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Abstract

Recent advances in spatial omics methods enable the molecular composition of
human tumors to be imaged at micron-scale resolution across hundreds of patients
and ten to thousands of molecular imaging channels. Large-scale molecular imag-
ing datasets offer a new opportunity to understand how the spatial organization
of proteins and cell types within a tumor modulate the response of a patient to
different therapeutic strategies and offer potential insights into the design of novel
therapies to increase patient response. However, spatial omics datasets require
computational analysis methods that can scale to incorporate hundreds to thou-
sands of imaging channels (ie colors) while enabling the extraction of molecular
patterns that correlate with treatment responses across large number of patients
with potentially heterogeneous tumors presentations. Here, we have develop a
machine learning strategy for the identification and design of signaling molecule
combinations that predict the degree of immune system engagement with a specific
patient tumors. We specifically train a classifier to predict T cell distribution in
patient tumors using the images from 30-40 molecular imaging channels. Second,
we apply a gradient descent based counterfactual reasoning strategy to the classifier
and discover combinations of signaling molecules predicted to increase T cell infil-
tration. Applied to spatial proteomics data of melanoma tumor, our model predicts
that increasing the level of CXCL9, CXCL10, CXCL12, CCL19 and decreasing
the level of CCL8 in melanoma tumor will increase T cell infiltration by 10-fold
across a cohort of 69 patients. The model predicts that the combination is many
fold more effective than single target perturbations. Our work provides a paradigm
for machine learning based prediction and design of cancer therapeutics based on
classification of immune system activity in spatial omics data.

1 Introduction

Recent advances in spatial proteomic and spatial genomics methods enable the molecular composition
of a human tissues to be captured across hundreds to thousands of imaging channles at micron-scale
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resolution [1–4]. Spatial genomics and proteomic methods use a variety of strategies to bar-code
molecules including protein and mRNA so that many different types of proteins and mRNA can be
detected in a single sample at high-resolution. Traditional tissue imaging methods like MRI, PET or
H&E staining are either limited to gross tissue architecture, without providing molecular information,
or are limited to a small number (1,2) of molecular channels. Therefore, conventional bioimaging
data sets have one or two channels of information yielding one or two images per tissue region and are
very similar to the conventional RGB images for which most ML methods from computer vision were
developed [5]. Recent multiplexed imaging data contains orders-of-magnitude more channels per
image due to new techniques such as imaging mass cytometry (IMC) [1] and sequential fluorescence
in situ hybridization (seqFISH) [2], which enables simultaneous detection of proteins/mRNAs for
40/20,000+ genes in tissues at single micron resolution, respectively. These highly multiplexed data
sets tends to yield thousands of images per tissue region where each image pixel provides information
on the concentration of a specific molecular species (eg a protein abundance, an mRNA abundance)
in a micron sized region of the tissue.

Spatial-omics and multiplexed imaging opens new opportunities for ML-based biomedical discovery.
Classically, very little is known about the molecular composition of human tissues in health and
disease as classic pathology methods focus primarily on cellular morphology and gross markers
like nucleus size and tissue boundary shape. Spatial-omics methods provide detailed molecular
information on the signaling molecules and cell-types within a tumor, allowing molecular scale
investigation of how different cell-types, for example tumor cells and immune cells, interact within a
tumor and what specific signaling and regulatory processes might distinguish patients that respond
to a specific type of therapy from non-responders [6]. Importantly, generating highly-multiplexed
spatial data across hundreds of patients/conditions opens up the possibility of creating ML methods
that may be powerful enough to discover new disease treatment strategies directly from tissue images,
going beyond computer vision-based disease detection [7].

