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ABSTRACT

Image tagging, also known as multi-label image recognition, aims to assign multiple
semantic labels to a given image. However, few benchmarks have been tailored
for hierarchical image tagging to measure the hierarchical classification accuracy,
where a concept ‘Shiba Inu’ should be recognized as both ‘dog’ and ‘animal’.
To explicitly capture such hierarchy, we introduce a hierarchical image tagging
benchmark, termed HiTag, to evaluate the multi-visual context from a hierarchical
perspective. Specifically, we first construct a tree-like hierarchical structure for the
tags based on lexical semantic databases, i.e., WordNet and YAGO, including 10
levels and 3,334 labels. The hierarchy is consistent with visual perception through
optimization by a large model and can be dynamically updated for unexplored
tags by locating their positions in WordNet and assessing their validity using a
large model. With the designed hierarchical structure, we utilized large language
models to annotate 2,872,012 images from CC3M as training data and manually
tagged 57,223 images from OpenImage as test data, to advance the exploration of
the hierarchical image tagging task. Meanwhile, we develop a pipeline to assess
the hierarchical classification capacity of models on multiple levels, including
tree edit distance, Jaccard similarity, hierarchical precision, hierarchical recall
metrics, etc. Furthermore, we embed hierarchical tags, images, and captions into
hyperbolic space for modeling, leveraging its inherent suitability for representing
tree-structured data. Experimental results on the HiTag confirm that our method
not only demonstrates superior performance of zero-shot image tagging, but also
achieves state-of-the-art results on hierarchical image tagging modeling. We will
release the code and the dataset to support the community.

1 INTRODUCTION

Image recognition, as a fundamental task in computer vision, has made remarkable progress in
recent years. This advancement has been driven by the large-scale classification datasets, such as
ImageNet Deng et al. (2009), which enable well-trained models to not only recognize the most
salient object in an image but also provide robust representations for diverse downstream visual
tasks Ren et al. (2016); He et al. (2018a); Long et al. (2015). However, individual images in real world
typically contain multiple inherent objects, posing significant challenges to traditional single-label
classification methods. To bridge this gap, multi-label image recognition, also known as image
tagging, has garnered increasing attention. Concretely, recent efforts such as the RAM series Huang
et al. (2023a); Zhang et al. (2024); Huang et al. (2023b) leverage large-scale image-text datasets
(e.g., CC3M Sharma et al. (2018), CC12M Changpinyo et al. (2021)) to achieve promising results in
predicting multiple fine-grained tags for images. Although the existing image tagging methods can
predict most objects in an image, as shown in Figure 1, they ignore the hierarchical relationships that
naturally exist among concepts. For example, a ‘dog’ contained in an image also should be classified
as the higher-level concept of ‘animal’. In such scenarios, a well-trained and robust classification
model should treat categories at different abstraction levels.

In biology, the taxonomy system Ruggiero et al. (2015); Linnaeus (2024) defines and classifies groups
of biological organisms based on shared characteristics. Meanwhile, WordNet Fellbaum (1998) from
linguistics is a lexical database that links words into semantic relations. The mentioned ImageNet is
an image database organized according to WordNet, in which images are depicted by a single label.
Inspired by this, we construct a tree-like hierarchical structure according to all WordNet nouns to
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Figure 1: Comparison of Image Recognition tasks. Differing from tasks that only identify tags in an
image, the hierarchical image tagging task explicitly models the hierarchical relationships among
recognized tags, thereby producing a hierarchical tag tree.

organize the tags in images, providing a reasonable foundation for the hierarchical image tagging task.
Although leveraging WordNet’s extensive noun coverage has enabled the construction of a relatively
complete tag tree, numerous common visual objects, such as ‘3D glasses’ and ‘auto showroom’,
are still absent. To overcome this limitation, we expand the hierarchical tag tree by incorporating
new categories from the original tag vocabulary. Moreover, as WordNet is constructed based on
psycholinguistic and computational linguistic principles, it contains numerous abstract concepts that
are visually unobservable (e.g., ‘things’ and ‘use’). Therefore, we exclude these abstract categories to
ensure visual interpretability. Furthermore, to better align the architecture with visual perception and
user preferences, we leverage both a large language model (LLM) and YAGO to adjust and refine the
structure. The final hierarchical structure of tags contains over 3,334 concepts and 10 levels. Besides,
we can expand our hierarchy with unexplored tags by locating their positions in WordNet and using a
large model to verify the rationality of the structure and its consistency with visual perception.

To effectively evaluate hierarchical image tagging, we construct a benchmark and develop a pipeline to
assess the hierarchical classification performance. Specifically, based on the hierarchical tags structure,
we create a benchmark dataset through manually labeling 57,223 images of OpenImage Kuznetsova
et al. (2020), where each image is annotated not only with multiple tags but also with the tree-
like hierarchical format. During evaluation, we adopt four metrics to evaluate hierarchical tagging
performance: Tree Edit Distance, Jaccard Similarity, Hierarchical Precision, and Hierarchical Recall,
which jointly measure the completeness and accuracy of predicted hierarchical tags. Moreover, we
also use a large language model to label 2,872,012 images from CC3M as training data.

Furthermore, we propose a hierarchical image tagging method that represents, aligns, and models
the hierarchical relationships among images, captions, and hierarchical labels in hyperbolic space.
Unlike Euclidean embeddings, hyperbolic geometry naturally encodes hierarchical structures due
to its exponential volume growth, making it well-suited for representing large-scale hierarchical
taxonomies. First, we represent image, tag, and caption features into hyperbolic space and enrich
each tag with multi-perspective textual descriptions according to their Lorentz inner product with the
images to better align its semantics with visual content. Then, we align tag and image representation
using a hyperbolic text-image attention module to extract the visual evidence related to the labels.
More importantly, we model the hierarchical structures by leveraging entailment cones in Lorentz
space to describe the partial order relationships within the hierarchy. Finally, we achieve state-of-the-
art hierarchical tag recognition performance compared with both open-set image tagging methods
and hierarchical image classification techniques.

Our main contributions are as follows:

• We construct a comprehensive hierarchical tag structure by integrating WordNet, YAGO, and
LLM-based refinement, resulting in a tag tree covering 3,334 tags across 10 levels.

• We develop a hierarchical image tagging benchmark with 3M training and 57,223 test images
and an evaluation pipeline to assess the hierarchical classification capacity with four metrics: tree
edit distance, Jaccard similarity, hierarchical precision, and hierarchical recall.
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• We propose a hierarchical image tagging method in hyperbolic space, which models hierarchical
relationships among tags, images, and captions.

2 RELATED WORK

2.1 IMAGE MULTI-LABEL RECOGNITION

Image multi-label recognition can be divided into two categories: (i) top-k prediction, which returns
the k most probable labels; and (ii) comprehensive tagging, which aims to recognize all labels present
in an image. Our work targets the second.

Top-k Prediction. Early works Wei et al. (2016); Wang et al. (2016); He et al. (2018b); Chen et al.
(2019); Luo et al. (2019) formulated multi-label recognition task as closed-set recognition over a fixed
set of label indices. To move beyond a fixed label set, subsequent methods Ren et al. (2015); Zhang
et al. (2016); Lee et al. (2018); Rahman et al. (2020); Huynh & Elhamifar (2020); Narayan et al.
(2021); Ben-Cohen et al. (2021) projected images into a word-semantic space using embeddings such
as Word2Vec Mikolov et al. (2013) and GloVe Pennington et al. (2014), thereby enabling zero-shot
generalization to unseen labels. These approaches, however, are fundamentally constrained by the
finite vocabularies and static semantics of the word models. Recent advances in vision–language
models (VLMs) like CLIP Radford et al. (2021) and ALIGN Jia et al. (2021) have significantly
enhanced open-vocabulary recognition. Subsequent works Sun et al. (2022); Dao et al. (2023); He
et al. (2023); Hu et al. (2024); Liu et al. (2024) further extend these capabilities. Nevertheless, any
fixed k inevitably omit valid labels or introduce erroneous ones in complex visual scenes.

Comprehensive Tagging. Tag2Text Huang et al. (2023b) achieves strong tagging performance by
jointly learning tagging and captioning on large-scale data, but it remains confined to a fixed and
predefined label set. Building on this, RAM Zhang et al. (2024) leverages CLIP text encoder to
convert tags into semantic label queries, enabling the recognition of unseen categories. RAM++
Huang et al. (2023a) further incorporates large language model (LLM)-generated visual descriptions
for each label, boosting open-set generalization. Despite these advances, existing methods remain
restricted to flat label sets, failing to capture the inherent hierarchical relationships among labels.

2.2 HIERARCHICAL REPRESENTATION LEARNING

Hierarchical representation learning relies on a predefined hierarchy. Current methods and sources for
constructing such hierarchies include WordNet Fellbaum (1998) for general classification Bertinetto
et al. (2020); Santurkar et al. (2020), the ATUS taxonomy of Labor Statistics (2003-2023) for activity
classification Long et al. (2020), biological taxonomy for biological classification Van Horn et al.
(2018); Chang et al. (2021); Van Horn et al. (2015), OpenStreetMap for street scene Neuhold et al.
(2017), and some hierarchies Maji et al. (2013) that are constructed through manual inspection.

Based on the constructed hierarchy, hierarchical representation learning have three main branches:
probability-constraint methods, multi-granular prediction heads, and embedding-based modeling.

