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Abstract

Although a variety of transformers have been proposed for symbolic music genera-
tion in recent years, there is still little comprehensive study on how specific design
choices affect the quality of the generated music. In this work, we systematically
compare different datasets, model architectures, model sizes, and training strategies
for the task of symbolic piano music generation. To support model development
and evaluation, we examine a range of quantitative metrics and analyze how well
they correlate with human judgment collected through listening studies. Our best-
performing model, a 950M-parameter transformer trained on 80K MIDI files from
diverse genres, produces outputs that are often rated as human-composed in a
Turing-style listening survey.

1 Introduction

Music exhibits hierarchical structure across multiple timescales, making transformer models with
self-attention well-suited for modeling musical dependencies. Recently proposed transformer models
can generate expressive sequences that capture both local patterns and global structure of MIDI
data [1, 2]. A variety of MIDI datasets [3, 4, 5], tokenization schemes [6, 2, 7], transformer-based
architectures [8, 9, 10], and evaluation strategies [1 1, 12] have been proposed in prior work on
symbolic music generation. However, due to the lack of a unified evaluation framework for generated
music, it remains an open challenge to determine how specific design choices in custom architectures,
e.g., the tokenizer, embedding function, or attention mechanism, affect the quality of the generated
music. While automatically computable metrics such as perplexity and musically informed objective
metrics [1 1] are commonly used, their relationship to human perception of musical quality is not
yet fully understood. We aim to address these challenges by presenting an empirical study on piano
music generation using transformer models.

2 Methods

Models and training setups Our methodology is structured around five targeted experiments. First,
we train scaled-down versions (62M, 155M, 439M, and 950M) of the Mistral 7B architecture [ 13] with
sliding window attention and rotary position embedding on the MAESTRO dataset [3]. Furthermore,
we pre-train models on a subset of the Aria-MIDI dataset [5] and compare them to models trained
only on MAESTRO. We fine-tune a model pre-trained on Aria-MIDI on MAESTRO and compare it
to a model trained from scratch only on MAESTRO to assess the effect of transfer learning. To guide
generation, we prepend genre labels during training and examine their impact. A genre-conditioned
950M-parameter model is further evaluated in a Turing-like listening study. Finally, we fine-tune
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the Moonbeam foundation model [10] on MAESTRO to provide a high-level benchmark for our
custom Mistral-based models. Unlike standard lookup-based embeddings, Moonbeam uses a trainable
sinusoidal embedding function [14] that enforces translational invariance and pitch transposability,
claimed to yield more musically meaningful representations and improved test perplexity.

Tokenization and data preprocessing For tokenization, we use the REMI scheme [2], a widely
adopted method that imposes metrical structure through position and bar tokens. Our REMI vocab-
ulary contains 485 base tokens, which we extend using byte-pair encoding to learn a 30K-token
vocabulary for more efficient representation. To balance efficiency and expressiveness, we fix the
model context length to 1024 tokens, typically corresponding to 1-2 minutes of music. All MIDI
files in our datasets are split into chunks of roughly 1024 tokens, and we generate samples of the
same length during inference. Moonbeam compounds multiple events into single note-level tokens,
producing sequences three times shorter than REMI. For a fair comparison, we adjust Moonbeam’s
context length to match the effective amount of training data seen by the Mistral-based models.

Datasets and data augmentation Various datasets of piano music in MIDI format are now available
for symbolic music research [3, 15, 16, 17, 18, 5]. For our experiments, we use the MAESTRO
dataset [3], containing 200 hours of professional classical piano, and a curated subset of 100K files
from Aria-MIDI [5], which spans multiple genres of automatically transcribed piano recordings. To
improve generalization and robustness, we augment the data by randomly altering pitch, velocity,
note duration, and tempo within perceptually plausible ranges.

Subjective evaluation Subjective evaluation is our target metric, as our goal is to generate music
perceived as enjoyable, original, and human-like. We conduct listening tests in which five participants
rate samples on a five-point Likert scale along three dimensions: pleasingness (how enjoyable the
music is), authenticity (how natural or human-like it sounds), and novelty (how original or unique
it feels) [19], with samples presented in randomized order to avoid bias. Inspired by the original
Turing Test [20], we also conduct a musical Turing-like test, asking listeners to classify excerpts as
human-composed, Al-generated, or uncertain.

Objective evaluation We use perplexity (PPL) to assess token-level fit, though it does not capture
higher-level musical structure. To evaluate global patterns, we employ distributional metrics compar-
ing feature-level distributions of generated and training samples. Fréchet music distance (FMD)
[12] measures distances between multivariate Gaussian embeddings extracted from MIDI files. We
also compute mean and standard deviation of musical features (pitch count, range, intervals, note
count, inter-onset interval) and compare datasets via histograms of intra-set and inter-set Euclidean
distances, smoothed with kernel density estimation. Similarity is quantified using Kullback-Leibler
divergence (KLD) [21] and overlapping area (OA), with low KLD and high OA indicating strong
resemblance to the training data. We compute the above metrics at intermediate checkpoints during
training.