As an important specific example, cancer immunotherapy treats cancer by enabling the body’s own
immune system to kill cancer cells, but many patients do not respond to immunotherapy and this
is thought to be due to a lack of CD8+ T cell infiltration into the tumor core. T cell infiltration is
influenced by numerous factors including stromal structures and the spatial distribution of different
cell populations and signaling molecules in the tumor microenvironment (TME). Existing strategies
for improving CD8+ T cell infiltration focus on single-target perturbations and have shown limited
efficacy. In this work, we developed a machine learning strategy to discover molecular tumor
perturbations predicted to drive T cell infiltration by identifying molecular determinants of T cell
infiltration from large-scale spatial-omic datasets. Specifically, our strategy involves training a
classifier network to predict the T cell marker channels (representing T cell distribution) using other
(non-marker) channels in IMC images. Next, we apply a gradient descent-based counterfactual
reasoning procedure to the classifier network to find combinations of molecular perturbations that
increase the predicted level of T cell infiltration. We showed that convolutional neural networks
(CNNs) can achieve over 70% precision and 60% recall in predicting T cell localization from IMC
images of breast and melanoma tumors from human patients. Furthermore, our model discovered
a combinatorial therapy that is predicted to increase T cell infiltration in the majority of patients
(∼ 30) with immune-excluded melanoma tumor from the dataset. This therapeutic strategy involves
increasing the tumoral levels of chemokine CXCL9, CXCL10, CCL19, and CXCL12, and decreasing
the level of CCL8. The combinatorial strategy motivates the development of engineered proteins that
achieve combinatorial function in a small number of molecular vehicles while being retained in the
TME after administration.

2 Methods

2.1 Framework overview

We developed a machine learning-based optimization framework to discover molecular perturbations
of tumors that can drive T cell infiltration by learning molecular features of IMC images of TMEs
that are predictive of immune cell engagement. Figure 2A shows an IMC image with d molecular
channels, where we refer to a subset of the channels as marker channels and the rest as predictor
channels. The general logic of our framework is to train a classifier network to predict a specific
aspect of the marker channels in the IMC images given the predictor channels. In our example,
we specifically use signaling molecules and chemokines (cell guidance molecules) to predict the
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Figure 1: Images of tumors representing immune-inflamed and immune-excluded phenotypes visual-
ized by a T cell marker (green) and a tumor marker (magenta), image adopted from [8].

abundance and state of T-cells within a local tumor region. Then we apply a formal ‘counterfactual
reasoning procedure’ to the input data where we perform gradient descent on the predictor channels
for patients with low T-cell infiltration. The gradient descent procedure adjusts molecular channels
pixel by pixel to discover changes to the tumor signaling environment that the classifier network
predicts will increase T-cell infiltration, allowing us to discover perturbations to the predictor channels
that alter the classifier’s prediction of the marker channels to a new, desired value.

Applying our framework to the problem of CD8+ T cell infiltration, we set marker channels to CD8+
T cell biomarkers. We train a classifier to predict the presence of T cells within an IMC image patch
given all other channels (predictor). Then we use this classifier to search for changes to the predictor
channels of tumor IMC images that can alter the classifier’s prediction from T cells being absent to T
cells being present. This altered image, known as a counterfactual instance in explainable AI [10],
describes one perturbation of the TME that the model predicts will improve T cell infiltration.

2.2 Classifier training

We trained two classifiers, a multilayer perceptron (MLP) and a convolutional neural network (CNN),
to predict the presence of non-exhausted CD8+ T cells from IMC images. Figure 2B shows that
we first divided IMC images into 40 × 40 µm (40 × 40 pixels) patches. To prepare each patch for
network training, we removed four channels (CD3, CD8, Lag-3, PD-1) from which the label of each
patch ("T cell" vs "no T cell") was determined, and we also removed signals from any channel that
belong to the T cells whose distribution we are trying to predict (see [9] for detail). This second step
of removing signals belonging to T cells can be carried out without cell segmentation, through an
approximate procedure where all signals within a 5 µm radius of T cell marker signals are removed.
We then trained a CNN to compute the probability an IMC patch contains T cells given all remaining
channels. For the MLP model, instead of having individual pixel intensity as input features, we trained
the model to perform the same prediction using only mean channel intensities x0 ∈ Rd averaged over
the whole patch (Figure 2B). Note the MLP is still taking advantage of spatial information in the data
since each mean intensity vector characterizes a localized tissue region.
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Figure 2: A ML-based optimization framework for discovering TME perturbations that drive T cell
infiltration in immune-cold tumors. A) IMC image of a melanoma tumor with four channels shown
[9]. B) Pipeline for MLP and CNN classifier training. C) Procedure for perturbation optimization
which involves computing an optimal perturbation vector δ per IMC patch and taking the median
across all such perturbations to obtain a tumor-wide perturbation vector. The positive values (shaded
red) of δ correspond to increases in channel intensity, negative values (shaded blue) correspond to
decreases in channel intensity. D) cartoon of the optimization algorithm in a 2D feature space, shaded
region contains all instances that would be predicted by the classifier f as having T cells, green circles
represent instances from training data, the one with red circle is proto from Equation 4.

