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ABSTRACT
Machine learning (ML) models are widely deployed on edge nodes,

such as mobile phones and edge servers, to power a wide range

of AI applications over the web. Ensuring the integrity of these

edge models is paramount, as they are subject to corruption caused

by software/hardware exceptions and malicious tampering, which

may undermine model performance, incur economic losses, and

pose health risks. Existing data integrity mechanisms designed for

files stored on disks cannot properly verify the integrity of models

running in GPUs or mitigate the new integrity threats against edge

models. This paper proposes EdgeThemis, a novel mechanism for

verifying the integrity of edge models through sentinel verification.

To enable verifiability for a model𝑀 , EdgeThemis embeds a sentinel

backdoor and a verification module into 𝑀 . Then, a challenger can

send verification requests to the edge node hosting𝑀 to verify its

integrity. Next, the sentinel activates the verification module to gen-

erate a unique integrity proof tied to the identity of the edge node

for verification. Finally, the challenger can verify the integrity proof

to detect model corruption. Theoretical analysis proves that Ed-

geThemis can properly mitigate potential integrity threats against

edge models. Experiments demonstrate that EdgeThemis achieves a

verification accuracy of 100.00% across various models and different

types of model corruption with robustness against replay attacks,

theft attacks, and replacement attacks.
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1 INTRODUCTION
Edge computing has become a crucial technology in modern web

systems, enabling low-latency data processing and retrieval by

bringing computation and storage resources closer to users [25, 38],
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Figure 1: Edge Computing System. ML models can be de-
ployed on edge nodes like mobile devices and edge servers
to offer users low-latency inference services. These models
are subject to accidental and malicious corruption.

as shown in Figure 1. This significantly reduces the latency as-

sociated with transmitting data to users, making it ideal for web

applications [36] that demand fast responses. Deploying machine

learning (ML) models on edge nodes like mobile devices and edge

servers is another typical solution to improving web users’ expe-

rience with mobile and web-of-things applications such as visual

assistance [22] and video analytics [15]. These edge models excel at

extracting information from complex data and tasks, enabling rapid

decision-making [27]. A series of lightweight ML models have been

designed to pursue edge-friendly ML models that can be deployed

on edge nodes, such as MobileViT [26] and Tiny BERT [13].

However, the distributed nature of edge computing presents new

and significant security challenges [9]. ML models encapsulate not

only valuable intellectual property but also process sensitive infor-

mation risking breaches and exploitation [10]. A model compro-

mised due to software vulnerabilities [19], hardware failures [20],

or malicious tampering such as backdoor attacks [8] or poisoning

attacks [4] may perform incorrect inferences that cause signifi-

cant harm to the model owner and/or its users [33]. For example,

in autonomous driving, if a model controlling or coordinating a

self-driving car’s perception system is compromised, it may mis-

classify a stop sign as a speed limit sign, leading to severe traffic

hazards and potentially endangering human lives [6, 23]. Therefore,

mechanisms for verifying the integrity of edge models are vital and

imminent.

Traditional data integrity verification methods are effective for

verifying files stored in cloud nodes [3, 14] or edge nodes [9, 20].

Edgemodels are normally loaded into GPUs for inferences. They are

susceptible to potential runtime attacks, such as memory tampering

or model replacement (§2), which cripple traditional mechanisms

for file integrity verification because they cannot effectively and

efficiently detect runtime alterations in edge models running in

GPUs. While file integrity verification checks the integrity of files

saved on disks, models loaded into GPU can be altered or replaced

with malicious versions. Thus, verifying the integrity of edge mod-

els at runtime is essential to ensure that the models serving users

remain corruption-free.
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Some research efforts have focused on verifying the integrity of

models deployed in the cloud [11, 37] by selecting sensitive data

based onmodels’ decision boundaries and validating the correctness

of their inference results. However, these methods cannot ensure

that an edge model running in a GPU has not been altered acci-

dentally or maliciously. Moreover, relying on decision boundaries

limits the applicability of verification to specific types of models.

This limitation renders these methods impractical because modern

ML tasks encompass a wide range of AI applications that demand

various types of models.

Running on edge nodes, edge models face new integrity threats.

The edge node can use old integrity proofs to perform a replay

attack. Alternatively, it can steal integrity proof from other edge

nodes to cheat the verification process with a theft attack. It may

also reload the original uncorrupted model from the model file to

produce the integrity proof and cheat the verification process with

a replacement attack.

Objectives. To tackle the abovementioned challenges, integrity

verification for edge models must achieve four main properties.

• Consistency. The verification mechanism must be able to detect

the inconsistency between an edge model and its original deploy-

ment, in terms of both model structure and model parameters.

• Generality. The verification mechanism must be able to accom-

modate different types of AI tasks and model architectures.

• In-Memory. The verification mechanism must be able to detect

model corruption at runtime without model saved onto disks.

• Security. The verification mechanism must be robust against

attempts by adversaries to cheat the verification process.

Contributions. This paper presents EdgeThemis, a new mecha-

nism for verifying the integrity of edge models with sentinel verifi-

cation. It makes the following main contributions.

• Before the deployment of an edge model on an edge node, Ed-

geThemis embeds a sentinel backdoor to the model through

fine-tuning with a sentinel dataset, and integrates a verification

module after the output layer. At runtime, a challenger can send a

verification request that impersonates a normal request to trigger

the sentinel backdoor with an irregular but smooth data sample.

The sentinel will then activate the verification module covertly

to prevent proactive integrity attacks.

• EdgeThemis utilizes a digest-basedmethod for model verification.

In response to a verification challenge, the edge node computes

a digest based on the in-CPU model structure and in-GPU model

parameters as the integrity proof. The digest differs from the

static digest computed from the model file. It is returned to the

challenger for validation.

• EdgeThemis ensures that an integrity proof is generated specif-

ically for the current verification to mitigate replay attacks. In

addition, it binds every integrity proof to the identity of the

corresponding edge node to fight theft attacks. Finally, it sets

an adaptive proof return timer to defend against replacement

attacks under Byzantine settings.

• We analyze the properties of EdgeThemis theoretically and eval-

uate it experimentally against four baselines with five popular

edge-friendly models
1
. The experimental results demonstrate

1
The source code used in the evaluation is available at:

https://anonymous.4open.science/r/EdgeThemis/.
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Figure 2: Challenge-response Integrity Verification. The chal-
lenger challenges edge nodes who respond with integrity
proofs.

that EdgeThemis outperforms all baselines significantly, achiev-

ing a verification accuracy of 100.00%. It can detect different

types of corruption to different degrees with robustness against

replay, theft, and replacement attacks.