3 Experiments and results

We provide detailed results as supplementary material in the appendix: Training curves are shown in
Figures 1-6, the results of the musical Turing-like test are in Table 3 and Figures 7—12, and Tables 4-6
present the complete results of the objective and subjective metrics. Our code’ is available online.

3.1 Different models on MAESTRO

We trained four Mistral-based models of varying sizes on the MAESTRO dataset for 225 epochs
each. Subjective evaluation of generated samples reveals that, despite overfitting, generation quality
generally improves with model size. For overfitting models, later checkpoints often produce more
musically coherent outputs, even as validation loss worsens. While this might suggest memorization,
our listening impressions indicate otherwise: the samples, though more structured and stylistically
consistent, remain too flawed to be mistaken for exact copies of training pieces. This points to a
fundamental tradeoff when training large models on small datasets like MAESTRO, especially for
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creative domains. To learn high-level musical features, the models must overfit to some extent. While
this limits generalization, it improves alignment with the training distribution—our primary goal in
this setting. Table 1 presents subjective evaluation results alongside PPL, FMD, KLD, and OA for the
final checkpoints. FMD, KLD, and OA closely align with human judgments in ranking model quality,
whereas PPL diverges for the two largest models—supporting the view that token-level metrics are
insufficient for evaluating musical plausibility. Interestingly, the 950M model underperforms the
439M model not only on KLD and OA, but also in the subjective evaluation at the final checkpoint.

For fine-tuning, we used the two available Moonbeam model checkpoints with 309M and 8§39M
parameters, both pre-trained on a collection of datasets worth over 80K hours of music. We fine-tuned
both models for 150 epochs on MAESTRO. We selected the 839M fine-tuned model and a context
size of 512 for comparison with our custom models. We calculated the objective metrics on the same
reference set as for our custom models with a fidelity of 1000 samples at the checkpoint corresponding
to step 3000. Table 1 shows the comparison of the objective metrics and the scores of the subjective
listening test across the models. The 439M and 950M custom models outperform Moonbeam on the
subjective listening test.

Table 1: Subjective and objective evaluation of the custom models and the Moonbeam model trained
on MAESTRO. Mean S. column indicates mean subjective evaluation scores. MB indicates the
Moonbeam model. PPL not computed for Moonbeam.

Model Mean S. Pleas. Auth. Nov. FMD| KLD| OA1 PPLJ|
62M 2.84 2.85 278 2.89 210.01 036  62.85% 53.65
155M 2.86 289 266 3.03 18753 038 68.46% 21.32
439M 3.22 330 3.02 335 17640 025 71.60% 4.82
950M 3.17 327 298 327 176,80 029 6833% 2.78

MB 839M 291 290 274 3.08 19470 051 82.21% -

3.2 Fine-tuning on MAESTRO

While the Aria dataset provides a large and diverse collection of MIDI files, it is automatically
transcribed from internet audio, which can introduce noise and errors. MAESTRO, in contrast,
contains high-quality recordings by professional pianists, offering more reliable musical detail. To
leverage Aria’s scale while benefiting from MAESTRO’s quality, we applied transfer learning by
fine-tuning models pre-trained on the multi-genre subset of Aria-Deduped. We compared partial
fine-tuning (155M-F-P), freezing the first eight blocks to retain general musical structure, with full
fine-tuning (155M-F-F), updating all parameters to fully adapt to MAESTRO.

As shown in Table 2, both variants outperform the MAESTRO-only baseline across most metrics.
Full fine-tuning achieves the best overall performance, suggesting that allowing all layers to adapt is
beneficial, likely due to the genre gap between the multi-genre pre-training data and classical MAE-
STRO. The underperformance of partial fine-tuning indicates that low-level musical representations
differ across genres and benefit from complete adaptation.

Table 2: Subjective and objective evaluation of models pre-trained on Aria-Deduped and fine-tuned on
MAESTRO compared with the 155M MAESTRO model. Mean S. column indicates mean subjective
evaluation scores.

Model Mean S. Pleas. Auth. Nov. FMD| KLD| OA1

155M 2.85 280 280 295 18753 038  68.46%
155M-F-P 3.09 313 295 320 19345 034  70.93%
155M-F-F 3.25 330 310 335 18734 030 72.39%

3.3 Integrating genre information

The Aria dataset contains multiple musical genres with differing distributional properties. To better
control output style, we trained a model conditioned on genre tokens. Each file’s genre was extracted
from the metadata, embedded into the MIDI, and prepended as a token to the sequence. During



generation, the model could be conditioned by providing only the genre token. We trained a 155M-
parameter model on 35K MIDI files from the same Aria subset used previously, allowing direct
comparison with a model trained without genre tokens. Results show only minor differences in
objective metrics, suggesting that genre tokens alone do not significantly improve the model’s
understanding of the data. Subjective listening, however, indicated that genre-conditioned samples
align well with the intended style, with the 950M model producing particularly high-quality outputs
where conditioned genres were clearly apparent.