2.3 Perturbation optimization via counterfactual reasoning

Given an IMC patch i without T cells, and a classifier f as described above, our goal is to find a
perturbation δ(i) for the patch such that f classifies the perturbed patch as having T cells (Figure 2C).
For CNN models, δ(i) ∈ Rw×l×d is a 3D tensor that describes changes made for all d channel, at
each pixel of the w × l pixel patch. For MLP models, δ(i) ∈ Rd is a vector where each element
represents changes to the average intensity of a channel in patch i. This distinction between the
two models highlights differences in the type of perturbations that each model can discover. The
MLP model can find tissue-wide perturbation such as changing the overall level of an extracellular
molecule, whereas the CNN model allows for cell-type specific perturbations (i.e. cell type-specific
viral vectors) since perturbations are now being computed at the level of micron-scale pixels.

For simplicity, we focus on the MLP model for optimization. Given a MLP classifier f and a
IMC patch i having mean channel intensity x

(i)
0 such that f(x(i)

0 ) = P(T cells present) < p, where
p > 0 is the classification threshold below which the classifier predicts no T-cell, we aim to obtain a
perturbation δ(i) such that f(x(i)

0 + δ(i)) > p, by solving the following optimization problem adopted
from [11],

δ(i) = min
δ

Lpred(x
(i)
0 , δ) + Ldist(δ) + Lproto(x

(i)
0 , δ), (1)
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such that

Lpred(x
(i)
0 , δ) = cmax(−f(x

(i)
0 + δ), −p), (2)

Ldist(δ) = β∥δ∥1 + ∥δ∥22, (3)

Lproto(x
(i)
0 , δ) = θ∥x(i)

0 + δ − proto∥22, (4)

where proto is an instance of the training set classified as having T cells, defined by first building a
k-d tree of training instances classified as having T cells and setting the k-nearest item in the tree
(in terms of euclidean distance to x

(i)
0 ) as proto. The first loss term in Equation 1 corresponds to an

efficacy criteria whereas the second and third loss term represent key feasibility criteria that enables
us to discover perturbations that are clinically feasible:

1. Lpred encourages f(x(i)
0 + δ) to become greater than p, meaning we want a δ that makes

the model predict that the perturbed patch has T cells.

2. Ldist minimizes the distance between the original instance x
(i)
0 and the counterfactual

instance x
(i)
cf = x

(i)
0 + δ with elastic net regularization to generate sparse perturbations, in

other words we favor perturbations that require making as few changes as possible since
perturbations are often difficult to make in a real-world clinical setting.

3. Lproto explicitly guides the perturbation towards a counterfactual instance xcf which falls
in the distribution of the class of IMC patches containing T cells. This loss term helps to
generate counterfactual instances that are similar to what has already been observed in IMC
image of immune-inflamed tumors, making the predicted improvement in T cell infiltration
more likely to hold in practice.

Figure 2D illustrates how the optimization algorithm selects the “best” perturbation through a simple
schematic. Given the original instance x0 which lacks T cells, the algorithm obtains xcf by moving
for the shortest distance possible, in the direction of the nearest training instance that contains T cells.
Our strategy above may find different perturbations for different patches of a tumor, while in practice
it is more feasible to apply the same perturbations to the whole tumor. We obtain a tumor-wide
perturbation by taking the median across the set of patch-wise perturbations {δ(i)}i.