Probability-constraint methods Bertinetto et al. (2020); Garg et al. (2022b); Li et al. (2022b) either
directly enforce that the predicted probability of a parent category is never lower than that of any of
its children Li et al. (2022b), or introduce hierarchical losses such as Hierarchical Cross-Entropy
(HXE) Bertinetto et al. (2020) that implicitly preserve the same constraint. Although these techniques
guarantee local parent–child consistency, they hard to capture the global hierarchy of the entire label
tree. Methods with multi-granular prediction heads Wang et al. (2020); Chang et al. (2021); Garg
et al. (2022a); Wang et al. (2023a); Park et al. (2025) construct the output layers of the network
according to the branches of the tree hierarchy. Specifically, the output layers of different branches in
the methodsChen et al. (2022); Giunchiglia & Lukasiewicz (2020); Zhou et al. (2023) are trained
by imposing constraints, such as parent–child probability order, mutual exclusivity at the same
level, and parent–child inclusion relationships to learn the probability differences among categories
within each branch. Therefore, such methods essentially learn the relationships between index-based
probability outputs rather than understanding the semantic relationships between category names.
Embedding-based methods Zhang et al. (2022a); Wang et al. (2023b) embed images and hierarchical
labels into a shared Euclidean semantic space, comprehensively modeling the tree structure and
preserving cross-level relationships (e.g., HiMulConE Zhang et al. (2022a) spreads coarse-grained
labels apart while tightly clustering fine-grained labels around their parent).However, embedding
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Figure 2: An overview of HiTag. In our model, we use a frozen text encoder and a trainable image
encoder to encode text and image separately. We then map these embeddings into hyperbolic space to
model hierarchical structures and align visual–textual semantics. As a result, our approach captures
the hierarchical relationships among tags, captions, and images, achieving hierarchical image tagging.
exponentially growing tree structures in Euclidean space leads to severe distortion at greater depths,
necessitating a more effective hierarchical embedding space.

2.3 HYPERBOLIC GEOMETRY FOR HIERARCHICAL MODELING

Compared with Euclidean space, hyperbolic geometry Ratcliffe (2006); Lee (2019); Peng et al.
(2022); Cannon et al. (1997) captures exponentially expanding tree-like hierarchies more naturally
Krioukov et al. (2010); Sarkar (2011); Nickel & Kiela (2017); Chamberlain et al. (2017). Leveraging
this advantage, researchers have begun to redesign core neural-network components in hyperbolic
space. The Hyperbolic Neural Networks (HNN) framework Ganea et al. (2018b) first introduced
hyperbolic version of fully connected layers, multinomial logistic regression, and recurrent units;
subsequent work extended these components to include CNN Shimizu et al. (2021), GNN Liu et al.
(2019); Chami et al. (2019); Zhang et al. (2022b), attention Gulcehre et al. (2019); Zhang et al.
(2022b), and VAE Mathieu et al. (2019); Skopek et al. (2020). These foundational efforts enabled
hyperbolic geometry’s adoption in computer vision.

Building on these foundational efforts, hyperbolic embeddings have driven improvements across
diverse computer-vision tasks. Across recognition tasks, hyperbolic embeddings better capture
label hierarchies, improving performance in single-label classification Khrulkov et al. (2020); Fang
et al. (2021); Gao et al. (2021); Xu et al. (2023); Liu et al. (2020); Dengxiong & Kong (2023),
image retrieval Khrulkov et al. (2020), person re-identification Khrulkov et al. (2020); Fang et al.
(2021), and object detection Kong et al. (2024). For segmentation, capturing hierarchical part–whole
relations yields sharper boundaries and more coherent masks (Atigh et al., 2022; Chen et al., 2024;
Franco et al., 2024). In vision–language models, MERU Desai et al. (2023) and HyCoCLIP Pal et al.
(2024) align visual and textual features in hyperbolic space to represent hierarchical relations across
modalities utilizing the entailment loss Ganea et al. (2018a); Le et al. (2019). Despite recent advances,
vision–language models that have not been applied to the task of hierarchical multi-tag recognition in
hyperbolic space. Therefore, we perform open-set tagging using a hyperbolic vision–language model.

3 METHOD

We propose a hierarchical image tagging method that represents and models the hierarchical relation-
ships among images, captions, and tags in hyperbolic space. As show in Figure 2, we first encode
image feature and text features (tag descriptions and captions) using the image encoder and text
encoder, respectively. Then, we project these features into the Lorentz model of hyperbolic space.
Finally, we align between texts and images for tag recognition and utilize entailment cones in Lorentz
space to model entailment relations in the hierarchy, enabling hierarchical image label recognition.

3.1 PRELIMINARY

Hyperbolic space is a non-Euclidean manifold with constant negative curvature. In contrast to
Euclidean space, the volume of a hyperbolic space grows exponentially with respect to its radius,
making it well-suited for hierarchical structures. The Lorentz model is particularly favorable for deep
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learning in hyperbolic space due to its numerical stability in computing exponential and logarithmic
maps. In this work, we adopt the Lorentz model for hyperbolic space representation.

The Lorentz model The Lorentz model Ln is embedded in an (n + 1)-dimensional Minkowski
spacetime Rn+1, and can be viewed as the upper sheet of a two-sheeted hyperboloid. Let x =
(x0, x1, . . . , xn) be a point in Ln, where x0 is the time component and x1, . . . , xn are spatial
components. A Lorentz manifold with constant curvature −k (k > 0) is defined as:

Ln =
{
x ∈ Rn+1 | ⟨x,x⟩L = − 1

k , x0 > 0
}
, (1)

where ⟨·, ·⟩L denotes the Lorentzian inner product. For any x,y ∈ Ln,
⟨x,y⟩L = −x0y0 + ⟨x,y⟩E , (2)

where ⟨x,y⟩E is the Euclidean inner product. The Lorentz norm is defined by ∥x∥L =
√∣∣⟨x,x⟩L∣∣.

The exponential and logarithmic maps For any x ∈ Ln, its tangent space is given by TxL
n =

{
v ∈

Rn+1 | ⟨x,v⟩L = 0
}

. The exponential map, projecting from the tangent space to the hyperbolic
manifold, is given by Expx(v) = coshαx+ sinhα

α v, where α =
√
k ∥v∥L. The Euclidean space

can be regarded as the tangent space ToL
n = {(0,u) | u ∈ Rn} of the Lorentz manifold at the

origin o =
(

1√
k
, 0, . . . , 0

)
. The exponential map Expo from Euclidean to Lorentz manifold denotes:

Expo(u) =
(
cosh(

√
k∥u∥), sinh(

√
k∥u∥) u

∥u∥
)
. (3)

Conversely, the logarithmic map projects points from the Lorentz manifold to the Euclidean space:

Logo(x) =
1√
k

arcosh(k−
1
2x0)

(x1, . . . , xn)√
x 2
0 − k−1

∈ Rn, (4)

Note that exponential and logarithmic maps are local inverses, enabling seamless transformations
between the Lorentz space and Euclidean space.

3.2 HYPERBOLIC FEATURE REPRESENTATION

As illustrated in Figure 2, we first encode images and texts with an image encoder fimg and a text
encoder ftxt respectively, yielding n-dimensional feature vectors in Euclidean space. Then, we utilize
the exponential mapping Expo (Eq equation 3) to project these feature vectors onto the Lorentz
hyperbolic surface. Consequently, the hyperbolic representations of the image I , caption C, and tag
T are denoted as x(i) = Expo

(
fimg(I)

)
, x(cap) = Expo

(
ftxt(C)

)
, x(tag) = Expo

(
ftxt(T )

)
.

To fully capture the semantics of each tag from different perspectives, we employ a multi-modal large
language model (MLLM), Qwen2.5-vl-72B Bai et al. (2025b), to generate h diverse descriptions for
each tag. These tag descriptions are likewise mapped into the same Lorentz hyperbolic space as x(i).
To match images precisely with the tags, we measure the similarity between the image and each tag’s
h descriptions, then perform a weighted aggregation to produce a appropriate tag representation.

Specially, we adopt the Lorentz inner product in Eq equation 2 to measure the similarity between the
image representation x(i) and the h descriptions {x(tagj,1), . . . ,x(tagj,h)} of tag j. We then apply a
softmax function to obtain the weight for each description:

wi,j,k =
exp
(
⟨x(i), x(tagj,k)⟩L

)
h∑

k′=1

exp
(
⟨x(i), x(tagj,k′ )⟩L

) , k = 1, . . . , h. (5)

Next, we map the features x(tagj,k) back to the Euclidean space x
(tagj,k)

E = Log(x(tagj,k)) and
generate an aggregated representation of the j-th tag for the i-th image with a weighted combination
over h description vectors:

x
(tagi,j)

E =

h∑
k=1

wi,j,k x
(tagj,k)

E . (6)

The aggregation mechanism emphasizes tag descriptions that are more semantically aligned with
the image in hyperbolic space. As a result, the generated tag representations can better capture the
hierarchical and contextual semantics present in the visual content.
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3.3 HIERARCHICAL RELATIONSHIP MODELING

In hierarchical structures, it is usual to represent partial-order relations, such as “x is a general concept
of y.” Entailment cones is a common approach for capturing such relations in hyperbolic geometry.
Following prior works Ganea et al. (2018a); Desai et al. (2023), we model hierarchical relations by
checking if the cone of x contains y, implying that x entails y. Notably, the aperture of entailment
cone decreases with distance from the origin, naturally encoding increasing specificity. Specifically,
given a vector x, we construct an entailment cone in hyperbolic space with x as its apex, and measure
its width by a half aperture. The half aperture αhalf(x) is defined by:

αhalf(x) = sin−1
( 2K√

k ∥x∥E

)
, (7)

where −k is the curvature of the hyperbolic space, K = 0.1 is a constant that limits the half-aperture
angle near the origin, and ∥x∥E denotes the Euclidean norm of x. Therefore, as x moves farther
from the origin, αhalf(x) becomes smaller.

The hierarchical relations requires a general concept x to cover its specific concept y. To assess
whether x entails y, we compute the external angle θoxy as follows:

θoxy = arccos

(
ytime + k ⟨x,y⟩L xtime

∥x∥E
√

k
(
⟨x, y⟩L

)2 − 1

)
, (8)

where xtime =
√

1
k + ∥x∥2, ytime =

√
1
k + ∥y∥2 are the time components of x and y, respec-

tively. If θoxy < αhalf(x), then x entails y. Otherwise, the hierarchy is contradicted. To encourage y
to lie inside the entailment cone of x, we introduce the following entailment loss:

Lent(x,y) = max
{
0, θoxy − γ αhalf(x)

}
, (9)

where γ is a threshold controlling the maximum allowable external angle.

