
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EMPOWERING LLM AGENTS WITH ZERO-SHOT OPTI-
MAL DECISION-MAKING THROUGH Q-LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are trained on extensive text data to gain general
comprehension capability. Current LLM agents leverage this ability to make zero-
or few-shot decisions but fail in making optimal decisions, as LLMs inherently per-
form next-token prediction based on pre-trained probability distributions rather than
maximizing expected future rewards. In contrast, agents trained via reinforcement
learning (RL) could make optimal decisions but require extensive environmental
data. In this work, we develop an algorithm that combines the zero-shot capabilities
of LLMs with the optimal decision-making advantages of RL, referred to as the
Model-based LLM Agent with Q-Learning (MLAQ). MLAQ employs Q-learning
to derive optimal policies from transitions within memory. However, unlike RL
agents that collect data from environmental interactions, MLAQ constructs an imag-
ination space fully based on LLM to perform imaginary interactions for deriving
zero-shot policies. Our proposed UCB variant generates imaginary data through
interactions with the LLM-based world model, enabling a balance between explo-
ration and exploitation while ensuring a sub-linear regret bound guaranteed by a
theorem. Moreover, MLAQ employs a mixed-examination mechanism that utilizes
environmental interactions and LLM-based self-examine to enhance the quality
of imaginary data. We evaluate MLAQ in benchmarks that present significant
challenges for existing LLM agents. Results show that MLAQ achieves a optimal
rate of over 90% in tasks where other methods struggle to succeed. Additional
experiments are conducted to reach the conclusion that introducing model-based
RL into LLM agents shows significant potential for current LLMs to improve their
optimal decision-making ability. Our interactive website is available at this link.

1 INTRODUCTION

Large language models (LLMs) exhibit impressive comprehension capabilities and are widely utilized
to address decision-making tasks as an LLM agent(Guo et al., 2024) in a zero- or few-shot manner.
Most existing LLM agents improve decision-making through prompt optimization (Wei et al., 2022;
Mandi et al., 2023), which heavily relies on the inherent decision-making capabilities of the LLM
itself, lacking the optimal decision-making ability to maximize expected future rewards. In contrast,
recent studies have introduced the Markov Decision Process (MDP) framework to leverage MDP-
based planning (Hao et al., 2023). Figure 1 (a) illustrates a framework encompassing most existing
MDP-based LLM agents, in which the domain description (manual) in natural language is necessary
for the LLM to comprehend the problem to be solved (Yao et al., 2023a). In this work, a domain
represents an environment characterized by unique state and action spaces (e.g., block cubes and
robotic arm control are different domains), while a task within this domain entails guiding the
agent from the original state to the target state of the task (e.g., assembling a beef sandwich and
a bacon sandwich are different tasks within the same domain). Among existing LLM agents, the
most common framework combines an Monte Carlo Tree Search (MCTS (Kocsis & Szepesvári,
2006))-Planner with a task-specific Replay Buffer to derive the optimal policy and interact with
the environment (Zhang et al., 2024d). The replay buffer includes multiple transitions within the
same task, sourced either from environmental interactions (Murthy et al., 2023; Ding et al., 2023) or
imaginary interactions (Hao et al., 2023; Yao et al., 2023a; Zhao et al., 2023) derived from the model-
based RL architecture. In the imagination space, an LLM-based Basic Policy generates actions and
an LLM-based World Model predicts next state under state-action pairs. The interactions between

1

http://mlaq.site/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

 MLAQ Agent

Memory

Rearrange the blocks on the table.

[Action Space Definition], [Action Template], 
and [Detailed Constraints for Action]

[State Space Definition], [State Template], 
and [Detailed Constraints for State]

Brief Domain Description

Env

State

.........
.........

.........

...

Q-Planner

Replay 
Buffer

Q update

.........

...

Extract

Action

(b)

LLM-based Imagination 

Basic
Policy

World 
Model

Action

Predicted State

Re-utilize

Expand

Expand
&

Correct

World Model

Memory Replay Buffer

Planner

Basic Policy

LLM-based Imagination Space

Self-Examine

PromptEnv. Tools

Avai. actions func. / Dynamic func. / Reward func.

Domain Description

State

Action

(a)

EnvAgent

Figure 1: (a) A typical framework of MDP-based LLM agent, where the gray arrows represent
processes used by most MDP-based LLM agents and the red arrows and blocks depict processes and
modules unique to MLAQ. (b) The overall MLAQ framework. MLAQ interacts with the environment
through the Q-Planner, which is supported by the domain-specific memory that extracts a task-specific
replay buffer for Q-Update. The environment provides a domain description for the agent, where the
agent expands memory and replay buffer through LLM-based imaginary interactions.

them could generate imaginary transitions, significantly reducing the demand for environmental
interactions. However, generating imaginary data using only LLMs presents a significant challenge.
Instead, most of existing methods sacrifice algorithms’ generality by utilizing environmental functions
as environmental tools, including dynamics (Zhao et al., 2024), available actions (Ding et al., 2023),
and reward functions (Hao et al., 2023). For example, Ding et al. (2023) use scripts to determine
which actions are available under current state. Moreover, these existing LLM agents make decisions
based on MDP but do not perform RL-based optimization on the numerous transitions stored in a
domain-specific Memory, resulting in a lack of capability to maximize expected future rewards.

In this work, we empower the LLM agent with zero-shot optimal decision-making capability by
combining the advantages of the RL and LLM. As shown in Figure 1 (b), we introduce Model-
based LLM Agent with Q-Learning (MLAQ), a novel LLM agent framework without accessing
any environmental tools. The main contribution is three-fold. (1) MLAQ integrates a Q-planner,
memory, and imagination space to implement decision-making and optimization paradigms with
MDP properties in natural language. This allows for generating imaginary transitions with LLMs to
minimize reliance on environmental interactions, and facilitates Q-learning to optimize the policy for
maximizing future rewards. (2) An MCTS-style planning approach is proposed to balance exploration
and exploitation within the imagination space. By introducing the concept of virtual nodes, this
approach efficiently guides the exploration without the need for environmental tools, ensuring a
sub-linear regret bound by a rigorous theorem. (3) A mixed-examine mechanism is proposed to
improve the quality of imaginary transitions. It uses LLM-based self-examine to eliminate erroneous
transitions from the memory and refines the world model with environmental transitions.

Empirically, we evaluate MLAQ on well-known benchmarks for LLM agents (BlocksWorld
(Valmeekam et al., 2022) and RoCo-benchmark (Mandi et al., 2023)), which require optimal decision-
making for long horizons. There is no existing LLM agent has successfully obtained the optimal
policy, while MLAQ achieves over 90% optimal / success rate across most difficulty levels. The
comparison with methods including RoCo (Mandi et al., 2023) and RAP (Hao et al., 2023) fully
demonstrates MLAQ’s superior performance in optimal decision-making. Through comparative and
ablation experiments, we get a key conclusion: integrating the model-based RL framework with an
LLM agent in the form of MLAQ can effectively achieve zero-shot optimal decision-making.

2 BACKGROUND

MDP-based framework for an agent. An MDP can be defined as a tuple U = {S,A,T,R, γ},
where st is the state in state space S at timestep t, and at is the action in action space A, T(st+1|st, at)
is the dynamics function, R is the reward function, and γ is the discount factor (Sutton & Barto, 2018).
The agent receives a reward rt = R(st, at, st+1) based on changes in state. For single-agent scenarios
the agent policy is denoted as at ∼ π(·|st). For multi-agent scenarios with agent number n, the
policy in a centralized manner takes the system as a unified agent to make joint decisions according

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to global states at = {ai,t}ni=1 ∼ π(·|st). The policy in a decentralized manner allows each agent
i making decisions ai,t ∼ πi(·|oi,t, ρi,t) according to its local observation oi,t and communication
message ρi,t, which can be observations (Hu et al., 2023), features (Ding et al., 2024; Chai et al.,
2024), or natural language-based dialogues (Mandi et al., 2023; Chen et al., 2024). The state value is
defined as the discounted accumulated return under state st: V π(st) = E[

∑∞
k=0 γ

krt+k].

LLM-based framework for an agent. Existing approaches construct the above MDP using natural
language sentences or paragraphs, benefiting from the autoregressive nature of the Transformer
architecture (Vaswani et al., 2017), without the need to align the state and action space dimensions
across different domains (Yao et al., 2023a). An LLM-based world model T̂(st+1|st, at; τ) is utilized
to approximate the dynamics function, and an LLM-based basic policy π(·|st; τ) is utilized to
interact with either the world model or the environment, where τ is a brief domain description in
nature language (Hao et al., 2023). In addition, due to the current limitation of LLMs in accurately
evaluating state values, this work adopts a sparse reward setting, meaning that the environment
provides a non-zero reward only when the agent reaches a terminal state.

Q-learning. Q-learning is a traditional RL algorithm, in which the Q-value indicates the expected
return obtained by executing a under s. The update rule of the Q function at k-th iteration is:

Qk+1(st, at) = Qk(st, at) + α
(
rt + γmax

a′
Qk(st+1, a

′)−Qk(st, at)
)
, (1)

where α is the learning rate. As an off-policy approach, Q-learning can use a replay buffer to store
transitions (s, a, r, s′), enabling policy update through them. With enough iterations and a sufficiently
diverse replay buffer, the Q function and its greedy policy can converge to optimality.

Multi-Armed Bandit. Given state s with m available actions δ(s), the successive plays on
action i yields (i.i.d.) Q-values, which are sampled from an unknown distribution with an un-
known expectation Q(s, i) (Auer et al., 2002). The player aims to minimize the expected regret∑

j:∆j>0 ∆jE[Cj(N(s))], where ∆i = Q∗ −Q(s, i), Q∗ .
= maxi{Q(s, i)}, N(s) is the visit count

of s, and Ci(N(s)) is the selection number of action i. The Upper Confidence Bound (UCB) (Auer
et al., 2002) could achieve a sub-linear regret bound by selecting actions through the following rule:

a∗ = argmax
a∈δ(s)

UCB
(
s, a

)
= argmax

a∈δ(s)

[
V
(
c(s, a)

)
+ w

√
N(s)/N(c(s, a))

]
, (2)

where c(s, a) is the child node of applying a in s, and w is a coefficient.

3 METHOD

The essence of MLAQ is to enable LLM agents with both zero-shot and optimal decision-making
capabilities. While integrating RL-based optimization into LLM agents is relatively straightforward,
the key challenge lies in preserving their zero- or few-shot abilities when incorporating RL. In this
section, we first illustrate how our agent uses RL approaches to achieve task-specific optimal decision-
making under the fully LLM-based framework (Section 3.1). We then introduce how to achieve fully
LLM-based imaginary interactions without any environmental tools (Section 3.2). Finally, we present
a mixed-examine mechanism to improve the quality of imaginary transitions (Section 3.3).

3.1 OPTIMIZING LLM AGENT WITH Q-PLANNER

As shown in Figure 1 (b), we develop an RL-style LLM agent framework, which contains a memory
module, a Q-Planner, and an LLM-based imagination space. The RL-based optimization is achieved
by Q-Planner, which utilizes the transitions (s, a, r, s′) in the memory module to optimize the
agent through Q-learning. These transitions are generated from both environmental and imaginary
interactions. The overall algorithm is detailed in Appendix F.1.

Q-Planner. It serves as the core of the decision-making process, utilizing the optimal decision-making
advantage of RL to output the action with the highest Q-value for a given state, where these values
are derived from Q-learning iterations in Eq. (1). We perform tabular Q-learning not directly on the
domain-specific memoryM but rather a task-specific replay buffer D extracted from it, aiming to
reduce the exploration space in imaginary interactions. Assuming there are ten available actions, but
only two lead to the target state of the current task, exploring the others is completely meaningless.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

 

I. Node Selection (II. Transition Imagination)

... ... ... ...

Action

Basic Policy

Prediction Checker World Model

Feedback

Predicted
State

Feedback(a) (b)

State Node

Virtual Node

Terminal Node

Task Description

Long-term memory

End of an Interaction Round

... ...

Success: +1
Failure: -1

Simulate by
Repeating I 

(and II)
... ...

LLM-based Imagination 

...

...

...... ...
.........

......

Memory

Action Checker

Figure 2: (a) Imaginary interaction process, which expands the memory and replay buffer through two
phases: node selection and transition imagination (might be triggered). (b) Imagine a new transition
with self-examine mechanism, where the checkers identify the validity of actions and predictions.

Replay Buffer. When a new task starts, a Q function Q(·, ·) is obtained by performing Q-learning on
M, and the initial replay buffer stores the transitions along the optimal trajectory (if exists) produced
by Q(·, ·). If this trajectory does not exist or is demonstrated to be non-optimal through environmental
interactions, the agent keeps exploring in the imagination space to expand the replay buffer until the
best trajectory is demonstrated to be optimal. This process can be seen in Appendix F.

Imaginary Interaction. As shown in Figure 1 (b), an LLM-based basic policy and world model are
established to perform imaginary interactions. Without accessing the environment, their understanding
of the domain is entirely reliant on the given domain description (manual). Therefore, MLAQ could
preserve the zero-shot decision-making capabilities of LLM agents while satisfying the training data
requirements of Q-learning. The details will be described in the subsequent section.

Environmental Interaction. MLAQ agent obtains the current state and domain description τ from
the environment, explores the imagination space to derive the optimal policy using the Q-planner, and
then outputs actions to interact with the environment. The domain description τ includes the domain
goal, state/action definitions, and also some detailed constraints for decision-making and predicting.
Please refer to Appendix J for more detail.

3.2 LLM-BASED IMAGINATION FOR MLAQ

This section presents an MCTS-style planning method that balances exploration and exploitation
while using only LLMs to generate imaginary transitions, thereby efficiently expanding the memory
and replay buffer. Given a new task, MLAQ performs multiple rounds for imagination, with each
imagination round consisting of a sequence of imaginary interactions transitioning from the original
state to the target state. An imagination round comprises two major phases: node selection and
transition imagination. Please refer to Appendix F.2 for pseudo-codes.

Node selection. This phase involves balancing exploration and exploitation through a novel selection
rule. As denoted in Figure 2 (a), the transitions (s, a, r, s′) in the replay buffer adopt a tree-like
structure, wherein two nodes s→ s′ are linked by an action and reward edge (a, r). The original UCB
treats planning as a multi-armed bandit problem, but using LLMs for planning without environmental
tools presents a variation, as the ground-truth available actions δ(s) are unknown. Therefore, we
begin with an empty available action set δ̂(s) and introduce the concept of virtual nodes to gradually
expand it. Within the replay buffer, a actual (state) node is created based on a state s, and a virtual
node is appended as its first child node, with the edge is a virtual action. Then, MLAQ starts with the
empty δ̂(s) and iteratively leverages LLMs to explore potential actions and expand it. This process
can be modeled as follows:

A Variant of Multi-Armed Bandit. In a scenario with m available actions (a = {1, 2, . . . ,m})
in state s, initially only the virtual node y can be selected. Selecting y enables the least-indexed
non-selectable node in a to be selectable, while selecting other node involves estimating its Q-value.

When y is selected for the j-th times, i.e., |δ̂(s)| = j, the actual nodes {1, 2, . . . , j} can be selected
by the planning policy. Moreover, due to the introduction of virtual nodes, we propose a variant of
the original UCB algorithm by modifying its selection rule as follows:

a∗ = argmax
a∈δ̂(s)

vUCB
(
s, a

)
= argmax

a∈δ̂(s)

[
V
(
c(s, a)

)
+ f

(
N(s), N(c(s, a))

)]
, (3)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where f(N(s), N(c)) is the confidence bound, defined as w
√

N(st)/N(c(st, a)) for actual nodes

and g(|δ̂(st)|)
√
N(st)/|δ̂(st)| for virtual nodes. g(x) is a coefficient function that must satisfy some

properties, which are discussed in the Appendix C. However, since we do not know the number of
available actions, it is set to g(x) = wg(e

−x2−ϵg) in practice, where ϵg and wg are hyper-parameters.
Theorem 1. Suppose the player employs the node selection rule defined in (2). Then, in a scenario
with m available actions in state s, the bound of the expected cumulative regret is:

Regret =
∑

j:∆j>0

∆jE[Cj(N(s))] ≤ [8
∑

i:∆i>0

(
lnN(s)

∆i
)] + (1 +

π2

3
)(

m∑
i=1

∆i), (4)

where ∆i = Q∗ −Q(s, i) for action index i in {1, 2, ...,m} and Q∗ .
= maxi{Q(s, i)}, N(s) is the

visit count of s, and Ci(N(s)) is the selection number of action i.

This theorem demonstrates that our proposed variant of UCB shares the same sub-linear regret
bound, enabling efficient exploration and exploitation without environmental tools. Please refer to
the Appendix C for the proof. MLAQ turns to the transition imagination phase if virtual nodes are
selected. Otherwise, it iterates until a terminal state is reached. A terminal state denotes either success
states when reaching target states or failure states when the LLM-based basic policy determines no
actions are available. When a terminal state is reached, an imagination round ends.

Transition imagination. This phase is triggered when selecting virtual nodes and generates an
imaginary transition. Beginning from st, we first mark the existing actions in δ̂(st) as forbidden,
where the specific prompt can be found in Appendix G. We then instruct the basic policy to output an
action at excluding forbidden actions to explore and expand δ̂(st). If the pair (st, at) could be queried
inM, we directly re-utilize the stored next state c(st, at) as its child state to skip LLM queries.
Otherwise, we employ the LLM-based world model to predict the next state st+1 ∼ T̂(st, at; τ).
The reward is also calculated by LLMs, following a sparse reward setting. In addition, if the basic
policy determines that no available action exists except forbidden actions, we select the best action
in δ(s) to continue the imaginary interaction. Since we cannot confirm if the available actions are
exhausted, the virtual node always remains after the addition of the next state node.

3.3 MIXED-EXAMINATION FOR IMAGINARY TRANSITIONS

Within the imagination space, we propose a mixed-examination mechanism to improve the quality of
imaginary transitions without accessing any environmental tools.

Env-examination. MLAQ treats environmental transitions as ground truth to correct the imaginary
transitions and refine the LLM-based world model. When using domain descriptions to understand
the environment for LLMs, both LLM’s comprehensions and descriptions could be incomplete,
leading to a gap between the LLM-based world model and the environment dynamics. To address this,
during interactions with the environment, MLAQ corrects the transitions stored in memory based on
environmental transitions and records the discrepancies into the world model’s prompt for refinement.