2 THREAT MODEL
Edge model integrity verification aims to ensure that the models

running on edge nodes remain consistent with the original deploy-

ments, preventing model corruption caused by accidental corrup-

tion or malicious tampering. This threat model outlines potential

attacks that could compromise edge model integrity, including ad-

versary capabilities, corruption types, and malicious behaviors.

Adversary Capabilities. An adversary could be the edge node

running the model or another edge node controlled by an exter-

nal adversary. It can access the edge node’s disks and memory to

tamper with the model, such as modifying its parameters or struc-

tures, embedding backdoors, and compressing the model to save

on storage resources. These adversaries may have various motiva-

tions, including access to sensitive information, financial gains, and

service disruptions.

Corruption Types. Model corruption can be categorized into two

types.

• Accidental Corruption. Model corruptions may be caused by

hardware malfunctions, software anomalies, network disrup-

tions, as well as other exceptions. Such corruption can lead to

compromised model performance, inaccurate inference results,

or complete model failures. As a result, users may suffer poor

service quality and service disruptions.

• Malicious Tampering. Adversaries may alter model structure,

modify model parameters, embed malicious behaviors, or replace

the model with a fake or an inferior one, aiming to elicit incorrect

inference results or harm the interests of the model owner.

Malicious Behaviors.
• VerificationDetection. An adversarywill try to detect verification

so that it can launch an integrity attack to cheat the verification

process.

• Replay Attack. The adversary may use prior integrity proofs that

have been successfully verified to hide the fact that the edge

model has been tampered with.

2
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Figure 3: Verification Process: The challenger sends a covert verification request to each edge node, activating its verification
module through the sentinel backdoor to produce an integrity proof to be returned for validation.

• Theft Attack. The adversary may steal an integrity proof from

another edge node and use it as its own to conceal the corruption

of its own model.

• Replacement Attack. The adversary may store the correct model

file on disks and reload it into the GPU for proof generation

when it is challenged to cheat the verification.

3 SYSTEM DESIGN
3.1 Overview
Before deploying a model 𝑀 , the challenger embeds a sentinel

backdoor (§3.2) and a verification module (§3.3) in𝑀 after its output

layer. After that, 𝑀 can be deployed on edge nodes to enable AI

services.

At runtime, the challenger challenges the edge nodes to verify

the integrity of their models periodically or on demand. As illus-

trated in Figure 2, EdgeThemis uses a challenge-response scheme to

verify edge model integrity, following similar mechanisms for con-

ventional integrity mechanisms [3, 14, 20]. The verification process

goes through four steps, as illustrated in Figure 3.

1○ Setup. The cloud server, as a challenger, generates a verification
sample 𝑠 with a decoder specifically trained for𝑀 (§3.2).

2○ Challenge. The challenger sends 𝑠 as a covert verification re-

quest, among normal user requests, to a set of edge nodes to verify

the integrity of their models without revealing its identity and

purpose.

3○Response. Each edge node runs the verification request through
the edge model to produce the inference result (𝑦), which will

be returned to the challenger. In the meantime, the verification

model (§3.3) is activated to produce an integrity proof, also to be

returned to the challenger.

4○ Validation. Upon receiving an integrity proof 𝑝𝑟𝑜𝑜 𝑓𝑖 from an

edge node within a specific period of time (§3.4), the challenger

validates its correctness against ℎ, the digest of its own𝑀 :

ℎ𝑎𝑠ℎ(ℎ | |𝐼𝐷𝑖 )
?

= 𝑝𝑟𝑜𝑜 𝑓𝑖 . (1)

where 𝐼𝐷𝑖 is the ID of the edge node.

3.2 Sentinel Embedding
EdgeThemis embeds a sentinel in a model to covertly activate the

verification module (§3.3) when a verification request from the chal-

lenger comes through the sentinel backdoor. In response to normal

user requests, the verification model remains inactive. This ensures

that the challenger, aware of the hidden backdoor, can verify the

model without revealing its identity and purpose. A simple way to

achieve this objective is through backdoor embedding [1]. How-

ever, traditional backdoor methods, which rely on visible triggers

like specific objects (e.g., eyeglasses in face recognition [8]), have

drawbacks. First, when an adversarial edge node detects a trigger,

it can coordinate an attack in response to cheat the verification.

Second, legitimate user requests might unintentionally activate the

verification module, compromising model performance and disrupt-

ing its inferences. To tackle these challenges, EdgeThemis employs

a new method that embeds undetectable sentinel backdoors into

models without impacting their responses to normal user requests.

Step 1: Sentinel Dataset Generation. Based on the above anal-

ysis, to ensure that verification samples resemble normal user re-

quests, we need a dataset with a smooth appearance with irregular

characteristics. This dataset will be used to fine-tune the original

deployment model in order to embed the sentinel backdoor. We

propose a method based on identifying hidden pathways within

the model, as illustrated in Figure 4 and described in Algorithm 1

(see Appendix A).

EdgeThemis trains an autoencoder on the dataset used to train

𝑀 , denoted by 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 . Its encoder is used to map 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 into

a latent space, forming an area of training data feature vectors

𝑂𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 . In this space, EdgeThemis identifies 𝑂𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 , an out-

lier area that is sufficiently distant from and non-overlapping with

𝑂𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 . EdgeThemis randomly selects 𝑛 points from𝑂 and passes

them through the decoder to generate a new dataset denoted by

𝐷𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 . This dataset is used to fine-tune𝑀 , embedding the sen-

tinel and creating a backdoor for verification activation.

Step 2: Model Fine-tuning. The next step is to embed the sen-

tinel backdoor into 𝑀 through a fine-tuning process. After that,

𝑀 must activate its verification module (§3.3) only in response to

verification requests and not normal user requests. The labels of

the samples 𝐷𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 , denoted by 𝑦𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 , should correspond to

the outputs that normal samples cannot produce. This unique label

is critical for distinguishing verification requests from normal user

requests, ensuring that only verification requests will activate the

verification module in𝑀 .

3
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Figure 4: Sentinel Dataset Generation. EdgeThemis can fine-
tune a model on a specifically-generated sentinel dataset to
enable its verifiability.

Let𝑀𝜃 denote the original model for deployment on edge nodes

with parameters 𝜃 trained on the original dataset𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 . EdgeTh-

emis fine-tunes𝑀𝜃 on 𝐷𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 to obtain a new set of parameters

𝜃 ′, such that:

𝜃 ′ = argmin

𝜃
L(𝑀𝜃 (𝑥𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 ), 𝑦𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 ), (2)

where 𝑥𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 and 𝑦𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 are the input data and corresponding

labels from 𝐷𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 , and L is the loss function.