Unlike Desai et al. (2023); Pal et al. (2024), which imposes entailment constraints only between an
image and its caption or a single tag name, we explicitly employ a hierarchical structure to model
hierarchical relations among image I and caption C, image and multiple tags T , caption C and tags
T , as well as child tag Tchild and its parent tag Tparent. Therefore, we define the hierarchical loss as:

Lhier = Lent(T, I) + Lent(C, I) + Lent(T,C) + Lent(Tparent, Tchild). (10)

Furthermore, we employ a tag-image attention mechanism and the Asymmetric Loss Ben-Baruch
et al. (2020) Lalign to effectively align images with associated tags. Please see Appendix for more
details. The total loss of hierarchical image tagging loss is defined by:

LHIT = Lalign + wLhier. (11)

where w is the weight for hierarchical loss Lhier.

4 DATASET AND BENCHMARK WITH HIERARCHICAL TAG STRUCTURE

In order to evaluate hierarchical image tagging, we construct a general hierarchical tag tree referencing
lexical semantic databases in linguistics, WordNet Fellbaum (1998), and a LLM. The hierarchical tag
tree contains 10 levels and 3,334 tags along with their hierarchical relationships.

As shown in Figure 3, to construct the hierarchical structure, we first project all original tags onto
a WordNet-based tree. During this process, we remove redundant synonyms (e.g., “autumn” and
“fall”) and abstract concepts (e.g., “adaptation” or “approach”), while enriching certain branches
with familiar objects already present in WordNet, including “black swan” and “jackfruit”. Although
WordNet covers a broad vocabulary, it still lacks several common tags, such as “3D glasses” and
“auto showroom”. Therefore, we extend the tree with these tags from original list. Furthermore,
since WordNet is grounded in psycholinguistic theories and organizes categories based on semantic
relationships, its structure does not always align with visual perception or user expectations.
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Figure 3: Process of constructing the hierarchical tag structure. Firstly, we refine and enrich the
RAM++ tag list to build an hierarchical tag structure using the lexical semantic databases in linguistics,
WordNet. Futhermore, the structure is optimized with reference to YAGO and a LLM to better align
with visual perception and human cognition.

Figure 4: Visualization of a 6-level subtree with 113
tags from the full hierarchical tag structure.

Thus, we reorganize and refine the structure
with guidance from YAGO and a LLM. Figure
4 illustrates the subtree of the hierarchical tag
structure, highlighting the tags in the primary
branches. Overall, the complete structure con-
tains 3,334 tags distributed across 10 levels,
with 1, 7, 63, 230, 203, 655, 1194, 748, 201,
and 32 tags from Level 1 to Level 10, respec-
tively. The full tree and tag are provided in
the appendix B.1. Our predefined taxonomy
is flexible, and the tree-structured label space
can be dynamically updated. This flexibility
benefits from the well-organized structure of
WordNet and the visual perception capabilities
of large models in open-world settings. When
encountering an unexplored tag in the open
world, we first locate its position in WordNet,
then assess its validity using a large model,
and finally update the structure accordingly.
For example, British Shorthair can be identi-
fied in WordNet as a subcategory of cat. After
verifying the correctness of British Shorthair’s
hierarchical position with the large model, we update the taxonomy accordingly.

Building on this hierarchical tag structure, we used a multimodal large model Qwen2.5-vl-72B Bai
et al. (2025b) to annotate images in the CC3M dataset Sharma et al. (2018), and manually checked
and corrected the annotations. However, the annotation from large model is low-quality and noisy due
to potential hallucinations and biases from the large model. We spent significant 3 months reviewing
and correcting the annotations. Each image’s annotation includes its corresponding tags as well as
the hierarchical relationships among those tags. In addition, we perform preliminary annotations for
Open-Images Common dataset Kuznetsova et al. (2020), followed by manual checks of the annotation
results. In the resulting benchmark, each image is labeled with a tag set and a tag tree derived from
the hierarchy of these tags. Table 1 provides detailed benchmark statistics and comparisons with
common multi-label classification datasets.

We construct an evaluation pipeline employing Tree Edit Distance (TED), Jaccard Similarity (J),
Hierarchical Precision (PH ) and Hierarchical Recall (RH ) to evaluate the predicted hierarchical
structures. These metrics provide a comprehensive assessment of both the accuracy and completeness
of hierarchical structure prediction.

7
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Table 1: Comparison of multi-label classification datasets in terms of images, labels and levels.

Dataset Images Classes Tree-like Levels Train Test

Cityscapes Cordts et al. (2016) 5,000 19 ✗ 1 2,975 1,525
Pascal VOC Everingham et al. (2010) 11,540 20 ✗ 1 5,717 –
COCO Lin et al. (2014) 123287 80 ✗ 1 82,783 40,775
NUS-WIDE Chua et al. (2009) 269,648 81 ✗ 1 161,789 107,859
Objects365 Shao et al. (2019) 738,000 365 ✗ 1 600,000 100,000
OpenImages Kuznetsova et al. (2020) 9,177,125 600 ✗ 1 9,011,219 125,436
RAM Zhang et al. (2024) 14,000,000 4,585 ✗ 1 14,000,000 –
SubPartImageNet Myers-Dean et al. (2024) 10,387 254 ✓ 3 8,828 1,040
Mapillary Vistas 2.0 Neuhold et al. (2017) 25,000 144 ✓ 3 18,000 5,000
HiTag (ours) 2,929,235 3,334 ✓ 10 2,872,012 57,223

Table 2: Comparison of hierarchical image tagging performance among open-set image tagging
models, vision language models and hierarchical image classification models. ‘w/Hier’ indicates
whether the method performs hierarchical classification. ‘TED’, ‘J’, ‘PH ’, and ‘RH ’ refer to the tree
edit distance, Jaccard similarity, hierarchical precision, and hierarchical recall metrics respectively.

Methods Training Images w/ Hier. TED↓ J↑ PH ↑ RH ↑
MKT He et al. (2023) 162K ✗ 47.45 0.24 0.38 0.46
BLIP Li et al. (2022a) 129M ✗ 38.93 0.24 0.53 0.37
DiHT Radenovic et al. (2023)* 438M ✗ 43.77 0.22 0.53 0.35
CLIP Radford et al. (2021) 400M ✗ 50.12 0.04 0.12 0.08
MERU Desai et al. (2023) 12M ✓ 41.77 0.21 0.50 0.32
HyCoCLIP Pal et al. (2024) 23.5M ✓ 35.13 0.22 0.56 0.30
RAM Zhang et al. (2024)* 14M ✗ 37.09 0.33 0.49 0.55
RAM++ Huang et al. (2023a)* 14M ✗ 34.88 0.35 0.52 0.57
GPT-4o - ✗ 34.85 0.14 0.61 0.16
Gemini-2.0 - ✗ 34.21 0.18 0.64 0.21
Qwen2.5-vl-72B Bai et al. (2025a) - ✗ 38.34 0.44 0.71 0.56
RAM++ Huang et al. (2023a) 3M ✗ 48.15 0.28 0.38 0.57
HiTag (ours) 3M ✓ 24.83 0.56 0.64 0.82

5 EXPERIMENT

Baselines. We train our model on HiTag training dataset, which contains 3M images from CC3M
with tags and their hierarchical relations. For fair comparison, we train RAM++ on the CC3M
dataset without fine-tuning. Furthermore, we compare our model against many other models He et al.
(2023); Li et al. (2022a); Radenovic et al. (2023); Radford et al. (2021); Desai et al. (2023); Pal et al.
(2024); Zhang et al. (2024); Huang et al. (2023a) trained on much larger datasets Cordts et al. (2016);
Everingham et al. (2010); Lin et al. (2014); Chua et al. (2009); Shao et al. (2019); Kuznetsova et al.
(2020); Zhang et al. (2024); Myers-Dean et al. (2024); Neuhold et al. (2017). Both our method and
the baseline methods, such as RAM++, generate diverse descriptions for each image using the large
model, making the experimental comparisons fair.

Implementation Details. Similar to RAM++ and RAM Huang et al. (2023a); Zhang et al. (2024),
we employ SwinLarge Liu et al. (2021) as the image encoder for fair comparison. We employ
an off-the-shelf text encoder of HyCoCLIP Pal et al. (2024) to extract caption and tag description
embeddings. The input size for training images is 224×224, and the image size remains unchanged
during evaluation. We use AdamW optimizer and step lr scheduler with a base learning rate of 1e-4
and a weight decay of 0.9. We choose 10 as our hierarchical loss weight. Training our model for 10
epochs on 8 NVIDIA A800 GPUs takes approximately 11 hours.

5.1 HIERARCHICAL IMAGE TAGGING

We evaluate hierarchical tagging performance on the manually annotated images with hierarchical
tags from the Open Images Common dataset. We employ four tree-based hierarchical metrics: TED,
J , PH , and RH .The comparison of HiTag with other open-set image tagging models, vision language
models and hierarchical image classification models is shown in Table 2. Across all four metrics,
HiTag demonstrates substantial improvements over state-of-the-art image tagging approaches with
much larger training datasets. Although LLMs exhibit the ability to construct tree-like structure, they
only achieves comparable performance with image tagging approaches without hierarchy in certain
settings. Moreover, even when compared to hierarchical classification methods trained on large-scale
datasets, HiTag still shows superior hierarchical tagging performance.
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Table 3: Image tagging performance comparison of state-of-the-art open-set and closed-set
image tagging models on mAP. Closed-set models are fully supervised and trained on vertical-
domain datasets. “Inference prompt” indicates the text prompt used during inference, such as
Hand-Written: “A photo of a dog” or LLM Tag Description: “A dog has a furry body, a tail. . .”.
Models marked with ∗ have external fine-tuning.

