and outputs the
final joint action.

Since my target is to place the pink_polygon on panel4, and other robots have their respective targets with Alice needing to place 
the blue_square on panel2 and Chad needing to place the yellow_trapezoid on panel6, we need to coordinate our actions carefully. 
The blue_square is currently on panel5, which is within my reach, and Alice has requested my help to move it into her reach. I can 
pick up the blue_square from panel5 and place it on panel3, which is within both Alice's and my reach ranges. This action does not 
violate any forbidden actions as it involves moving a cube to an intersection panel to facilitate its transfer between zones. After I 
move the blue_square to panel3, Alice can then pick it up and place it on its target panel, panel2, in a subsequent round.

My pink_polygon is already on panel4, which means it is correctly placed, and I do not need to move it this round. Chad can 
proceed with his task to place the yellow_trapezoid on panel6, which is already in the correct position as well.

Given Alice's plan and the current situation, my proposal for this round is to assist Alice by moving the blue_square closer to her. 
This will allow us to progress towards completing our overall task more efficiently.

Let's confirm if this plan works for everyone, including the movement of the blue_square to panel3 by me, and if there are no 
objections or further suggestions, we can proceed with the execution.

PROCEED

Since my target is to place the yellow_trapezoid on panel6, and other robots have their respective targets with Alice needing to 
place the blue_square on panel2 and Bob needing to place the pink_polygon on panel4, we need to coordinate our actions carefully. 
The yellow_trapezoid is already correctly placed on panel6, which means my task for this round does not require any action on my 
part regarding the yellow_trapezoid.

Alice has proposed a plan for Bob to move the blue_square from panel5 to panel3, which is a feasible action and aligns with the 
goal of getting the blue_square closer to its target panel, panel2. This action does not violate any forbidden actions as it involves 
moving a cube to an intersection panel to facilitate its transfer between zones. Since my cube is already in the correct position, my 
focus this round should be on ensuring the plan aligns with the overall goal and does not interfere with my ability to maintain the 
yellow_trapezoid on panel6.

Bob has agreed to Alice's plan and has proposed to move the blue_square to panel3 to assist Alice. This action aligns with the 
collective goal of sorting all cubes into their target panels efficiently.

Given the current situation and the proposed actions by Alice and Bob, my action for this round will be to WAIT, as my cube is 
already in the correct position, and there are no immediate actions required from me to assist with the movement of the 
blue_square. My priority is to ensure the yellow_trapezoid remains on panel6 and to support Alice and Bob in their tasks as needed 
without violating any forbidden actions.

Let's confirm if this plan works for everyone, including my decision to WAIT this round, and if there are no objections or further 
suggestions, we can proceed with the execution.

PROCEED

Alice - Round 1
Since my target is to place the blue_square on panel2, and other robots have their respective targets with Bob needing to place the 
pink_polygon on panel4 and Chad needing to place the yellow_trapezoid on panel6, we need to coordinate our actions. The 
blue_square is currently out of my reach on panel5, so I will need Bob's help to move it into my reach. Bob can pick up the 
blue_square from panel5 and place it on panel3, which is within both of our reach ranges. This action does not violate any 
forbidden actions as it involves moving a cube to an intersection panel to facilitate its transfer between zones. After Bob moves the 
blue_square to panel3, I can then pick it up and place it on its target panel, panel2, in a subsequent round.

Bob and Chad can proceed with their tasks as planned, with Bob moving the pink_polygon to panel4 as intended, and Chad placing 
the yellow_trapezoid on panel6. However, for this round, Bob's priority should be to assist me by moving the blue_square closer.

Let's discuss this plan and make sure it aligns with everyone's understanding and capabilities. If we all agree, we can proceed with 
the execution.

PROCEED

Bob - Round 1

Chad - Round 1

Dialogues

The prompt and response in Sandwich domain are also similar under the setting of observation-based
decision making.
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Since my target is to place the blue_square on panel2, and other robots have their respective targets with Bob needing to place the 
pink_polygon on panel4 and Chad needing to place the yellow_trapezoid on panel6, we need to coordinate our actions carefully. 
The blue_square is currently on panel5, which is out of my reach. I need Bob's assistance to move it into my reach. However, upon 
reviewing the constraints and forbidden actions, I realize that directly moving cubes to their target panels without violating any 
rules is our primary goal.