3.4 Musical Turing-like test

Since the 950M model with genre conditioning produced the highest-quality samples, we conducted
a musical Turing-like test using sequences from the five most prevalent Aria-Deduped genres. For
each genre, five generated and five human-composed sequences were selected from a pool of thirty
samples. Excluding “unsure” responses, participants achieved 61.2% accuracy; counting “unsure” as
incorrect reduced it to 53.6%. Precision, recall, and F1-scores were similar for human and generated
samples, and the confusion matrix showed roughly a third of samples misclassified, indicating many
generated sequences were perceptually similar to human music. Accuracy by genre ranged from 48%
(soundtrack) to 62% (pop), with biases: classical and jazz leaned “generated,” while pop, rock, and
soundtrack leaned “human.” Overall, responses were 44.4% human, 43.2% generated, and 12.4%
unsure, showing slight bias. Unsure rates were slightly higher for generated sequences (14.4% vs.
10.4%), suggesting confusion remained high across genres.

4 Conclusion

This study systematically compared transformer models for unconditional piano music generation,
varying model scale, dataset size, pre-training and fine-tuning strategies, conditioning methods, and
architectures. Larger models generally improved subjective quality, though excessive overfitting on
the small MAESTRO dataset sometimes reduced performance. Objective metrics FMD, KLD, and OA
aligned reasonably well with human judgments, whereas PPL consistently improved with model size
but did not always reflect perceived quality. Pre-training on the larger Aria-MIDI dataset enhanced
generation quality and mitigated overfitting, with fine-tuning on MAESTRO further improving both
subjective and objective results. Genre conditioning allowed style-specific control, and the largest
conditioned model frequently produced outputs rated as human-composed in a Turing-style listening
test.

Training larger models on MAESTRO revealed a trade-off between overfitting and musical coherence.
Overfitting sometimes improved alignment with the training distribution, producing more coherent
outputs without simple memorization, but excessive overfitting could reduce quality. On larger
datasets such as Aria-MIDI, this trade-off was less pronounced. While FMD, KLD, and OA generally
correlated with subjective judgments, no metric fully captured musical quality. Dataset scale and
transfer learning were critical, with pre-training on Aria-MIDI improving generalization and enabling
MAESTRO fine-tuning to surpass MAESTRO-only models.

While Moonbeam’s domain-specific embedding space offers theoretical advantages, our custom
models performed competitively despite relying on conventional lookup embeddings. This raises
questions about the practical benefits of such specialized architectures and whether specific factors
may have limited the effectiveness of fine-tuning Moonbeam on MAESTRO.

Future work should further explore the trade-off between overfitting and generation quality, partic-
ularly using high-level musical metrics rather than cross-entropy loss, to better understand when
overfitting begins to harm outputs. The benefits of specialized architectures for music generation
remain an open question. Future work could probe the features captured at different layers of the
model and assess whether the embedding space preserves pitch-transposition relationships in deeper
layers. This could be evaluated by measuring reconstruction loss on transposed inputs at various
stages in the network. The establishment of robust benchmarks for fair comparison between models
from different studies would be desirable. Standardized evaluation frameworks would greatly improve
the comparability and reproducibility of results in this field.
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Figure 1: Training curves for the MAESTRO models of different sizes.
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Figure 2: Training curves for the models pre-trained on Aria-Deduped compared to the 155M model
trained only on MAESTRO.
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Figure 3: Training curves for the models pre-trained on Aria-Deduped and fine-tuned on MAESTRO.
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Figure 4: Training curves for the models with integrated genre information.
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Figure 5: Fine-tuning curves for Moonbeam with context size 512.
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B Musical Turing-like Test Analysis Results

Table 3: Precision, Recall, and F1-Scores for the musical Turing-like test. “Unsure” responses were
considered as incorrect.

Class Precision Recall Fl-score

Human 62.16% 55.20%  58.47%
Generated  60.19% 52.00%  55.79%

Confusion Matrix Accuracy by Genre (unsure = wrong)
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Figure 9: Accuracy by genre and origin in the musical Turing-like test.
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Figure 10: Distribution of participant guesses by genre in the musical Turing-like test.
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C Full Evaluation Tables

Table 4: Subjective and objective evaluations of models trained on MAESTRO.