Methods Training Images Inference Prompt OpenImages ImageNet-MultiCommon Uncommon

Closed-Set Models
ML-Decoder Ridnik et al. (2023) 9M - 85.8 79.5 -
Tag2Text* Huang et al. (2023b) 4M - 82.9 - -
Tag2Text* Huang et al. (2023b) 14M - 83.4 - -

Open-Set Models
MKT He et al. (2023) 162K Hand-Written 77.8 63.5 49.8
BLIP Li et al. (2022a) 129M Hand-Written 75.7 61.1 39.0
DiHT* Radenovic et al. (2023) 438M Hand-Written 71.3 62.4 -
CLIP Radford et al. (2021) 400M Hand-Written 72.8 65.6 56.0
RAM* Zhang et al. (2024) 14M LLM Tag Des 82.2 65.9 -
RAM++* Huang et al. (2023a) 14M LLM Tag Des 86.6 75.4 63.3
RAM++ Huang et al. (2023a) 3M LLM Tag Des 84.3 68.5 53.4
HiTag (ours) 3M LLM Tag Des 85.6 68.6 57.8

Table 4: Ablation study on the effect of entailment loss for hierarchical image tagging.

Hyperbolic
representation

Entailment loss Hierarchical image tagging

Lent(T, I) + Lent(C, I) Lent(T,C) Lent(Tparent, Tchild) TED (↓) J (↑) PH (↑) RH (↑)

✓ 25.57 0.54 0.63 0.81
✓ ✓ 25.51 0.54 0.63 0.82
✓ ✓ ✓ 25.53 0.55 0.63 0.82
✓ ✓ ✓ ✓ 24.83 0.56 0.64 0.82

5.2 IMAGE TAGGING

For image tagging, we compare with state-of-the-art open-set (e.g., RAM++, RAM) and closed-set
(e.g., ML-Decoder, Tag2Text) models on three multi-tag recognition tasks: OpenImages Common,
OpenImages Uncommon and ImageNet-Multi Yun et al. (2021). To assess the performance of image
tagging, we use the commonly used mean Average Precision (mAP) as the evaluation metric. The
results in Table 3 show that HiTag outperforms the state-of-the-art open-set image tagging model
RAM++ with the same 3M training images as HiTag and significantly surpasses most leading open-set
models across all tasks. Moreover, HiTag achieves comparable performance to RAM trained on
14M images and to the closed-set model Tag2Text on the OpenImages Common and Uncommon
benchmarks.

5.3 ABLATION STUDY

We conduct a comprehensive ablation study to analyze the contribution of hyperbolic representation
and each component in our proposed entailment loss framework, as shown in Table 4. First, we ob-
serve that hyperbolic representation provides a respectable performance on hierarchical image tagging
(TED = 25.57, J = 0.54). Introducing the entailment loss Lent(T, I) + Lent(C, I) and Lent(T,C)
brings marginal gains in hierarchical tagging accuracy (e.g., RH from 0.81 → 0.82). Further in-
corporating Lent(Tparent, Tchild) consistently enhances hierarchical tagging metrics, highlighting
the utility of modeling parent–child entailment relationships among tags. Finally, combining the
hyperbolic representation with all three entailment components achieves the best overall performance
on hierarchical image tagging tasks (TED = 24.83, J = 0.56, PH = 0.64), verifying the effectiveness
of jointly enforcing hyperbolic geometry and multi-level entailment constraints.

6 CONCLUSION

In this work, we introduce HiTag, the largest and most structurally rich benchmark for hierarchical
image tagging, featuring 3M annotated images with 3,334 hierarchically organized tags across 10
levels. Beyond establishing a new benchmark, we demonstrate the effectiveness of hyperbolic
space for modeling hierarchical relationships between images, captions, and tags. Our hierarchical
image tagging approach utilize entailment cones in Lorentz space to model hierarchical relations and
achieves state-of-the-art performance in image tagging tasks.
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7 ETHICS STATEMENT

This work does not involve human subjects, personally identifiable data, or sensitive information. The
datasets used in our experiments (CC3M and OpenImages) are publicly available, and our use strictly
follows their licenses. To ensure data quality and reproducibility, our authors manually checked the
annotation results and manually annotated the test set. These efforts were strictly limited to verifying
and refining image–label associations. Manual inspection and annotation were carried out to reduce
bias and ensure that the benchmark reflects semantically consistent and visually coherent categories,
supporting fair evaluation of hierarchical image tagging models.

Importantly, no human subjects were involved in model training, experimental evaluation, or system
assessment, and no sensitive, private, or personally identifiable data were collected or processed. Our
research adheres to the principles of responsible stewardship, upholds high standards of scientific
excellence, and supports the public good by releasing a high-quality benchmark for the community.
No additional ethical concerns are associated with this paper.

8 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide anonymous repository links containing code 1 and bench-
mark 2. The core method and the construction of the hierarchy and benchmark are specified separately
in the Method section and the Dataset and Benchmark with Hierarchical Tag Structure section.
Implementation details and evaluation protocols containing models, baselines, metrics, and train
are in both the Experiment section and the Appendix. The Appendix also includes the construction
details of the hierarchy and benchmark, additional method details, further performance comparisons,
and more experiments.
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Appendix

A USAGE OF LARGE LANGUAGE MODELS

We leverage large language models to refine and adjust the hierarchical tag structure so that it better
aligns with visual perception and ensures semantic consistency across different levels of the taxonomy.
Based on this optimized hierarchy, we further employ a vision–language large model to automatically
annotate tags for the images in the training sets of the benchmark. To guarantee annotation accuracy
and reliability, all generated labels were subsequently manually inspected and corrected by the
authors, ensuring that the final benchmark data maintains both structural consistency and high-quality
annotations.

B BENCHMARK DETAILS

B.1 HIERARCHY STRUCTURE

Figure 5: Step 1 of the process for constructing the hierarchical tag structure.

Figure 6: Step 2 of the process for constructing the hierarchical tag structure.
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We show the processes of step 1 and step 2 in Figure 5 and Figure 6, respectively. In Step 1, mapping
the original tag list to WordNet revealed redundant synonyms, which we removed. We then refined
the list by eliminating abstract terms that are visually ambiguous. In Step 2, we identified additional
common tags in WordNet, particularly under the animal branch, and integrated them into our tag tree.

We compare the coverage of general categories across hierarchical classification datasets in Table 5.
SubPartImageNet contains a small number of animal and transportation categories, together with
many of their subcategories. Although Mapillary Vistas 2.0 covers certain category aspects, it offers
very few categories within each aspect. For example, its animal aspect includes only the categories
bird and ground-animal. Our HiTag dataset encompasses a more wider range of categories.

Table 5: Hierarchical coverage comparison of the hierarchical classification datasets.

(a) Natural object and Natural phenomenon

Dataset Natural object Natural
phenomenonPlant Animal Person Biological

parts Microorganism Celestial
body

Geographical
feature

SubPartImageNet ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗

Mapillary 2.0 ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

HiTag (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(b) Event, Mythological creatures, Group, Attribute and Food

Dataset Food Event Mythological Group Attribute Food

Action Competitive
event

Celebratory
event

Catastrophic
event

Life
event creatures

SubPartImageNet ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Mapillary 2.0 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

HiTag (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(c) Artifact

Dataset Artifact
Built

environment Tool Equipment Furniture Clothing Transportation Accessory Decoration Weapon Communication
media

SubPartImageNet ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗

Mapillary 2.0 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

HiTag (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

We present the complete hierarchical tag structures of the SubPartImageNet dataset, the Mapillary
Vistas 2.0 dataset and our HiTag dataset in Figure 7, Figure 8 and Figure 9, respectively. Compared
to other structures, the SubPartImageNet structure is much simpler. Besides, the Mapillary Vistas 2.0
hierarchy exhibits extensive duplication of category names at levels 3 and 4. Compared with these
structures, our architecture covers a richer set of tags and exhibits a more complete overall structure.

Since displaying the full hierarchy would require more than 60 pages, we have placed the com-
plete hierarchical tag structure of the dataset in the anonymous repository 3 of the provided
code. It includes the name and definition of each category and is saved in two formats: hitag/-
data/hire tree file/object structure.json and hitag/data/hire tree file/object structure.txt. We show all
the 3,334 tags of HiTag in 10 levels:

• Level 1 : [entity]

• Level 2 : [physical entity, natural phenomenon, mythological creatures, group, measure,
attribute, event]

• Level 3 : [object, weather, snow, rain, wave, sunrise, sunset, eclipse, hot spring, flame, flood,
earthquake, aurora, bolt, dew, lightning, flare, moonlight, sunshine, fire, wildfire, icicle,

3Our code is available at https://anonymous.4open.science/r/HiTag.
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Figure 7: Hierarchical tag structure of SubPartImageNet.

frost, light, shadow, darkness, sparkle, rainbow, reflect, fairy, monster, magic, ghost, queue,
social group, organization, collective assembly, time, time period, score, number, numeric
quantity, water level, part, scene, appearance, view, state, quality, cognition, recycling,
prayer, activity, test, trade, action, competitive event, celebratory event, catastrophic event,
life event, entertainment, healthcare activities, communication activities]

• Level 4 : [natural object, artifact, food, matter, hail, foggy, rainy, snowy, stormy, sunny,
warm, windy, storm, snowstorm, tornado, cloudy, santa claus, cupid, angel, loki, leprechaun,
vampire, witch, mermaid, unicorn, dragon, lineup, friend, gang, family, couple, tribe,
demographic group, community, flock, herd, business group, educational group, government
group, military group, artistic group, sports team, charity, team, crew, parade, exhibition,
banquet, meeting, gathering, crowd, vacation, calendar, season, night, morning, evening,
half, quarter, slice, natural scene, scratch, wound, burn, pawprint, shine, footprint, bite,
transparency, freckle, stain, profile, beautiful, texture, style, dark, scar, crack, plaque,
symmetry, reflection, wrinkle, color, shape, underwater, horizon, city view, mountain view,
night view, sea view, outdoor, street view, harbor view, winter view, village view, wet, bright,
pose, rural, shirtless, pollution, relax, hot, sleep, drought, mess, flush, tan, injury, fitness,
trim, disease, depression, frozen, bloom, hang, damp, calm, luxury, athletic, business, sale,
auction, shopping, move, baking, demolition, aid, cheer, archaeological excavation, grazing,
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Figure 8: Hierarchical tag structure of Mapillary Vistas 2.0.