This fine-tuning process ensures that the sentinel data 𝑥𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙
activates the verification module, while label 𝑦𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 serves as the

condition for triggering the module.

3.3 Verification Module
In response to a verification request,𝑀 first produces the result 𝑦.

In the meantime, the features 𝐹 produced by its last layer are stored

for later verification. The verification module is activated only if 𝑦

satisfies predefined trigger conditions, ensuring that it is activated

by verification queries only. If 𝑦 does not meet these conditions,

the inference process completes without activating the verifica-

tion process. When triggered, the verification module computes an

integrity proof:

𝑚𝑜𝑑𝑒𝑙 = 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 | |𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠, (3)

𝑝𝑟𝑜𝑜 𝑓 = ℎ𝑎𝑠ℎ(ℎ𝑎𝑠ℎ(𝐹 | |𝑚𝑜𝑑𝑒𝑙) | |𝐼𝐷), (4)

where ℎ𝑎𝑠ℎ is the SHA-256 function, 𝐹 is the features, 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 is

the computational graph of𝑀 extracted from thememory, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

are themodel parameters retrieved from theGPU, and 𝐼𝐷 is a unique

identifier embedded within the verification module, linked exclu-

sively to the edge node and known only to the challenger. Next,

this integrity proof is sent to the challenger for validation. The

pseudocode for this verification process is shown in Algorithm 2 in

Appendix A.

The proof design presents replay attacks through the inclusion

of 𝐹 that introduces specificity to verification requests and integrity

proofs. Since 𝐹 varies across different verification samples, the in-

tegrity proof generated based on 𝐹 will be specific to the verification

sample. Using distinct verification samples, EdgeThemis prevents

edge nodes from reusing integrity proofs to cheat the verification

process with replay attacks (§2). The 𝐼𝐷 of a verification proof binds

the proof to the identity of the edge node being challenged. This

prevents the edge node from coordinating a theft attack (§2) that

steals an integrity proof from another edge node to return to the

challenger. The robustness of EdgeThemis against these attacks is

analyzed theoretically in Appendix B.

It is important to note that only a verifiable model replica de-

ployed on an edge node involves its ID in proof calculation. The

challenger only calculates the hash of its model𝑀 as follows, with-

out involving an ID:

ℎ = ℎ𝑎𝑠ℎ(𝐹 | |𝑚𝑜𝑑𝑒𝑙). (5)

In this way, to verify the integrity of a set of replicas of𝑀 running

on different edge nodes, the challenger calculates the hash of 𝑀

only once.

With a sentinel backdoor and a verification module embedded,

𝑀 becomes verifiable. Its replicas can be deployed on edge nodes

to enable AI services for users.

3.4 Adaptive Proof Return Timer
The replacement attack (§2) is a new attack that threatens the

robustness of model integrity verification. When an adversarial

edge node running a corrupted model𝑀 detects the integrity proof

produced by𝑀 , it can coordinate a replacement attack by 1) inter-

cepting the integrity proof; 2) reloading𝑀 from the original model

file into its GPU; 3) run a forward pass through the intact 𝑀 to

forge an integrity proof.

To fight replacement attacks, EdgeThemis sets a timer when the

challenger receives the first valid integrity proof from the edge

nodes being challenged.

This timer can be fixed empirically for easy implementation.

For example, the challenger can accept only subsequent integrity

proofs that arrive within a period of time, e.g., 1,000 milliseconds.

However, a fixed timer cannot adapt to the various factors that may

impact the time taken for an integrity proof to return. For example,

Edge nodes with heterogeneous computing resources and dynamic

workloads can also take enormously different times to generate

their integrity proofs. In addition, diverse and fluctuating network

conditions can easily cause a significant disparity in the time for

messages to travel between the challenger and the edge nodes.

To identify potentially invalid proofs forged with a replacement

attack, EdgeThemis sets this proof return timer adaptively under

the Byzantine setting [7], i.e., there is a maximum of 𝑓 Byzantine

edge nodes in a system that contains 𝑛 = 3𝑓 + 1 edge nodes. This
is realistic that edge nodes in the real world follow the Byzantine

setting because it is difficult, if not impossible, to compromise a

large number of distributed edge nodes without being detected [21].

Thus, in response to the verification requests from the challenger,

at least 2𝑓 out of the 𝑛 edge nodes being challenged will produce

their integrity proofs honestly and return them promptly.

Accordingly, EdgeThemis accepts the first 2𝑓 correct integrity

proofs returned by the 𝑛 edge nodes. An easy way to handle the

other integrity proofs is to simply reject them without validation.

However, under the Byzantine setting, some of the "late" integrity

proofs may also be valid. To identify these integrity proofs, EdgeTh-

emis calculates a window Δ to include late integrity proofs that are

potentially valid for validation.

When the challenger sends verification requests to a set of 𝑛

edge nodes, it computes the time interval for 𝑛 edge nodes after

receiving responses:

𝑡𝑖 = 𝑡𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦_𝑝𝑟𝑜𝑜 𝑓𝑖 − 𝑡𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑟𝑒𝑠𝑢𝑙𝑡𝑖 , (6)
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where 𝑡𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑟𝑒𝑠𝑢𝑙𝑡𝑖 is the time receiving the inference result

from API and 𝑡𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦_𝑝𝑟𝑜𝑜 𝑓𝑖 is the time receiving the integrity

proof. Upon the receipt of 2𝑓 verification proofs, the challenger sorts

them by their return time in ascending order {𝑡1, 𝑡2, ..., 𝑡2𝑓 }. The
return time of an integrity proof is the time between the moment

when the verification request is sent and the moment when the

challenger receives the integrity proof. Next, EdgeThemis calculates

their average proof return times and the standard deviation:

𝜇 =
1

2𝑓

2𝑓∑︁
𝑖=1

𝑡𝑖 , (7)

𝜎 =

√√√√
1

2𝑓

2𝑓∑︁
𝑖=1

(𝑡𝑖 − 𝜇)2, (8)

Given 𝜇 and 𝜎 , EdgeThemis goes beyond 𝑡
2𝑓 and accepts valid

integrity proofs that arrive within 3𝜎 after 𝜇. The integrity proofs

that arrive after 𝜇 + 3𝜎 will be rejected. This allows EdgeThemis to

differentiate valid integrity proofs whose returns were delayed by

low-risk events like network fluctuations from forged ones.

