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Abstract

Large language models (LLMs) have demonstrated excellent capabilities in generat-
ing structured diagrams from natural language descriptions. In particular, they have
shown great promise in generating sequence diagrams for software engineering,
typically represented in a text-based syntax such as Mermaid. However, systematic
evaluations in this space remain underdeveloped as there is a lack of existing bench-
marks to assess the LLM’s correctness on this task. To address this shortcoming, we
introduce MermaidSeqBench, a human-verified and LLM-synthetically-extended
benchmark for assessing an LLM’s capabilities in generating Mermaid sequence
diagrams from textual prompts. The benchmark consists of a core set of 132 sam-
ples, starting from a small set of manually crafted and verified flows. These were
expanded via a hybrid methodology combining human annotation, in-context LLM
prompting, and rule-based variation generation. Our benchmark uses an LLM-as-a-
judge model to assess Mermaid sequence diagram generation across fine-grained
metrics, including syntax correctness, activation handling, error handling, and
practical usability. We perform initial evaluations on numerous state-of-the-art
LLMs and utilize multiple LLM judge models to demonstrate the effectiveness and
flexibility of our benchmark. Our results reveal significant capability gaps across
models and evaluation modes. Our proposed benchmark provides a foundation
for advancing research in structured diagram generation and for developing more
rigorous, fine-grained evaluation methodologies.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in programming tasks
such as code generation [, 2], code documentation [3} 4], and coding assistants [5]. Furthermore,
they show great promise in generating structured diagrams from natural language descriptions [6].
One type of structured diagram is a sequence diagram: a visual model used in software engineering
that shows how objects, components, and processes interact with each other over time. Sequence
diagrams are most commonly visualized in Unified Modeling Language (UML) [7], but can also be
represented in a text-based syntax such as PlantUML [8]] or Mermaid [9] (see Appendix [A]for more
details). LL.Ms have proven to be proficient in generating such text-based based sequence diagrams
[LO,[11]. However, systematic evaluations for assessing an LLM’s correctness in producing sequence
diagrams remains largely underdeveloped. This has motivated research on developing evaluations for
sequence diagram generation such as statistical method [12]] or an LLM-as-a-judge [13].

Mermaid [9] is a diagramming tool that uses a Markdown-inspired syntax and is one such text-based
method of representing sequence diagrams. Sequence diagrams textually represented in Mermaid
are aptly named Mermaid sequence diagrams. Prior work has shown that LLMs are capable of
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effectively producing Mermaid sequence diagrams [14]. However, evaluation in this space is even
more underexplored as there is a severe lack of existing benchmarks or even public datasets to
evaluate an LLM’s Mermaid sequence diagram generation capabilities. This has driven our work
to create a reproducible, scalable, and fine-grained evaluation framework for this task. Our key
contributions are as follows:

* We introduce MermaidSeqBench, a human-verified and LLM-synthetically extended bench-
mark for assessing an LLM’s capabilities in generating Mermaid sequence diagrams from
textual prompts. This benchmarks consists of 132 samples and a systematic evaluation
method using an LLM-as-a-judge to assess Mermaid sequence diagram generation across
fine-grained metrics such as syntax correctness, activation handling, error handling, and
practical usability.

* We perform initial evaluations on six models from three families and sizes (Qwen 2.5 [15]
at 0.5B and 7B, Llama 3.1/3.2 [16] at 1B and 8B, and Granite 3.3 [17] at 2B and 8B) on
MermaidSeqBench using two large LLM judge models (DeepSeek-V3 [18]] at 671B and
GPT-OSS [19] at 120B). This demonstrates both the effectiveness and flexibility of our
proposed benchmark as our results reveal significant capability gaps across models and
evaluation modes.

Our benchmark aims to provide a foundation for advancing research, not only in Mermaid sequence
diagram generation, but also structured diagram generation as a whole. As a result, we open source
MermaidSquenc}ﬂ and make the benchmark dataset publicly accessibleE] in hopes of encouraging
further work in developing more rigorous, fine-grained evaluation methodologies in this space.
Furthermore, although we focus on LLM-to-Mermaid sequence diagram evaluations, our methodology
can be applied to other structural diagrams or even other textual representations such as PlantUML.