talking, arrest, trial, celebrate, touch, rescue, kiss, throw, roll, dribble, sunbathe, capture,
injection, handstand, squat, wrestle, looking, stare, wash, hug, feeding, push, pull, smile,
salute, applause, handshake, greeting, help, teach, interaction, putt, landing, catch, casting,
kneel, cooking, carry, punch, kick, stab, spin, repair, eat, pour, sing, sit, sew, carving, type,
bathing, washing, blow, clutch, clean, swinge, haircut, act, squeeze, sport, competition,
festival, new year, halloween, christmas, bonfire, wedding reception, fireworks display,
party, ceremony, forest fire, conflict, battle, accident, explosion, disaster, emergency, traffic
jam, crash, birth, death, wedding day, anniversary, show, game, camping, boat ride, fishing,
therapy, exercise, massage, invitation, speech, interview, debate, live, call, protest, dating]

• Level 5 : [plant, animal construct, biological parts, animal, person, microorganism, celestial
body, geographical feature, natural materials, atmosphere, built environment, passage,
product, tool, equipment, furniture, clothing, transportation, accessories, decoration,
weapon, communication media, recreational objects, money, coconut meat, chocolate,
baked goods, meat, feed, drink, fast food, meal, dishes, western food, grain, dessert, sweet,
condiment, dairy, egg, macaroni, spaghetti, dumpling, noodle, cereal, tofu, dough, batter,
stuffing, tea bag, baby food, bento, street food, canned food, muesli, incense, amber, rust,
bubble, peel, fuel, states of matter, material, youth, elderly, town, village, downtown,
city, countryside, company, bank, market, school, academy, class, government, court, fire

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 9: Visualization of the whole hierarchical tag structure which contains 3,334 tags across 10
levels.
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department, municipality, police, army, navy, troop, band, choir, ensemble, marching band,
baseball team, basketball team, football team, ice hockey team, cricket team, art exhibition,
car show, airshow, seminar, winter, summer, spring, autumn, rough, soft, smooth, modern,
white, black, blue, yellow, green, pink, red, brown, purple, gray, orange color, point,
round shape, figure, cylinder, curve, cube, sphere, standing, upright, industry, agriculture,
shipping, jump, climb, ride, sailing, hike, chase, walk, run, flip, takeoff, surfing, taekwondo,
walking, tai chi, mountain climbing, high jump, archery, swim, cycling, horse riding, ice
skating, yoga, boxing, hockey, football, ping pong, rugby, bullfighting, handball, badminton,
polo, karting, motorsport, rock climbing, weightlifting, mountain biking, hockey game,
softball, baseball, tennis, volleyball, golf, basketball, bowling, table tennis, karate, football
competition, baseball competition, tennis competition, volleyball competition, basketball
competition, race, wedding party, birthday party, prom, dinner party, celebration, wedding,
funeral, graduation, award ceremony, birthday, performance, juggle, light show, fashion
show, talk show, stunt, karaoke, lottery, video game, billiards, card game, playing chess,
playing mahjong]

• Level 6 : [vine, houseplant, algae, plant organs, vegetable, spice, tree, moss, lichen,
fern, grass, cactus, bush, shrub, wheat, succulent, reed, nest, spider web, cell, animal
coverings, body, muscle, wing, tail, skeleton, fin, claw, whisker, antler, penis, paw, limb
stump, nipple, tooth, blood, invertebrate, amphibian, fish, reptile, bird, mammal, life stage,
family relation, social role, leader, occupation, sportsman, hacker, speaker, camper, tailor,
handicapped person, zombie, hiker, mold, fungi, earth, moon, sun, star, galaxy, planet,
constellation, nebula, fossil, area, place, territory, surface, shoreline, harbor, rise, corner,
hole, angle, habitat, wilderness, body of water, landform, world, ice cube, pebble, jade, coal,
petroleum, stone, smoke, mist, fog, sky, cloud, building, infrastructure, facility, grave, estate,
construction site, structure, debris, outdoor amenity, barrier, interior spaces, drain, pipe,
chimney, corridor, hallway, aisle, elevator shaft, entrance, archway, goods, cargo, medicine,
dye, acrylic paint, freshener, detergent, cleaner, cigar, cigarette, spray, clothespin, umbrella,
hooks, tableware, container, candle, cassette deck, envelope, mp3 player, software, stamp,
ink pad, paper, stationery, toiletry, flashlight, book cover, test tube, stick, personal care,
charger, salt shaker, duct tape, hose, rope, tripod, easel, fishing net, crowbar, crutch, cane,
ladder, connector, sharpener, brush, oar, paddle, needle, broom, pole, drill, jack, plow, rake,
hoe, mower, wrench, screwdriver, saw, shovel, hammer, opener, razor, pocketknife, scissors,
axe, 3d glasses, tape measure, plunger, pliers, awl, funnel, tape, ice pack, shaker, basket,
bucket, pipe bowl, bin, manger, bundle, tray, ashtray, dustpan, basin, barrel, tub, jar, beaker,
bottle cap, fishbowl, yoke, float, palette, ruler, pitchfork, razor blade, horseshoe, floss, rein,
leash, screw, lock, clip, roller, rubber band, key, hairdryer, compass, stethoscope, syringe,
thermometer, iron, magnifying glass, binoculars, handcuffs, lid, stapler, stirrup, gauge,
hourglass, mallet, hanger, magnet, mousetrap, slot, thresher, copperware, match, harvester,
pegboard, charcoal burner, dryer, vacuum cleaner, trimmer, concrete mixer, trouser press,
appliance, musical instrument, kitchen utensil, screen, projection screen, spirit lamp, anchor,
valve, pump, wiper, handle, vane, propeller, bumper, sprinkler, switch, headlight, torch,
radar, lightning rod, robot, firefighting equipment, brake, laser, battery, solar panel, sports
equipment, camera, kit, heater, pendulum, phone, parachute, poker chip, oil rig, life jacket,
lifebuoy, plug, socket, showerhead, scale, juicer, submersible, megaphone, recording
device, game controller, keyboard, computer, television, radio, calculator, atm, gear, engine,
machine, loom, printer, scanner, typewriter, windmill, grinder, cotton gin, mill, slicer, lathe,
snow blower, shredder, fan, water cooler, satellite dish, cd player, amplifier, excavator,
generator, record player, monitor, projector, air conditioner, fridge, sundial, microscope,
lighting, telescope, remote, medical equipment, dropper, hand dryer, headphones, panel,
circuit board, wire, humidifier, jukebox, electric chair, curtain, canopy, window screen,
lamp, mirror, clock, watch, storage, seat, table, bedding, washstand, bathtub, toilet, fixture,
textile, headdress, garment, footwear, laundry, transportation structure, vehicle, lace, hairnet,
belt, broach, mask, earmuff, wristband, hairgrip, hairpin, belt buckle, collar, cigarette
case, cuff, dog collar, button, zipper, mousepad, tie, glove, pocket, suspenders, knee pad,
elbow pad, glasses, jewelry, mannequin, wallpaper, wind chime, picture frame, totem pole,
celebratory items, brass plaque, tinsel, floral arrangement, tapestry, plume, tassel, lanyard,
balloon arch, vase, disco ball, antique, ribbon, souvenir, birthday candle, gun, sword, spear,
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bomb, sling, dart, bullet, arrow, bow, tomahawk, brass knuckles, pike, flamethrower, cannon,
missile, protective gear, net, web page, message, physical media, symbolic representation,
visual identity, art, image, time based media, toy, board game, dartboard, frisbee, kite,
snowball, seesaw, kaleidoscope, foosball, hula hoop, wand, music box, puzzle, domino,
jigsaw puzzle, card, digital gaming, die, digital currency, currency, chocolate bar, white
chocolate, cake, bread, zongzi, pie, baozi, eclair, breadstick, gingerbread house, chapati,
pastry, shellfish, calamari, octopus tentacles, roe, chicken wing, escargot, sausage, ham,
bacon, lamb chop, poultry, beef, pork, hay, pet food, soy milk, coffee, cocoa, tea, alcohol,
juice, milk, drinking water, lemonade, milk tea, shake, breakfast, buffet, feast, picnic, caviar,
roast squab, mashed potatoes, fries, bibimbap, foie gras, roast chicken, home fries, baked
potato, taco, pizza, sashimi, casserole, tempura, paella, burrito, quesadilla, porridge, boiled
egg, meatball, sushi, pasta, lasagna, salad, soup, fried egg, curry, fried rice, barbecue, stew,
kebab, omelette, french toast, sandwich, potato chip, popcorn, fruit dish, grilled eel, onion
ring, scrambled eggs, spring roll, croquette, fried chicken, hotpot, chow mein, fish sticks,
meatloaf, flour, cornmeal, rice, paddy, corn cob, oats, wheat grain, corn, rye, egg tart,
pudding, tiramisu, chocolate mousse, ice cream, ice cream cone, sugar cube, syrup, honey,
candy, jam, jelly, bubble gum, nectar, topping, vanilla, salt, ginger, dip, vinegar, mustard,
salsa, sauce, pickle, turmeric, garlic clove, sesame seed, peanut butter, sugar, cooking oil,
peppercorn, butter, cream, yogurt, cheese, yolk, egg white, granola, spam, banana peel,
orange peel, lemon peel, charcoal, coke, oil, ember, compound, mixture, fluid, solid, glass,
plastic, rock, metal, mineral, building material, waste, fiber, dirt, wood, water, wax, insect
repellent, dust, resin, latex, sponge, fur, leather, parchment, lava, foam, ash, business team,
fish market, flower market, street market, fruit market, night market, vegetable market, art
school, campus, university, fleet, triangle, oval, rectangle, cone, dot, rim, hook, arch, loop,
dive, bike racing, marathon, slalom, formula 1, concert, circus, poker]