Self-examination. Considering the hallucinations inherent in LLMs, even when the prompt contains
complete information about the environment, the model may still produce incorrect outputs. To
this end, as shown in Figure 2 (b), MLAQ adopts an LLM-based action checker and prediction
checker to check the validity of the outputs of the basic policy and world model. Current models
(e.g., GPT-4) already possess the ability to improve output accuracy through self-examination, which
will be validated in subsequent experiments. Prompt templates of the two checkers are provided in
Appendix G. Take the action checker as an example, given the current state and the action should be
checked, it queries the LLM to check if the action breaks any constraint following the instructions.
The checkers continuously check and provide feedback until the outputs are correct.

4 EXPERIMENTS

In this section, we conduct experiments in several challenging environments for LLM agents to
answer the following questions: (A) Does the introduction of a complete RL framework improve the
optimal decision-making capabilities of LLM agents? (B) Can the MLAQ agent preserve zero- or

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

... ... ... ... ... ...

Exsiting Trajectories in Memory

Aggregated Trajectory for the New Task

Original
State

Target
State

Figure 3: An instance with an optimal step of 6. It illustrates that MLAQ, due to its ability to leverage
transitions across multiple tasks within the same domain, can obtain an optimal policy through
RL-based optimization without requiring any search in the imagination space when given a new task.

few-shot decision-making capabilities? (C) Does the current LLM have the potential to improve
its output performance through self-examination? (D) Does expanding the memory scope from
task-specific to domain-specific improve the agent performance?

4.1 EXPERIMENTAL SETUP

We conduct experiments on the BlocksWorld benchmark (Valmeekam et al., 2022) for the single-agent
setting and the RoCo-benchmark (Mandi et al., 2023) for the multi-agent setting. Agents in these
domains require multi-step decision-making to achieve the final goal, necessitating the ability to
maximize expected future rewards. Additionally, the decision-making space for LLM agents in the
RoCo-benchmark is significantly larger than that in BlocksWorld due to the presence of multiple
agents. The details of these benchmarks can be found in Appendix D.

We compare MLAQ with CoT (Wei et al., 2022), RAP (Hao et al., 2023), Rex (Murthy et al., 2023),
RAFA (Liu et al., 2023), and RoCo (Mandi et al., 2023). In line with RAP (Hao et al., 2023), we
group all tasks by their optimal steps, indicating the length of the tasks’ optimal decision sequences.
Within a domain, the experiments are conducted from the tasks with smaller optimal steps to those
with larger steps. Consequently, only the memory size of MLAQ would increase gradually with the
experiments due to its domain scope, empowering the MLAQ agent with zero-shot optimal decision-
making capability with Q-Planner. Furthermore, we also conduct exhaustive ablation experiments
to verify the effect of our domain-specific memory module, further expansion in memory, and the
mixed-examination mechanism. The details of hyper-parameters can be found in Appendix I.

4.2 MAIN RESULTS

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y 

Re
-U

til
iza

tio
n 

Ra
tio

Memory Re-Utilization Ratio

2 4 6 8 10 12
Optimal Steps

0

10000

20000

30000

40000

50000

60000

70000

Av
er

ag
e 

To
ke

ns

Average Token

Figure 4: Tendency of memory re-utilization
ratio and token consumption.

Single-agent scenario. As shown in Table 1, the
optimal steps of BlocksWorld vary from 2 to 12. The
optimal rate in this table denotes that the agent could
reach the target state under the optimal steps. Our
agent achieves more than 90% optimal rate across all
difficulty levels, indicating an affirmative response
to Question A. In contrast, the other LLM agent can
only succeed in tasks with smaller optimal steps. In
order to qualitatively provide an affirmative answer
to Question D, we use a task with 6 optimal steps in
Figure 3 as an example to backtrack the transitions in
memory. In this case, MLAQ agent finds an optimal
decision sequence, represented by black solid arrows,
from the initial replay buffer without querying LLMs. The colored dashed arrows indicate existing
trajectories stored in memory. This 6-step sequence is aggregated from trajectories of multiple tasks,
including two 2-step and three 4-step trajectories. This clearly demonstrates the effectiveness of

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: The optimal rate of experimental methods in BlocksWorld domain.

Methods 2-step 4-step 6-step 8-step 10-step 12-step

CoT (Wei et al., 2022) 0.22 0.14 0.02 0.02 0.00 0.00
REX (Murthy et al., 2023) 0.80 0.45 0.25 - - -
RAFA (Liu et al., 2023) - 0.97 0.75 - - -
RAP (Hao et al., 2023) 0.67 0.76 0.74 0.48 0.17 0.09

MLAQ 1.00 1.00 1.00 0.97 0.93 0.90

our domain memory in enhancing the agents’ decision-making capabilities in long-horizon tasks.
Quantitative analysis will be provided in the ablation experiments.

Besides, we also investigate the memory re-utilization ratio in transition imagination phase. As
shown in Figure 4, higher re-utilization ratio commonly leads to a lower average consumed tokens.
As the increase of the optimal step, the ratio of memory re-utilization increases from 19% to 90%.
Meanwhile, the average token consumption of each task first increases and then decreases significantly.
The increase of tokens from 2-step task to 4-step task is attributed to the increased task difficulty,
requiring the agent to employ more imagination to make optimal decisions. Then, as the memory
becomes enriched with the data collected from resolved tasks within the same domain, the probability
of re-utilizing stored transitions increases, leading to a reduction in average token consumption.

Multi-agent scenario. In RoCo-benchmark, robotic arms need to efficiently allocate tasks internally
and collaborate to achieve the final goal. Table 2 shows the experimental results of RoCo and MLAQ
on Sort domain. MLAQ achieves a success rate approaching 100% across all difficulty levels and
maintains an optimal performance exceeding 50% across most tasks, further giving an affirmative
response to Question A. In this table, we introduce "success rate" as an additional metrics as the
expanded search space from the presence of multiple agents significantly reduces their optimal rate.
The notation "MLAQ−" denotes that MLAQ agent terminates its imagination upon reaching the target
state, without further exploring to get a better policy. A detailed analysis of "MLAQ−" is provided
in the ablation section. The optimal steps for Sort range from 1 to 6, with MLAQ consistently
achieving higher success and optimal rates than RoCo, especially in long-horizon tasks. Due to space
limitations, the results and analysis on Sandwich domain are provided in Appendix H.2.

Table 2: Comparison of multiple metrics between MLAQ and RoCo in Sort domain.

Metrics Methods 1-step 2-step 3-step 4-step 5-step 6-step Average

Success Rate RoCo 1.00 0.64 0.47 0.10 0.03 0.00 0.35
MLAQ 1.00 0.96 0.97 1.00 0.93 1.00 0.98

Env Replans
(n-shot)

RoCo 0.30 6.30 5.60 9.74 7.67 6.92 6.41
MLAQ 0.00 0.04 0.03 0.10 0.10 0.04 0.06

Optimal Rate
RoCo 0.80 0.36 0.27 0.00 0.00 0.00 0.21
MLAQ− 0.95 0.64 0.57 0.67 0.33 0.43 0.58
MLAQ 1.00 0.86 0.77 0.73 0.50 0.75 0.75

Average Token
RoCo 10605 530817 332730 305175 345762 320045 322630
MLAQ− 7093 15104 16436 22197 18133 8220 15216
MLAQ 8491 66367 156490 119916 409495 243151 175560

Optimal Gap
RoCo 0.35 3.37 3.43 3.33 2.97 2.00 2.72
MLAQ− 0.10 0.64 0.73 0.53 1.20 0.46 0.65
MLAQ 0.00 0.32 0.40 0.43 0.80 0.25 0.39

Memory Re-Util. Ratio 0.27 0.61 0.71 0.72 0.73 0.83 0.66

In Table 2, the average token consumption of each task still shows a trend of increasing first
and then decreasing, and is lower than RoCo’s in Sort. The Env Replans metric denotes the
frequency of environment feedback, which reflects the zero-shot decision-making ability of the
LLM agent. A smaller Env Replans indicates that the agent requires less ground-truth information
from the environment to refine its decisions. The results show that the number of environmental

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: The optimal rate for optimizing multiple epochs in Sort domain.

Methods 1-step 2-step 3-step 4-step 5-step 6-step

MLAQ-1st epoch 1.00 0.86 0.77 0.73 0.50 0.75
MLAQ-2nd epoch 1.00 0.93 0.90 0.77 0.57 0.88
MLAQ-3rd epoch 1.00 0.93 0.90 0.77 0.57 0.92

replans for MLAQ has decreased by approximately two orders of magnitude compared to RoCo,
indicating that the MLAQ agent almost does not require environmental transitions to correct imaginary
transitions. In contrast, existing methods require the environment to verify action’s validity and
provide environmental feedback, facilitating LLM agents to replan until actions are available (Mandi
et al., 2023; Shinn et al., 2023). This result indicates an affirmative answer to the Question B. In
addition, since we provide two types of basic policy (central and dialogue) in multi-agent scenarios,
we also conduct experiments to compare them in Appendix H.1.

4.3 MLAQ WITH MULTIPLE EPOCHS

1 2 3
Epochs

0.15

0.30

0.45

0.60

0.75

0.90

Av
er

ag
e 

Op
tim

al
 R

at
e

RoCo

0.75
0.83 0.85

Optimal Rate

60

100

140

180

Av
er

ag
e 

To
ke

n 
(T

ho
us

an
ds

)

Token

Figure 5: Tendency of optimal rates
and tokens with epochs.

This experiment aims to demonstrate the potential of MLAQ
to enhance its optimal decision-making ability through iter-
ative optimization. In previous experiments, each domain’s
experiment starts with an empty memory. In this section, we
conduct multiple epochs of MLAQ experiments by perform-
ing MLAQ with a non-empty memory to further enhance its
decision-making capabilities and utilize memory re-utilization
to reduce token consumption. At the beginning of each epoch,
the input memory is the memory of the last MLAQ epoch after
finishing all given tasks of the domain. As shown in Table 3
and Figure 5, an additional training epoch results in an improve-
ment of the optimal rate while reducing token consumption.
Although MLAQ with multiple epochs no longer constitutes
zero-shot decision-making, the small magnitude of env replans
implies that minimal environmental information is injected into
subsequent epoch decisions. Consequently, it still provides a more definitive affirmative answer to
Question A and Question B.

4.4 ABLATION RESULTS

The key components of MLAQ are the Q-planner, memory, and imagination space. In this section,
we validate their effects by individually diminishing their capabilities. The ablation experiments are
conducted under 8-step tasks in the BlocksWorld domain. This is primarily because the task difficulty
at this optimal step is moderate for an appropriate comparison.

Table 4: Ablation results in BlocksWorld domain.

Ablation Methods Optimal Rate Token Env Replans

RAP 0.48 - -
MLAQ w/o domain memory 0.87 378941 0.02
MLAQ w/o self-examine 0.57 20115 0.81
MLAQ w/o env-examine 0.95 40772 0.05
MLAQ 1.00 39688 0.02

Removing further optimization. This experiment evaluates the impact of the Q-planner’s inability
to further optimize. In our framework, if the best decision sequence derived from the Q-Planner
is determined to non-optimal through environmental interactions, the MLAQ agent would keep
exploring in the imagination space to continually expand the memory and replay buffer for further
optimization. Within the imagination space, we allow the MLAQ agent to complete only one
successful imagination round by terminating the exploration process upon reaching the target state,
referring to this method as MLAQ−. As demonstrated in Tables 2, this deletion of further optimization

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

decreases token consumption while concurrently diminishing the optimal rate. The ‘Optimal Gap
(OG)’ represents the gap between average completion steps and optimal steps. The results indicate
that MLAQ achieves lower OG than MLAQ−, which fully demonstrates the effectiveness of the
expansion of the replay buffer and the optimization based on Q-Planner. The experiments on the
Sandwich domain presented in Appendix H.2 also yields the similar results.

Removing LLM-based self-examine and env-examine. This experiment reduces the quality of
transitions generated in the imaginative space by separately removing self-examine and env-examine,
thereby evaluating their effect. (1) The self-examine utilizes an LLM-based action checker and
prediction checker to enable error correction within the imagination space. We remove it from MLAQ
agent to directly output the actions and predictions without LLM-based examination, which is denoted
as MLAQ w/o self-examine in Table 4. Note that the initial memory stores transitions from the 2-step
to 6-step experiments rather than starting from scratch. The results demonstrate a notable reduction
in token consumption alongside a significant decrease in the optimal rate. Moreover, the frequency
of environmental feedback has significantly increased, providing support for affirmative answers
to Question C. (2) The env-examine corrects the imagination process by treating environmental
transitions as ground truth. Removing it allows for an evaluation of the imagination capability using
only the LLMs. The results of MLAQ w/o env-examine indicate only a slight performance decline
compared to MLAQ. Combined with the env replans metrics of MLAQ, this leads to the conclusion
that the current LLMs (e.g., GPT-4) possess the capability to efficiently generate imaginary transitions
through self-examination, resulting in a relatively low dependency on ground truth, answering
Question C from the opposing viewpoint. Removing both of them will lead to a decline in the quality
of imaginary transitions, thereby reducing the decision-making performance of our MLAQ agent.

Narrowing memory scope. This experiment narrows the scope of the memory module from domain-
specific to task-specific like existing methods (Hao et al., 2023) in order to evaluate the effect of
constructing memory in an RL manner. This approach is denoted as MLAQ w/o domain memory
in Table 4. The results indicate a significant increase in token consumption alongside a decrease
in the agent’s optimal rate, quantitatively answering the Question C. This decline stems from the
MLAQ agent’s inability to leverage prior decision-making experiences to solve new tasks within the
same domain. However, the optimal rate of the MLAQ agent still exceeds that of RAP, owing to the
influence of other components within the MLAQ framework.

4.5 SELF-EXAMINATION ANALYSIS

This section quantitatively evaluates the LLM-based self-examination, showing that while hallucina-
tions may occur during the examining process, performing multiple checks in transition imagination
significantly reduces the erroneous transitions. In the self-examination process, the LLM-based
checkers may erroneously identify correct outputs as incorrect, and vice versa. We sample 128
random states from the Sort domain, providing correct actions for 64 states and incorrect actions for
the others, with each incorrect action breaking only one constraint. The testing for the prediction
follows a similar approach, where each incorrect prediction only violates one constraint.

Table 5: Results on identification capability of the checkers.

Checker Type TP ↑ FN ↓ FP ↓ TN ↑ Precision ↑
Action Checker 63 1 6 58 91.3%
Prediction Checker 64 0 10 54 86.5%

As shown in Table 5, we evaluate the performance of the checkers using five metrics. True Positives
(TP) identify correct outputs (actions or predictions) as correct, False Negatives (FN) identify correct
outputs as incorrect, False Positives (FP) identify incorrect outputs as correct, True Negatives (TN)
identify incorrect outputs as incorrect, and Precision = TP / (TP + FP) is a proportion of correctly
identified correct cases among all cases identified as correct. Results in Table 5 suggest that while
both checkers accurately identify correct outputs, they may misidentify incorrect outputs as correct
ones, leading to inaccuracies in imaginary transitions and subsequent impacts on agent performance.

To further investigate the impact of inaccuracies in self-examination, similar methods are used to
test the accuracy of the basic policy and world model. Without forbidden actions, the accuracy of
the basic policy is 84.4%, while the accuracy of the world model is 100%. Therefore, the combined

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

calculation yields a probability of 1.36% = (1 - 84.4%) * [6 / (6 + 63)] for an wrong transition to be
stored in memory. Compared to the probability of 15.6% = (1 - 84.4%) without self-examination,
MLAQ can greatly improve the quality of imaginary transitions. These results provide support for
affirmative answers to Question C. Furthermore, some erroneous transitions stored in memory could
be excluded from the best policy derived from RL-based optimization due to their low values, while
the others could be corrected by env-examination. Experimental data in Table 2 also indicate that
these errors minimally impact the decision-making capabilities of LLM agents.

5 RELATION TO OTHER METHODS

In this section, we compare the MLAQ framework with several representative works in LLM agents.
Table 6 presents the interaction between Agent, World Model (WM), and Environment (Env) in
existing approaches, as well as the forms of their memory. (1) The Agent-Env interaction is central
to most LLM agents, with efforts to optimize agents through techniques like self-reflect (Shinn et al.,
2023) and dialogue (Mandi et al., 2023) for prompt enhancing, and Monte Carlo Tree Search (MCTS)
for transition-level optimization (Ding et al., 2023). (2) The Agent-WM interaction is originated from
model-based RL (Hafner et al., 2020) to expand memory through the agent’s imaginary interactions.
RAP (Hao et al., 2023) and ToT (Yao et al., 2023a) construct an LLM-based world model for MCTS-
based planning in a single task, but they still not try to narrow the gap between the world model
and environment. (3) The WM-Env interaction requires using the environmental data to correct the
mistakes made by LLM-based world model, which is achieved by LATS (Zhou et al., 2023a). (4)
Finally, the memory modules of LLM agents differ in the level and scope. Insight-level memory
stores agents’ natural language summaries of their insights (Ding et al., 2023), while transition-level
memory retains RL-like transitions (Hao et al., 2023). The scope here represents the time span of the
data in memories, encompassing (a) Step: the single transition, (b) Task: multiple transitions within
the same task, and (c) Domain: multiple transitions in multiple tasks within the same domain. We
present different scopes of memory in Appendix A, and detailed related works in Appendix B.

Table 6: Different interactions in existing LLM-based decision-making methods.