Bob can assist by moving the blue_square from panel5 to panel3, which is within both of our reach ranges. This action is crucial as 
it does not violate any forbidden actions; it involves moving a cube to an intersection panel (panel3) to facilitate its transfer 
between zones. After Bob moves the blue_square to panel3, I can then pick it up and place it on its target panel, panel2, in a 
subsequent round.

Bob's task of placing the pink_polygon on panel4 does not require immediate action since it's already in the correct position. 
Chad's task involves the yellow_trapezoid, which is also correctly placed on panel6. Therefore, Chad does not need to take any 
action regarding the yellow_trapezoid this round.

Given the current situation, my proposal for this round is for Bob to assist by moving the blue_square closer to me, while I wait for 
the blue_square to be within my reach. Chad can also wait since his cube is already in the correct position.

Let's confirm if this plan works for everyone. If there are no objections or further suggestions, we can proceed with the execution.

PROCEED

Since my target is to place the pink_polygon on panel4, and other robots have their respective targets with Alice needing to place 
the blue_square on panel2 and Chad needing to place the yellow_trapezoid on panel6, we need to coordinate our actions carefully. 
The pink_polygon is already correctly placed on panel4, which means my task for this round does not require any action regarding 
the pink_polygon.

Alice has proposed that I assist by moving the blue_square from panel5 to panel3 to bring it within her reach. This action is within 
my capabilities and does not violate any forbidden actions, as it involves moving a cube to an intersection panel (panel3) to 
facilitate its transfer between zones. After moving the blue_square to panel3, Alice can then pick it up and place it on its target 
panel, panel2, in a subsequent round.

Chad's task involves the yellow_trapezoid, which is already correctly placed on panel6. Therefore, Chad does not need to take any 
action regarding the yellow_trapezoid this round and can wait.

Given the current situation and the proposed actions, my action for this round will be to move the blue_square from panel5 to 
panel3 to assist Alice. This will allow us to progress towards completing our overall task more efficiently. Since my pink_polygon 
is already in the correct position, and Chad's yellow_trapezoid is also correctly placed, there are no further actions required from 
me or Chad regarding our respective cubes.

Let's confirm if this plan works for everyone. If there are no objections or further suggestions, we can proceed with the execution.

EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION PICK blue_square PLACE panel3
NAME Chad ACTION WAIT

Alice - Round 2

Bob - Round 2 (Conclusion)
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J.3 ACTION CHECKER PROMPT AND RESPONSE EXAMPLE

We present the prompt and response example of the action checker in a state action pair of the
Sandwich domain.

You are an action checker. You should check if the [Action] is valid based on the given [State].

[Checker Instruction]
You should follow the check instructions in [Detailed Constraints for Action] to check the [Action] step-by-step. 
Take the mistakes in the [Action Mistakes] into consideration.

The following lists the [Task Description] and [Action Space Definition]. 
[Task Description]
Task: Cooperative Cooking in a Multi-Agent System

Agents: Chad and Dave
Chad - Can only PICK food items from the right side of the table.
Dave - Can only PICK food items from the left side of the table.

Objective: Collaboratively prepare a meal named "[bacon_sandwich]". The food items of target state must be 
assembled in the following sequence: bread_slice1, tomato, cheese, bacon, bread_slice2. 

[Action Space Definition]
1) PICK <obj>: Pick one food <item>. Only PICK if gripper is empty. PICK only the correct next item according to 
the recipe
2) PUT <obj1> <obj2>: PUT <obj1> on top of <obj2>. <obj1> can be food, <obj2> can be food or cutting_board
3) WAIT, do nothing
Only one robot can PUT each round. You must PICK up an item before PUT
[Action Output Instruction]
Must first output 'EXECUTE\n', then give exactly one action per robot, put each on a new line
Dave can only pick up the food item on the left side of the table. Chad can only pick up the food item on the right 
side of the table