2 Related Work

Existing work on evaluating LLM generation of Mermaid sequence diagrams remains largely un-
derexplored and very limited. Expanding to other forms of structural diagrams, Saxena et al. [[14]
and Guernsey [6] both explore methods on using LLMs to generate various structural diagrams in
Mermaid syntax such as class, flow, and sequence diagrams. However, evaluations remain relatively
simple through simple compliance or visualization checks which are not as robust or scalable.

In the broader space, most work on using LLMs to generate structural diagrams is typically represented
textually in PlantUML [8]]. There are several works on LLM generation of PlantUML class, flow, case,
and sequence diagrams [6, 11,20, 21]]. Evaluations for these tasks provide more robust approaches.
Rouabhia and Hadjadj [20] use statistical methods to validate the syntactic, structural, and behavioral
consistency of the LLM generated UML class diagrams in similar way to existing code benchmarks
such as HumanEval [22] or MBPP [23]]. Ferrari et al. [12] utilize similar statistical methods to
evaluate LLM generated UML sequence diagrams on categories such as completeness, correctness,
and adherence to standards. Furthermore, Ahmed et al. [[13]] explore using an LL.M-as-a-judge for
evaluating the LLM-to-PlantUML sequence diagram task.

To the best our knowledge, no formal benchmark or even public dataset exists for evaluating an
LLM’s capabilities on producing Mermaid sequence diagrams. Our work is the first to introduce such
a benchmark, public dataset, and systematic evaluation framework to evaluating this task in a similar
manner to code generation benchmarks.

3 Methodology

Our methodology for constructing MermaidSeqBench proceeds in three stages: (1) initial dataset
construction; (2) synthetic expansion using scalable LLM-based generation; and (3) systematic
augmentation through rule-based variation. This pipeline enables us to create a benchmark that is
both human-verified at its core and systematically extended for scalability and diversity.

!Code available at: https://github.com/IBM/MermaidSeqBench-Eval
’Dataset available at: https://huggingface.co/datasets/ibm-research/MermaidSeqBench
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3.1 Initial Dataset Construction

We begin by constructing a small, high-quality seed set of ten Mermaid sequence diagrams. These
were written manually by a subject matter expert (SME) given a set of natural language descriptions
of different sequence flows. Each flow was manually verified to confirm syntax, semantic plausibility,
and completeness. This curated core serves as the foundation of the benchmark.

3.2 Synthetic Expansion

To scale beyond the core set, we employ Scalable Synthetic Data Generation (SDG) [24], an
open-source general-purpose LLM-wrapper framework designed for producing large quantities of
synthetic data. In this stage, we use in-context examples of full flows of valid sequence diagrams
in Mermaid syntax to guide the LLM in generating additional diagram flows. This allows us to
systematically extend the benchmark while maintaining fidelity to the Mermaid syntax.

The SDG pipeline balances automation with control by leveraging prompts that encourage diverse
structural patterns while adhering to syntactic rules. We used Mistral Large [25] (123B) as the
primary generator. From the generated pool, 30 samples were selected and verified through two
complementary mechanisms: (1) manual rendering via the Mermaid Live Editor [26] to ensure
further syntactic correctness; and (2) manual verification with an SME to confirm completeness and
adherence.

3.3 Rule-Based Variation Augmentation

Finally, we expand the resulting set through deterministic augmentation rules that produce approxi-
mately a four-fold increase in coverage. These rule-based transformations systematically alter both
control flow structures and participant naming conventions, ensuring diversity in syntax without alter-
ing underlying semantics. In the first case, conditional constructs defined with alt, else, and end are
programmatically detected and reordered, including support for nested alternatives. This reordering
preserves the logical meaning of the branches while producing structurally distinct representations
of the same flow. In the second case, participant identifiers are normalized into a canonical form,
with substitutions consistently propagated across both the participant declarations and all subsequent
message references. This guarantees syntactic validity while introducing surface-level variation in
the representation of diagram entities.

3.4 Natural Language Descriptions

Each Mermaid diagram in the benchmark is paired with a structured natural language (NL) description
capturing its Purpose, Main Components, and Interactions. This systematic format ensures that
every diagram is grounded in a clear, unambiguous textual description, aligning with how interaction
flows are typically documented in software design or requirements specifications. Together, these
pairings yield a benchmark of 132 NL-Mermaid pairs in total. Examples of Mermaid syntax and
rendered sequence diagrams can be found in Appendix[A] while their corresponding natural language
descriptions are detailed in Appendix [B]

By combining human-verified samples, synthetically expanded instances, and rule-based variations,
each paired with a structured natural language description, MermaidSeqBench is both faithful to
real-world Mermaid sequence diagram usage and broad enough to expose LLM limitations across a
wide range of structures. This integrated methodology ensures that the benchmark captures a wide
range of diagramming scenarios.