• Level 7 : [seaweed, stem, stump, root, leaf, fruit, flower, tree root, onion, cane sugar,
pumpkin, mushroom, zucchini, yam, lettuce, broccoli, cauliflower, brussels sprouts, daikon,
turnip, spinach, cucumber, squash, truffle, bean, pea, beet, potato, cabbage, sprout, tomato,
eggplant, asparagus, carrot, sweet potato, bell pepper, okra, celery, mint, basil, parsley,
thyme, dill, rosemary, clover, geranium, pepper, butterfly pea, lavender, aloe vera, pitcher
plant, artichoke, tobacco, garlic, birch, willow, bonsai, beech tree, palm tree, oak, magnolia,
mangrove, maple, holly, eucalyptus tree, fig, rowan, cashew, macadamia, hazel shrub,
cypress, pine, fir, cedar, ginkgo tree, cypress tree, elm, hawthorn, banana plant, apple
tree, cherry tree, albizia, orange tree, olive tree, mulberry, gliricidia, guava tree, lilac, bird
nest, hair, shell, feather, skin, ivory, shoulder, belly, chest, joint, head, neck, face, waist,
hand, limb, foot, buttock, brain, bone, hip, heart, worm, starfish, sea cucumber, sea urchin,
insect, centipede, jellyfish, coral, scorpion, spider, snail, abalone, conch, huitre, clam,
tick, isopod, octopus, crab, lobster, squid, termite, sea anemone, millipede, sea spider,
horseshoe crab, slug, frog, salamander, snappers, mackerels, porgies, grouper, catfish, tuna,
pufferfish, trout, shark, flatfish, swordfish, seahorse, carp, goldfish, clownfish, seabass,
snake, turtle, crocodile, dinosaur, lizard, platypus, crow, parrot, swan, seabird, water bird,
hummingbird, ostrich, sparrow, hornbill, turkey, chicken, woodpecker, toucan, eagle, owl,
vulture, heron, stork, flamingo, swallow, starling, pigeon, osprey, falcon, bluebird, robin,
canary, house finch, blackbird, jay, raven, magpie, pheasant, cuckoo, emu, guinea fowl,
downy woodpecker, bantam, hawk, crane, spoonbill, roadrunner, wren, mockingbird,
titmouse, hoopoe, kookaburra, marine mammal, panda, bear, raccoon, fox, coyote, wolf,
lion, serval, margay, lynx, tiger, caracal, cheetah, jaguar, jaguarundi, hyena, leopard, pet,
otter, meerkat, rodent, elephant, armadillo, hedgehog, lemur, monkey, ape, pig, warthog,
giraffe, deer, alpaca, donkey, sheep, bison, goat, antelope, cattle, water buffalo, yak, sloth,
anteater, skunk, mink, mole, bat, kangaroo, rhinoceros, camel, hippo, koala, horse, buffalo,
ferret, badger, opossum, cub, baby, child, teenager, adult, boy, girl, sibling, cousin, partner,
grandfather, mother, father, daughter, son, customer, patient, client, passenger, bridesmaid,
host, hero, flower girl, commuter, pedestrian, tourist, protester, player, king, queen, director,
shepherd, princess, prince, president, entertainer, athlete, warrior, matador, boxer, scientist,
engineer, writer, farmer, artist, craftsman, driver, astronaut, student, fisherman, airman,
sailor, lifeguard, flight attendant, waiter, maid, soldier, commander, lumberjack, miner,
cowboy, servant, quarry worker, coachman, policeman, volunteer, bartender, judge, fireman,
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guard, detective, bodyguard, businessperson, referee, gardener, street vendor, bullfighter,
chef, samurai, educator, nurse, doctor, trainer, architect, butcher, rescuer, pirate, fashion
model, lawyer, coach, author, secretary, nanny, worker, cook, hay worker, electrician,
reporter, DJ, motorcyclist, rider, snowboarder, surfer, biker, martial artist, archer, wrestler,
ground, water surface, dock, leak, sea, lake, waterfall, gulf, bay, stream, river, strait, pool,
waterway, pond, fjord, creek, canyon, pasture, hayfield, swamp, hillside, plateau, volcano,
snow mountain, ravine, rock arch, ice cave, islet, archipelago, forest floor, continent, oasis,
peninsula, woodland, plain, flat, island, hill, mountain, ridge, cliff, forest, beach, cave,
shore, wetland, ski slope, headland, valley, iceberg, glacier, ice floe, dune, reef, peak,
grassland, desert, quarry, mine, field, orchard, excavation, rainforest, jungle, blue sky,
evening sky, night sky, platform, castle, hospital, clinic, pyramid, auto showroom, bell
tower, indoor, monument, mausoleum, tower, obelisk, ruins, skyscraper, roof, stair, home,
outbuildings, religious buildings, fortification, white house, prison, hydrant, lighthouse,
bridge, dam, tunnel, road, port, water tower, landfill, plaza, telegraph pole, foundation,
assembly line, heliport, airfield, station, terminal, wind farm, phone box, factory, workshop,
mall, supermarket, office, ticket booth, car wash, spa, ktv, bar, restaurant, casino, sports
facilities, dormitory, observatory, library, hotel, resort, theater, office building, rink, cinema,
kindergarten, post office, zoo, botanical garden, raceway, golf course, swimming pool, gym,
football stadium, post, fort, airport, museum, archive, army base, warehouse, payphone,
telephone booth, flagpole, playing field, racetrack, street light, train track, well, mailbox,
exit, depository, water tank, exhaust hood, lift, faucet, farm, junkyard, pharmacy, stall, store,
laboratory, workplace, studio, laundromat, winery, ball pit, sandbox, fountain, playgrounds,
campgrounds, maze, park, amusement park, picnic area, garden, campfire, fire pit, backyard,
lawn, swing, window, hedge, paling, wall, fence, barricade, gate, door, trench, hurdle, fender,
balustrade, graveyard, parking lot, cage, fireplace, aquarium, corral, forge, balcony, ceiling,
sink, cockpit, cabin, basement, loft, urinal, floor, room, shower, office cubicle, capsule, soap,
shampoo, toothpaste, cutlery, ice cream scoop, plate, bowl, platter, cup, tea set, chopsticks,
decanter, gravy boat, napkin, tablecloth, flower pot, cooler, box, bag, bottle, can, wrapping
paper, cardboard, newspaper, graph paper, tissue, notepad, blackboard, pen, crayon, pencil,
ink, eraser, binder, bookmark, folder, notebook, whiteboard, clipboard, stylus, toilet paper,
handkerchief, towel, toothbrush, perfume, makeup, makeup tool, comb, hairspray, shaving
cream, nail polish, mascara, eyeliner, lipstick, face powder, eye shadow, mouthwash,
condom, earplug, curling iron, ironing board, sanitary pad, chain, hinge, clasp, knot, pin,
scrubbing brush, hairbrush, paintbrush, stilt, ski pole, mast, fishing rod, chainsaw, handsaw,
bottle opener, can opener, shaver, shopping basket, flower basket, combination lock, latch,
padlock, mail slot, stringed instrument, wind instrument, keyboard instrument, drumstick,
drum, maraca, plectrum, barrel organ, stove, colander, peeler, masher, rolling pin, grater,
whisk, blender, pan, pot, coffeepot, kettle, grill, reamer, spatula, pizza cutter, measuring cup,
ladle, pressure cooker, teapot, hotplate, oven, cutting board, rice cooker, toaster, tongs, ice
maker, dishwasher, skewer, electric range, waffle iron, microwave, computer monitor, knob,
door handle, fire alarm, fire hydrant, fire hose, fire extinguisher, snowboard, surfboard, yoga
mat, bridle, horse blanket, saddle, saddlebag, treadmill, ski, hockey stick, basketball hoop,
baseball bat, baseball glove, baseball base, racket, diving board, skate, trampoline, high bar,
rings, balance beam, wicket, dumbbell, barbell, weight, javelin, mat, golf equipment, tackle,
boxing glove, bodyboard, tennis net, roller skates, basketball backboard, punching bag,
parasail, finish line, sideline, target, gymnastics apparatus, cricket bat, snowshoe, battle
rope, ball, camera lens, shutter, first-aid kit, sewing kit, carpenter’s kit, smartphone, corded
phone, microphone, desktop computer, laptop, tablet, server, abacus, steam engine, washing
machine, slot machine, vending machine, sewing machine, arcade game, coffee maker, fruit
machine, milking machine, stone mill, meat grinder, coffee grinder, water mill, flour mill,
ceiling fan, floor fan, gramophone, swab, bandage, sunshade, chandelier, lampshade, oil
lamp, floor lamp, droplight, wall lamp, table lamp, light bulb, rear-view mirror, hand mirror,
alarm clock, wall clock, digital clock, pocket watch, cabinet, dresser, shelf, bookcase, tv
cabinet, wine rack, coat rack, drawer, chair, couch, stool, bench, baby seat, stroller, billiard
table, kitchen table, counter, desk, workbench, dining table, table tennis table, dressing table,
conference table, operating table, glass table, nightstand, altar, bed, bedclothes, mattress,
carpet, pillow, cradle, headboard, fabric, cloth, headband, cap, hat, helmet, crown, tiara, wig,
sleepwear, sleeve, uniform, leotard, wet suit, swimwear, veil, leggings, vest, suit, protective
suit, bib, pants, diaper, robe, shirt, sweater, scarf, cloak, coat, overall, sportswear, dress,
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underpants, cheongsam, hanfu, baby clothes, crop top, jumpsuit, underclothes, hoodie,
wetsuit, blouse, waistband, hood, costume, coverall, apron, stocking, tights, socks, shoe, bus
station, subway station, traffic cone, bus stop, railroad, spacecraft, vehicle structure, bus,
train, stretcher, dolly, rocket, escalator, sleigh, construction vehicle, vessel, tank, unicycle,
skateboard, bicycle, scooter, baby carriage, tricycle, railcar, cart, wagon, car, ambulance,
snowplow, golf cart, motorcycle, truck, go-kart, tractor, forklift, ski lift, chairlift, plane,
drone, helicopter, glider, balloon, airship, snowmobile, atv, self-balancing scooter, pickup
truck, skibob, horse-drawn vehicle, trailer, cable car, elevator, subway, segway, eye mask,
bolo tie, goggles, sunglasses, pendant, necklace, cufflinks, bracelet, anklet, pearl, jewel,
earrings, ring, bead, brooch, fireworks, christmas decoration, jack-o’-lantern, snowman,
chinese knot, gift, lantern, confetti, wreath, bouquet, rifle, handgun, machine gun, revolver,
paintball gun, scimitar, broadsword, rapier, dagger, machete, crossbow, halberd, mortar, gas
mask, extinguisher, armor, shield, blueprint, receipt, bulletin board, billboard, menu, gift
card, recipe, placard, scoreboard, map, journal, sticker, poster, list, ticket, document, sheet
music, handwriting, postcard, bible, fiction, poetry, letter, checkbook, passbook, greeting
card, manuscript, publication, magazine, newspapers, book, record, album, cassette, dvd,
videotape, fax, reel, sign, signal, icon, avatar, mark, award, design, identity card, credit
card, keycard, business card, qr code, barcode, clip art, tattoo, ceramic, fictional character,
photography, sculpture, dance, painting, street art, drawing, mosaic, portrait, medical image,
photo, illustration, graph, picture, diagram, advertisement, news, press conference, notice,
movie, auditory expression, drama, puppet, playhouse, lego, doll, teddy, toy car, toy plane,
toy gun, piggy bank, mahjong, chess, game board, playing card, currency unit, currency
form, chocolate cake, cupcake, pancake, tortilla, birthday cake, waffle, wedding cake,
doughnut, brownie, fruitcake, mooncake, crouton, toast, bagel, croissant, pretzel, muffin,
biscuit, baguette, steamed bread, bun, cinnamon roll, profiterole, eel, mussel, scallop, clam
meat, lobster meat, oyster, shrimp, crabmeat, whelk, steak, haystack, liquor, wine, beer,
cocktail, whisky, orange juice, chocolate milk, ice water, bottled water, broth, tomato soup,
hamburger, hot dog, submarine sandwich, easter egg, candy bar, fudge, candy cane, lollipop,
cotton candy, caramel, jelly bean, mint candy, whipped cream, frosting, tomato sauce,
hot sauce, gravy, gel, gas, powder, crystal, foil, copper, silver, gold, steel, bronze, brass,
turquoise, quartz, ruby, sapphire, emerald, gravel, granite, marble, plaster, beam, plank, tile,
brick, concrete, cement, tarmac, block, garbage, yarn, wool, cotton, straw, flax, coir, raffia,
silk, string, twine, sand, clay, mud, lumber, bamboo, circle, square]