[Detailed Constraints for Action]
Check the following constraints and Fill in blanks in '[]'. Check these constraints one by one: 1, 2...
* Get [Extended Recipe Order]: [cutting_board, bread_slice1, ...] (cutting_board + [Recipe Order])
1. [Line Number Check] The line of the actions should be less than or equal to two.
2. [Agent Order Check] The first agent should be Chad and the second agent should be Dave.
3. [WAIT Number Check] The number of WAIT should be less than or equal to one.
4. [PUT Number Check] The number of PUT should be less than or equal to one.
5. [PICK Side Check] PICK the food item on the side of the robot.
6. [PICK Robot State Check] PICK the food item only if the gripper is empty.
7. [PICK Food State Check] PICK the food item only if the food item's state is not 'atop <obj>'.
8. [PUT Availability Check 1] If <obj2> is cutting_board, <obj1> must be bread_slice1.
9. [PUT Availability Check 2] If <obj2> is not cutting_board, state of <obj2> should equal to the food item before 
<obj2> in the [Extended Recipe Order].
10. [PUT Availability Check 3] If no other food item is 'atop <obj2>', this constraint is valid directly.
11. [PUT Order Check 1] <obj1> should equal to the first item in [Reachable Items].
12. [PUT Order Check 2] <obj2> should equal to the  food item before <obj1> in [Extended Recipe Order].
13. [PICK Order Check] For PICK action, robot should PICK the first food item in its [Reachable Items]. 

[Action Mistakes]
No action mistakes.

Now you should check the following [Action] based on the given [State]
[State]
[Food States]
bread_slice1: atop cutting_board
bread_slice2: gripped by Dave
bacon: atop cheese
cheese: atop tomato
tomato: atop bread_slice1
cucumber: on right side
ham: on right side
beef_patty: on right side
[Robot States]
1. Chad's gripper is empty
2. Dave's gripper is holding bread_slice2

EXECUTE
NAME Chad ACTION WAIT
NAME Dave ACTION PUT bread_slice2 bacon

[Start]
[Extended Recipe Order]: ..., the first item in [Reachable Items]: ...
1. 

Action Checker
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Now you should check the following [Action] based on the given [State]
[State]
[Food States]
bread_slice1: atop cutting_board
bread_slice2: gripped by Dave
bacon: atop cheese
cheese: atop tomato
tomato: atop bread_slice1
cucumber: on right side
ham: on right side
beef_patty: on right side
[Robot States]
1. Chad's gripper is empty
2. Dave's gripper is holding bread_slice2

EXECUTE
NAME Chad ACTION WAIT
NAME Dave ACTION PUT bread_slice2 bacon

[Start]
[Extended Recipe Order]: ..., the first item in [Reachable Items]: ...
1. 

Action Checker

Now you should check the following [Action] based on the given [State]
[State]
[Food States]
bread_slice1: atop cutting_board
bread_slice2: gripped by Dave
bacon: atop cheese
cheese: atop tomato
tomato: atop bread_slice1
cucumber: on right side
ham: on right side
beef_patty: on right side
[Robot States]
1. Chad's gripper is empty
2. Dave's gripper is holding bread_slice2

EXECUTE
NAME Chad ACTION WAIT
NAME Dave ACTION PUT bread_slice2 bacon

[Start]
[Extended Recipe Order]: ..., the first item in [Reachable Items]: ...
1. 

Action Checker

[Extended Recipe Order]: [cutting_board, bread_slice1, tomato, cheese, bacon, bread_slice2]. 

1. [Line Number Check] The line of the actions should be less than or equal to two: [yes]
2. [Agent Order Check] The first agent should be Chad and the second agent should be Dave: [yes]
3. [WAIT Number Check] The number of WAIT should be less than or equal to one: [yes]
4. [PUT Number Check] The number of PUT should be less than or equal to one: [yes]
5. [PICK Side Check] PICK the food item on the side of the robot: [not applicable]
6. [PICK Robot State Check] PICK the food item only if the gripper is empty: [not applicable]
7. [PICK Food State Check] PICK the food item only if the food item's state is not 'atop <obj>': [not applicable]
8. [PUT Availability Check 1] If <obj2> is cutting_board, <obj1> must be bread_slice1: [not applicable]
9. [PUT Availability Check 2] If <obj2> is not cutting_board, state of <obj2> should equal to the food item before 
<obj2> in the [Extended Recipe Order]: [yes]
10. [PUT Availability Check 3] Get <item>s in [State] whose state matches '<item>: atop bacon': pool=[]. If no 
other food item is 'atop bacon' (meaning pool is empty), this constraint is valid directly: [yes]
11. [PUT Order Check 1] <obj1> should equal to the first item in [Reachable Items]: [yes]
12. [PUT Order Check 2] <obj2> should equal to the  food item before <obj1> in [Extended Recipe Order]: [yes]
13. [PICK Order Check] For PICK action, robot should PICK the first food item in its [Reachable Items]: [not 
applicable]

[Conclusion]
The [Action] is valid based on the given [State].