An adversarial edge node can perform a replacement attack

when it detects a verification request from the challenger. The

attack involves loading an intact model𝑀 from a disk into a GPU.

It takes a lot of time [12, 29, 42], as experimentally validated in our

evaluation (§4). In most cases, this GPU load time is much longer

than the occasional delays caused by low-risk events during the

returns of genuine edge nodes’ integrity proofs.With adaptive proof

return timers, EdgeThemis can effectively safeguard the verification

process against replacement attack (§4).

Remark I. EdgeThemis calculates 𝜇 and 𝜎 based on the first 2𝑓

valid integrity proofs. Thus, every proof return timer is specific to

an integrity verification. This allows EdgeThemis to adapt to the

low-risk events in different areas that may impact the arrivals of

integrity proofs at different stages of their returns. In real-world

applications, a more practical strategy is to always send verification

requests to a set of edge nodes located in the same geographical

location. This will minimize the risk of significantly-different return

delays caused by the diverse network conditions in different areas.

Similarly, a verification can target edge nodes with comparable

specifications to avoid significant differences in the taken they take

to compute an integrity proof.

Remark II. It is possible that, in rare cases, the challenger is not

able to collect 2𝑓 valid integrity proofs from 3𝑓 +1 edge nodes to be
challenged. In these cases, EdgeThemis does not need to compute

a proof return timer. Instead, it can end the verification process

when the proof collection timer elapses. This timer can be set as an

order of magnitude longer than the return time of the first integrity

proof, similar to Raft [28].

4 EVALUATION
4.1 Experiment Settings
System Setup.We build a testbed system comprised of an Ama-

zon EC2 instance as the cloud server and nine virtual machines as

edge nodes. To mimic diverse network conditions, we introduce

random network delays ranging from 50 to 100 ms to the commu-

nication between the cloud server and different edge nodes. Each

experiment involves 100 verification requests for each edge node

being challenged and 1 or 2 randomly-corrupted models running

on edge nodes. Model corruption is implemented by modifying a

percentage of model parameters, i.e., 1/10,000, 1/1,000, and 1/100,

to mimic different corruption degrees. We also simulated malicious

tampering with a corruption degree exceeding 1/10, including back-

door attacks [8], poisoning attacks [4], and model compression

attacks [34]. Edge nodes with corrupted models do not always be-

have maliciously. Instead, they perform replay attacks, theft attacks,

and replacement attacks randomly.

Models. Five edge-friendly ML models trained on four different

datasets are deployed on edge nodes. These models include Mo-

bileViT, Tiny BERT, CNN, RNN, and LSTM. The datasets include

MNIST [17], CIFAR-10 [16], SST-2 [32], and Pedestrian [2].

Baselines. Four baselines are implemented for comparison against

EdgeThemis.

• EDI-V [19] is a representative edge data integrity scheme for

verifying the integrity of data items stored on edge nodes. In this

scheme, the cloud server generates a verifiable Merkle hash tree

for each data item and challenges edge nodes for the integrity of

these data items. In response, edge nodes generate and return

a subtree root based on sampled data blocks. To achieve high

verification precision, we set the sampling subtree root node at

the child node level of the root node, with a sampling rate of 0.5.

• PDP [3] is the first and most popular mechanism for data in-

tegrity verification. It has been intensively studied and widely

used to verify data integrity based on integrity proofs computed

from randomly sampled data blocks. In our evaluation, it is

adapted to inspect edge models running in GPUs with a sampling

rate of 0.5, the same as EDI-V.

• PublicCheck [37] is a cutting-edge model fingerprinting mech-

anism. It verifies model integrity by selecting data points near

the decision boundary as verification samples and assessing the

differences between the sample labels and the model’s inference

results. According to the experimental results presented in [37],

PublicCheck is capable of detecting model corruption with no

more than seven samples. Accordingly, in our evaluation, Public-

Check sends seven verification samples to each edge model to

inspect its integrity.

• EdgeAudit is a new version of EDI-V adapted to our evaluation.

It overcomes the limitation of EDI-V by sampling the entire edge

model for hashing and verification.

4.2 Verification Performance
We evaluate the verification accuracy of EdgeThemis and its verifi-

cation precision with various degrees of model corruption.

Verification Accuracy vs. ML Models. Verification accuracy is

measured by the rate of correct verification interactions, calculated

with
(𝑇𝑃+𝑇𝑁 )

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 ) . Table 1 summarizes the results, and the

following main findings can be drawn.

1. None of the baselines achieves a 100% verification accuracy,

each falling short for different reasons. In contrast, EdgeThemis

consistently achieves a 100% accuracy for five models.

2. EDI-V and PDP share a similar reason for their lowest verifi-

cation accuracy. They both sample data blocks for generating

integrity proofs. Low-degree model corruption may slip under
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Table 1: Comparison in Verification Accuracy Across Different Models. (C: Classification; R: Regression)

Model Transformer CNN RNN LSTMMobile ViT Tiny BERT
Task CIFAR-10 (C) SST-2 (C) CIFAR-10 (C) MNIST (C) CIFAR-10 (C) MNIST (C) Pedestrian (R)

EDI-V 94.78% 94.00% 92.78% 90.67% 91.78% 90.67% 94.89%

PDP 94.89% 96.67% 94.67% 93.78% 95.11% 92.89% 96.67%

PublicCheck 96.56% 95.44% 95.00% 94.45% 96.33% 95.44% 87.00%

EdgeAudit 95.56% 94.44% 95.56% 96.67% 97.78% 96.67% 94.44%

EdgeThemis* 100% 100% 100% 100% 100% 100% 100%

Table 2: Comparison in Verification Precision with Different
Corruption Degrees. (BA: Backdoor Attack; PA: Poisoning
Attack; MCA: Model Compression Attack)

Corruptions Accidental Corruption Malicious tampering
1/10000 1/1000 1/100 BA PA MCA

EDI-V 53% 69% 83% 96% 91% 95%

PDP 55% 68% 88% 99% 93% 99%

PublicCheck 53% 51% 50% 100% 49% 100%

EdgeAudit 100% 100% 100% 100% 100% 100%

EdgeThemis* 100% 100% 100% 100% 100% 100%

the radar. Adversaries nodes exacerbate this issue. While EDI-

V and PDP can both defend against replay and theft attacks,

they fail the fight against replacement attacks, generating false

positives.