• Level 8 : [trunk, branch, sugarcane, greenery, banana leaf, maple leaf, tobacco leaves,
pod, acorn, cherry, peach, olive, pear, apple, seed, raisin, grape, lychee, passion fruit,
apricot, citrus fruit, mango, melon, berry, avocado, pomegranate, banana, kiwi, hami melon,
dragon fruit, starfruit, nectarine, papaya, prickly pear, mangosteen, plum, durian, pineapple,
jackfruit, jujube, calabash, water lily, lotus, iris, daffodil, tulip, lily, marigold, daisy, poppy,
anemone, dahlia, petunia, orchid, sunflower, chrysanthemum, peony, carnation, cherry
blossom, chinese rose, clivia, hibiscus flower, blossom, rose, rhododendron, fuchsia,
poinsettia, oleander, heather, hydrangea, hibiscus, blueweed, violet, thistle, pansy, morning
glory, livingstone daisy, dandelion, jasmine, squill, coconut palm, hairstyle, mane, beard,
lash, seashell, ankle, elbow, wrist, knee, eye, nose, ear, mouth, finger, arm, leg, lap, toe,
barefoot, planarian, leech, pest, larva, beetle, flea, bee, wasp, ant, cricket, grasshopper,
stick insect, praying mantis, dragonfly, moth, butterfly, earwig, vespa, hermit crab, king
crab, tadpole, tree frog, sardine, whale shark, stingray, koi, python, iguana, gecko, macaw,
cockatoo, African grey parrot, budgie, cob, black swan, pelican, cormorant, penguin,
gull, auk, mollymawk, goose, duck, hen, bald eagle, barn owl, egret, quail, partridge,
peacock, ruffed grouse, seal, walrus, whale, manatee, bear cub, polar bear, brown bear,
cougar, mountain lion, snow leopard, cat, dog, rat, squirrel, hamster, mouse, beaver, guinea
pig, rabbit, mammoth, baby elephant, squirrel monkey, macaque, baboon, chimpanzee,
orangutan, gorilla, piglet, fawn, roe deer, reindeer, moose, lamb, wildebeest, calf, bull, cow,
zebra, pony, mule, man, woman, elder, twin, newlywed, wife, husband, magician, musician,
joker, dancer, actor, juggler, snake charmer, strongman, climber, hockey player, football
player, skater, skateboarder, runner, swimmer, skier, basketball player, baseball player,
gymnast, tennis player, rock climber, goalkeeper, motorcycle racer, rugby player, soccer
goalkeeper, soccer player, weightlifter, poet, journalist, beekeeper, photographer, sculptor,
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painter, conductor, makeup artist, welder, construction worker, plumber, barber, carpenter,
blacksmith, mechanic, builder, stonecutter, truck driver, bus driver, taxi driver, racing driver,
pilot, police officer, teacher, professor, dentist, surgeon, vet, snowfield, lakeshore, coast,
river bank, wheat field, corn field, flower field, rice field, sunflower field, farmland, podium,
catwalk, scaffold, deck, stage, boxing ring, gravestone, chinese tower, eiffel tower, dome,
tile roof, manor house, log cabin, yurt, house, parking space, beehive, tree house, flower bed,
shelter, hangar, courtyard, terrace, pavilion, stable, chicken coop, barn, garage, outhouse,
conservatory, shed, dog house, shrine, monastery, church tower, chapel, mosque, temple,
church, pulpit, suspension bridge, tower bridge, asphalt road, promenade, sidewalk, curb,
street, highway, driveway, railway line, crosswalk, intersection, canal, trail, alley, bike
lane, path, crossroad, police station, power station, fire station, gas station, broadcasting
station, bowling alley, stadium, bullring, sports field, airport runway, fire escape, silo,
treasury, storehouse, repair shop, salon, newsstand, pet store, flower shop, bakery, chemistry
lab, music studio, recording studio, art studio, slide, amusement ride, water park, display
window, skylight, floor window, city wall, glass wall, climbing wall, seawall, doorplate,
screen door, car door, elevator door, glass door, glass floor, tile flooring, wood floor, suite,
hotel room, storage room, bedroom, dining room, classroom, hospital room, jail cell,
hall, recreation room, gallery, bathroom, engine room, dressing room, kitchen, restroom,
sauna, locker, computer room, meeting room, dance studio, hotel lobby, laundry room,
toilet bowl, fork, spoon, knife, paper plate, glass plate, glass bowl, drinking glass, teacup,
chalice, paper cup, mug, shipping container, carton, pencil case, crate, safe, toolbox, gift
box, computer case, briefcase, luggage, shopping bag, backpack, tote bag, sleeping bag,
sack, duffel, handbag, shoulder bag, clutch bag, gift bag, paper bag, jug, flask, thermos,
gourd, glass bottle, baby bottle, watering can, spray can, fountain pen, sharpie, board eraser,
makeup brush, makeup mirror, hair roller, thumbtack, zither, harp, guitar, violin, cello, erhu,
recorder, sax, panpipes, flute, bugle, trombone, tuba, whistle, kazoo, trumpet, mouth organ,
musical keyboard, piano, harpsichord, accordion, cymbal, snare drum, tambourine, gas
stove, wood-burning stove, frying pan, wok, roaster, saucepot, dutch oven, saucepan, water
ski, badminton racket, tennis racket, ping pong paddle, roller skate, golf ball, golf club,
rugby ball, cricket ball, bowling ball, basketball ball, soccer ball, baseball ball, tennis ball,
volleyball ball, billiard ball, adhesive bandage, bookshelf, supermarket shelf, folding chair,
rocking chair, swivel chair, feeding chair, wheelchair, throne, barber chair, office chair,
sofa, daybed, footrest, folding stool, bar stool, hassock, pew, window seat, park bench,
training bench, bunk bed, berth, hammock, hospital bed, dog bed, double bed, single bed,
waterbed, canopy bed, crib, quilt, blanket, bedcover, sheet, throw pillow, patch, shower
cap, beret, skullcap, swim cap, visor, straw hat, dress hat, witch hat, sun hat, cowboy hat,
fedora, baseball cap, party hat, top hat, christmas hat, football helmet, bicycle helmet, safety
helmet, racing helmet, military uniform, school uniform, bikini, safety vest, jeans, shorts,
sweatpants, kimono, bathrobe, dress shirt, polo shirt, t-shirt, sweatshirt, jersey, cardigan,
turtleneck, headscarf, poncho, shawl, jacket, raincoat, overcoat, lab coat, fur coat, sport coat,
trench coat, skirt, sari, gown, kilt, lace dress, evening dress, maxi dress, bandeau, corset,
cosplay, halloween costume, boot, sandal, running shoe, high heel, skiing shoes, leather
shoe, slipper, flip-flop, satellite, space station, space shuttle, windshield, taillight, wheel, tire,
steering wheel, seat belt, dashboard, car seat, car trunk, school bus, double-decker bus, train
car, locomotive, steam train, raft, yacht, boat, sailboat, passenger ship, warship, pirate ship,
cargo ship, mountain bike, exercise bike, caboose, freight car, passenger car, shopping cart,
wheelbarrow, hand truck, sports car, taxi, racing car, limo, convertible, jeep, sedan, police
car, lorry, tow truck, fire truck, garbage truck, food truck, transporter, police van, bulldozer,
biplane, jet, airliner, seaplane, cargo aircraft, bomber, hot air balloon, elevator car, diamond,
glass bead, sparkler, firecracker, christmas light, christmas tree, christmas ball, paper
lantern, halloween pumpkin, chinese lantern, bulletproof vest, chainmail, checklist, movie
ticket, certificate, passport, license, contract, bill, work card, comic book, paperback book,
hardback book, atlas, textbook, dictionary, file, register, note, cd, symbol, alarm, armband,
air sock, brake light, traffic light, buoy, milestone, label, earmark, watermark, medal, trophy,
architecture, pattern, emblem, flag, cross, logo, license plate, letter logo, badge, pottery,
porcelain, cartoon character, filming, face close-up, figurine, bronze sculpture, ice sculpture,
sand sculpture, statue, ballet, folk dance, mural, oil painting, watercolor painting, portrait
painting, monochrome, doodle, sketch, manga, id photo, wedding photo, family photo,
selfie, cartoon illustration, fashion illustration, cartoon, documentary, horror film, science
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fiction film, animated film, music, audio, laugh, conversation, argument, opera, comedy,
play, musical, barbie, water gun, chessboard, dollar, pound sterling, rmb, coin, paper money,
check, champagne, sake, steam, ice, snowflake, amethyst, citrine]