Method Agent-Env Agent-WM WM-Env Memory Level-Scope

Reflexion (Shinn et al., 2023) Self-reflection - - Insight-Task
Expel (Zhao et al., 2024) Self-reflection - - Insight-Domain
RoCo (Mandi et al., 2023) Dialog Feedback - - Transition-Step
XoT (Ding et al., 2023) MCTS Extraction - - Transition-Task
RAP (Hao et al., 2023) Direct MCTS - Transition-Task
ToT (Yao et al., 2023a) Direct MCTS - Transition-Task
LATS (Zhou et al., 2023a) Self-reflection MCTS Env-examine Transition-Task

MLAQ (Ours) Q-Planner UCB-guided Mixed-examine Transition-Domain

6 CONCLUSION

This work introduces MLAQ, a powerful MDP-based LLM agent framework that achieves zero-shot
optimal decision-making. MLAQ consists of a memory module, a Q-planner, and an imagination
space to fully leverage the general comprehension capabilities of LLMs and the optimization capabil-
ities of RL. The imagination space is entirely based on LLM to generate imaginary transitions, which
are then provided to the Q-planner for RL-based optimization. The proposed planning algorithm
balances the exploration and exploitation by introducing the concept of virtual nodes, while ensuring
a sub-linear regret bound guaranteed by a theorem. Moreover, a mixed-examine mechanism is em-
ployed to improve the quality of the imaginary transitions. We evaluate MLAQ on both single-agent
BlocksWorld and multi-agent RoCo-benchmark domains, comparing it with several advanced LLM
agents. Results indicate that MLAQ outperforms existing methods, especially in tasks involving long-
horizon decision-making. Furthermore, we conduct exhaustive additional experiments to investigate
how MLAQ enables LLM agents to achieve zero-shot optimal decision-making capabilities. The core
conclusion of this work is that constructing a model-based RL framework in natural language for
current LLMs can further enhance the decision-making abilities of LLM agents. In future work, we
intend to deploy this method on physical robotic platforms to fully exploit its advantages.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47:235–256, 2002.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jiajun Chai, Yuqian Fu, Dongbin Zhao, and Yuanheng Zhu. Aligning credit for multi-agent coop-
eration via model-based counterfactual imagination. In Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems, AAMAS ’24, pp. 281–289, 2024.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. AgentVerse: Facilitating multi-agent collaboration and exploring emergent
behaviors. In The Twelfth International Conference on Learning Representations, 2024.

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, Minghua Ma, Wei Zhang, Si Qin, Saravan
Rajmohan, Qingwei Lin, and Dongmei Zhang. Everything of thoughts: Defying the law of penrose
triangle for thought generation. arXiv preprint arXiv:2311.04254, 2023.

Shifei Ding, Wei Du, Ling Ding, Lili Guo, and Jian Zhang. Learning efficient and robust multi-agent
communication via graph information bottleneck. Proceedings of the AAAI Conference on Artificial
Intelligence, 38(16):17346–17353, 2024.

Vladimir Egorov and Alexei Shpilman. Scalable multi-agent model-based reinforcement learning. In
Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems,
AAMAS ’22, pp. 381–390, 2022.

Nikolaos Gkanatsios, Ayush Jain, Zhou Xian, Yunchu Zhang, Christopher G Atkeson, and Katerina
Fragkiadaki. Energy-based models are zero-shot planners for compositional scene rearrangement.
In RSS 2023 Workshop on Learning for Task and Motion Planning, 2023.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. In International Conference on
Learning Representations, 2022.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen Wang, Daisy Wang, and Zhiting Hu. Reasoning
with language model is planning with world model. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 8154–8173, 2023.

Maryam Hashemzadeh, Elias Stengel-Eskin, Sarath Chandar, and Marc-Alexandre Cote. Sub-goal
distillation: A method to improve small language agents. arXiv preprint arXiv:2405.02749, 2024.

Guangzheng Hu, Yuanheng Zhu, Dongbin Zhao, Mengchen Zhao, and Jianye Hao. Event-triggered
communication network with limited-bandwidth constraint for multi-agent reinforcement learning.
IEEE Transactions on Neural Networks and Learning Systems, 34(8):3966–3978, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International conference on
machine learning, pp. 9118–9147. PMLR, 2022a.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda
Luu, Sergey Levine, Karol Hausman, and brian ichter. Inner monologue: Embodied reasoning
through planning with language models. In 6th Annual Conference on Robot Learning, 2022b.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and Ashish
Sabharwal. Decomposed prompting: A modular approach for solving complex tasks. In The
Eleventh International Conference on Learning Representations, 2022.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. Machine Learning, 2006:
282–293, 09 2006.

Yilun Kong, Jingqing Ruan, YiHong Chen, Bin Zhang, Tianpeng Bao, shi shiwei, du guo qing,
xiaoru hu, Hangyu Mao, Ziyue Li, Xingyu Zeng, Rui Zhao, and Xueqian Wang. Boosting task
planning and tool usage of large language model-based agents in real-world systems. In ICLR
2024 Workshop on Large Language Model (LLM) Agents, 2024.

Teyun Kwon, Norman Di Palo, and Edward Johns. Language models as zero-shot trajectory generators.
IEEE Robotics and Automation Letters, 2024.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Reason
for future, act for now: A principled framework for autonomous llm agents with provable sample
efficiency. arXiv preprint arXiv:2309.17382, 2023.

Zhao Mandi, Shreeya Jain, and Shuran Song. RoCo: Dialectic multi-robot collaboration with large
language models. arXiv preprint arXiv:2307.04738, 2023.

Rithesh Murthy, Shelby Heinecke, Juan Carlos Niebles, Zhiwei Liu, Le Xue, Weiran Yao, Yihao
Feng, Zeyuan Chen, Akash Gokul, Devansh Arpit, et al. REX: Rapid exploration and exploitation
for AI agents. arXiv preprint arXiv:2307.08962, 2023.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent rrinforcement
learning. In International Conference on Machine Learning, pp. 4295–4304, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering Atari,
Go, Chess and Shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Advances in Neural Information Processing
Systems, volume 36, pp. 8634–8652, 2023.

Zhiyuan Sun, Haochen Shi, Marc-Alexandre Côté, Glen Berseth, Xingdi Yuan, and Bang Liu.
Enhancing agent learning through world dynamics modeling. In Findings of the Association for
Computational Linguistics: EMNLP 2024, pp. 3534–3568, 2024.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning, second edition. MIT Press, Nov
2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don't always say
what they think: Unfaithful explanations in chain-of-thought prompting. In Advances in Neural
Information Processing Systems, pp. 74952–74965, 2023.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language
models still can’t plan (a benchmark for LLMs on planning and reasoning about change). In
NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. LLMs still can’t plan; can LRMs?
a preliminary evaluation of OpenAI’s o1 on planbench. arXiv preprint arXiv:2409.13373, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 2017.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language mod-
els. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2609–2634, 2023a.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with LLMs enables open-world multi-task agents. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yue Wu, Xuan Tang, Tom Mitchell, and Yuanzhi Li. SmartPlay: A benchmark for LLMs as intelligent
agents. In The Twelfth International Conference on Learning Representations, 2024.

Zelai Xu, Chao Yu, Fei Fang, Yu Wang, and Yi Wu. Language agents with reinforcement learning for
strategic play in the WereWolf game. arXiv preprint arXiv:2310.18940, 2023.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. In Advances in Neural
Information Processing Systems, volume 36, pp. 11809–11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023b.

Abhay Zala, Jaemin Cho, Han Lin, Jaehong Yoon, and Mohit Bansal. EnvGen: Generating and
adapting environments via LLMs for training embodied agents. In First Conference on Language
Modeling, 2024.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yihang Sun, Cheng Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, Xiaojun Chang, Junge Zhang, Feng Yin, Yitao Liang, and
Yaodong Yang. ProAgent: Building proactive cooperative agents with large language models.
Proceedings of the AAAI Conference on Artificial Intelligence, 38(16):17591–17599, 2024a.

Hongxin Zhang, Weihua Du, Jiaming Shan, Qinhong Zhou, Yilun Du, Joshua B. Tenenbaum, Tianmin
Shu, and Chuang Gan. Building cooperative embodied agents modularly with large language
models. In The Twelfth International Conference on Learning Representations, 2024b.

Yang Zhang, Shixin Yang, Chenjia Bai, Fei Wu, Xiu Li, Xuelong Li, and Zhen Wang. Towards
efficient LLM grounding for embodied multi-agent collaboration. arXiv preprint arXiv:2405.14314,
2024c.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong, and
Ji-Rong Wen. A survey on the memory mechanism of large language model based agents. arXiv
preprint arXiv:2404.13501, 2024d.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin, Yong-Jin Liu, and Gao Huang. Expel: LLM
agents are experiential learners. Proceedings of the AAAI Conference on Artificial Intelligence, 38
(17):19632–19642, 2024.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. In Advances in Neural Information Processing Systems, volume 36, pp.
31967–31987, 2023.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023a.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H. Chi. Least-to-most prompting enables
complex reasoning in large language models. In The Eleventh International Conference on
Learning Representations, 2023b.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A Detailed Descriptions of Memory Scope 16

B Related Work 16

C Proof for Theorem 1 19

D Experimental Environments 21

D.1 BlocksWorld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D.2 RoCo-benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E Experiments on Crafter 23

F Pseudo-code for the Overall Algorithm 25

F.1 Overall algorithm for MLAQ agent . . . . . . . . . . . . . . . . . . . . . . . . . . 25

F.2 LLM-based Imagination for MLAQ . . . . . . . . . . . . . . . . . . . . . . . . . 25

F.3 Expand the replay buffer from the memory . . . . . . . . . . . . . . . . . . . . . . 28

F.4 Q function update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

G Detailed Prompt Template 30

G.1 Basic policy prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

G.2 Action checker prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

G.3 World model prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

G.4 Prediction checker prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

H Detailed Experiment Results 33

H.1 Basic Policy Analysis for Multi-Agent Tasks . . . . . . . . . . . . . . . . . . . . . 33

H.2 Main Results in the Sandwich domain . . . . . . . . . . . . . . . . . . . . . . . . 33

I Hyper-Parameters 34

J Prompt Example 35

J.1 Policy Prompt and Response of the State-based Decision-Making . . . . . . . . . . 35

J.2 Policy Prompt and Response of the Observation-based Decision-Making . . . . . . 39

J.3 Action Checker Prompt and Response Example . . . . . . . . . . . . . . . . . . . 42

J.4 World Model Prompt and Response Example . . . . . . . . . . . . . . . . . . . . 44

J.5 Prediction Checker Prompt and Response Example . . . . . . . . . . . . . . . . . 46

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DETAILED DESCRIPTIONS OF MEMORY SCOPE

MLAQ employs a memory module with domain scope. In order to better illustrate its difference from
the memory scope in previous LLM agents, we present the memory module under different scopes
in Figure 6. Figure 6 (a) shows a memory with Step scope, which only retains the interaction data
between the agent and the environment at the current time step. For instance, when refining LLM
agent’s decisions, RoCo (Mandi et al., 2023) only relies on the feedback provided by the environment
in the current state. Figure 6 (b) shows a memory with Task scope, which focuses on solving the
current given task and retains the data obtained from the interactions between the agent and the
environment in this task. Most LLM agents adopt this form of memory, which is called a replay
buffer in Figure 1. Take the RAP (Hao et al., 2023) agent as an example, it explores within an
LLM-based imagination space and retains visited trajectories to avoid repeated LLM-based state
predictions. However, the memory for each task is unique and contains only information relevant to
this single task, meaning that the agent cannot gain experience from the decision histories of other
tasks within the same domain to solve the current task. Instead, our memory with domain scope stores
environmental and imaginary interaction data from all tasks in the domain, effectively reducing the
need for LLM queries and improving the efficiency of the reinforcement learning through Q-planner.
Besides, one point to clarify is that in Figure 6 (c), cylinders are depicted in different colors only to
illustrate that they have transitions from different tasks. The transitions stored in our memory do not
contain any task-specific labeling, and are always stored in the format of (s, a, r, s′).

...

...

...

.........

...

.........
.........

.........

(a) (b) (c)(a)

...

...

...

.........

...

.........
.........

.........

(a) (b) (c)(b)

...

...

...

.........

...

.........
.........

.........

(a) (b) (c)(c)

Figure 6: Memory modules with different scope. (a) Step. (b) Task. (c) Domain.

B RELATED WORK

Leveraging the Transformer network architecture, recent advancements in Large Language Models
(LLMs) have highlighted their potential in decision-making tasks. These approaches are commonly
referred as LLM agents. The research on LLM agents originated from GPT-3, an LLM with 175
billion parameters (Brown et al., 2020). Its authors found that the inference and decision-making
ability of LLM can be improved by simply adjusting the input prompt without adjusting the model
parameters. This insight leads to the development of the Chain-of-Thought (CoT) approach, which
improves the LLM’s reasoning capabilities by integrating step-by-step reasoning examples into the
prompts (Wei et al., 2022). Subsequent studies have focused on further enhancing LLM reasoning
capability through prompt engineering. Techniques such as task decomposition, exemplified by least-
to-most (Zhou et al., 2023b) and DecomP (Khot et al., 2022) prompting, are proposed to simplify the
task complexity. The aforementioned methods also could address some traditional problems in natural
language processing, such as cloze and completion task and reasoning task (Turpin et al., 2023). With
the development of LLMs, OpenAI’s O1 has been characterized as a Large Reasoning Model (LRM),
demonstrating preliminary planning capabilities (a success rate of 97.8% in BlocksWorld as reported
by Valmeekam et al. (2024)). However, due to our experiments employ a more challenging optimal
rate as the metric, the direct comparison is not presented in the main text.

LLM agents with prompt optimization. As research progresses, an increasing number of studies
focus on developing an LLM agent to tackle decision-making tasks with higher complexity. Most
methods adopt the existing paradigm, aiming to indirectly enhance the decision-making capabilities
of LLM agents by optimizing the prompts given to LLMs (Brown et al., 2020). These approaches
typically involve enriching the prompt’s informational content through environmental or human
feedback and employing some techniques to summarize these information into some insights, thereby
minimizing the prompt’s length (Zhang et al., 2024d). Huang et al. (2022b) enable the LLM agent

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

to understand many semantic aspects of the world by leveraging environmental feedbacks to form
an inner monologue, acknowledging what, when, and how to do skills in embodied environments.
DEPS (Wang et al., 2023b) involves the description and self-explanation of the agent’s plans to
improve the accuracy of multi-step reasoning in long-horizon tasks. It also provides a trainable goal
selector to rank the sub-goals based on the estimated steps of completion, thus refining the agent’s
plans. Furthermore, as shown in Table 6, the self-reflect is a widely-used technique to improve
LLM agent’s decision-making capability. Reflexion (Shinn et al., 2023) empowers autonomous
LLM agents to iteratively revise their actions based on feedback, thereby optimizing their behavior.
ReAct (Yao et al., 2023b) introduces a closed-loop reasoning process by alternately generating
verbal reasoning traces and actions to achieve self-correction of knowledge. Additionally, it acquires
additional information from external sources through the execution of actions. AgentVerse (Chen
et al., 2024) involves multiple LLM agents with different roles to orchestrate a collaborative group
of expert agents. These agents evaluate their executed actions to adjusting the group and discuss
collaboratively for making better decisions. There are also numerous approaches aimed at addressing
decision-making problems in multi-agent environments. ProAgent (Zhang et al., 2024a) considers
scenarios involving cooperation with human players. It performs cooperative reasoning and planning
based on inference of teammates’ behavior, corrects the agents’ beliefs using actual decisions, and
stores acquired knowledge into a task memory. Mandi et al. (2023) proposes a multi-agent benchmark
RoCo-benchmark with multiple robotic arms solving a cooperative task. It also constructs a dialog-
based multi-agent framework RoCo to address the proposed benchmark. CoELA (Zhang et al.,
2024b) aims to address the multi-agent cooperation problem with decentralized control by providing
communication between LLM agents to exchange their information and knowledge. Its framework
extensively utilizes the potential of LLM in perception, communication, planning, memory and
execution.

LLM agents with action optimization under MDP framework. Those methods, which only aim
at optimizing prompts, cannot achieve satisfactory performance in long-horizon decision-making
tasks (Hao et al., 2023), which are more challenging to LLM agents. Firstly, the inherent reasoning
capabilities of these methods, bounded by the fixed parameters of the base LLM, fall short in
complex tasks necessitating long-horizon decision sequences. Secondly, adjusting input prompts
may improve reasoning to some extent but does not fundamentally optimize the policy of the
LLM agent for acquiring optimal decision sequences. Recent researches have explored using
broader language applications to model the environmental dynamics and reward functions, employing
planning algorithms to guide decision-making (Liu et al., 2023; Zhang et al., 2024d). They formulate
the LLM agent under the Markov Decision Process (MDP) framework by decomposing original
long-horizon decision sequences into atomized state transitions. Yao et al. (2023a) propose Tree-of-
Thoughts (ToT), which establishes an incomplete MDP framework limited to state space, action space,
and value function components. ToT employs depth-first and breadth-first search techniques to derive
optimal sequences of thoughts in the decomposed "thought space". RAP (Hao et al., 2023) leverages
LLMs to explicitly construct a world model, serving as the dynamics function within the MDP. RAP
employs an LLM-based policy to generate decision trajectories by interacting with the world model
within the imagination space and utilizes the MCTS algorithm to effectively balance exploration and
exploitation, thus optimizing decision sequences. REX (Murthy et al., 2023) introduces an additional
layer of rewards and incorporates principles akin to Upper Confidence Bound (UCB) values to further
enrich exploration within the action space, resulting in more robust and efficient agent performance.
Everything-of-thought (XoT) (Ding et al., 2023) emphasizes the "Penrose triangle" in traditional
LLM agents, indicating that Performance, Efficiency, and Flexibility cannot simultaneously exist. It
utilizes LLM for thought generation and employs RL and MCTS algorithms to revise the generated
thought tree, thereby enhancing the agent’s performance. Zhao et al. (2023) establish an LLM-based
commonsense world model and basic policy to conduct MCTS-based searches. External knowledge
is obtained through datasets or interactions with human players, enabling updates to the belief of
environmental states and consequently making optimal decisions. Kong et al. (2024) integrates an
API Retriever, LLM Finetuner, and Demo Selector within a unified framework to tackle the challenges
of task planning and tool usage in complex real-world systems. Expel (Zhao et al., 2024) maintains
an insight-level memory for the LLM agent. After interacting with the environment, the agent
learns from successful trajectories and avoids failed trajectories to summarize a series of insights.
These insights are used to enrich the LLM agent’s prompts, thereby enhancing its decision-making
capabilities. However, most of them require the environmental functions to enhance decision-making
and lack the capability to leverage experiences from other tasks within the same domain.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

There are also some LLM agents aiming to be a zero-shot planner. Kwon et al. (2024) design many
task-agnostic prompts to investigate which design choices in this prompt are the most important,
thus developing a zero-shot robot manipulator. Huang et al. (2022a) decompose high-level tasks
into mid-level plans without any further training of pre-trained LLMs, and propose a procedure to
semantically translate the plans to available actions in a zero-shot manner. Hashemzadeh et al. (2024)
also adopt the similar sub-goal decomposition approach to facilitate decision-making. PS Prompting
improves upon zero-shot-CoT at the prompt level, enabling LLMs to implement planning capabilities
(Wang et al., 2023a). Gkanatsios et al. (2023) present an energy-based framework that converts
language instructions into optimizable functions to guide object rearrangement through visual-motor
policies. However, these approaches mostly design prompts for specific domains and still cannot
achieve optimal decision-making.