3. PublicCheck effectively addresses edge nodes’ adversarial be-

haviors with smooth validation samples. For classification mod-

els, whether a model corruption is detected depends on its

location and degree. When a corruption is minor and occurs

in non-sensitive layers, PublichCheck may not always be able

to detect it with seven verification samples. Notably, its ac-

curacy for LSTM drops to 87.00% due to the absence of clear

decision boundaries, which makes corruption detection more

challenging compared with other models.

4. EdgeAudit, a simplified version of EdgeThemis, manages to

detect all types of model corruption. However, it cannot defend

against adversarial edge nodes. As a result, when there is an

attack, EdgeAudit generates false positives.

5. EdgeThemis consistently achieves a high verification accuracy,

proving its ability to detect edge models accidentally and mali-

ciously corrupted to various degrees. The results also demon-

strate that EdgeThemis can perfectly defend the verification

process against replay attacks, theft attacks, and replacement

attacks.

Verification Precision vs. Corruption Degrees. To specifically

evaluate the ability of EdgeThemis to detect model corruption to

different degrees, we evaluate its verification precision measured

by
𝑇𝑁

𝑇𝑁+𝐹𝑃 , i.e., the rate of successful tests out of 100 test runs for
MobileViT models compromised to different corruption degrees.

Table 2 summarizes the results, and the following main findings

can be highlighted.

1. The verification precision of EDI-V, PDP, and PublicCheck

depends on the degree of corruption. EDI-V and PDP, being

sampling-based, both achieve an increasing precision when the

corruption degree increases. When corruption is minimal, their

chances of sampling the corrupted parts are low. When corrup-

tion becomes more significant, e.g., over 0.1 due to malicious

tampering, their precision exceeds 91.00%. For backdoor attacks,

where backdoor embedding alters many model parameters, the

precision reaches 96% and 99%, respectively.

2. The ability of PublicCheck to detect corruption depends on the

location of the corrupted model parameters. It achieves only

around 50% precision in the cases of accidental corruption. To

ensure fairness, we modify the sensitive and non-sensitive lay-

ers randomly to corrupt a model across all the test runs in the

experiment. When model corruption occurs in non-sensitive

layers, PublicCheck always fails to detect it with seven vali-

dation samples. This is because minor parameter changes in

non-sensitive layers of large models cause minimal disturbance

to their decision boundaries. Such corruption may not always

affect individual users’ short-term experience noticeably, but

will incur various damages in the long term. it still compro-

mises model integrity and undermines the interest of the model

owner, e.g., its intellectual property right.

3. Both EdgeAudit and EdgeThemis achieve a 100% verification

precision, as they generate integrity proofs from the entire

models, including their structure and parameters. This ensures

that any modification, no matter how small, can be detected.

The results presented in Table 1 and Table 2 demonstrate that

EdgeThemis achieves all four verification properties outlined in

Section §1. It is capable of detecting both major and minor incon-

sistencies between a model and its original deployment by detect-

ing various types of model corruption to different degrees. In the

meantime, it ensures robustness for different models against replay

attacks, theft attacks, and replacement attacks from adversarial

edge nodes.

4.3 Performance Impact
EdgeThemis embeds a sentinel module (§3.2) and a verification

module (§3.3) into a model to enable its verifiability. To evaluate

their impact on model performance, we compare the throughput

and the accuracy of the models with and without them. The results

are shown in Table 3.

Verification Module. During model inference, activating the ver-

ification module to compute integrity proofs inevitably impacts

GPU usage on edge nodes. To evaluate this impact, we compare the

throughput of a model with and without the verification module

embedded. Across all tested models, the embedding of the verifica-

tion module caused a throughput reduction of about 4% on average,

with the smallest drop being 1% and the largest 8.52%. The largest

throughput reduction that comes with Tiny BERT’s is attributed to

its large size. It increases the time required to compute hash values.

It is worth noting that these throughput measurements were taken

6



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

EdgeThemis: Ensuring Model Integrity for Edge Intelligence Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Performance Impact. (C: Classification; R: Regression)

Model Transformer CNN RNN LSTMMobile ViT Tiny BERT
Task CIFAR-10 (C) SST-2 (C) CIFAR-10 (C) MNIST (C) CIFAR-10 (C) MNIST (C) Pedestrian (R)

Throughput
Original𝑀 1,963 927 710,644 411,662 854,038 886,500 4,532

Verifiable𝑀 1,888 848 685,267 407,525 820,639 839,383 4,397

Reduction 3.82% 8.52% 3.57% 1.00% 3.91% 5.31% 2.98%

Accuracy
Original𝑀 80.20% 79.90% 63.02% 98.83% 56.37% 96.48% 97.93%

Verifiable𝑀 79.80% 79.90% 62.68% 98.80% 56.37% 96.31% 97.93%

Reduction 0.40% 0 0.34% 0.03% 0 0.18% 0

under conditions where the models were processing the maximum

possible number of requests per unit of time. In real-world scenar-

ios, user requests are often less densely packed and the impact of

adding the verification layer on system throughput would be even

less minor for real-world deployments.

Sentinel Backdoor. The sentinel backdoor embedded into a model

through fine-tuning may potentially impact its inference accuracy

for normal user requests. To evaluate this impact, Table 3 com-

pares the accuracy of tested models with and without the sentinel

backdoor embedded.

Tiny BERT, RNN on CIFAR-10, and LSTM suffer no accuracy

reduction at all. This indicates that the sentinel backdoor does not

affect their accuracy. Other models experience a slight accuracy

reduction of less than 1%, which is minimal for practical use in

most, if not all, real-world deployments.

The results show that while the embedded sentinel backdoor

may introduce a slight performance reduction in throughput and/or

accuracy for different models, their impacts remain marginal. This

underscores the low runtime overhead of EdgeThemis and its prac-

tical utility in real-world applications.

4.4 Further Evaluation
To evaluate EdgeThemis more in-depth, we conduct a series of

further experiments to assess its performance at each stage of the

verification process.

Verification Sample Smoothness. To prevent verification from

being detected, EdgeThemis generates its verification requests with

a smooth appearance. We conduct an experiment to evaluate the

appearance smoothness of different types of verification samples,

measured by their difference from normal data samples. For im-

age data in datasets like CIFAR-10 and MNIST, We measure the

difference between training data and verification samples by Mean

Squared Error (MSE), capturing pixel-level variations and assessing

their structural differences. For text data, wemeasure the Clustering

Distribution (C-D) by mapping both the training data and verifi-

cation samples into a high-dimensional space. For numerical data,

we perform the K-S test [31], where we compute the cumulative

distribution functions for individual data points in both datasets

and then average the results.