The action checker is based on state in both single-agent and multi-agent settings, so the checking
process for all tasks is similar.
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J.4 WORLD MODEL PROMPT AND RESPONSE EXAMPLE

We present the prompt and response example of the world model in a state action pair of the
BlocksWorld task.

You are a state predictor. You will be given a [State] and an [Action] as input. should predict the [State] after the 
[Action] is applied to the given [State]. You should follow the [Predicting Instruction] to predict the [State].

[Predicting Instruction]
You will be provided with the [State] and the [Action] of the agent. You should think step by step to output the 
[Prediction] of the next [State] based on the given [State] and [Action]. The format of the [Prediction] should follow 
the [Detailed Constraints for State].
Please output your thinking process step-by-step by following theses steps:
The most important thing: Follow the instructions step-by-step and ensure each step is completed precisely. Repeat 
the instructions and fill in the blanks '[]' without introducing any modifications or additional content.
1. [Interaction Item Pool]: initialize the pool of the blocks that the agent is interacting with. It is a empty list at the 
beginning: pool={}.
2. [Action Forward Rule]: Follow these steps to predict the [Prediction]:
  + If the action is "PICK UP" or "UNSTACK", the state of <object> in the [Prediction] should be "in hand". The 
state of your hand in the [Prediction] should be "Holding <object>". Add <object> to the pool: pool=[].
  + If the action is "PUT DOWN", the state of <object> in the [Prediction] should be "on table". The state of your 
hand in the [Prediction] should be "Empty". Add <object> to the pool: pool=[].
  + If the action is "STACK ON", the state of <object> in the [Prediction] should be "on <target>". The state of your 
hand in the [Prediction] should be "Empty". Add <object> to the pool: pool=[].
3. [Prediction Conclusion]: Conclude the [Prediction] based on the [Action Forward Rule].
  + The format of the [Prediction] should follow the [Detailed Constraints for State].
  + The blocks that are not present in the pool should not change their state.

The following lists the [State Space Definition].
[State Space Definition]
Define the state of the scenarios: blocks and hand.
1. [Hand State]: The state of the hand. It can be "Empty" or "Holding <object>", where <object> is a block.
2. [Block States]: The state of each block. It can only be one of ["on <object>", "on table", "in hand"]. The blocks 
should be listed in this order: blue block, orange block, red block, yellow block.

[State Template]
[State]
[Hand State]
<hand state>
[Block States]
blue block: <block state>
orange block: <block state>
red block: <block state>
yellow block: <block state>

[Detailed Constraints for State]
The following paragraphs are the detailed constraints for State. There are three main <check items>: [Title Check], 
[Hand State Check], and [Block States Check].
1. [Title Check] A header titled [State].
2. [Hand State Check] A header titled [Hand State]. Then, list the Hand State.
  + Hand state must be one of ["Empty", "Holding <object>"], where <object> is a block (e.g. "Holding blue block").
3. [Block States Check] A header titled [Block States]. Then, list the states of each block.
  + Each line represents the state of one block item.
  + The block items must be listed in this order: blue block, orange block, red block, yellow block.
  + The <block state> specifies the state of the block. It can only be "on <object>", "on table" or "in hand" (e.g. 
"blue block: on table", "orange block: on red block", "red block: in hand").

[Prediction Mistakes]
No prediction mistakes.

Now, you should predict the next [State] after the following [Action] is applied to the given [State]. You have to 
follow the instructions strictly rather than your own thoughts.

[State]
[Hand State]
Holding blue block
[Block States]
blue block: in hand
orange block: on yellow block
red block: on orange block
yellow block: on table

EXECUTE
STACK blue block ON red block

World Model

The response of the world model is relatively concise, as it only needs to infer the next state according
to the given instructions.
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You are a state predictor. You will be given a [State] and an [Action] as input. should predict the [State] after the 
[Action] is applied to the given [State]. You should follow the [Predicting Instruction] to predict the [State].