RL approaches in agents. Traditional RL and MARL approaches require RL-based optimization
techniques to update the parameters of agent policies. These methods either collect interaction data
between agents and the environment (Rashid et al., 2018; Schrittwieser et al., 2020; Hu et al., 2023)
or use supervised learning to construct a world model that serves as a digital replica of the real
environment (Chai et al., 2024; Egorov & Shpilman, 2022), providing imagined interaction data
(Hafner et al., 2020). In contrast, the training of LLMs involves a vast and diverse dataset, enabling
the construction of task-specific basic policies and world models through task descriptions in natural
language (Hao et al., 2023; Yao et al., 2023a), thereby eliminating the need for parameter updates of
traditional methods. Reflextion (Shinn et al., 2023) maintains an RL-like framework, which includes
Actor and Critic modules used for action output and action evaluation, respectively. However, it does
not employ RL-based optimization at the transition level based on the Bellman equation. Instead, it
heavily relies on the decision-making capabilities of the LLM itself, leading to poor performance
in long-horizon tasks. Zhang et al. (2024c) utilize RL-based critic regression to learn a sequential
advantage function and treat the LLM planner as an optimizer to generate actions that maximize
this function. Xu et al. (2023) propose an LLM agent for Werewolf game, which utilizes LLM to
generate candidate actions in the current state, and then uses a one-step population-based RL training
process to select the optimal action from these actions. MCTS is also a traditional RL approach, but
it requires prior knowledge about environmental functions and focuses more on the search process.
Some of the previously introduced methods (Hao et al., 2023; Zhao et al., 2023) use MCTS for
planning and achieve optimal decision-making based on some strong assumptions, but still do not
perform satisfactory performance in long-horizon tasks.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C PROOF FOR THEOREM 1

Before presenting the proof of Theorem 1, we first introduce Theorem 2 from (Auer et al., 2002)
and provide part of the derivation to facilitate the subsequent steps. It is important to note that some
variables in this section may cause confusion with similarly defined variables in the main text. These
variables are introduced temporarily to improve the readability of the derivation and are only valid
within the proof of this section. For instance, while t denotes the time in the main text, it will be used
here to denote the number of UCB rounds.
Theorem 2. For all m > 1, if policy UCB is run on state s with m available action, performing each
action yields arbitrary Q-value distributions P1, ..., Pm with support in [0, 1], then its expected regret
after any round number of T is at most:

[8
∑

i:∆i>0

(
lnN(s)

∆i
)] + (1 +

π2

3
)(

m∑
i=1

∆i), (5)

where Q(s, 1), ..., Q(s,m) are the expected values of P1, ..., Pm.

Proof. The regret is defined as follows:

Regret =
∑

j:∆j>0

∆jE[Cj(T )], (6)

where ∆i = Q∗−Q(s, i), Q∗ .
= maxi{Q(s, i)}, and Ci(T ) denotes the selection number of machine

i over the first T rounds. The key of the derivation lies in the decomposition of E[Ci(T )]. Due to the
initial evaluation conducted by UCB for each machine, Ci(T ) can be rearranged as:

Ci(T ) =

T∑
t=1

{It = i} = 1 +

T∑
t=m+1

{It = i}, (7)

where {·} is an indicator function. If the event {It = i} occurs, meaning that the UCB policy selects
machine i in round t, then the indicator function outputs 1. Otherwise, it outputs 0.

Auer et al. (2002) derived the conclusion of the theorem through a step-wise approach using this
equation. For a detailed derivation process, please refer to the original proof in (Auer et al., 2002).
The subsequent derivations in this paper require only the few steps outlined above.

Theorem 1. Suppose the player employs the node selection rule defined in (2). Then, in a scenario
with m available actions in state s, the bound of the expected cumulative regret is:

Regret =
∑

j:∆j>0

∆jE[Cj(N(s))] ≤ [8
∑

i:∆i>0

(
lnN(s)

∆i
)] + (1 +

π2

3
)(

m∑
i=1

∆i), (8)

where ∆i = Q∗ −Q(s, i) for action index i in {1, 2, ...,m} and Q∗ .
= maxi{Q(s, i)}, N(s) is the

visit count of s, and Ci(N(s)) is the selection number of action i.

Proof. Since the definition of regret has not changed, we will continue our derivation starting from the
decomposition of Ci(T ), where T has the same meaning with N(s). We will ultimately demonstrate
that, due to the presence of the virtual node y, the player can achieve the same upper bound on regret
as UCB. In the multi-armed bandit variant, action i can be selected only if y has been selected at least
i times. Thus, we define the selection number of y at round t as A(t), and we have:

Ci(T ) =

T∑
t=1

{It = i, A(t) ≥ i} =
T∑

t=i+1

{It = i, A(t) ≥ i}

=

T∑
t=i+1

{It = i, A(t− 1) ≥ i} ∪ {It = i, ξ(t− 1, i)}

=

T∑
t=i+2

{It = i, A(t− 1) ≥ i}+
T∑

t=i+1

{It = i, ξ(t− 1, i)},

(9)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where ξ(t, i) denotes the event in which player select y for the i-th time at round t. The derivation
in the first line follows from the fact that A(1) = 0 and A(t) ≤ t − 1. Therefore, when t ≤ i, the
event A(t) ≥ i cannot occur. The derivation from the first line to the second line primarily relies on
rewriting the original event A(t) ≥ i as the union of two mutually exclusive events, A(t− 1) ≥ i
and ξ(t− 1, i). By repeatedly applying the above decomposition operation to the first term of the
formula, we have:

Ci(T ) =

n−i∑
k=1

n∑
t=i+k

{It = i, ξ(t− k, i)} =
n∑

t=i+1

t−i∑
k=1

{It = i, ξ(t− k, i)}

=

n∑
t=i+1

t−1∑
x=i

{It = i, ξ(x, i)} =
n−1∑
x=i

n∑
t=x+1

{It = i, ξ(x, i)}

(10)

By setting x = t− k and exchanging a series of inner and outer loops, we obtain a more interpretable
formula. This formula first determines the round in which y is selected for the i-th time by iterating
the variable x over the interval [i, n− 1], followed by iterating the time t to compute the selection
number of action i. Clearly, the above expression is less than n, leading directly to a linear regret
bound. However, to achieve the goal of deriving a sub-linear bound, we should use the following fact:

Ci(T ) ≤ max
x

n∑
t=x+1

{It = i, ξ(x, i)} = max
x

∑
t=x+1,n

{It = i}

≤
n∑

t=1

{It = i}
(11)

Thus, we can directly proceed to Equation (7) and its subsequent derivations, ultimately proving that
in this case, the player can still achieve the same regret bound:

[8
∑

i:∆i>0

(
lnN(s)

∆i
)] + (1 +

π2

3
)(

m∑
i=1

∆i), (12)

where N(s) is equivalent to T .

In the calculation of the vUCB value in (3), the confidence bound for virtual nodes includes an
additional coefficient g(x) compared to that of actual nodes. Assuming the number of available
actions is m, we expect the virtual node to be selected at most m times, and the coefficient should
decrease as the size of δ̂(s) increases. Therefore, it should possess the following characteristics:

g(m) = 0 and
∂g

∂x
<= 0 (13)

However, since the number of available actions cannot be known in advance when planning in the
LLM-based imagination space without environmental tools, the first property cannot be satisfied.
Therefore, in practice, we use g(x) = wg(e

−x2 − ϵg) as a substitute, whose value rapidly diminishes
as the size of δ̂(s) increases.

Theorem 3. Let the expected TV-distance between two transition distributions be bounded at each
timestep by ϵm and the policy divergence be bounded by ϵπ . Then the true returns and model returns
of the policy are bounded as:

η[π] ≥ η̂[π]− [
2γ(ϵm + 2ϵπ)

(1− γ)2
+

4rmaxϵπ
(1− γ)

]. (14)

In the above theorem, η is the returns of the policy in the true environment, η̂ is the returns of
the policy under the LLM-based world model. rmax is the maximum value of rewards, ϵm =
max(s,a)∼M[DTV(T(·|s, a))||(T(·|s, a; θ))] is the generalization error of the LLM-based world
model, (s, a) is sampled from MLAQ’s memory module M, and T(·|s, a; θ)) is the transition
distribution of the LLM-based world model. ϵπ ≥ DTV(π||πM) is the policy divergence between
greedy policy π derived from Q-learning (output argmax actions) and the data-collecting policy in
the imagination space πM. Please refer to the proof of Theorem 3.1 in (Janner et al., 2019).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D EXPERIMENTAL ENVIRONMENTS

(a) (b) (c)

Figure 7: Experimental environments. (a) BlocksWorld. (b) Sandwich domain of RoCo-benchmark.
(c) Sort domain of RoCo-benchmark.

As shown in Figure 7, we evaluate the methods in BlocksWorld (single-agent) and RoCo (multi-agent)
benchmarks. Next, we will provide a detailed description of each task, as well as the state and action
space.

D.1 BLOCKSWORLD

BlocksWorld is a well-known single-agent benchmark for evaluating LLM agents (Valmeekam et al.,
2022), where an agent should rearrange some blocks into multiple stacks in a particular order. In this
work, we choose the tasks with four blocks to evaluate our methods. Hao et al. (2023) has grouped
all tasks according to the optimal step, and we randomly choose up to 30 tasks from each group for
evaluation. As shown in Figure 8 (a), the state space in the original BlocksWorld’s codes has a lot of
redundant information, which may help agents make better decisions, but may lead to errors when
making predictions by the world model. Therefore, as shown in Figure 8 (b), we adjust the format of
them in a more concise and clear manner without affecting the validity of states.

The state records what the agent’s hand is holding: (‘Empty’ or ‘Holding <block>’) and what each
block is on (‘on <block>’, ‘on table’, or ‘in hand’). The action is an instruction that moves one block,
which is one of STACK, UNSTACK, PUT, and PICK UP.

1. PICK UP <object>: Execute if hand is empty, and <object> is on table and no block is on it.
Pick up <object> from table. After execution, the agent will be holding the <object>.

2. UNSTACK <object>: Execute if hand is empty, <object> is on another block and no block
is on it. UNSTACK <object> from another block. After execution, the agent will be holding
the <object>.

3. PUT DOWN <object>: Execute if hand is holding <object>. Put down <object> on table.
After execution, the agent’s hand will be empty.

4. STACK <object> ON <target>: Execute if hand is holding <object>, and no block is on
<target>. Stack <object> on the top of <target>. After execution, the agent’s hand will be
empty.

D.2 ROCO-BENCHMARK

RoCo-benchmark is built upon the Mujoco engine (Todorov et al., 2012) to construct several multi-
arm scenarios. RoCo-benchmark provides 6 different tasks, including those containing two agents
and those containing three agents, and the robotic arms in them have their own movable range and
require full cooperation to complete the given task. We choose two of these tasks, Sort and Sandwich,
to evaluate our method. In Roco-benchmark’s codes, there is no fixed format for the state space, and
the states are intermingled in the form of information within the agent’s prompt. Therefore, we have
constructed the state spaces for these two tasks in a concise manner, while keeping the action spaces
consistent with the original codes.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

I have that, the orange block is 
clear, the yellow block is clear, 
the hand is <state>, the blue 
block is <state>, the orange 
block is <state>, the red block is 
<state> and the yellow block is 
<state>.

[State]

[Block States]
blue block: <block state>
orange block: <block state>
red block: <block state>
yellow block: <block state>

[Hand State]
<hand state>

[State]

[Food States]
bread_slice1: <food state>
bread_slice2: <food state>
bacon: <food state>
cheese: <food state>
tomato: <food state>
cucumber: <food state>
ham: <food state>
beef_patty: <food state>

[Robot States]
1. Chad's gripper is <gripper state>
2. Dave's gripper is <gripper state>

[State]
[Cube States]
blue_square is on <location>
pink_polygon is on <location>
yellow_trapezoid is on <location>

(a)

(b)

(c)

(d)

Figure 8: State templates. (a) Template in original BlocksWorld codes. (b) Modified Template in
BlocksWorld. (c) Template in Sandwich domain of RoCo-benchmark. (d) Template in Sort domain
of RoCo-benchmark.

Sandwich domain. There are two robots, Chad and Dave, trying to make a sandwich following
the given recipe order. Chad can only reach for food items on the right side of the table, while
Dave can only reach for food items on the left side, with each food item starting in a fixed position.
The robots need to place the food items on the cutting board in the middle of the table one by one,
following the order given in a recipe. Different types of sandwiches contain different combinations
of food items. Take the ‘bacon’ sandwich as an example, it requires ‘bread_slice1’, ‘bacon’, ‘cheese’,
‘tomato’, and ‘bread_slice2’. In a bacon recipe, apart from the fixed positions of ‘bread_slice1’ and
‘bread_slice2’ as the two ends of the sandwich, the order of the other food items can vary across
different recipes. Therefore, one type of sandwich may have multiple different recipes. We group
all the recipes according to the optimal step to evaluate the agents. In the decision-making process,
robots cannot execute PUT actions simultaneously within one timestep to avoid collisions.

As shown in Figure 8 (c), the state records the state of each food item (‘on left/right side’, ‘atop
<another food item> or <cutting_board>’, or ‘gripped by <robot>’) and the state of each robot’s
gripper (‘holding <food item>’ or ‘empty’). The action is an instruction for each agent to interact
with the food items, which is one of PICK, PUT, and WAIT.

1. PICK <obj>: Execute if gripper is empty and the food item’s state is not ‘atop <obj>’. Pick
the <obj> from the table. After execution, the robot’s gripper will be holding <obj>.

2. PUT <obj1> <obj2>: Execute if gripper is holding <obj1>. Put <obj1> on the top of <obj2>.
After execution, the robot’s gripper will be empty.

3. WAIT: Do nothing.

The action checker in the Sandwich environment strictly limiting the placement of food items to
follow the recipe, rather than allowing it to be placed in an incorrect order. Therefore, the size of
agents’ available action set in each state is relatively small. The agent can only choose to wait, pick
up the next food item, or place the food item from the gripper according to the recipe, so that RoCo
could achieve a high success rate in this task, but the optimal rate is still low.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Sort domain. There are three robots, Alice, Bob, and Chad, trying to sort three cubes onto their
corresponding panels. There are a total of seven panels. Alice can access panels 1 to 3, Bob can
access panels 3 to 5, and Chad can access panels 5 to 7. The three cubes are a blue square, a pink
polygon, and a yellow trapezoid, with their respective target panels being panel2, panel4, and panel6.
In the decision-making process, a panel cannot contain two or more cubes, and a cube cannot be
grasped by two robots simultaneously.

As shown in Figure 8 (d), the state records the state of three cubes (on <panel>) and the action is an
instruction for each agent to interact with the cubes, which is one of PICK & PLACE and WAIT.

1. PICK <object> PLACE <target>: Pick up <object> and place it onto <target>, where
<object> is a cube and <target> is a panel.

2. WAIT: Do nothing.

Given the complexity of this domain involving more agents and expansive available action spaces, its
difficulty surpasses that of the Sandwich domain. In the Sandwich domain, decision trajectories are
linear and decision loops are non-existent, meaning that the multi-agent system cannot revert to its
initial state after a series of decisions. However, in the Sort domain, the occurrence of loops adds to
the challenge of reaching target states. MLAQ could address this challenge by leveraging RL-based
optimization to make long-term optimal decisions.

E EXPERIMENTS ON CRAFTER

To validate MLAQ’s performance in partially observable scenarios with high complexity, we chose
Crafter (Hafner, 2022) (a 2D version of MineCraft) as our experimental environment.

In Crafter, players need to mine diamonds on a 64 * 64 map. To achieve this goal, there are 16 sub-
goals to complete (collecting woods, stones, make wood pickaxe, etc.), of which 9 are essential for
diamond mining, making it a challenging task with extremely long decision sequences. Additionally,
this is an extremely difficult sparse reward problem, where reward signals are only provided when
successfully achieving a sub-goal.

Players can only observe a 9 * 9 local map centered on their position, and we adopted SmartPlay’s
(Wu et al., 2024) natural language observation setting: for multiple items within the field of view,
only the nearest one will be shown in the observation. For example, even if there are 3 trees in view,
the observation will only show "tree is 3 steps to your north-east", which further intensifies the partial
observability of Crafter.

To achieve optimal decision-making in this task (and other stochastic problems), mainly because the
same state-action pair may lead to different next states, we made two minor modifications to MLAQ:

1. We remove the Prediction Checker, as it’s difficult to provide effective verification in the
cases with stochasticity.

2. We remove MLAQ’s re-utilization of memory transitions during planning, because the
same state-action pair may lead to multiple next states, and direct re-utilization would lose
stochasticity. However, this can be adjusted as needed in practical, such as starting random
re-utilization when the number of next states corresponding to the same state-action pair
exceeds a threshold.

In table 7, we compare MLAQ with several existing LLM agents, including EnvGen (Zala et al.,
2024) and DiVE (Sun et al., 2024), and the results of RL agents and human are from (Sun et al.,
2024).

Table 7: Different interactions in existing LLM-based decision-making methods.

Method Human MLAQ-gt MLAQ-script MLAQ DiVE EnvGen Dreamer-V3 PPO Random

Scores 50.5% 46.2% 42.6% 39.9% 35.9% 32.2% 14.5% 4.6% 1.6%

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

We calculate The scores using the same methodology as existing works, which is determined by the
ratio of unblocked achievements. The data of MLAQ are obtained using the same testing methods
as SmartPlay (Wu et al., 2024). In Crafter, the move action exhibits strong stochasticity, making it
impossible for players to infer post-movement observations from local information. We conducted
three experiments:

1. MLAQ-gt utilizes ground-truth environment simulation for move actions, providing the exact
next state for given state-action pair, thus effectively eliminating movement stochasticity.

2. MLAQ-script generates post-movement observations through scripted randomization (e.g.,
after moving north, nine unknown areas appear at the northernmost position, with randomly
assigned items like stone, sand).