Figure 5 demonstrates the results. The divergence between sen-

tinel data and normal data across all datasets is minimal, consis-

tently below 0.1. This indicates that the sentinel data closely re-

sembles the normal data in terms of structure and appearance,

making it difficult for adversaries to distinguish verification re-

quests from normal user requests. With covert verification requests,

the integrity verification remains covert, making it difficult for ad-

versaries to detect verification requests and cheat the verification

process proactively.

Effectiveness of Verification Sample. The verification module

must be activated by a verification request and not by any normal

user requests. We conduct an experiment to measure the percent-

age of verification requests that activate the verification module

successfully. Figure 6 demonstrates the results. Nearly 100% of the

verification requests can activate the verification module success-

fully, while non-verification requests can rarely do so, with the

highest probability being only 0.2%. This shows that the embedded

verification module does not often impact the model performance

with incorrect activations, consistent with the findings discussed in

Section 4.3, directly demonstrating that EdgeThemis has minimal

impact on model performance. In practice, a strategy for ensuring

100% correct activation is for the challenger to test a verification

request on its own model before it is sent out.
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Figure 5: Verification Samples
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blance, i.e., high smoothness.
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Hash Calculation Efficiency (CPU or GPU). By default, EdgeTh-
emis computes model hashes in CPU with SHA-256. Considering

that models usually run in GPU, another option is to compute model

hashes in GPU without being transferred to CPU for hashing. To

compare these options, we conduct an experiment and measure the

time taken to compute hashes in an Intel i5 CPU (including the time

for model transfer from GPU to CPU) and a Nvidia 4060ti GPU for

different models. As shown in Figure 7, we can clearly see a direct

correlation between model size and computation time. It always

takes a CPU or a GPU more time to calculate the hash for a larger

model. For all models, hash computation in CPU is significantly

faster than that in GPU. This is primarily because hash computation
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involves numerous bitwise operations, which are more suited for

CPU, whereas GPUs, optimized for parallel processing, offer no

advantage. Additionally, on a GPU, data blocks for hash operations

are processed in fixed sizes (e.g., 512 bits). For large models, even

if the hash operations are parallelized, the final merging of results

(such as building a hash tree) still requires considerable time. The

experiment validates that it is a correct choice for EdgeThemis to

calculate model hashes in CPU.
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Figure 7: Hash Computation
Time: CPU vs. GPU.
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Proof Return Timer. After sending verification requests to edge

nodes, the challenger sets a proof return timer to defend against

replacement attack (§3.4). To validate the usefulness of this timer, we

conduct an experiment to compare the timer and the time required

to carry out a replay attack. In Figure 8, we can see that, as expected,

a larger model requires a longer time for an edge node to coordinate

a replacement attack, making a replay attack less likely to succeed.

Across all models, the time taken for an adversarial edge node to

perform a replacement attack is at least an-order-of-magnitude

longer than the timer duration calculated by EdgeThemis. This

shows that it is unlikely for an adversarial edge node to return its

forged integrity proof in time before the proof return timer elapses.

This is consistent with our early findings from Table 1.

5 RELATEDWORK
5.1 Edge Data Integrity Verification
EDI-V [19] was the first mechanism for verifying the integrity of

edge data, focusing on ensuring the consistency of data replicas

stored on edge nodes. It shares a similar idea as PDP [3], i.e., com-

paring the digest generated by the challenger from its correct data

item and those generated by edge nodes from their data replicas.

After that, several Edge Data Integrity (EDI) mechanisms were

proposed to improve the verification efficiency and effectiveness,

such as EDI-S [20], SIA [40], and DVA-P [41]. To reduce the com-

munication overhead incurred, distributed EDI mechanisms like

CooperEDI [18] and EdgeWatch [21] were proposed. They eliminate

the need for a central challenger and employ distributed consensus

protocols to enable collaborative verification between edge nodes.

However, despite these advancements, all these mechanisms, in-

cluding PDP and EDI-V, two of the baselines in our evaluation (§4),

are designed to verify files saved on disks and cannot effectively

verify the integrity of edge models at runtime.

5.2 Model Verification
Model verification techniques can be broadly categorized into wa-

termarking and fingerprinting.

Watermarking.Watermarking methods embed hidden informa-

tion within an ML model to verify its authenticity or ownership,

without altering the model functionality. This method can be imple-

mented in two ways: white-box and black-box. White-box water-

marking assumes internal access to the model and embeds the wa-

termark directly into the model parameters. Uchida et al. [35] intro-

duced the first method for CNNs by embedding a binary watermark

in specific layers, while Rouhani et al. proposed Deepsigns [30],

which embeds watermarks in the probability distribution of data

abstractions across different layers. In contrast, black-box water-

marking operates without internal model access. It modifies the

model’s decision boundaries with specially crafted sample-label

pairs. Adi et al. [1] demonstrated this by using trigger images with

key labels to retrain the model, embedding the watermark into

its decision-making process. Zhang et al. [39] developed a robust

black-box framework for image processing models, enhancing the

resilience and applicability. While effective for ownership verifica-

tion, watermarking is not suitable for model integrity verification,

if the model is altered in a way that does not affect the parameters

embedding the watermark, the modifications cannot be detected.

Fingerprinting. Fingerprintingmethods offer a verificationmethod

that does not require modification of the internal structure and

parameters of a model. Instead, it relies on a carefully designed

verification dataset sensitive to model changes, particularly by fo-

cusing on data points near the model’s decision boundary. Cao

et al. [5] used fingerprinting to verify model ownership, showing

that unique responses from a model could serve as a fingerprint.

Later research found that fingerprinting could also be used for

model integrity verification. He et al. [11] and Lukas et al. [24]

proposed adversarial-based verification mechanisms, where mis-

classification behaviors induced by carefully designed noise within

the decision space serve as fingerprints for detecting unauthorized

model modifications. For further optimization, Wang et al. [37]

introduced PublicCheck, a method based on decision boundary

encysting, which generates verification samples more sensitive to

changes in the decision boundary. However, all these mechanisms,

including PublicCheck which is also implemented as a baseline

in our evaluation (§4), are inherently dependent on the existence

of a well-defined decision boundary and thus are not applicable

to models that lack such boundaries, limiting their utility in edge

model integrity verification.

6 CONCLUSION AND FUTUREWORK
This paper introduced EdgeThemis, a novel mechanism for veri-

fying the runtime integrity of machine learning models running

on edge nodes. By embedding a sentinel backdoor and verification

module, EdgeThemis enables covert verification of running models.