3 Results

3.1 Datasets

We applied our optimization framework to two published IMC datasets of tumors from melanoma
and breast cancer patients [9, 12]. The melanoma dataset contains IMC images of 159 tumor cores
from 69 patients. Each core was approximately 1mm in diameter, imaged at 1 µm resolution across
41 channels, corresponding to different proteins and mRNA measured [9]. The breast cancer dataset
contains IMC images of 749 breast tumor cores from 693 patients [12]. Most tissue images (93%)
were 0.6mm in diameter, has 1um resolution across 37 channels.

3.2 Classifier performance

Across IMC images of both melanoma and breast tumor, our simple MLP model was able to effectively
predicted T cell distribution. Figure 3A shows some example predictions made by the trained MLP
model, which was applied to every patch of different tumor cores. The model was able to capture the
general distribution of T cells quite well. In addition, Figure 3B shows that our MLP model is able to
accurately predict the proportion of patches in a tumor image that contains T cells, which is especially
important given this metric is directly associated with the infiltration status of a tumor. Images with
low proportion of tumor patches containing T cell correspond to immune-excluded tumors and images
with high proportion of tumor patches containing T cells correspond to immune-inflamed tumors.

Across all classification metrics, Table 1 shows CNN models outperform MLP models, suggesting
that even at ∼ 40um scale (size of patch), there may be meaningful spatial structures that influence T
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cell localization. This performance difference between models is especially evident for breast tumors
in comparison to melanoma tumors. Lastly, the precision of a classifier is especially important for
our application because we want to be confident that when a perturbed patch is predicted to have T
cells, that it is indeed true. By setting the classification threshold p = 0.8, we obtain high precision
across all four models, so we set p = 0.8 for Equation 2. Confidence intervals in Table 1 obtained
by retraining each model 8 times with different, randomized train-validation-test split and network
initialization.

Figure 3: MLP prediction performance A) Predicted and actual T cell distribution from melanoma
and breast tumor dataset (classification threshold p = 0.5). B) Predicted and true proportion of
patches with T cells, each dot corresponds to a tumor core, diagonal line corresponds to perfect
prediction.

Table 1: Performance of neural network models trained on different tumor IMC images to predict
the presence of T cells, 95% confidence interval shown for different train-validation-test split and
initialization, (see Table 3 for p = 0.5)

p = 0.8

Cancer type Model Precision Recall F1 AUC MCC

Melanoma MLP 0.79± 1% 0.40± 3% 0.52± 1% 0.92± .2% 0.53± 1%
Melanoma CNN 0.82± 2% 0.45± 3% 0.60± 2% 0.94± .5% 0.55± 3%
Breast MLP 0.75± 3% 0.21± 5% 0.33± 3% 0.94± .2% 0.47± 1%
Breast CNN 0.88± 1% 0.32± 2% 0.47± 2% 0.97± .1% 0.63± 2%

3.3 Perturbation performance

Applying our counterfactual reasoning procedure using the MLP classifier trained on melanoma
IMC images, we discovered a combinatorial therapy predicted to be highly effective in improving
T cell infiltration in melanoma patients. For simplicity, we restricted the optimization procedure to
only perturb the level of chemokines, which is a family of secreted proteins that are known for their
ability to stimulate cell migration [13]. Figure 4A shows perturbations computed on IMC patches
of melanoma tumors. Across all patches, the levels of CXCL9, CXCL10, CXCL12, and CCL19
are consistently raised and CCL8 levels are consistently reduced. Indeed, these five perturbations
are all that remains after taking the median across all perturbations (bar graph). Figure 4B shows
that after applying these five perturbations to the IMC image of a tumor, T cells infiltration level
(roughly corresponds to the percent of tumor cells with T cells nearby) is predicted to increase by 10
fold. Furthermore, Figure 4C shows that this predicted improvement in T cell infiltration holds across
nearly all 34 patients with immune-excluded tumors.