3. MLAQ reconstructs the aforementioned script into prompts, allowing LLM to fully imple-
ment an LLM-based World Model.

The results align with expectations: MLAQ-gt achieves best performance using ground-truth environ-
ment, consistently crafting iron pickaxes but struggling to explore the location of diamonds within
limited steps in 64 * 64 maps. MLAQ-script and MLAQ perform similarly but significantly below
MLAQ-gt, indicating stochasticity substantially impacts MLAQ, though still outperforming other
existing LLM agents and RL agents. It’s worth noting that these experimental dat are averaged from
eight tests, serving to demonstrate to reviewers the potential of MLAQ in complex environments. We
commit to supplementing more comprehensive data in the camera-ready version and incorporating it
into the revised manuscript.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F PSEUDO-CODE FOR THE OVERALL ALGORITHM

We present detailed pseudo-code for our MLAQ framework in this section, and these algorithms are
used to fully describe the overall process presented in Figure 1 and Figure 2. We have simplified
the entire algorithm process into the flowchart in Figure 9 to facilitate a better understanding of how
MLAQ makes optimal decisions for new a task.

Extract & Expand Replay Buffer from Memory

Perform the Best Policy in Environment

Expand Memory & Replay Buffer via LLM Imagination

If  Optimal

Obtain the Best Policy from Q-Planner & Replay Buffer

New Task 
(Orginal and Target States)

Q function

No

Yes

Figure 9: Flowchart of MLAQ agent to obtain the optimal decision sequence for a new task, with the
input being the domain description and domain-specific memory and the output being the Q function.

F.1 OVERALL ALGORITHM FOR MLAQ AGENT

At first, Algorithm 1 shows how MLAQ agent obtains a optimal decision sequence in a given task.
Its inputs are the environment dynamics and reward function with the domain description in natural
language τ to provide interaction between the true environment and the agent (or multi-agent system),
which is also depicted in the left side of Figure 1 (a). At the beginning of the optimization of MLAQ
agent, we initialize an empty memory M and a Q function Q(·, ·) to set all Q values to -1. As
described in the experiment section, we then scan all tasks of a domain to gradually expand the
memory module through environmental and imaginary interactions.

For each single task, we have a unique pair of original state s0 and target state s̄, and initialize a
replay buffer D for this task. Before making decisions in this task, MLAQ agent will try to find
this task’s best trajectory from the memory to expand the empty replay buffer, and a task-specific
Q function Q(·, ·) will be obtained based on D. If the agent fails in finding an available trajectory
from the memory, meaning that the Q(s0, a) is no larger than the threshold Q̃ for any action a, we
would skip the following environmental interaction phase to directly perform the imagination process
until an available decision sequence is found. Otherwise, the agent interacts with the environment by
making best decisions according to Q(·, ·) to evaluate the optimality 1(s0, s̄) of the resulting decision
sequence. The indicator 1(s0, s̄) is set to True only if the environmental sequence is optimal.

In order to expand the memory and replay buffer to optimize the agent, we keep performing imaginary
interactions until the optimal sequence is obtained for the indicator 1(s0, s̄) is True or the maximum
trial number Kc is reached. As more tasks are scanned, the size of memoryM will gradually increase,
and we will finally output it to assist the MLAQ agent in making optimal decisions under any tasks in
this domain. While for the tasks have not been scanned before, MLAQ would also use the transitions
stored inM to reduce LLM queries and obtain the optimal decision sequence much easier.

F.2 LLM-BASED IMAGINATION FOR MLAQ

Algorithm 2 input the original state s0 and target state s̄ with domain description τ . The memoryM
contains transitions from other tasks and the temporary replay buffer D is specific to the current task.
At the beginning, we should first add a virtual node (if does not exist) for the original state s0 to start
the imaginary interactions. Then, we perform the phases of node selection and transition imagination
to expand the memory and replay buffer, and the overall process has already described in section 3.
The outputs of the imaginary interaction are the expanded memory and replay buffer. It should be
noted that after each step of transition imagination, we would perform an "Expand-Buffer" method to
find an available trajectory with better optimality withinM and add nodes along this trajectory to D.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 1: Obtaining optimal decision sequence for MLAQ agent
1 Inputs:
2 The environment, including dynamics s′ = T(s, a) and reward function r = R(s, a, s′);
3 Task description in natural language τ ;
4 Initialize:
5 memoryM and Q function Q(·, ·) = −1;
6 for task = 1, 2, 3, ... do
7 # Each task has a unique original state s0 and target state s̄
8 Initialize a replay buffer D for this task;
9 Set the optimal sequence indicator for this task 1(s0, s̄) to be False;

10 while 1(s0, s̄) is not True AND trial < Kc do
11 # Expand the replay buffer and get a task-specific Q function based on the memory
12 D = Expand-Buffer(s0, s̄;M,D);
13 Q(·, ·) =Q-Update(s0, s̄;D);
14 if maxa Q(s0, a) < Q̃ then
15 # An available trajectory does not exist based on D
16 Skip the environmental interaction phase and turn to the next trial of imagination;
17 end
18 # Environmental Interaction Phase
19 while st is not s̄ AND t < T do
20 Get the optimal action at = argmaxa Q(st, a);
21 if at is available for the environment then
22 Perform action to the environment st+1 = T(st, at) and rt = R(st, at, st+1);
23 else
24 Remove transition

(
st, at, r(st, at), c(st, at)

)
fromM and D;

25 Get environmental feedback F and store
(
st, at,F

)
intoM and D;

26 end
27 Store transition (st, at, rt, st+1) intoM and correct the wrong transition;
28 st ← st+1;
29 end
30 if st is s̄ then
31 1(s0, s̄) is True if length of decision sequence is optimal else False;
32 else
33 1(s0, s̄) is False;
34 end
35 if 1(s0, s̄) is not True then
36 # Perform a round of imaginary interaction to expand the replay buffer and memory
37 M,D =Imagination(s0, s̄; τ,M,D);
38 end
39 end
40 end
41 Outputs:
42 memoryM;

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 2: Imagination(s0, s̄; τ,M,D) guided by UCB values
1 Inputs:
2 Original state s0 and target state s̄ of this task with domain description in natural language τ ;
3 The memoryM and replay buffer D;
4 Initialize:
5 Add a virtual node as the first child node of the original state s0, and N(s0)← N(s0) + 1;
6 while st is not s̄ AND t < T do
7 # Node Selection Phase
8 Get the optimal action at = argmaxa vUCB

(
st, a, c(st, a)

)
;

9 if c(st, at) is a virtual node then
10 # Transition Imagination Phase
11 Action available indicator 1̂(at)← False;
12 # Basic policy makes decisions and action checker verifies if the output is available
13 while 1(at) is not True AND trial < Ka do
14 Get a non-virtual action through LLM-based basic policy at ∼ π(st; τ,M);
15 if (st, at) in memoryM then
16 Retrieve transition data

(
st, at, r(st, at), c(st, at)

)
fromM to D;

17 1̂(at) = True;
18 else
19 Check the action 1̂(at) = ξa(st, at; τ,M);
20 end
21 end
22 ▷ This trajectory is failed and terminated if 1(at) is False;
23 if 1(at) is True then
24 # World model predicts and prediction checker verifies if the output is available
25 Prediction available indicator 1̂(st+1)← False;
26 while 1̂(st+1) is not True AND trial < Ks do
27 Predict the next state st+1 ∼ T̂(st, at; τ,M);
28 Check the prediction 1̂(st+1) = ξs(st, at, st+1; τ,M);
29 end
30 end
31 ▷ This trajectory is failed and terminated if 1(st+1) is False;
32 else
33 st+1 = c(st, at);
34 if st+1 is not in D then
35 Add a virtual node as the first child node of st+1;
36 end
37 end
38 st ← st+1 and N(st)← N(st) + 1;
39 if st is s̄ then
40 rt = +1;
41 else if st is a failure state then
42 rt = −1;
43 else
44 rt = 0;
45 end
46 # Expand the replay buffer and memory
47 Store transition (st, at, rt, st+1) into the replay buffer and memory (if does not exist);
48 # Expand the replay buffer from memory if possible
49 D = Expand-Buffer(s0, s̄;M,D);
50 end
51 Outputs:
52 The expanded memoryM and replay buffer D;

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

F.3 EXPAND THE REPLAY BUFFER FROM THE MEMORY

Algorithm 3 is used to expand the task-specific replay buffer based on the transitions in the memory.
It firstly finds an available trajectory with better optimality fromM and then store the transitions
of this trajectory in the replay buffer D. This will effectively improve the exploration efficiency of
the MLAQ agent within the imagination space. For example, if the replay buffer is empty and there
exists an available trajectory from s0 to s̄, then the nodes and edges in this trajectory will be added to
D. Therefore, the first trial in Algorithm 1 would not require any LLM queries to get an available
policy for this task.

Furthermore, ifD is not empty, this algorithm could also help the MLAQ agent to aggregate transitions
from memory for enhancing optimal decision-making capability in complex tasks. For example, if the
agent explores a new transition and the next state corresponding to this transition has a trajectory with
better optimality towards the target state s̄, the MLAQ agent could add the nodes in this subsequent
trajectory to D without extra exploration within the imagination space.

Algorithm 3: Expand-Buffer(s0, s̄;M,D)
1 Inputs:
2 Original state s0 and target state s̄ of this task with task description in natural language τ ;
3 The memoryM;
4 Q(·, ·) =Q-Update(s0, s̄;M);
5 if maxa Q(s0, a) > Q̃ then
6 st ← s0;
7 while st is not s̄ do
8 Get the optimal action at = argmaxa Q(st, a);
9 Retrieve transition data

(
st, at, r(st, at), c(st, at)

)
fromM to D (if does not exist);

10 st ← c(st, at);
11 end
12 end
13 Outputs:
14 The expanded replay buffer D;

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

F.4 Q FUNCTION UPDATE

Algorithm 4 is employed to get a Q function for the given task s0 and s̄ on the basis of X , where
X could be the memoryM and the replay buffer D. At first, we initialize the Q function to set all
Q values to -1, and assign rewards for all transitions based the target state s̄. Then, the algorithm
would perform multiple loops of Q-learning process to get the approximated Q function Q(·, ·). This
algorithm will be used by the Q-Planner in Algorithm 1 and the replay buffer expansion process in
Algorithm 3.

Algorithm 4: Q-Update(s0, s̄;X )
1 Inputs:
2 The original state s0 and target state s̄ of the given task;
3 The memory module or replay buffer X ;
4 Initialize:
5 Initialize a Q function Q(·, ·) = −1;
6 For all transition (s, a, r, s′) in X , if s′ is s̄, then r = +1; if s′ is a failure state, then r = −1;

otherwise, r = 0;
7 for loop k = 1, 2, 3, ... do
8 for (st, at, rt, st+1) ∈ X do
9 Perform the following Q-learning update rule for this transition;

10

Qk+1(st, at) = Qk(st, at) + α
(
rt + γmax

a′
Qk(st+1, a

′)−Qk(st, at)
)

11 end
12 end
13 Outputs:
14 The Q function Q(·, ·);

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

G DETAILED PROMPT TEMPLATE

This section presents the detailed prompt templates for the basic policy, world model, action checker,
and prediction checker. The prompt template has multiple parts to provide different types of informa-
tion for the modules. The prompts in the purple cube are the component-specific prompts to guide the
agent in making decisions, predicting next states, checking actions or predictions. In the prompt, we
guide the corresponding modules step-by-step to enhance the accuracy of their outputs. The prompts
in the green cube contain some task-specific information, and prompts in the blue cube contain some
self-provided information generated from self-examinations and vUCB-based planning. The prompts
in grey cube is the ‘user prompt’, which contains the current information for the modules.

G.1 BASIC POLICY PROMPT

The prompt shown in Figure 10 requires the current state and target state in natural language to make
decisions. In the [Detailed Instruction for Policy] part, we decompose the decision-making process
into five parts: [Action Planning], [Action Conclusion], [Action Constraints Check], [Forbidden
Action Check], and [Action Output], gradually guiding the agent to make decisions that satisfy
the constraints. As for the basic policy of multi-agent systems, we directly follow the prompt
design of RoCo, and the prompts can be found in (Mandi et al., 2023). The policy mistakes are the
environmental feedbacks of previous wrong actions stored in the memoryM. The policy feedbacks
are the temporary feedbacks provided by the self-examination only under the current state. The
forbidden actions are the non-virtual actions of the current state node’s child nodes.

Policy

You are a planner. You have received a [State] from the external environment. Now, you need to output 
an action to reach the target [State] from current [State]. Follow the [Detailed Instruction for Policy] 
strictly.

[Detailed Instruction for Policy] ... 
You should output your thinking process step-by-step in the following order: [Action Planning], [Action 
Conclusion], [Action Constraints Check], [Forbidden Action Check], and [Action Output] ...

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description] ...
[State Space Definition] ...
[Action Space Definition] ...

[Policy Mistakes] (long-term)
In the current state, you have chosen a wrong [Action], and the environment provides the [Feedback]: 
[Wrong actions and feedbacks] ...

[Policy Feedbacks] (short-term)
The following actions are the wrong actions you have made. These feedbacks are from the previous 
imagination, and may not be correct. However, you still need to pay attention to them and avoid making 
the same or similar mistakes.
[Wrong actions and feedbacks] ...

[Forbidden Actions]
You should try your best to output an action that is not in the list below ...
[Action List] 

Now you should output your action according to the following current state and target state. 
{state}
{target_state}

You are an action checker. You should check if the [Action] is valid based on the given [State]. You 
should follow the [Checker Instruction] to check the [Action]. 

[Checker Instruction] ... 
You should output your thinking process step-by-step to follow these steps: [Action Constraints Check], 
[Conclusion Justification], and [Checker Conclusion] ...

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description] ...
[State Space Definition] ...
[Action Space Definition] ...

[Action Mistakes] (long-term)
In the current state, you mistakenly believed that a wrong action was the correct one:  
[Wrong actions and feedbacks] ...

Action Checker

Now you should check the following [Action] based on the given [State]. You have to check the 
instructions step-by-step strictly rather than your own thoughts.
{state}
{action}

Figure 10: A simplified template for the basic policy prompt.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

G.2 ACTION CHECKER PROMPT

The prompt shown in Figure 11 requires the current state and the action should be checked. In the
[Checker Instruction] part, we decompose the checking process into three parts: [Action Constraints
Check], [Conclusion Justification], and [Checker Conclusion]. We provide the previous mistakes and
the corresponding feedbacks stored in the memory under this current state for the action checker to
avoid the same mistakes.

Policy

You are a planner. You have received a [State] from the external environment. Now, you need to output 
an action to reach the target [State] from current [State]. Follow the [Detailed Instruction for Policy] 
strictly.

[Detailed Instruction for Policy] ... 
You should output your thinking process step-by-step in the following order: [Action Planning], [Action 
Conclusion], [Action Constraints Check], [Forbidden Action Check], and [Action Output] ...

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description] ...
[State Space Definition] ...
[Action Space Definition] ...

[Policy Mistakes] (long-term)
In the current state, you have chosen a wrong [Action], and the environment provides the [Feedback]: 
[Wrong actions and feedbacks] ...

[Policy Feedbacks] (short-term)
The following actions are the wrong actions you have made. These feedbacks are from the previous 
imagination, and may not be correct. However, you still need to pay attention to them and avoid making 
the same or similar mistakes.
[Wrong actions and feedbacks] ...

[Forbidden Actions]
You should try your best to output an action that is not in the list below ...
[Action List] 

Now you should output your action according to the following current state and target state. 
{state}
{target_state}

You are an action checker. You should check if the [Action] is valid based on the given [State]. You 
should follow the [Checker Instruction] to check the [Action]. 

[Checker Instruction]
You should follow the check instructions in [Detailed Constraints for Action] to check the [Action] step-
by-step. Take the mistakes in the [Action Mistakes] into consideration.

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description] ...
[Action Space Definition] ...

[Action Mistakes] (long-term)
In the current state, you mistakenly believed that a wrong action was the correct one:  
[Wrong actions and feedbacks] ...

Action Checker

Now you should check the following [Action] based on the given [State]. You have to check the 
instructions step-by-step strictly rather than your own thoughts.
{state}
{action}

Figure 11: A simplified template for the action checker prompt.

G.3 WORLD MODEL PROMPT

The prompt shown in Figure 12 requires the current state and action to predict the next state. In the
[Predicting Instruction] part, we decompose the predicting process into three parts: [Interaction Item
Pool], [Action Forward Rule] and [Prediction Conclusion]. The prompt also contains the feedbacks
from the long-term and replay buffer. In fact, LLM can better handle the task of predicting with
step-by-step reasoning, and we also find the prediction accuracy of the world model to be nearly
100% in the experimental section.

G.4 PREDICTION CHECKER PROMPT

The prompt shown in Figure 13 requires the current state, executed action, and the prediction should
be checked. In the [Checker Instruction] part, we decompose the checking process into three parts:
[Prediction Format Check], [Prediction Rule Check], and [Checker Conclusion]. We also provide the
previous mistakes and the corresponding feedbacks stored in the memory under this state-action pair
for the prediction checker to avoid the same mistakes.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

You are a state predictor. You will be given a [State] and an [Action] as input. should predict the [State] 
after the [Action] is applied to the given [State]. You should follow the [Predicting Instruction] to 
predict the [State].

[Predicting Instruction] 
Please output your thinking process step-by-step by following theses steps: [Interaction Item Pool], 
[Action Forward Rule] and [Prediction Conclusion] ...

The following lists the [State Space Definition]. 
[State Space Definition] ...
[State Template] ...
[Detailed Constraints for State] ...

[Prediction Mistakes] (long-term)
In the current state and action, you have outputted a wrong prediction as follows:
[Wrong predcitions and feedbacks] ...

[Prediction Feedbacks] (short-term)
I have send your prediction to a GPT-based checker to check whether your prediction is correct. The 
checker said that your prediction is incorrect ...
[Feedbacks] ...

Now, you should predict the next [State] after the following [Action] is applied to the given [State]. You 
have to follow the instructions strictly rather than your own thoughts.
{state}
{action}

World Model

Prediction Checker

Now you should check the following [Prediction] based on the given [State] and [Action]. You have to 
check the instructions step-by-step strictly rather than your own thoughts.
{state}
{action}
{predicion}

You are a prediction checker. You will receive a [State], an [Action], and the subsequent [Prediction]. 
You should check if the [Prediction] is valid based on the given [State] and [Action].  You should follow 
the [Checker Instruction] to check the [Action]. 