4 Evaluation and Discussion

Our evaluation of MermaidSeqBench is aimed at demonstrating its utility for probing LLMs on
structured sequence-diagram generation tasks. Our focus is to establish baseline results for state-of-
the-art models while highlighting the flexibility of MermaidSeqBench when paired with independent
LLM-as-a-Judge (LLMal) evaluators. This setup allows us to identify capability gaps that are often
overlooked in standard text-generation benchmarks.



4.1 Experiments

We evaluate six models spanning three distinct families and parameter scales: Qwen 2.5 [[15] (0.5B
and 7B), Llama 3.1/3.2 [16] (1B and 8B), and Granite 3.3 [[17] (2B and 8B). This setup provides a
balanced perspective on both lightweight and larger-scale variants across LLM families, enabling
comparison of architectural differences as well as scaling effects.

For evaluation, we employ two large models as judges, namely DeepSeek-V3 [18] (671B) and
GPT-OSS [19] (120B). Each judge is prompted to assess generated Mermaid outputs. Given an
input description (in natural language) and a corresponding reference diagram syntax, the judges rate
candidate diagrams across six dimensions: Syntax, Mermaid Only, Logic, Completeness, Activation
Handling, and Error & Status Tracking. Each dimension is scored on a scale from O to 1, allowing
both fine-grained and aggregate comparisons of model performance.

4.2 Results

TableT| presents the benchmark scores. Overall, the results reveal clear scaling effects across families:
larger models within each family (7B/8B) consistently outperform their smaller counterparts (0.5B-
2B). Among the strongest models, Qwen 2.5-7B and Llama 3.1-8B achieve the highest scores across
most criteria, particularly on syntax, logical flow, and activation usage. Granite 3.3-8B follows closely
but lags slightly on error handling and completeness.

Table 1: Model performance on MermaidSeqBench across six criteria, evaluated by two large LLM-
as-a-Judge (LLMalJ) models. Higher is better.

DeepSeek-V3 (671B) GPT-OSS (120B)

Mermaid Only
Completeness
Activation Handling
Error & Status Tracking
Mermaid Only
Completeness
Activation Handling
Error & Status Tracking

Qwen 2.5-0.5B 5890 77.12 3693 4439 2652 38.07 4895 6545 1391 1841 1385 1590
Llama3.2-1B 68.98 60.68 5227 60.57 39.85 5235 46.15 4623 1886 2592 1729 24.14
Granite 3.3-2B  75.27 9098 7023 7455 63.71 71.86 39.60 7859 34.11 4650 29.01 53.97

Qwen 2.5-7B 91.29 9598 8723 8890 79.55 81.70 8597 97.05 7056 7737 64.04 69.81
Llama3.1-8B 92.01 9636 8735 89.43 79.17 81.82 68.89 93.85 67.71 7750 57.99 74.90
Granite 3.3-8B  86.97 94.13 83.03 8375 74.13 7697 65.15 8835 5890 6508 47.08 63.24

Because all six evaluation criteria are evaluated by two independent large models serving as judges,
the benchmark inherently captures cross-judge variability and robustness. DeepSeek-V3 assigns
higher and more consistent scores across all criteria, while GPT-OSS tends to be stricter, especially
for smaller models, leading to more pronounced gaps. This emphasizes the value of employing
multiple LL.MaJ evaluators, as they provide complementary perspectives and mitigate the bias of
any single model. Overall, These findings confirm that MermaidSeqBench exposes meaningful
differences across model families and sizes, and emphasizes the need to have a systematic, multi-
faceted evaluation of LLMs on diagram generation tasks.

5 Conclusion

We introduced MermaidSeqBench, a benchmark for evaluating LLM capabilities in generating
precise, structured, and logically consistent Mermaid sequence diagrams. Our method for creating
this benchmark combines rule-based variation augmentation with natural language prompts, enabling
systematic assessment across syntax, logic, completeness, activation handling, and error/status
tracking. Initial experiments with six LLMs from three model families, judged by two large LLMs,
reveal significant performance gaps across criteria and evaluation modes. These findings underscore
the need for specialized benchmarks like MermaidSeqBench to expose fine-grained weaknesses and
guide future model development.
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A Sequence Diagrams

The UML sequence diagram in Figure[T]and the accompanying Listing [I]illustrate one of the test
cases included in our benchmark dataset. The figure presents the rendered Mermaid sequence diagram
describing the flow in uploading documents with secure storage, while the listing provides the exact
Mermaid syntax used to generate it.