[Predicting Instruction]
You will be provided with the [State] and the [Action] of the agent. You should think step by step to output the 
[Prediction] of the next [State] based on the given [State] and [Action]. The format of the [Prediction] should follow 
the [Detailed Constraints for State].
Please output your thinking process step-by-step by following theses steps:
The most important thing: Follow the instructions step-by-step and ensure each step is completed precisely. Repeat 
the instructions and fill in the blanks '[]' without introducing any modifications or additional content.
1. [Interaction Item Pool]: initialize the pool of the blocks that the agent is interacting with. It is a empty list at the 
beginning: pool={}.
2. [Action Forward Rule]: Follow these steps to predict the [Prediction]:
  + If the action is "PICK UP" or "UNSTACK", the state of <object> in the [Prediction] should be "in hand". The 
state of your hand in the [Prediction] should be "Holding <object>". Add <object> to the pool: pool=[].
  + If the action is "PUT DOWN", the state of <object> in the [Prediction] should be "on table". The state of your 
hand in the [Prediction] should be "Empty". Add <object> to the pool: pool=[].
  + If the action is "STACK ON", the state of <object> in the [Prediction] should be "on <target>". The state of your 
hand in the [Prediction] should be "Empty". Add <object> to the pool: pool=[].
3. [Prediction Conclusion]: Conclude the [Prediction] based on the [Action Forward Rule].
  + The format of the [Prediction] should follow the [Detailed Constraints for State].
  + The blocks that are not present in the pool should not change their state.

The following lists the [State Space Definition].
[State Space Definition]
Define the state of the scenarios: blocks and hand.
1. [Hand State]: The state of the hand. It can be "Empty" or "Holding <object>", where <object> is a block.
2. [Block States]: The state of each block. It can only be one of ["on <object>", "on table", "in hand"]. The blocks 
should be listed in this order: blue block, orange block, red block, yellow block.

[State Template]
[State]
[Hand State]
<hand state>
[Block States]
blue block: <block state>
orange block: <block state>
red block: <block state>
yellow block: <block state>

[Detailed Constraints for State]
The following paragraphs are the detailed constraints for State. There are three main <check items>: [Title Check], 
[Hand State Check], and [Block States Check].
1. [Title Check] A header titled [State].
2. [Hand State Check] A header titled [Hand State]. Then, list the Hand State.
  + Hand state must be one of ["Empty", "Holding <object>"], where <object> is a block (e.g. "Holding blue block").
3. [Block States Check] A header titled [Block States]. Then, list the states of each block.
  + Each line represents the state of one block item.
  + The block items must be listed in this order: blue block, orange block, red block, yellow block.
  + The <block state> specifies the state of the block. It can only be "on <object>", "on table" or "in hand" (e.g. 
"blue block: on table", "orange block: on red block", "red block: in hand").

[Prediction Mistakes]
No prediction mistakes.

Now, you should predict the next [State] after the following [Action] is applied to the given [State]. You have to 
follow the instructions strictly rather than your own thoughts.

[State]
[Hand State]
Holding blue block
[Block States]
blue block: in hand
orange block: on yellow block
red block: on orange block
yellow block: on table

EXECUTE
STACK blue block ON red block

World Model

[Interaction Item Pool]: initialize the pool of the blocks that the agent is interacting with. It is an empty list at the 
beginning: pool={}.
[Action Forward Rule]: List the action: [STACK blue block ON red block], the state in the [Prediction] is changed 
by the [Action]. 
- If the action is "STACK ON", list the <object> of action: [blue block], and <target> of action: [red block]. The 
state of <object> in the [Prediction] should be changed to "on red block". The state of your hand in the [Prediction] 
should be changed to "Empty". Add <object> to the pool: pool=[blue block].

[Prediction Conclusion]: 
[State]
[Hand State]
Empty
[Block States]
blue block: on red block
orange block: on yellow block
red block: on orange block
yellow block: on table
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J.5 PREDICTION CHECKER PROMPT AND RESPONSE EXAMPLE

We present the prompt and response example of the prediction checker in a state action pair of the
Sort domain.

You are a prediction checker. You will receive a [State], an [Action], and the subsequent [Prediction]. You should 
check if the [Prediction] is valid based on the given [State] and [Action].  You should follow the [Checker 
Instruction] to check the [Action]. 