[Checker Instruction] ... 
You should output your thinking process step-by-step to follow these steps: [Prediction Format Check], 
[Prediction Rule Check], and [Checker Conclusion] ...

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description] ...
[State Space Definition] ...
[Action Space Definition] ...

[Prediction Mistakes] (long-term)
In the current state, you mistakenly believed that a wrong prediction was the correct one:  
[Wrong predictions and feedbacks] ...

Figure 12: A simplified template for the world model prompt.

You are a state predictor. You will be given a [State] and an [Action] as input. should predict the [State] 
after the [Action] is applied to the given [State]. You should follow the [Predicting Instruction] to 
predict the [State].

[Predicting Instruction] 
Please output your thinking process step-by-step by following theses steps: [Interaction Item Pool], 
[Action Forward Rule] and [Prediction Conclusion] ...

The following lists the [State Space Definition]. 
[State Space Definition] ...
[State Template] ...
[Detailed Constraints for State] ...

[Prediction Mistakes] (long-term)
In the current state and action, you have outputted a wrong prediction as follows:
[Wrong predcitions and feedbacks] ...

[Prediction Feedbacks] (short-term)
I have send your prediction to a GPT-based checker to check whether your prediction is correct. The 
checker said that your prediction is incorrect ...
[Feedbacks] ...

Now, you should predict the next [State] after the following [Action] is applied to the given [State]. You 
have to follow the instructions strictly rather than your own thoughts.
{state}
{action}

World Model

Prediction Checker

Now you should check the following [Prediction] based on the given [State] and [Action]. You have to 
check the instructions step-by-step strictly rather than your own thoughts.
{state}
{action}
{predicion}

You are a prediction checker. You will receive a [State], an [Action], and the subsequent [Prediction]. 
You should check if the [Prediction] is valid based on the given [State] and [Action].  You should follow 
the [Checker Instruction] to check the [Action]. 

[Checker Instruction] ... 
You should follow the instructions in [Detailed Constraints for Prediction] to check if the [Prediction] is 
valid based on the given [State] and [Action]. Take the mistakes in the [Prediction Mistakes] into 
consideration.

The following lists the [Detailed Constraints for Prediction]. 
[Detailed Constraints for Prediction]

[Prediction Mistakes] (long-term)
In the current state, you mistakenly believed that a wrong prediction was the correct one:  
[Wrong predictions and feedbacks] ...

Figure 13: A simplified template for the prediction checker prompt.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

H DETAILED EXPERIMENT RESULTS

H.1 BASIC POLICY ANALYSIS FOR MULTI-AGENT TASKS

As mentioned in the experiment section, our MLAQ agent framework is compatible with both
single-agent and multi-agent scenarios. In multi-agent scenarios, it provides two basic policy
decision paradigms. The first one treats the entire multi-agent system as a whole for centralized
decision-making, where it takes the global state as inputs and outputs joint actions for the system.
The second one adopts RoCo’s dialog mechanism (Mandi et al., 2023), where the agents conduct
multiple rounds of dialogue with each other and determine the joint actions when reaching consensus:
ai,t ∼ πi(·|oi,t, ρi,t), where ρi,t = [di,1, ..., di−1,j ] is the chat history between agents. di,j represents
the message output by agent i at the dialog round j.

We evaluate the agents using these two basic policies in the Sort and Sandwich domains. As shown
in Table 8, the results indicate that, with similar token consumption, the performance of centralized
decision-making significantly decreases, with env replans increasing nearly tenfold in the Sandwich
domain. The complexity of centralized decision-making significantly surpasses that of decentralized
decision-making, thereby diminishing the effectiveness of basic policies in obtaining available or
optimal actions.

Table 8: Performance comparison of using dialog and central paradigms in multi-agent domains.

Task Methods Success Rate Optimal Rate Token Env Replans Optimal Gap

Sort dialog 0.98 0.75 175560 0.06 0.26
central 0.88 0.59 199753 0.04 0.57

Sandwich dialog 0.95 0.45 208024 0.07 0.61
central 0.81 0.24 131244 0.62 3.24

H.2 MAIN RESULTS IN THE SANDWICH DOMAIN

Due to space limitations in the main text, we provide the experimental results in the Sandwich domain
in this section for reference. As shown in Table 9, although MLAQ is superior to RoCo in success rate
and outperforms RoCo in long-horizon tasks (10-step), the token consumption of MLAQ is higher
than that of RoCo. This is mainly due to two reasons. Firstly, the similarity between state transitions
plays an essential role in token consumption, with tasks exhibiting higher similarity being better able
to leverage stored transition data in memory to reduce token consumption. The Sandwich domain,
with its relatively fixed trajectories compared to Sort, exhibits lower similarity across different tasks.
This is evidenced by the average memory re-utilization ratio between the two domains, notably lower
in Sort. This characteristic of the Sandwich domain not only contributes to RoCo achieving a higher
optimal rate but also diminishes MLAQ’s token saving capability. Secondly, MLAQ itself involves
world model prediction and self-examination, leading to an average token consumption per time step
exceeding RoCo’s.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 9: Comparison of multiple metrics between MLAQ and RoCo in Sandwich domain.

Metrics Methods 6-step 8-step 10-step Average

Success Rate RoCo 1.00 0.64 0.92 0.75
MLAQ 1.00 0.92 1.00 0.95

Env Replans
(n-shot)

RoCo 2.50 3.87 4.33 3.86
MLAQ 0.00 0.11 0.00 0.07

Optimal Rate
RoCo 0.75 0.36 0.25 0.37
MLAQ− 0.00 0.08 0.83 0.29
MLAQ 0.25 0.31 0.83 0.45

Average Token
RoCo 20740 35072 65027 42266
MLAQ− 74881 63555 77949 68746
MLAQ 184609 220521 188752 208024

Optimal Gap
RoCo 0.50 1.13 1.83 1.27
MLAQ− 1.25 1.88 0.17 1.33
MLAQ 0.75 1.35 0.17 0.96

Memory Re-Util. Ratio 0.31 0.63 0.57 0.58

I HYPER-PARAMETERS

Table 10 shows the hyper-parameters presented in the MLAQ training process. Except for the
environmental horizon T , all other hyper-parameters remain constant across all experiments, where
T is set to 20 for the BlocksWorld experiment, 16 for the Sandwich experiment, and 8 for the Sort
experiment.

In this paper, all experiments are conducted using the GPT API interface, without involving CPU or
GPU usage. The total cost of the API resources used in this paper does not exceed 1500 US dollars,
including preliminary tests, comparative experiments, and ablation experiments.

Table 10: Hyper-parameters presented in the MLAQ training process

Hyper Parameter Value

LLM source gpt-4-0125-preview
Learning rate α 1.0
Discount γ 0.995
UCB weight wg 2
vUCB weight wg 4
vUCB threshold ϵg 0
Maximum trial number for imagination Kc 2
Maximum trial number for prediction Ks 2
Maximum trial number for policy Ka 2
Q threshold Q̃ 0.5
Q update loops 20
Environmental horizon T 20 / 8 / 16

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

J PROMPT EXAMPLE

J.1 POLICY PROMPT AND RESPONSE OF THE STATE-BASED DECISION-MAKING

In the LLM agent constructed by our method MLAQ, both decision-making in single-agent scenarios
and centralized decision-making in multi-agent scenarios rely on the global state. We use the prompt
template in Figure 10 to query LLM and output agent actions or joint actions of the multi-agent
system. In the following, we provide an example of a policy prompt in the Sort domain, which
includes all the elements in the template shown.

The following lists the [Task Description], [State Space Definition], and [Action Space Definition]. 
[Task Description]
Task: Cooperative Sorting in a Multi-Agent System

Agents: Alice, Bob and Chad
Alice - Can only PICK and PLACE cube items on panel1, panel2 and panel3.
Bob - Can only PICK and PLACE cube items on panel3, panel4 and panel5.
Chad - Can only PICK and PLACE cube items on panel5, panel6 and panel7.

Objective: Collaboratively place the cubes on the panels as follows: place blue_square on panel2, place 
pink_polygon on panel4, place yellow_trapezoid on panel6. The cube items will be placed randomly on all panels of 
the table at the beginning of an episode. 

[State Space Definition]
Define the state of the multi-agent system, which is composed of one category: [Cube States].
1. [Cube States]: Describe the status of the following three cube items: blue_square, pink_polygon, 
yellow_trapezoid.
2. The cube items must be listed in this order: blue_square, pink_polygon, yellow_trapezoid.

[State Template]
[State]
[Cube States]
blue_square is on <location>
pink_polygon is on <location>
yellow_trapezoid is on <location>

[Detailed Constraints for State]
You should specify the [State] according to the following constrains. A state is reasonable if it does not break the 
constraints one-by-one and step-by-step.
1. There must be three lines of [Cube States].
2. Check if their locations are one of: on panel1 - 7. 
3. It is not allowed to have two cubes on the same panel. Check if they satisfy constraints.
3. The panel name should not contain " " in the middle. For example, use "panel2" instead of "panel 2".

Detail the action space for each robot with the stipulated actions: PICK PLACE, WAIT.
- PICK <object> PLACE <target>: Execute if the gripper is empty. Pick up <object> and place it onto <target>, 
where <object> is a cube and <target> is a panel
- WAIT: Do nothing.

[Action Template]
EXECUTE
NAME Alice ACTION <action>
NAME Bob ACTION <action>
NAME Chad ACTION <action>

[Detailed Constraints for Action]
[Robot Reach Range] Before showing the constraints, you should note that each robot has its own reach range, and 
it cannot PICK or PLACE items outside its reach range.
  + Alice: panel1, panel2 and panel3
  + Bob: panel3, panel4, panel5
  + Chad: panel5, panel6, panel7
[Detailed Constraints] Then, you should follow the constraints one-by-one and step-by-step to check if the action 
is correct: [Basic Constraints] and [PICK & PLACE Constraints]. You have to follow these constraints strictly and 
do not have your own understanding of the constraints.
The most important thing: Follow the instructions step-by-step and ensure each step is completed precisely. Repeat 
the instructions and fill in the blanks '[]' without introducing any modifications or additional content.
[Basic Constraints] Output "[Basic Check]" and do as follows:
  + There must be three lines of actions. 
  + The agents cannot all perform WAIT. 
  + Agents are not allowed to PICK <object> other than blue_square, pink_polygon, yellow_trapezoid. 
  + Agents are not allowed to PICK the same <object> at the same time.
[PICK & PLACE Constraints] Now, output "[PICK & PLACE Check]" and do as follows:
  + For simplicity, we use [agent] to denote the agent's name: [Alice, Bob, Chad]. 
    - If action is PICK PLACE, follow the instructions step by step: [PICK Object Check], [PLACE Target Check].
      a. [PICK Object Check] Agents are not allowed to PICK objects out of its reach range.
      b. [PLACE Target Check] Agents are not allowed to PLACE objects out of its reach range.
  + For example: List Alice's action ... List Bob's action ... List Chad's action ...```

Policy

[Detailed Instruction for Policy]
You should output your thinking process step-by-step in the following order. You have to follow these steps one by 
one to plan the [Action]: [Action Planning], [Action Conclusion], [Action Constraints Check], [Forbidden Action 
Check], and [Action Output].
The most important thing: Follow the instructions step-by-step and ensure each step is completed precisely. Repeat 
the instructions and fill in the blanks '[]' without introducing any modifications or additional content.
  + [Action Planning]: Plan the [Action] of the multi-agent system step by step and list the thinking process.
  + [Action Conclusion]: Conclude the [Action] in the format of [Detailed Constraints for Action].
  + [Action Constraints Check]: Follow the steps in [Detailed Constraints for Action] to check the [Action] step by 
step.
  + [Action Revise]: If there is no incorrect checking result in the [Action Constraints Check], you can pass to the 
[Forbidden Action Check]. Otherwise, you should revise the action. Take the feedback from [Action Constraints 
Check] into consideration, and follow these steps to revise the action: [New Action Planning] and [ NewAction 
Constraints Check].
  + [Forbidden & Mistake Action Check]: I will provide some forbidden joint actions, and the robots cannot 
choose the forbidden and mistake actions. Note that what is forbidden are the joint actions of the multi-agent system, 
rather than the single agent actions that appear in these joint actions.
    - list the chosen action.
    - list all actions in the [Forbidden Actions] and [Policy Mistakes]. 
    - check if the [Action] is in the [Forbidden Actions] or [Policy Mistakes] one by one.
    If the [Action] is not in the [Forbidden Actions] and [Policy Mistakes]:
      - Pass to the [Action Output] part.
    Else:
      - Follow these instructions to plan a new [Actions] step by step and list the thinking process:
        - Go back to a new [Action Planning] and [Action Constraints Check] process again. You should note that what 
is forbidden are the joint actions rather than the single agent actions that appear in these joint actions. Therefore, the 
individual actions of each agent in the [Forbidden Actions] can still be chosen.
        - [Forbidden Action Check]: check if the [Action] satisfies the [Detailed Constraints for Action].
        - Re-plan the [Action] until a new [Action] is obtained or there is no available action anymore. You can try 2-
nd, 3-rd, 4-th ... Plan to get the final [Action].
  If there is no available action anymore, output [ERROR] to denote that there is no available action anymore.
  + [Action Output]: output the final action in the format of [Detailed Constraints for Action].

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

[Policy Mistakes]
No policy mistakes.

[Temporary Mistakes]
You have made 2 mistakes. The following actions are the wrong actions you have made.
These feedbacks are from the previous imagination, and may not be correct. However, you still need to pay attention 
to them and avoid making the same or similar mistakes.
The wrong action 1 is as follows:
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION PICK yellow_trapezoid PLACE panel6
NAME Chad ACTION WAIT
The feedback is as follows:
[ERROR] The action is invalid because it violates the reach range constraint for Bob, who cannot PLACE the 
yellow_trapezoid on panel6 as it is outside of his range.Now, output your action below. You should follow the 
[Detailed Instruction for Policy] strictly and think step-by-step to plan the action.

[State Template]
[State]
[Cube States]
blue_square is on <location>
pink_polygon is on <location>
yellow_trapezoid is on <location>

[Detailed Constraints for State]
You should specify the [State] according to the following constrains. A state is reasonable if it does not break the 
constraints one-by-one and step-by-step.
1. There must be three lines of [Cube States].
2. Check if their locations are one of: on panel1 - 7. 
3. It is not allowed to have two cubes on the same panel. Check if they satisfy constraints.
3. The panel name should not contain " " in the middle. For example, use "panel2" instead of "panel 2".

[Action Space Definition]
Detail the action space for each robot with the stipulated actions: PICK PLACE, WAIT.
- PICK <object> PLACE <target>: Execute if the gripper is empty. Pick up <object> and place it onto <target>, 
where <object> is a cube and <target> is a panel
- WAIT: Do nothing.

[Action Template]
EXECUTE
NAME Alice ACTION <action>
NAME Bob ACTION <action>
NAME Chad ACTION <action>

[Detailed Constraints for Action]
[Robot Reach Range] Before showing the constraints, you should note that each robot has its own reach range, and 
it cannot PICK or PLACE items outside its reach range.
  + Alice: panel1, panel2 and panel3
  + Bob: panel3, panel4, panel5
  + Chad: panel5, panel6, panel7
[Detailed Constraints] Then, you should follow the constraints one-by-one and step-by-step to check if the action 
is correct: [Basic Constraints] and [PICK & PLACE Constraints]. You have to follow these constraints strictly and 
do not have your own understanding of the constraints.
The most important thing: Follow the instructions step-by-step and ensure each step is completed precisely. Repeat 
the instructions and fill in the blanks '[]' without introducing any modifications or additional content.
[Basic Constraints] Output "[Basic Check]" and do as follows:
  + There must be three lines of actions. 
  + The agents cannot all perform WAIT. 
  + Agents are not allowed to PICK <object> other than blue_square, pink_polygon, yellow_trapezoid. 
  + Agents are not allowed to PICK the same <object> at the same time.
  + Agents are not allowed to PLACE objects on the same panel.
[PICK & PLACE Constraints] Now, output "[PICK & PLACE Check]" and do as follows:
  + For simplicity, we use [agent] to denote the agent's name: [Alice, Bob, Chad]. 
    - If action is PICK PLACE, follow the instructions step by step: [PICK Object Check], [PLACE Target Check].
      a. [PICK Object Check] Agents are not allowed to PICK objects out of its reach range.
      b. [PLACE Target Check] Agents are not allowed to PLACE objects out of its reach range.
      c. [PLACE Target Check] Agents are not allowed to PLACE objects on the panel that already has an object 
except it is PICKed by one of the agents at the current timestep. 
  + For example: List Alice's action ... List Bob's action ... List Chad's action ...```

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Now you should output your action according to the following current state and target state. 
[State]
[Cube States]
blue_square is on panel2
pink_polygon is on panel4
yellow_trapezoid is on panel1
[Target State]
[Cube States]
blue_square is on panel2
pink_polygon is on panel4
yellow_trapezoid is on panel6

No policy mistakes.

You have made 2 mistakes. The following actions are the wrong actions you have made.
These feedbacks are from the previous imagination, and may not be correct. However, you still need to pay attention 
to them and avoid making the same or similar mistakes.
The wrong action 1 is as follows:
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT
The feedback is as follows:
[ERROR] The action is invalid because all agents cannot perform WAIT simultaneously.Now, output your action 
below. You should follow the [Detailed Instruction for Policy] strictly and think step-by-step to plan the action.

The wrong action 2 is as follows:
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION PICK yellow_trapezoid PLACE panel5
NAME Chad ACTION WAIT
The feedback is as follows:
[ERROR] Bob cannot PICK the yellow_trapezoid from its current location (panel1) because it is outside his reach 
range (panel3, panel4, panel5). This violates the PICK Range Check constraint.

[Forbidden Actions]
The following lists the forbidden actions:
[Action 1]
EXECUTE
NAME Alice ACTION PICK yellow_trapezoid PLACE panel3
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT

[Policy Mistakes]

[Temporary Mistakes]

[Action Planning]
  - For Alice, since all her cubes are in the correct position, she should WAIT.
  - For Bob, since all his cubes are in the correct position or being taken care of by Chad, he should WAIT.
  - For Chad, since yellow_trapezoid needs to be moved from panel5 to panel6, and it's within his reach, he should 
PICK yellow_trapezoid PLACE panel6.