User Mobile App Backend for Frontend Azure AD Database Azure Blob Storage

Upload Document
Upload document

Send document (with session token)

W ‘ Validate session token

Token validated T ‘

‘ Check user permissions

Permissions valid >‘ ‘

alt [l

s

alid token, insufficient permissions, or file too large]

Error message

[Upload successful]

Save document metadata

Metadata saved T
Store document
Document stored T
Confirmation
User Mobile App Backend for Frontend Azure AD Database Azure Blob Storage

Figure 1: A UML sequence diagram from our benchmark, illustrating the “Uploading Documents
with Secure Storage” flow. Participants include the User, Mobile App, Backend For Frontend (BFF),
Azure AD, Database, and Azure Blob Storage. In this scenario, the User uploads a document through
the Mobile App, which forwards the file and session token to the BFF. The BFF validates the token
with Azure AD, checks the user’s permissions, and, if authorized, records document metadata in the
Database and securely stores the file in cloud storage (Azure Blob Storage). A confirmation is then
returned to the app, while alternate paths handle errors for unauthorized access or oversized files.

sequenceDiagram

participant U as User

participant MA as Mobile App
participant BFF as Backend for Frontend
participant AAD as Azure AD

participant DB as Database

participant AS as Azure Blob Storage

Note over U: Upload Document

U->>MA: Upload document

MA->>BFF: Send document (with session token)

activate BFF

BFF->>AAD: Validate session token

deactivate BFF

activate AAD

AAD-->>BFF: Token validated

deactivate AAD

activate BFF

BFF->>AAD: Check user permissions

deactivate BFF

activate AAD

AAD-->>BFF: Permissions valid

deactivate AAD

activate BFF

alt Invalid token, insufficient permissions, or file too large
BFF-->>MA: Error message

else Upload successful
BFF->>DB: Save document metadata




activate DB
DB-->>BFF: Metadata saved
deactivate DB
BFF->>AS: Store document
activate AS
AS-->>BFF: Document stored
deactivate AS
BFF-->>MA: Confirmation
end
deactivate BFF

Listing 1: Mermaid syntax illustrating the “Uploading Documents with Secure Storage” flow, as
rendered and detailed in Figure E}

Our benchmark also includes more complex flows with multiple active actors. Figure [2] presents
a sequence diagram demonstrating a user interaction with a Chatbot actor that may or may not
invoke an additional actor (i.e., a Customer Support Agent). Listing [2] shows the Mermaid syntax
corresponding to this diagram, which can be directly rendered to produce the figure.

sequenceDiagram

participant U as User

participant MA as Mobile App

participant BFF as Backend for Frontend
participant CB as Chatbot

participant CSA as Customer Support Agent

Note over U: User Query
U->>MA: Types a question or query
MA->>BFF: Sends query to BFF
activate BFF
BFF->>CB: Forwards query to Chatbot
activate CB
CB->>BFF: Sends initial response
deactivate CB
BFF->>MA: Forwards initial response
deactivate BFF
MA->>U: Displays initial response
Note over CB: Follow-up Questions
CB->>BFF: Asks follow-up questions
activate BFF
BFF->>MA: Forwards follow-up questions
deactivate BFF
MA->>U: Displays follow-up questions
U->>MA: Provides additional details
MA->>BFF: Sends additional details to BFF
activate BFF
BFF->>CB: Forwards additional details
deactivate BFF
alt Chatbot cannot resolve the issue
CB->>CSA: Forwards escalated query
Note over CSA: Agent Interaction
CSA->>BFF: Interacts with user
activate BFF
BFF->>MA: Forwards agent interaction
deactivate BFF
MA->>U: Displays agent interaction
U->>MA: Responds to agent
MA->>BFF: Sends user response
activate BFF
BFF->>CSA: Forwards user response
deactivate BFF
CSA->>BFF: Provides solution or resolution
activate BFF
BFF->>MA: Forwards solution or resolution
deactivate BFF
MA->>U: Displays solution or resolution
end
Note over MA: Feedback
MA->>U: Prompts for feedback
U->>MA: Provides feedback
MA->>BFF: Sends feedback
activate BFF
BFF->>CSA: Forwards feedback
deactivate BFF