• Level 9 : [nut, coffee bean, pumpkin seed, sunflower seed, orange, lime, grapefruit, lemon,
watermelon, winter melon, muskmelon, cantaloupe, persimmon, strawberry, blueberry,
blackberry, bayberry, raspberry, cranberry, bud, bald, hair color, blonde hair, brown hair,
gray hair, red hair, white hair, black hair, curly hair, purple hair, blue hair, green hair, orange
hair, pink hair, yellow hair, straight hair, braided hair, ponytail, long hair, short hair, braid,
eyebrow, eyelash, tear, beak, fly, mosquito, roach, locust, caterpillar, maggot, mealworm,
nymph, ladybird, duckling, wood duck, sea lion, dolphin, killer whale, humpback whale,
egyptian cat, kitten, american shorthair, persian cat, british shorthair, burmese cat, ocelot,
domestic cat, siamese, abyssinian, leopard cat, puppy, german shepherd, labrador, poodle,
chihuahua, dachshund, rottweiler, doberman pinscher, husky, beagle, boxer dog, bulldog,
german shorthair pointer, great dane, afghan hound, schnauzer, rhodesian ridgeback,
sheepdog, gordon setter, setter, shih-tzu, weimaraner, tibetan mastiff, maltese, basset,
malamute, dalmatian, samoyed, ibizan hound, shiba inu, golden retriever, chow chow,
bichon frise, corgi, foxhound, hound, saint bernard, bernese mountain dog, pit bull,
bride, bassist, guitarist, rocker, violinist, pianist, saxophonist, violist, singer, drummer,
ballet dancer, child actor, ice hockey player, diver, catcher, backdrop, apartment, cottage,
farmhouse, villa, palace, tent, hut, igloo, zebra crossing, television studio, football field,
basketball court, volleyball court, tennis court, granary, ammunition storage, carousel,
ferris wheel, pantry, vault, wine cellar, closet, operating room, concert hall, banquet hall,
conference hall, auditorium, art gallery, soup spoon, champagne flute, guzheng, denim
jacket, leather jacket, miniskirt, ballet skirt, pencil skirt, wedding dress, fishing boat,
tugboat, motorboat, ferry, canoe, rowboat, lifeboat, inflatable boat, swan boat, sail, cruise
ship, aircraft carrier, cruiser, battleship, submarine, container ship, fighter jet, diploma,
traffic sign, stop sign, speed limit sign, parking sign, road sign, warning sign, welcome sign,
written symbol, bronze medal, gold medal, silver medal, stripe, banner, pirate flag, national
flag, white flag, red flag, pop, jazz, disco]

• Level 10 : [pine cone, peanut, macadamia nut, hazelnut, coconut, chestnut, walnut, rapper,
lead singer, ballerina, font, alphabet, check mark, dollar sign, character, percent sign,
tricolor, german flag, south korean flag, italian flag, japanese flag, canada flag, brazilian
flag, chinese flag, indian flag, mexican flag, australian flag, russian flag, south african flag,
argentine flag, union jack, american flag]

B.2 METRICS

We employed four metrics to evaluate the predicted hierarchical structures.

• Tree Edit Distance TED: Measures the minimum number of edit operations (insertion,
deletion, etc.) required to transform the predicted tag tree into the ground-truth tag tree.

• Jaccard Similarity J : Treats the set of nodes in the predicted and ground-truth trees as two
separate sets, and computes the ratio of their intersection to their union:

J =
|Predicted Nodes ∩ Ground-truth Nodes|
|Predicted Nodes ∪ Ground-truth Nodes|

. (12)

• Hierarchical Precision PH : Represents the proportion of correctly predicted nodes among
all predicted nodes:

PH =
|Predicted Nodes ∩ Ground-truth Nodes|

|Predicted Nodes|
. (13)

• Hierarchical Recall RH : Represents the proportion of correctly predicted nodes among all
ground-truth nodes:

RH =
|Predicted Nodes ∩ Ground-truth Nodes|

|Ground-truth Nodes|
. (14)
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B.3 DESCRIPTION GENERATION

To enrich each tag’s semantics, we provide 6 concise visual descriptions:

• 1 CLIP-style description: the fixed template a photo of a {tag}.

• 5 LLM descriptions: We prepend the tag’s curated definition so the model understands its
intended meaning. The prompt details are as follows.

llm_prompts = [
f"Describe concisely what a(n) {tag} looks like:",
f"How can you identify a(n) {tag} concisely?",
f"What does a(n) {tag} look like concisely?",
f"What are the identifying characteristics of a(n) {tag}:",
f"Please provide a concise description of the visual

characteristics of {tag}:"
]
...
user_prompt = (

f"Here is the intended meaning of ’{tag}’:
{definition}\n\n"

f"{llm_prompt}"
)

B.4 DATA ANNOTATION

We use the following prompts to annotate image with corresponding tags:

system_prompt :
"You are an image classifier."# Output only a valid Python
list of recognized category names, and nothing else."

user prompt:
"You need to find which categories exist in this image and
only output a plain list of category names for the current
image based on following rules:"

"1. You need to find which categories exist in this image
based on the categories and their corresponding definitions in
the dict {cate_dict}."

"2. Categories should strictly reflect visible content
without interpretation or assumption. Choose the most
appropriate categories for current image from the list and no
more than 30 categories."

"3. Only output a list of category names for the image
without any extra text (e.g. explanations, reasoning). For
example, the final output should look like:[class1, class2, ...]

C EXPERIMENT

C.1 QUALITY COMPARISON OF DIFFERENT IMAGE TAGGING METHODS

In Figure 10, we present a comparison between our method HiTag and other image tagging approaches.
The results show that HiTag can recognize a richer set of hierarchical tags.

C.2 ABLATION STUDY ON ENTAILMENT WEIGHT

We compared the impact of different entailment weights on performance. Based on the results of
Figure 11, we conclude that 10 is an appropriate value for entailment weight.
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Figure 10: Comparison of Tag Recognition Performance with Image Tagging Methods

C.3 MODEL PERFORMANCE WITH DOMAIN TRANSFER

In Table6, we present a comparison between our model and the baseline model RAM++ after domain
transfer on the COCO dataset.

Table 6: Comparison of Model Performance With Domain Transfer. The following datasets are
all evaluated under the open-vocabulary setting.

Methods Training Datasets Fine-tuning Datasets COCO

RAM++ CC3M COCO 75.5
HiTag (ours) CC3M COCO 79.5
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Figure 11: Performance on OpenImages-Uncommon at Different Entailment Weights

D METHOD DETAILS

D.1 HYPERBOLIC SPACE

Hyperbolic space’s geodesics exhibit tree-like branching, making it well-suited for hierarchical
structures that expand exponentially at each level. Moreover, even low-dimensional hyperbolic spaces
can simultaneously capture hierarchical relationships and node similarities, providing a natural and
efficient geometric paradigm for representing and learning from hierarchical data. In practice, the
Poincaré ball model and the Lorentz model are two commonly used isometric models for hyperbolic
spaces. Because the Poincaré ball is bounded by the unit sphere, gradients tend to vanish near the
boundary (i.e., as r → 1), which affects training stability. In contrast, the Lorentz model is unbounded,
and its exponential/logarithmic maps are more numerically stable, making it more suitable for deep
learning.

In the Lorentz model, geodesics are the shortest paths between points. For any x,y ∈ Ln, the
two-dimensional plane containing {x,y} and the origin intersects Ln along a unique geodesic. The
Lorentz distance is the arc length of this geodesic:

dL(x,y) =
1√
k

arcosh
(
−k ⟨x,y⟩L

)
. (15)

D.2 IMAGE-TEXT ALIGNMENT

We define a tag-image attention to model the interaction between tags and images. Specifically, let Q
denote the tag features x(tag), and let K and V represent the image features. The tag-image attention
aggregates relevant evidence vectors from the image for each category, which can be formulated as:

Fi→tag = softmax
(Log(Q) Log(K)T√

d

)
Log(V ), (16)

where Fi→tag is the tag–image similarity feature encoding the interaction between the tag and the
image, and d is a normalization constant. For computational simplicity, we map the features into
Euclidean space via the Logo(·) function according to Eq equation 4. Furthermore, Fi→tag is passed
through a linear layer to obtain the score of each tag, followed by a sigmoid function to obtain the
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final prediction probability ptag:

ptag = σ
(
WFi→tag + b

)
, (17)

where W and b are the weight matrix and bias term of the linear layer, respectively, and σ(·) denotes
the sigmoid function.

Following Ben-Baruch et al. (2020), we employ Asymmetric Loss to compute the tag-image alignment
loss Ltagalign

. Likewise, the caption-image alignment loss Lcapalign
is computed in the same manner.

Therefore, the overall image-text alignment loss Lalign is defined as:

Lalign = Ltagalign
+ Lcapalign

(18)
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