[Action Conclusion]
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION WAIT
NAME Chad ACTION PICK yellow_trapezoid PLACE panel6

[Action Constraints Check]
[Basic Check]
+ There must be three lines of actions: [correct]. 
+ The agents cannot all perform WAIT: [correct]. 
+ Agents are not allowed to PICK <object> other than blue_square, pink_polygon, yellow_trapezoid: [correct]. 
+ Agents are not allowed to PICK the same <object> at the same time: [no agent has the same <object>, correct]. 
+ Agents are not allowed to PLACE objects on the same panel. [no agent has the same <target>, correct]. 

[PICK & PLACE Check]
+ For Chad:
  - Chad's action: [PICK yellow_trapezoid PLACE panel6]. 
    a. [PICK Range Check] Agents are not allowed to PICK objects out of its reach range (Chad's: [panel5, panel6, 
panel7]): [no, action is incorrect]. 

The response of the basic policy is shown below. Although it already outputs a forbidden action list
in the response, it finally outputs an action in this list, which indicates that the response of LLM is
actually imperfect. Therefore, our MLAQ agent try to optimize through RL methods.

Now you should output your action according to the following current state and target state. 
[State]
[Cube States]
blue_square is on panel2
pink_polygon is on panel4
yellow_trapezoid is on panel1
[Target State]
[Cube States]
blue_square is on panel2
pink_polygon is on panel4
yellow_trapezoid is on panel6

No policy mistakes.

You have made 2 mistakes. The following actions are the wrong actions you have made.
These feedbacks are from the previous imagination, and may not be correct. However, you still need to pay attention 
to them and avoid making the same or similar mistakes.
The wrong action 1 is as follows:
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT
The feedback is as follows:
[ERROR] The action is invalid because all agents cannot perform WAIT simultaneously.Now, output your action 
below. You should follow the [Detailed Instruction for Policy] strictly and think step-by-step to plan the action.

The wrong action 2 is as follows:
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION PICK yellow_trapezoid PLACE panel5
NAME Chad ACTION WAIT
The feedback is as follows:
[ERROR] Bob cannot PICK the yellow_trapezoid from its current location (panel1) because it is outside his reach 
range (panel3, panel4, panel5). This violates the PICK Range Check constraint.

[Forbidden Actions]
The following lists the forbidden actions:
[Action 1]
EXECUTE
NAME Alice ACTION PICK yellow_trapezoid PLACE panel3
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT

[Policy Mistakes]

[Temporary Mistakes]

[Action Planning]
  - For Alice, since all her cubes are in the correct position, she should WAIT.
  - For Bob, since all his cubes are in the correct position or being taken care of by Chad, he should WAIT.
  - For Chad, since yellow_trapezoid needs to be moved from panel5 to panel6, and it's within his reach, he should 
PICK yellow_trapezoid PLACE panel6.

[Action Conclusion]
EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION WAIT
NAME Chad ACTION PICK yellow_trapezoid PLACE panel6

[Action Constraints Check]
[Basic Check]
+ There must be three lines of actions: [correct]. 
+ The agents cannot all perform WAIT: [correct]. 
+ Agents are not allowed to PICK <object> other than blue_square, pink_polygon, yellow_trapezoid: [correct]. 
+ Agents are not allowed to PICK the same <object> at the same time: [no agent has the same <object>, correct]. 
+ Agents are not allowed to PLACE objects on the same panel. [no agent has the same <target>, correct]. 

[PICK & PLACE Check]
+ For Chad:
  - Chad's action: [PICK yellow_trapezoid PLACE panel6]. 
    a. [PICK Range Check] Agents are not allowed to PICK objects out of its reach range (Chad's: [panel5, panel6, 
panel7]): [no, action is incorrect]. 

[Action Revise]
Since the [PICK Range Check] for Chad's action was incorrect, the action needs to be revised. Chad cannot PICK 
the yellow_trapezoid from panel1 because it's out of his reach range. The correct action should involve Alice, who is 
in the range to PICK the yellow_trapezoid from panel1.

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025
[Action Revise]
Since the [PICK Range Check] for Chad's action was incorrect, the action needs to be revised. Chad cannot PICK 
the yellow_trapezoid from panel1 because it's out of his reach range. The correct action should involve Alice, who is 
in the range to PICK the yellow_trapezoid from panel1.

[New Action Planning]
Given the mistake identified during the [Action Constraints Check], we need Alice to move the yellow_trapezoid 
closer to Chad's range for him to eventually place it on panel6.
- Alice can PICK the yellow_trapezoid from panel1 and PLACE it on panel3, which is within her range and makes 
it accessible for Bob or Chad in subsequent actions.
- Bob and Chad will WAIT in this round to avoid any conflict.

[New Action Conclusion]
EXECUTE
NAME Alice ACTION PICK yellow_trapezoid PLACE panel3
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT

[New Action Constraints Check]
[Basic Check]
+ There must be three lines of actions: [correct]. 
+ The agents cannot all perform WAIT: [correct]. 
+ Agents are not allowed to PICK <object> other than blue_square, pink_polygon, yellow_trapezoid: [correct]. 
+ Agents are not allowed to PICK the same <object> at the same time: [no agent has the same <object>, correct]. 
+ Agents are not allowed to PLACE objects on the same panel. [no agent has the same <target>, correct]. 

[PICK & PLACE Check]
+ For Alice's action: PICK yellow_trapezoid PLACE panel3. 
    a. [PICK Range Check] Agents are not allowed to PICK objects out of its reach range (Alice's: [panel1, panel2, 
panel3]): [correct]. 
    b. [PLACE Range Check] Agents are not allowed to PLACE objects out of its reach range: [correct].
    c. [PLACE Target Check] Agents are not allowed to PLACE objects on the panel that already has an object 
except it is PICKed by one of the agents at the current timestep: [The panel3 is empty, correct].

[Forbidden & Mistake Action Check]
- list the chosen action: EXECUTE NAME Alice ACTION PICK yellow_trapezoid PLACE panel3 NAME Bob 
ACTION WAIT NAME Chad ACTION WAIT
- repeat all actions and feedbacks in the [Forbidden Actions], [Policy Mistakes], and [Temporary Mistakes]:
     a. [EXECUTE NAME Alice ACTION PICK yellow_trapezoid PLACE panel3 NAME Bob ACTION WAIT 
NAME Chad ACTION WAIT, forbidden action], 
     b. [EXECUTE NAME Alice ACTION WAIT NAME Bob ACTION WAIT NAME Chad ACTION WAIT, 
[ERROR] The action is invalid because all agents cannot perform WAIT simultaneously.], 
     c. [EXECUTE NAME Alice ACTION WAIT NAME Bob ACTION PICK yellow_trapezoid PLACE panel5 
NAME Chad ACTION WAIT, [ERROR] Bob cannot PICK the yellow_trapezoid from its current location (panel1) 
because it is outside his reach range (panel3, panel4, panel5). This violates the PICK Range Check constraint.]]
- check if the [Action] is in the [Temporary Mistakes] one by one. If so, you should first judge whether the [Action] 
is correct or not. If the [Action] is correct, you can pass to the [Action Output] part. Otherwise, you should revise 
the [Action] step by step.
  + The chosen action is not listed in the [Temporary Mistakes].
- check if the [Action] is in the [Forbidden Actions] one by one.
  + The chosen action is not listed in the [Forbidden Actions].

[Action Output]
EXECUTE
NAME Alice ACTION PICK yellow_trapezoid PLACE panel3
NAME Bob ACTION WAIT
NAME Chad ACTION WAIT

The prompt and response in other tasks are also similar under the setting of state-based decision
making.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

J.2 POLICY PROMPT AND RESPONSE OF THE OBSERVATION-BASED DECISION-MAKING

In the observation-based decision-making of LLM multi-agent systems, we fully utilize the RoCo’s
Policy Prompt to perform dialogues between agents, and only add an additional part to denote the
forbidden actions. Here is an example in the Sort domain. We take the Alice’s prompt as an example,
the prompts of the other agents are also similar.

Alice’s Policy
[Action Space Definition]
- PICK <object> PLACE <target>: pick up <object> and place it onto <target>, where <object> is a cube and 
<target> is a panel
- WAIT: Do nothing.

[Action Template]
EXECUTE
NAME Alice ACTION <action>
NAME Bob ACTION <action>
NAME Chad ACTION <action>

[Action Output Instructions]
1. Commence the output with 'EXECUTE
'. Follow with one distinct action per robot on separate lines. 
2. Alice's action should be listed first, followed by Bob's action, and then Chad's action.
3. Agents' reach ranges are as follows:   
  + Alice: zone1=[panel1, panel2, panel3]
  + Bob: zone2=[panel3, panel4, panel5]
  + Chad: zone3=[panel5, panel6, panel7]

You are robot Alice in front of panel2. You are collaborating with Bob, Chad to sort cubes into their target panels
Bob is tasked to place pink_polygon on panel4, and can reach panel3, panel4, panel5
Chad is tasked to place yellow_trapezoid on panel6, and can reach panel5, panel6, panel7
The task is NOT done until all three cubes are sorted correctly
There are 7 panels, ordered left to right: panel1,...,panel7. They form a straight assembly line, panel1 is closed to 
panel2 and farthest from panel7
Your goal is to place blue_square on panel2, but you can only reach panel1, panel2, panel3: this means you can only 
pick cubes from these panels, and can only place cubes on these panels
At current round: 
blue_square is on panel5
pink_polygon is on panel4
yellow_trapezoid is on panel6
Never forget you are Alice! 
1. You can only pick these reachable cubes: 
2. You can only place them on these reachable panels: panel1, panel2, panel3
Think step-by-step about the task and others' response. Carefully check and correct them if they made a mistake
Improve your plans if given [Environment Feedback]

When you respond, tell others about your goal and all constraints. Respond very concisely but informatively, and do 
not repeat what others have said
Discuss with others to come up with the best plan, e.g. if your cube is out of your reach, ask others for help, and you 
can do the same for them
Propose exactly one action for yourself at the **current** round, select from [Action Options]
End your response by either: 1) output PROCEED, if the plans require further discussion, or 2) If everyone has 
made proposals and got approved, output EXECUTE
 and the final plan, must strictly follow [Action Output Instruction]!

You are Alice, before you make decisions, you should check if the [Action] is violating the [Forbidden Actions].
Your response is:

Since my target is to PUT ... on ..., and other robots ...

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Here we provide a dialogue result from the above scenario, where three agents reach the consensus
on each other’s decisions through two rounds of dialogue. Finally, Bob summarizes and outputs the
final joint action.

Since my target is to place the pink_polygon on panel4, and other robots have their respective targets with Alice needing to place 
the blue_square on panel2 and Chad needing to place the yellow_trapezoid on panel6, we need to coordinate our actions carefully. 
The blue_square is currently on panel5, which is within my reach, and Alice has requested my help to move it into her reach. I can 
pick up the blue_square from panel5 and place it on panel3, which is within both Alice's and my reach ranges. This action does not 
violate any forbidden actions as it involves moving a cube to an intersection panel to facilitate its transfer between zones. After I 
move the blue_square to panel3, Alice can then pick it up and place it on its target panel, panel2, in a subsequent round.

My pink_polygon is already on panel4, which means it is correctly placed, and I do not need to move it this round. Chad can 
proceed with his task to place the yellow_trapezoid on panel6, which is already in the correct position as well.

Given Alice's plan and the current situation, my proposal for this round is to assist Alice by moving the blue_square closer to her. 
This will allow us to progress towards completing our overall task more efficiently.

Let's confirm if this plan works for everyone, including the movement of the blue_square to panel3 by me, and if there are no 
objections or further suggestions, we can proceed with the execution.

PROCEED

Since my target is to place the yellow_trapezoid on panel6, and other robots have their respective targets with Alice needing to 
place the blue_square on panel2 and Bob needing to place the pink_polygon on panel4, we need to coordinate our actions carefully. 
The yellow_trapezoid is already correctly placed on panel6, which means my task for this round does not require any action on my 
part regarding the yellow_trapezoid.

Alice has proposed a plan for Bob to move the blue_square from panel5 to panel3, which is a feasible action and aligns with the 
goal of getting the blue_square closer to its target panel, panel2. This action does not violate any forbidden actions as it involves 
moving a cube to an intersection panel to facilitate its transfer between zones. Since my cube is already in the correct position, my 
focus this round should be on ensuring the plan aligns with the overall goal and does not interfere with my ability to maintain the 
yellow_trapezoid on panel6.

Bob has agreed to Alice's plan and has proposed to move the blue_square to panel3 to assist Alice. This action aligns with the 
collective goal of sorting all cubes into their target panels efficiently.

Given the current situation and the proposed actions by Alice and Bob, my action for this round will be to WAIT, as my cube is 
already in the correct position, and there are no immediate actions required from me to assist with the movement of the 
blue_square. My priority is to ensure the yellow_trapezoid remains on panel6 and to support Alice and Bob in their tasks as needed 
without violating any forbidden actions.

Let's confirm if this plan works for everyone, including my decision to WAIT this round, and if there are no objections or further 
suggestions, we can proceed with the execution.

PROCEED

Alice - Round 1
Since my target is to place the blue_square on panel2, and other robots have their respective targets with Bob needing to place the 
pink_polygon on panel4 and Chad needing to place the yellow_trapezoid on panel6, we need to coordinate our actions. The 
blue_square is currently out of my reach on panel5, so I will need Bob's help to move it into my reach. Bob can pick up the 
blue_square from panel5 and place it on panel3, which is within both of our reach ranges. This action does not violate any 
forbidden actions as it involves moving a cube to an intersection panel to facilitate its transfer between zones. After Bob moves the 
blue_square to panel3, I can then pick it up and place it on its target panel, panel2, in a subsequent round.

Bob and Chad can proceed with their tasks as planned, with Bob moving the pink_polygon to panel4 as intended, and Chad placing 
the yellow_trapezoid on panel6. However, for this round, Bob's priority should be to assist me by moving the blue_square closer.

Let's discuss this plan and make sure it aligns with everyone's understanding and capabilities. If we all agree, we can proceed with 
the execution.

PROCEED

Bob - Round 1

Chad - Round 1

Dialogues

The prompt and response in Sandwich domain are also similar under the setting of observation-based
decision making.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Since my target is to place the blue_square on panel2, and other robots have their respective targets with Bob needing to place the 
pink_polygon on panel4 and Chad needing to place the yellow_trapezoid on panel6, we need to coordinate our actions carefully. 
The blue_square is currently on panel5, which is out of my reach. I need Bob's assistance to move it into my reach. However, upon 
reviewing the constraints and forbidden actions, I realize that directly moving cubes to their target panels without violating any 
rules is our primary goal.

Bob can assist by moving the blue_square from panel5 to panel3, which is within both of our reach ranges. This action is crucial as 
it does not violate any forbidden actions; it involves moving a cube to an intersection panel (panel3) to facilitate its transfer 
between zones. After Bob moves the blue_square to panel3, I can then pick it up and place it on its target panel, panel2, in a 
subsequent round.

Bob's task of placing the pink_polygon on panel4 does not require immediate action since it's already in the correct position. 
Chad's task involves the yellow_trapezoid, which is also correctly placed on panel6. Therefore, Chad does not need to take any 
action regarding the yellow_trapezoid this round.

Given the current situation, my proposal for this round is for Bob to assist by moving the blue_square closer to me, while I wait for 
the blue_square to be within my reach. Chad can also wait since his cube is already in the correct position.

Let's confirm if this plan works for everyone. If there are no objections or further suggestions, we can proceed with the execution.

PROCEED

Since my target is to place the pink_polygon on panel4, and other robots have their respective targets with Alice needing to place 
the blue_square on panel2 and Chad needing to place the yellow_trapezoid on panel6, we need to coordinate our actions carefully. 
The pink_polygon is already correctly placed on panel4, which means my task for this round does not require any action regarding 
the pink_polygon.

Alice has proposed that I assist by moving the blue_square from panel5 to panel3 to bring it within her reach. This action is within 
my capabilities and does not violate any forbidden actions, as it involves moving a cube to an intersection panel (panel3) to 
facilitate its transfer between zones. After moving the blue_square to panel3, Alice can then pick it up and place it on its target 
panel, panel2, in a subsequent round.

Chad's task involves the yellow_trapezoid, which is already correctly placed on panel6. Therefore, Chad does not need to take any 
action regarding the yellow_trapezoid this round and can wait.

Given the current situation and the proposed actions, my action for this round will be to move the blue_square from panel5 to 
panel3 to assist Alice. This will allow us to progress towards completing our overall task more efficiently. Since my pink_polygon 
is already in the correct position, and Chad's yellow_trapezoid is also correctly placed, there are no further actions required from 
me or Chad regarding our respective cubes.

Let's confirm if this plan works for everyone. If there are no objections or further suggestions, we can proceed with the execution.

EXECUTE
NAME Alice ACTION WAIT
NAME Bob ACTION PICK blue_square PLACE panel3
NAME Chad ACTION WAIT

Alice - Round 2

Bob - Round 2 (Conclusion)

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

J.3 ACTION CHECKER PROMPT AND RESPONSE EXAMPLE

We present the prompt and response example of the action checker in a state action pair of the
Sandwich domain.

You are an action checker. You should check if the [Action] is valid based on the given [State].

[Checker Instruction]
You should follow the check instructions in [Detailed Constraints for Action] to check the [Action] step-by-step. 
Take the mistakes in the [Action Mistakes] into consideration.

The following lists the [Task Description] and [Action Space Definition]. 
[Task Description]
Task: Cooperative Cooking in a Multi-Agent System

Agents: Chad and Dave
Chad - Can only PICK food items from the right side of the table.
Dave - Can only PICK food items from the left side of the table.

Objective: Collaboratively prepare a meal named "[bacon_sandwich]". The food items of target state must be 
assembled in the following sequence: bread_slice1, tomato, cheese, bacon, bread_slice2. 