Listing 2: Mermaid syntax illustrating the “Chatbot Interaction for Customer Support” flow, as
rendered and detailed in Figure E}




User Mobile App Backend for Frontend Chatbot Customer Support Agent

User Query
Types a question or query
Sends query to BFF
Forwards query to Chatbot
Sends initial response '—‘
Forwards initial response
Displays initial response
Follow-up Questions
Asks follow-up questions
Forwards follow-up questions ]‘
Displays follow-up questions
Provides additional details
Sends additional details to BFF
Forwards additional details
alt [Chatbot cannot resolve the issue]

Forwards escalated query

Agent Interaction

Interacts with user

Forwards agent interaction T

Displays agent interaction

Responds to agent

Sends user response

‘ Forwards user response

Provides solution or resolution

Forwards solution or resolution T
Displays solution or resolution
Feedback
Prompts for feedback
Provides feedback
Sends feedback
Forwards feedback
User Mobile App Backend for Frontend Chatbot Customer Support Agent

Figure 2: A UML sequence diagram from our benchmark, illustrating the “Chatbot Interaction for
Customer Support” flow. Participants include the User, Mobile App, Backend For Frontend, Chatbot,
and Customer Support Agent. In this scenario, the User submits a query through the Mobile App,
which forwards it via the BFF to the Chatbot. The Chatbot provides initial responses and may request
clarifications; if unable to resolve the issue, it escalates the conversation to a Customer Support Agent.
The Agent then interacts with the User through the Mobile App to provide a resolution, after which
the app collects feedback from the User.



B Natural Language Descriptions of Sequence Diagrams

For each Mermaid diagram provided in Appendix [A] we include the corresponding natural language
description that served as the input prompt for generation and evaluation. Each description system-
atically covers: (1) Purpose: the overall intent of the sequence diagram; (2) Main Components:
the participants involved and their roles; and (3) Interactions: the ordered set of messages and
control-flow constructs.

Listing [3] presents the natural language specification for the “Uploading Documents with Secure
Storage” scenario (corresponding to the syntax provided in Listing [I] and rendered in Figure [T,
while Listing ] provides the specification for the “Chatbot Interaction for Customer Support” flow
(corresponding to the syntax provided in Listing 2 and rendered in Figure [2).

Purpose: Uploading Documents with Secure Storage
Main Components: User, Mobile App, BFF, Azure AD, Database

Interactions:

1. User Action: User uploads a document (e.g., an ID or contract) through the mobile app.
2. Mobile App: Sends the document along with the session token to the BFF.

3. BFF Validation:

Validates the session token with Azure AD.

Checks user permissions to ensure they are authorized to upload documents.

4. Storage Process:

The BFF saves metadata about the document (e.g., file name, size, upload timestamp) in
the database.
The actual document is securely stored in cloud storage (e.g., Azure Blob Storage).

5. Response:

On successful upload, the BFF returns a confirmation to the app.

If the user is unauthorized or the file exceeds size limits, an appropriate error is
returned.

Listing 3: Natural language specification for the “Uploading Documents with Secure Storage” flow,
corresponding to the syntax in Listing[I|and the rendered diagram in Figure

Purpose: Chatbot interaction for customer support
Main Components: User, Mobile App, Chatbot, Customer Support Agent, BFF

Interactions:

1. User Query: The user types a question or query into the mobile app.

2. Chatbot Engagement: The mobile app sends the query to the Chatbot via the BFF.

3. Initial Response: The Chatbot processes the query and sends an initial response to the
mobile app.

4. Follow-up Questions: The Chatbot may ask follow-up questions to better understand the

user’s issue.

5. Escalation: If the Chatbot cannot resolve the issue, it escalates the query to a
Customer Support Agent.

6. Agent Interaction: The Customer Support Agent receives the escalated query and
interacts with the user through the mobile app.

7. Resolution: The Customer Support Agent provides a solution or resolution to the user’s
issue.

8. Feedback: The mobile app prompts the user to provide feedback on the support
experience.

Listing 4: Natural language specification for the “Chatbot Interaction for Customer Support” flow,
corresponding to the syntax in Listing E] and the rendered diagram in Figure E}
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