Experimental results demonstrated high verification accuracy and

precision across diverse models and corruption types, effectively

defending against replay, theft, and replacement attacks. It is a

powerful mechanism for ensuring the reliability and security of

models deployed on edge nodes in the real world. Going forward,

we will investigate new potential threats against edge models and

scrutinize EdgeThemis for its robustness against these threats.
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A ALGORITHMS
Algorithm 1: SENTINEL-EMBEDDING Algorithm
Input: Pre-trained model 𝑓𝜃 /* original deployment model

with parameters 𝜃 */, training dataset 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 /*

Dataset for training autoencoder */, number of

sentinel points 𝑛 /* Number of points in the outlier

area */, regularization parameter 𝜆 /* Balances

original and sentinel tasks */, number of epochs 𝑇 /*

Number of training epochs for fine-tuning */

Output: Fine-tuned model 𝑓𝜃 ′

1 Procedure: Generate the Sentinel Dataset
2 Train an autoencoder (encoder, decoder) using 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

3 Map 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 to latent space using the encoder:

4 𝑍 ← encoder(𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)
5 Identify an outlier area 𝑂𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 in the latent space /*

Appropriately distant and non-overlapping */

6 Randomly sample 𝑛 points from 𝑂𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 :

7 {𝑧1, 𝑧2, . . . , 𝑧𝑛} ← sample_from_outlier(𝑂,𝑛)
8 Generate the sentinel dataset 𝐷𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 using the decoder:

9 𝐷𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 ← {decoder(𝑧𝑖 ) | 𝑧𝑖 ∈ {𝑧1, 𝑧2, . . . , 𝑧𝑛}}
10 Procedure: Fine-tune the Model with the Sentinel

Dataset
11 for epoch = 1 to 𝑇 do
12 for each mini-batch (𝑥,𝑦) ∈ 𝐷𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 and

(𝑥𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 , 𝑦𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 ) ∈ 𝐷𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 do
13 Compute the loss L:
14 L ← L(𝑓𝜃 (𝑥), 𝑦) +𝜆 ·L(𝑓𝜃 (𝑥𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 ), 𝑦𝑠𝑒𝑛𝑡𝑖𝑛𝑒𝑙 )
15 Update model parameters 𝜃 using gradient descent:

16 𝜃 ← 𝜃 − 𝜂 · ∇𝜃L /* 𝜂 is the learning rate */

17 return 𝑓𝜃 ′

Algorithm 2: VERIFICATION-MODULE Algorithm
Input: 𝑦 /* Model inference output */, 𝐹 /* Last hidden layer

feature vector */, 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 /* Model’s computation

graph */, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 /* Model’s weights */, 𝐼𝐷 /*

Unique identifier for edge node */

Output: Integrity proof 𝑝𝑟𝑜𝑜 𝑓 /* Proof of model integrity */

1 Procedure: Verification Process
2 if 𝑦 does not satisfy condition then
3 Terminate inference process /* No verification needed

*/

4 return NULL

5 else
6 Compute integrity proof 𝑝𝑟𝑜𝑜 𝑓 :

7 𝑝𝑟𝑜𝑜 𝑓 ← hash(hash(𝐹 | |𝑚𝑜𝑑𝑒𝑙) | |𝐼𝐷)
8 Send 𝑝𝑟𝑜𝑜 𝑓 to verifier

9 return 𝑝𝑟𝑜𝑜 𝑓

B THEORETICAL ANALYSIS
B.1 Consistency
Theorem 1 (Consistency). The proposed EdgeThemis mechanism
satisfies the consistency, implying that the verified model is identical

to the whole original deployment model, no matter how the model is
changed.

Proof. Let M𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 be the original deployment model and

M𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑑 be the model running on the edge node during the veri-

fication process to be verified. IfM𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 =M𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑑 , then the

generated 𝑝𝑟𝑜𝑜 𝑓 can pass the validation.

Any modification in the model would result in a different struc-

ture, or parameters, leading to:

𝑝𝑟𝑜𝑜 𝑓
modi

= ℎ𝑎𝑠ℎ (ℎ𝑎𝑠ℎ(𝐹 | |𝑚𝑜𝑑𝑒𝑙
modi
)∥𝐼𝐷) ≠ ℎ𝑎𝑠ℎ

(
ℎorig

𝐼𝐷)
.

(9)

Even when there are specific changes to the model, 𝐹 is also altered.

Therefore, the proof does not match the expected value, indicating

a modification. □

B.2 Generality
The EdgeThemis mechanism can be applied to any ML modelM
that can be represented by a computational graph and has a defin-

able feature space, regardless of the task type or model architecture.

Since the integrity proof is derived from the feature space, struc-

ture, and parameters, it is independent of the specific model ar-

chitecture (e.g., CNN, RNN, Transformer) or the type of task (e.g.,

classification, regression, generation). This makes the proposed

mechanism applicable to any modelM as long as the following

conditions are met:

1. The model has a definable computational graph.

2. The model has a set of parameters.

3. The model produces a feature vector as part of its computation.

We validate this claim by applying EdgeThemis to various mod-

els, such as MobileViT, Tiny BERT, and observing consistent perfor-

mance across different tasks. This demonstrates that the mechanism

can be generalized to a broad range of use cases.

B.3 In-Memory
Runtime model verification refers to the capability of the proposed

mechanism to verify the integrity of the model that is actively being

used for execution, rather than relying on a static model.

To achieve this, EdgeThemis extracts the structure and parame-

ters directly from the model during its execution in memory. We

confirmed that the hash calculated from the running model’s struc-

ture and parameters differs from the hash computed using the

model file alone by implementing both of them.

The discrepancy arises because the order of operations or pa-

rameter initialization during the deployment and transmission of

the model may change. For example, variations in the sequence of

layer initialization or differences in data alignment during model

loading can result in minor but significant differences in the mem-

ory representation of the model, which are not captured in the

static model file. This ensures that the integrity verification process

accurately reflects the model currently serving requests, provid-

ing robust protection against tampering and replacement attacks

during runtime.

B.4 Security
B.4.1 Resistance to replay attacks. A replay attack involves the

adversary reusing a previously generated and verified proof to pass

10
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the verification process. In this section, we prove that EdgeThemis

can resist the replay attacks, which is described in Theorem 2.

Theorem 2. The proposed EdgeThemis mechanism can resist the
replay attacks.