[Action Space Definition]
1) PICK <obj>: Pick one food <item>. Only PICK if gripper is empty. PICK only the correct next item according to 
the recipe
2) PUT <obj1> <obj2>: PUT <obj1> on top of <obj2>. <obj1> can be food, <obj2> can be food or cutting_board
3) WAIT, do nothing
Only one robot can PUT each round. You must PICK up an item before PUT
[Action Output Instruction]
Must first output 'EXECUTE\n', then give exactly one action per robot, put each on a new line
Dave can only pick up the food item on the left side of the table. Chad can only pick up the food item on the right 
side of the table

[Detailed Constraints for Action]
Check the following constraints and Fill in blanks in '[]'. Check these constraints one by one: 1, 2...
* Get [Extended Recipe Order]: [cutting_board, bread_slice1, ...] (cutting_board + [Recipe Order])
1. [Line Number Check] The line of the actions should be less than or equal to two.
2. [Agent Order Check] The first agent should be Chad and the second agent should be Dave.
3. [WAIT Number Check] The number of WAIT should be less than or equal to one.
4. [PUT Number Check] The number of PUT should be less than or equal to one.
5. [PICK Side Check] PICK the food item on the side of the robot.
6. [PICK Robot State Check] PICK the food item only if the gripper is empty.
7. [PICK Food State Check] PICK the food item only if the food item's state is not 'atop <obj>'.
8. [PUT Availability Check 1] If <obj2> is cutting_board, <obj1> must be bread_slice1.
9. [PUT Availability Check 2] If <obj2> is not cutting_board, state of <obj2> should equal to the food item before 
<obj2> in the [Extended Recipe Order].
10. [PUT Availability Check 3] If no other food item is 'atop <obj2>', this constraint is valid directly.
11. [PUT Order Check 1] <obj1> should equal to the first item in [Reachable Items].
12. [PUT Order Check 2] <obj2> should equal to the  food item before <obj1> in [Extended Recipe Order].
13. [PICK Order Check] For PICK action, robot should PICK the first food item in its [Reachable Items]. 

[Action Mistakes]
No action mistakes.

Now you should check the following [Action] based on the given [State]
[State]
[Food States]
bread_slice1: atop cutting_board
bread_slice2: gripped by Dave
bacon: atop cheese
cheese: atop tomato
tomato: atop bread_slice1
cucumber: on right side
ham: on right side
beef_patty: on right side
[Robot States]
1. Chad's gripper is empty
2. Dave's gripper is holding bread_slice2

EXECUTE
NAME Chad ACTION WAIT
NAME Dave ACTION PUT bread_slice2 bacon

[Start]
[Extended Recipe Order]: ..., the first item in [Reachable Items]: ...
1. 

Action Checker

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Now you should check the following [Action] based on the given [State]
[State]
[Food States]
bread_slice1: atop cutting_board
bread_slice2: gripped by Dave
bacon: atop cheese
cheese: atop tomato
tomato: atop bread_slice1
cucumber: on right side
ham: on right side
beef_patty: on right side
[Robot States]
1. Chad's gripper is empty
2. Dave's gripper is holding bread_slice2

EXECUTE
NAME Chad ACTION WAIT
NAME Dave ACTION PUT bread_slice2 bacon

[Start]
[Extended Recipe Order]: ..., the first item in [Reachable Items]: ...
1. 

Action Checker

Now you should check the following [Action] based on the given [State]
[State]
[Food States]
bread_slice1: atop cutting_board
bread_slice2: gripped by Dave
bacon: atop cheese
cheese: atop tomato
tomato: atop bread_slice1
cucumber: on right side
ham: on right side
beef_patty: on right side
[Robot States]
1. Chad's gripper is empty
2. Dave's gripper is holding bread_slice2

EXECUTE
NAME Chad ACTION WAIT
NAME Dave ACTION PUT bread_slice2 bacon

[Start]
[Extended Recipe Order]: ..., the first item in [Reachable Items]: ...
1. 

Action Checker

[Extended Recipe Order]: [cutting_board, bread_slice1, tomato, cheese, bacon, bread_slice2]. 

1. [Line Number Check] The line of the actions should be less than or equal to two: [yes]
2. [Agent Order Check] The first agent should be Chad and the second agent should be Dave: [yes]
3. [WAIT Number Check] The number of WAIT should be less than or equal to one: [yes]
4. [PUT Number Check] The number of PUT should be less than or equal to one: [yes]
5. [PICK Side Check] PICK the food item on the side of the robot: [not applicable]
6. [PICK Robot State Check] PICK the food item only if the gripper is empty: [not applicable]
7. [PICK Food State Check] PICK the food item only if the food item's state is not 'atop <obj>': [not applicable]
8. [PUT Availability Check 1] If <obj2> is cutting_board, <obj1> must be bread_slice1: [not applicable]
9. [PUT Availability Check 2] If <obj2> is not cutting_board, state of <obj2> should equal to the food item before 
<obj2> in the [Extended Recipe Order]: [yes]
10. [PUT Availability Check 3] Get <item>s in [State] whose state matches '<item>: atop bacon': pool=[]. If no 
other food item is 'atop bacon' (meaning pool is empty), this constraint is valid directly: [yes]
11. [PUT Order Check 1] <obj1> should equal to the first item in [Reachable Items]: [yes]
12. [PUT Order Check 2] <obj2> should equal to the  food item before <obj1> in [Extended Recipe Order]: [yes]
13. [PICK Order Check] For PICK action, robot should PICK the first food item in its [Reachable Items]: [not 
applicable]

[Conclusion]
The [Action] is valid based on the given [State].

The action checker is based on state in both single-agent and multi-agent settings, so the checking
process for all tasks is similar.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

J.4 WORLD MODEL PROMPT AND RESPONSE EXAMPLE

We present the prompt and response example of the world model in a state action pair of the
BlocksWorld task.

You are a state predictor. You will be given a [State] and an [Action] as input. should predict the [State] after the 
[Action] is applied to the given [State]. You should follow the [Predicting Instruction] to predict the [State].

[Predicting Instruction]
You will be provided with the [State] and the [Action] of the agent. You should think step by step to output the 
[Prediction] of the next [State] based on the given [State] and [Action]. The format of the [Prediction] should follow 
the [Detailed Constraints for State].
Please output your thinking process step-by-step by following theses steps:
The most important thing: Follow the instructions step-by-step and ensure each step is completed precisely. Repeat 
the instructions and fill in the blanks '[]' without introducing any modifications or additional content.
1. [Interaction Item Pool]: initialize the pool of the blocks that the agent is interacting with. It is a empty list at the 
beginning: pool={}.
2. [Action Forward Rule]: Follow these steps to predict the [Prediction]:
  + If the action is "PICK UP" or "UNSTACK", the state of <object> in the [Prediction] should be "in hand". The 
state of your hand in the [Prediction] should be "Holding <object>". Add <object> to the pool: pool=[].
  + If the action is "PUT DOWN", the state of <object> in the [Prediction] should be "on table". The state of your 
hand in the [Prediction] should be "Empty". Add <object> to the pool: pool=[].
  + If the action is "STACK ON", the state of <object> in the [Prediction] should be "on <target>". The state of your 
hand in the [Prediction] should be "Empty". Add <object> to the pool: pool=[].
3. [Prediction Conclusion]: Conclude the [Prediction] based on the [Action Forward Rule].
  + The format of the [Prediction] should follow the [Detailed Constraints for State].
  + The blocks that are not present in the pool should not change their state.

The following lists the [State Space Definition].
[State Space Definition]
Define the state of the scenarios: blocks and hand.
1. [Hand State]: The state of the hand. It can be "Empty" or "Holding <object>", where <object> is a block.
2. [Block States]: The state of each block. It can only be one of ["on <object>", "on table", "in hand"]. The blocks 
should be listed in this order: blue block, orange block, red block, yellow block.

[State Template]
[State]
[Hand State]
<hand state>
[Block States]
blue block: <block state>
orange block: <block state>
red block: <block state>
yellow block: <block state>

[Detailed Constraints for State]
The following paragraphs are the detailed constraints for State. There are three main <check items>: [Title Check], 
[Hand State Check], and [Block States Check].
1. [Title Check] A header titled [State].
2. [Hand State Check] A header titled [Hand State]. Then, list the Hand State.
  + Hand state must be one of ["Empty", "Holding <object>"], where <object> is a block (e.g. "Holding blue block").
3. [Block States Check] A header titled [Block States]. Then, list the states of each block.
  + Each line represents the state of one block item.
  + The block items must be listed in this order: blue block, orange block, red block, yellow block.
  + The <block state> specifies the state of the block. It can only be "on <object>", "on table" or "in hand" (e.g. 
"blue block: on table", "orange block: on red block", "red block: in hand").

[Prediction Mistakes]
No prediction mistakes.

Now, you should predict the next [State] after the following [Action] is applied to the given [State]. You have to 
follow the instructions strictly rather than your own thoughts.

[State]
[Hand State]
Holding blue block
[Block States]
blue block: in hand
orange block: on yellow block
red block: on orange block
yellow block: on table

EXECUTE
STACK blue block ON red block

World Model

The response of the world model is relatively concise, as it only needs to infer the next state according
to the given instructions.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

You are a state predictor. You will be given a [State] and an [Action] as input. should predict the [State] after the 
[Action] is applied to the given [State]. You should follow the [Predicting Instruction] to predict the [State].

[Predicting Instruction]
You will be provided with the [State] and the [Action] of the agent. You should think step by step to output the 
[Prediction] of the next [State] based on the given [State] and [Action]. The format of the [Prediction] should follow 
the [Detailed Constraints for State].
Please output your thinking process step-by-step by following theses steps:
The most important thing: Follow the instructions step-by-step and ensure each step is completed precisely. Repeat 
the instructions and fill in the blanks '[]' without introducing any modifications or additional content.
1. [Interaction Item Pool]: initialize the pool of the blocks that the agent is interacting with. It is a empty list at the 
beginning: pool={}.
2. [Action Forward Rule]: Follow these steps to predict the [Prediction]:
  + If the action is "PICK UP" or "UNSTACK", the state of <object> in the [Prediction] should be "in hand". The 
state of your hand in the [Prediction] should be "Holding <object>". Add <object> to the pool: pool=[].
  + If the action is "PUT DOWN", the state of <object> in the [Prediction] should be "on table". The state of your 
hand in the [Prediction] should be "Empty". Add <object> to the pool: pool=[].
  + If the action is "STACK ON", the state of <object> in the [Prediction] should be "on <target>". The state of your 
hand in the [Prediction] should be "Empty". Add <object> to the pool: pool=[].
3. [Prediction Conclusion]: Conclude the [Prediction] based on the [Action Forward Rule].
  + The format of the [Prediction] should follow the [Detailed Constraints for State].
  + The blocks that are not present in the pool should not change their state.

The following lists the [State Space Definition].
[State Space Definition]
Define the state of the scenarios: blocks and hand.
1. [Hand State]: The state of the hand. It can be "Empty" or "Holding <object>", where <object> is a block.
2. [Block States]: The state of each block. It can only be one of ["on <object>", "on table", "in hand"]. The blocks 
should be listed in this order: blue block, orange block, red block, yellow block.

[State Template]
[State]
[Hand State]
<hand state>
[Block States]
blue block: <block state>
orange block: <block state>
red block: <block state>
yellow block: <block state>

[Detailed Constraints for State]
The following paragraphs are the detailed constraints for State. There are three main <check items>: [Title Check], 
[Hand State Check], and [Block States Check].
1. [Title Check] A header titled [State].
2. [Hand State Check] A header titled [Hand State]. Then, list the Hand State.
  + Hand state must be one of ["Empty", "Holding <object>"], where <object> is a block (e.g. "Holding blue block").
3. [Block States Check] A header titled [Block States]. Then, list the states of each block.
  + Each line represents the state of one block item.
  + The block items must be listed in this order: blue block, orange block, red block, yellow block.
  + The <block state> specifies the state of the block. It can only be "on <object>", "on table" or "in hand" (e.g. 
"blue block: on table", "orange block: on red block", "red block: in hand").

[Prediction Mistakes]
No prediction mistakes.

Now, you should predict the next [State] after the following [Action] is applied to the given [State]. You have to 
follow the instructions strictly rather than your own thoughts.

[State]
[Hand State]
Holding blue block
[Block States]
blue block: in hand
orange block: on yellow block
red block: on orange block
yellow block: on table

EXECUTE
STACK blue block ON red block

World Model

[Interaction Item Pool]: initialize the pool of the blocks that the agent is interacting with. It is an empty list at the 
beginning: pool={}.
[Action Forward Rule]: List the action: [STACK blue block ON red block], the state in the [Prediction] is changed 
by the [Action]. 
- If the action is "STACK ON", list the <object> of action: [blue block], and <target> of action: [red block]. The 
state of <object> in the [Prediction] should be changed to "on red block". The state of your hand in the [Prediction] 
should be changed to "Empty". Add <object> to the pool: pool=[blue block].

[Prediction Conclusion]: 
[State]
[Hand State]
Empty
[Block States]
blue block: on red block
orange block: on yellow block
red block: on orange block
yellow block: on table

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

J.5 PREDICTION CHECKER PROMPT AND RESPONSE EXAMPLE

We present the prompt and response example of the prediction checker in a state action pair of the
Sort domain.

You are a prediction checker. You will receive a [State], an [Action], and the subsequent [Prediction]. You should 
check if the [Prediction] is valid based on the given [State] and [Action].  You should follow the [Checker 
Instruction] to check the [Action]. 

[Checker Instruction]
You should follow the instructions in [Detailed Constraints for Prediction] to check if the [Prediction] is valid based 
on the given [State] and [Action]. Take the mistakes in the [Prediction Mistakes] into consideration.

The following lists the [Detailed Constraints for Prediction]. 
[Detailed Constraints for Prediction]
Check the following constraints and Fill in blanks in '[]'. Check these constraints one by one: 1, 2... Only get your 
conclusion according to the results of these checks! 
* Get [Interaction Item Pool]: list all PICKed objects in the [Action]: <pool>=[].
1. [Header Check] A header titled [State] -> A header titled [Cube States] -> List the Cube States.
2. [Cube Order Check] Cubes must be listed in the following order: [blue_square, pink_polygon, yellow_trapezoid].
3. [Cube Format Check] Each line should be formatted as "<cube_name> is on <panel_name>". Three lines in total.
4. [Cube State Check] Don't have two cubes on the same panel.
5. [PICK & PLACE Rule Check] For PICK & PLACE, state of <object> should be '<object> is on <target>'.
* When checking, you should repeat the prompt and fill in blanks, replace <obj> and <agent> with their true values, 
and give the line conclusion (yes/no/not applicable). For example:
4. [Cube State Check] Repeat cubes' locations: [panel1, panel2, panel3]. Don't have two cubes on the same panel: 
[yes]. Line conclusion: [yes]
* Constraint 5 may have multiple agents of checking. If so, you should output results separately. For example:
5.1 [PICK & PLACE Rule Check] For Alice 's action: [PICK blue_square PLACE panel2],  repeat 
<object>=[blue_square], <target>=[panel2], state of <object> in the prediction: [blue_square is on panel2], it should 
be '<object> is on <target>': [yes]. Line conclusion: [yes]
5.2 [PICK & PLACE Rule Check] For Bob's action: ... 5.3 ...

[Prediction Mistakes]
No prediction mistakes.

Now you should check the following [Prediction] based on the given [State] and [Action]. You have to check the 
instructions step-by-step strictly rather than your own thoughts.
The original state is:
[State]
[Cube States]
blue_square is on panel6
pink_polygon is on panel4
yellow_trapezoid is on panel2

The action is:
EXECUTE
NAME Alice ACTION PICK yellow_trapezoid PLACE panel1
NAME Bob ACTION WAIT
NAME Chad ACTION PICK blue_square PLACE panel5

The prediction is:
[State]
[Cube States]
blue_square is on panel5
pink_polygon is on panel4
yellow_trapezoid is on panel1

[Start]
Get [Interaction Item Pool]: list all ...
1. [Header Check]
2. [Cube Order Check] ...
[Conclusion] ...

Prediction Checker

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Due to passing all the checks, this prediction is considered correct.

[Start]
Get [Interaction Item Pool]: list all PICKed objects in the [Action]: <pool>=[yellow_trapezoid, blue_square].

1. [Header Check] A header titled [State] -> A header titled [Cube States] -> List the Cube States: [yes].
2. [Cube Order Check] Cubes must be listed in the following order: [blue_square, pink_polygon, yellow_trapezoid]: 
[yes].
3. [Cube Format Check] Each line should be formatted as "<cube_name> is on <panel_name>". Three cube lines in 
total: [yes].
4. [Cube State Check] Repeat cubes' locations: [panel5, panel4, panel1]. Don't have two cubes on the same panel: 
[yes]. Line conclusion: [yes].
5. [PICK & PLACE Rule Check]
5.1 For Alice's action: [PICK yellow_trapezoid PLACE panel1], repeat <object>=[yellow_trapezoid], 
<target>=[panel1], state of <object> in the prediction: [yellow_trapezoid is on panel1], it should be '<object> is on 
<target>': [yes]. Line conclusion: [yes].
5.2 For Bob's action: [WAIT], no object interaction to check. Line conclusion: [not applicable].
5.3 For Chad's action: [PICK blue_square PLACE panel5], repeat <object>=[blue_square], <target>=[panel5], state 
of <object> in the prediction: [blue_square is on panel5], it should be '<object> is on <target>': [yes]. Line 
conclusion: [yes].

[Conclusion] All checks are valid based on the provided [Action] and the resulting [Prediction]. The prediction is 
accurate.

47


	Introduction
	Background
	Method
	Optimizing LLM Agent with Q-Planner
	LLM-based Imagination for MLAQ
	Mixed-Examination for Imaginary Transitions

	Experiments
	Experimental Setup
	Main Results
	MLAQ with Multiple Epochs
	Ablation Results
	Self-Examination Analysis

	Relation to Other Methods
	Conclusion
	Detailed Descriptions of Memory Scope
	Related Work
	Proof for Theorem 1
	Experimental Environments
	BlocksWorld
	RoCo-benchmark

	Experiments on Crafter
	Pseudo-code for the Overall Algorithm
	Overall algorithm for MLAQ agent
	LLM-based Imagination for MLAQ
	Expand the replay buffer from the memory
	Q function update

	Detailed Prompt Template
	Basic policy prompt
	Action checker prompt
	World model prompt
	Prediction checker prompt

	Detailed Experiment Results
	Basic Policy Analysis for Multi-Agent Tasks
	Main Results in the Sandwich domain

	Hyper-Parameters
	Prompt Example
	Policy Prompt and Response of the State-based Decision-Making
	Policy Prompt and Response of the Observation-based Decision-Making
	Action Checker Prompt and Response Example
	World Model Prompt and Response Example
	Prediction Checker Prompt and Response Example