[Checker Instruction]
You should follow the instructions in [Detailed Constraints for Prediction] to check if the [Prediction] is valid based 
on the given [State] and [Action]. Take the mistakes in the [Prediction Mistakes] into consideration.

The following lists the [Detailed Constraints for Prediction]. 
[Detailed Constraints for Prediction]
Check the following constraints and Fill in blanks in '[]'. Check these constraints one by one: 1, 2... Only get your 
conclusion according to the results of these checks! 
* Get [Interaction Item Pool]: list all PICKed objects in the [Action]: <pool>=[].
1. [Header Check] A header titled [State] -> A header titled [Cube States] -> List the Cube States.
2. [Cube Order Check] Cubes must be listed in the following order: [blue_square, pink_polygon, yellow_trapezoid].
3. [Cube Format Check] Each line should be formatted as "<cube_name> is on <panel_name>". Three lines in total.
4. [Cube State Check] Don't have two cubes on the same panel.
5. [PICK & PLACE Rule Check] For PICK & PLACE, state of <object> should be '<object> is on <target>'.
* When checking, you should repeat the prompt and fill in blanks, replace <obj> and <agent> with their true values, 
and give the line conclusion (yes/no/not applicable). For example:
4. [Cube State Check] Repeat cubes' locations: [panel1, panel2, panel3]. Don't have two cubes on the same panel: 
[yes]. Line conclusion: [yes]
* Constraint 5 may have multiple agents of checking. If so, you should output results separately. For example:
5.1 [PICK & PLACE Rule Check] For Alice 's action: [PICK blue_square PLACE panel2],  repeat 
<object>=[blue_square], <target>=[panel2], state of <object> in the prediction: [blue_square is on panel2], it should 
be '<object> is on <target>': [yes]. Line conclusion: [yes]
5.2 [PICK & PLACE Rule Check] For Bob's action: ... 5.3 ...

[Prediction Mistakes]
No prediction mistakes.

Now you should check the following [Prediction] based on the given [State] and [Action]. You have to check the 
instructions step-by-step strictly rather than your own thoughts.
The original state is:
[State]
[Cube States]
blue_square is on panel6
pink_polygon is on panel4
yellow_trapezoid is on panel2

The action is:
EXECUTE
NAME Alice ACTION PICK yellow_trapezoid PLACE panel1
NAME Bob ACTION WAIT
NAME Chad ACTION PICK blue_square PLACE panel5

The prediction is:
[State]
[Cube States]
blue_square is on panel5
pink_polygon is on panel4
yellow_trapezoid is on panel1

[Start]
Get [Interaction Item Pool]: list all ...
1. [Header Check]
2. [Cube Order Check] ...
[Conclusion] ...

Prediction Checker

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Due to passing all the checks, this prediction is considered correct.

[Start]
Get [Interaction Item Pool]: list all PICKed objects in the [Action]: <pool>=[yellow_trapezoid, blue_square].

1. [Header Check] A header titled [State] -> A header titled [Cube States] -> List the Cube States: [yes].
2. [Cube Order Check] Cubes must be listed in the following order: [blue_square, pink_polygon, yellow_trapezoid]: 
[yes].
3. [Cube Format Check] Each line should be formatted as "<cube_name> is on <panel_name>". Three cube lines in 
total: [yes].
4. [Cube State Check] Repeat cubes' locations: [panel5, panel4, panel1]. Don't have two cubes on the same panel: 
[yes]. Line conclusion: [yes].
5. [PICK & PLACE Rule Check]
5.1 For Alice's action: [PICK yellow_trapezoid PLACE panel1], repeat <object>=[yellow_trapezoid], 
<target>=[panel1], state of <object> in the prediction: [yellow_trapezoid is on panel1], it should be '<object> is on 
<target>': [yes]. Line conclusion: [yes].
5.2 For Bob's action: [WAIT], no object interaction to check. Line conclusion: [not applicable].
5.3 For Chad's action: [PICK blue_square PLACE panel5], repeat <object>=[blue_square], <target>=[panel5], state 
of <object> in the prediction: [blue_square is on panel5], it should be '<object> is on <target>': [yes]. Line 
conclusion: [yes].

[Conclusion] All checks are valid based on the provided [Action] and the resulting [Prediction]. The prediction is 
accurate.
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