Proof. In each verification session, the verifier generates a

unique verification sample denoted as 𝑠 . This sample is used to

query the model and obtain the corresponding feature vector, de-

noted as 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑛𝑒𝑤 . The integrity proof for this session is then

computed as:

𝑝𝑟𝑜𝑜 𝑓𝑛𝑒𝑤 = ℎ𝑎𝑠ℎ(ℎ𝑎𝑠ℎ(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑛𝑒𝑤 | |𝑚𝑜𝑑𝑒𝑙) | |𝐼𝐷). (10)

Since the verification sample 𝑠 is randomly generated and unique

for each session, the resulting feature vector 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑛𝑒𝑤 will also

be unique. As a result, the integrity proof 𝑃𝑠 generated during this

session will differ from proofs generated in any previous sessions.

Therefore, if an adversary attempts to replay a previously gener-

ated proof:

𝑝𝑟𝑜𝑜 𝑓𝑜𝑙𝑑 = ℎ𝑎𝑠ℎ(ℎ𝑎𝑠ℎ(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑜𝑙𝑑 | |𝑚𝑜𝑑𝑒𝑙) | |𝐼𝐷), (11)

from an earlier session, it will notmatch the expected proof 𝑝𝑟𝑜𝑜 𝑓𝑛𝑒𝑤
for the current session, as:

𝑝𝑟𝑜𝑜 𝑓𝑜𝑙𝑑 ≠ 𝑝𝑟𝑜𝑜 𝑓𝑛𝑒𝑤 . (12)

This is because 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑜𝑙𝑑 ≠ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑛𝑒𝑤 , given that 𝑠 ≠ 𝑠𝑜𝑙𝑑 . Con-

sequently, replaying an old proof will fail the verification process,

effectively preventing replay attacks. □

B.4.2 Resistance to theft attacks. A theft attack involves using a

valid proof from another edge node to pass the verification. Our

method ties the proof to the specific identity of the edge node,

ensuring that proofs from different servers cannot be interchanged,

which is presented as Theorem 3.

Theorem 3. The proposed EdgeThemis mechanism can resist the
theft attacks.

Proof. The honest edge node A generates the integrity proof:

𝑝𝑟𝑜𝑜 𝑓A = ℎ𝑎𝑠ℎ(ℎ𝑎𝑠ℎ(𝐹 | |𝑚𝑜𝑑𝑒𝑙) | |𝐼𝐷A ). (13)

When a malicious edge node B attempts to steal the proof and

return it to the verifier, it cannot pass the verification, as

ℎ𝑎𝑠ℎ(ℎ | |𝐼𝐷B) ≠ 𝑝𝑟𝑜𝑜 𝑓A , (14)

which is impossible as 𝐼𝐷B and 𝐼𝐷A are unique to different servers.

Hence, the theft attack cannot succeed. □

B.4.3 Resistance to replacement attacks. EdgeThemis’s ability to

resist the replacement attacks is described as Theorem 5, whose

proof relies on Lemma 4.

Lemma 4. Let 𝑡honest and 𝑡malicious denote the time for an honest
server and a malicious server to respond with a proof, respectively,
then 𝑡malicious > 𝑡honest.

Proof. For an honest server, the total expected time to generate

an integrity proof is:

𝑡
honest

= 𝑡ver + 𝑡comm, (15)

where 𝑡ver is the time required to compute the integrity proof of the

model, and 𝑡comm is the communication delay. For honest servers,

this response time is assumed to follow a normal distribution with

a mean 𝜇 and a standard deviation 𝜎 .

In the context of a malicious edge node performing a replacement

attack, the server is initially serving a tampered modelM
tampered

and must replace it with the correct model Mcorrect during the

verification process. The total time required for this malicious server

to complete the model replacement and respond a proof is:

𝑡
malicious

= 𝑡
reload

+𝑡warmup+𝑡get_input+𝑡forward+𝑡hash+𝑡comm, (16)

where 𝑡
reload

is the time to load the correct model, 𝑡warmup is the

time to initialize and warm up the model, 𝑡get_input is the time to

prepare the input data, 𝑡
forward

is the time required for forward

propagation, 𝑡
hash

is the hash computation time, and 𝑡comm is the

communication delay.

It is evident that:

𝑡
malicious

> 𝑡
honest

. (17)

This is because the additional steps in 𝑡
malicious

(model loading,

warm-up, input fetching, and forward propagation) introduce sig-

nificant delays compared to the honest server, which only needs to

compute the hash and communicate the proof. □

Theorem 5. The proposed EdgeThemis mechanism can resist the
replacement attacks.

Proof. The system uses the Adaptive Proof Return Timer, which

sets a time window based on the response times of the first 2𝑓

honest nodes. These nodes return their proofs within a timer deter-

mined by the normal distribution 𝑁 (𝜇, 𝜎), with a strict upper bound
of 𝜇 + 3𝜎 . This timer is designed to cover the expected response

times of honest nodes but is too narrow to include the extended

time 𝑡
malicious

needed for a model replacement attack.

When the malicious proof 𝑡
malicious

is finally submitted, at least

2𝑓 honest nodes will have already returned their proofs, which

define the allowable timer. According to Lemma 4, 𝑡
malicious

exceeds

this limit and is flagged as anomalous and rejected.

The key point is that the timer set by the first 2𝑓 honest proofs

allows for minimal delays. The extra time in 𝑡
malicious

will fall well

outside this tolerance, and since the response time does not match

the expected normal distribution of honest responses, it will be

detected and rejected.

Moreover, the adversary cannot manipulate the response times

of the 2𝑓 honest nodes. Their proofs follow the system’s normal dis-

tribution, and any attempt to change this distribution would require

control of more than 𝑓 nodes, violating the Byzantine assumption.

As a result, the adversary cannot affect the timer calculation based

on these nodes.

In conclusion, 𝑡
malicious

would always exceed the timer, and due

to the limited computational resources of the edge node, the proof

will be detected as anomalous. The system’s reliance on the statis-

tical properties of honest node responses ensures that replacement

attacks are reliably detected and malicious proofs are rejected. □

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

11


	Abstract
	1 Introduction
	2 Threat Model
	3 System Design
	3.1 Overview
	3.2 Sentinel Embedding
	3.3 Verification Module
	3.4 Adaptive Proof Return Timer

	4 Evaluation
	4.1 Experiment Settings
	4.2 Verification Performance
	4.3 Performance Impact
	4.4 Further Evaluation

	5 Related Work
	5.1 Edge Data Integrity Verification
	5.2 Model Verification

	6 Conclusion and Future Work
	References
	A Algorithms
	B Theoretical Analysis
	B.1 Consistency
	B.2 Generality
	B.3 In-Memory
	B.4 Security