The combinatorial nature of our perturbation strategy is crucial to its effectiveness. Figure 4D shows
that when each of the five perturbations are applied in isolation, the median T cell infiltration level
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Figure 4: A) Normalized chemokine perturbations computed across IMC patches (row) lacking T cells;
Bar graph shows the median of each column of the heatmap, in terms of relative change in intensity due
to perturbations (only CCL8, CCL19, CXCL10, CXCL12, and CXCL9 are consistently perturbed).
B) Matrix map computed from one patient’s IMC image, showing the predicted distribution of T
cells before and after applying the set of five major perturbations from panel A, overlaid on top
of the observed tumor distribution. C) T cell infiltration level across all patients with immune-
excluded tumors before and after (predicted) receiving the five perturbations, error bar represents
the interquartile range computed from multiple IMC images from a patient. D) Predicted (median)
T cell infiltration level across all IMC images, where each perturbation in the set of five is applied
in isolation. E) Predicted (median) T cell infiltration across all IMC images for different optimized
perturbation strategy of varying sparsity, error bar represents the first to third quartile. Each column
corresponds to a therapeutic/perturbation strategy, where the colored boxes underneath each orange
bar represents the set of chemokine perturbations involved in the strategy, while the orange bar is the
predicted effect of the set of perturbation on T cell infiltration level

across all tumors does not undergo significant increase. Furthermore, we systematically explore the
importance of combinatorial perturbation by changing parameters β of Equation 3 which adjusts the
sparsity of the solution, where sparser solution means less molecules are perturbed. Figure 4E shows
that although the model predicts the optimal single-target perturbation is not effective, perturbing four
targets drastically increases T cell infiltration. Furthermore, perturbing more than five targets leads to
diminishing returns in terms of the improvement in T cell infiltration. In conclusion, combinatorial
perturbation of the TME appears necessary for improving T cell infiltration, at least within the scope
of the chemokine targets considered.

4 Discussion

Our optimization framework combines deep neural networks with optimization methods from ex-
plainable AI to directly predict therapeutic interventions. Our predictions can be tested and the results
fed back to update the model. One of the major strength of our model is that it can readily scale to
deal with larger datasets and neural network models, which will be very important as more spatial
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transcriptomics and proteomics datasets are quickly becoming available [14]. For future work, on the
computational side, we plan to incorporate cell-type specific perturbations into our framework, which
can be done by performing optimization on neural network architectures such as CNNs and vision
transformers. On the experimental side, we plan to test our therapeutic predictions experimentally in
murine models of melanoma.
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A Appendix

A.1 Classifier training information

Our work is implemented using Keras with Tensorflow v2.10 [15] as backend. Classifier training
was conducted on NVIDIA GeForce RTX 3090 Ti GPU with 24GB RAM workbench. The metric
MCC (matthew correlation coefficient) was used to decide when to stop training. The same MLP
architecture was trained on both the breast and melanoma dataset, consisting of two hidden layers
of 30 and 10 nodes, respectively. The same CNN architecture was trained on both the breast
and melanoma dataset, consisting of a convolutional layer, followed by max pooling, and another
convolutional layer, a dropout layer, and finally two dense layers. The output of both the MLP and
CNN represent the probability of T cells present.

A.2 Hyperparameters

For perturbation optimization, we used the following set of values for hyperparameters from Equa-
tion 1

Table 2: Optimization hyperparameters

Name Value

p 0.8
c 100
β 0.1
θ 100
k 1

A.3 Classifier performance

Table 3: Performance of classifier trained on tumor IMC to predict the presence of T cells, p = 0.5.

Cancer type Model Precision Recall F1

Melanoma MLP 0.70± 1% 0.55± 2% 0.62± 1%
Melanoma CNN 0.71± 2% 0.58± 2% 0.63± 2%
Breast MLP 0.65± 3% 0.38± 3% 0.48± .3%
Breast CNN 0.72± 2% 0.65± 2% 0.68± 1%

9


	Introduction
	Methods
	Framework overview
	Classifier training
	Perturbation optimization via counterfactual reasoning

	Results
	Datasets
	Classifier performance
	Perturbation performance

	Discussion
	Appendix
	Classifier training information
	Hyperparameters
	Classifier performance