Model 62M 155M 439M 950M MAESTRO
Subjective Evaluation
Pleasingness 2.85 2.89 3.30 3.27
Authenticity 2.78 2.66 3.02 2.98
Novelty 2.89 3.03 3.35 3.27
Average 2.84 2.86 322 3.17

Absolute Evaluation
Mean Std Mean Std Mean Std Mean Std Mean  Std

total_used_pitch 38.15 9.24 42.09 9.07 43.99 8.45 42.73 8.77 5490 9.82
pitch_range 51.39 11.05  54.24 10.17  53.19 9.53 52.61 10.09  63.17  9.23
avg_pitch_shift 9.36 425 9.88 3.51 11.05 3.31 10.67 3.82 1235 279
total_used_note 476.18  99.74 497.79 96.82 518.03 72.06 51475 7343 60997 51.24
avg_IOI 0.15 0.10 0.13 0.09 0.14 0.10 0.14 0.09 0.09 0.05

Average Distance to MAESTRO  0.33 10.48 0.25 9.61 0.23 4.61 0.25 5.04 0.00  0.00

Relative Evaluation
KLD OA KLD OA KLD OA KLD OA

total_used_pitch 003  71.63% 003 81.79% 0.01 86.46% 0.03 82.64%
total_pitch_class_hist 020 7552% 061 8020% 0.01 83.03% 0.02 86.38%
pitch_range 001  7890% 0.13 8596% 0.01 83.63% 0.02 81.62%
avg_pitch_shift 005 7691% 0.00 8625% 0.00 93.18% 0.01 87.74%
total_used_note 174 2236% 135 27.13% 120 30.02% 120 30.92%
avg_IOI 003 7742% 0.16 83.25% 0.09 81.00% 0.08 79.32%
note_length_hist 049 4521% 044 4720% 041 50.66% 0.58  44.08%
note_length_transition_matrix 030 54.81% 030 5590% 026 59.83% 037 53.94%
Average 036 62.85% 038 6846% 025 71.60% 0.29 68.33%
FMD 210.01 187.53 176.40 176.38
Perplexity 53.65 21.32 4.82 2.78
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Table 5: Subjective and objective evaluation of models pre-trained on Aria-Deduped compared with
the 155M MAESTRO model.

Model 155M 155M-A-M 155M-A-C MAESTRO
Subjective Evaluation
Pleasingness 2.80 3.25
Authenticity 2.80 3.03
Novelty 2.95 3.25
Average 2.85 3.18

Absolute Evaluation
Mean Std Mean Std Mean Std Mean  Std

total_used_pitch 42.09 9.07 30.11 8.64 32.39 10.67 5490 9.82
pitch_range 54.24 10.17  48.93 11.54 5034 12.01 63.17 9.23
avg_pitch_shift 9.88 3.51 9.71 3.02 10.18 3.32 1235 279
total_used_note 49779  96.82  436.02 96.08 431.72 130.27 609.97 51.24
avg_IOI 0.13 0.09 0.27 0.18 0.25 0.34 0.09 0.05

Average Distance to MAESTRO  0.25 9.61 0.65 9.74 0.58 16.70 0.00 0.00

Relative Evaluation
KLD OA KLD OA KLD OA

total_used_pitch 003 81.79% 0.66 52.09% 0.53 56.25%
total_pitch_class_hist 0.61 80.20% 025 7096% 029 68.59%
pitch_range 0.13  8596% 020 71.89% 0.19 73.49%
avg_pitch_shift 000 86.25% 0.06 8588% 0.03 89.43%
total_used_note 135 27.13% 228 24.10% 2.65 15.64%
avg_IOI 0.16  83.25% 0.65 51.63% 0.66 49.49%
note_length_hist 044  4720% 148 41.16% 121  40.00%
note_length_transition_matrix 030 5590% 097 5029% 0.87 49.21%
Average 038  6846% 082 56.00% 0.80 55.26%
FMD 187.53 292.46 249.84

Table 6: Subjective and objective evaluation of models pre-trained on Aria-Deduped and fine-tuned
on MAESTRO compared with the 155M MAESTRO model.

Model 155M 155M-F-P 155M-F-F MAESTRO
Subjective Evaluation
Pleasingness 2.80 3.13 3.30
Authenticity 2.80 2.95 3.10
Novelty 2.95 3.20 3.35
Average 2.85 3.09 3.25

Absolute Evaluation
Mean Std Mean Std Mean Std Mean  Std

total_used_pitch 42.09 9.07 41.78 8.89 41.41 8.08 5490 9.82
pitch_range 54.24 10.17  55.63 9.71 56.61 10.09  63.17 9.23
avg_pitch_shift 9.88 3.51 11.30 3.56 10.48 3.59 1235 279
total_used_note 497.79 96.82 514.01 77.59 52121 5795 609.97 5124
avg_IOI 0.13 0.09 0.12 0.08 0.11 0.07 0.09 0.05

Average Distance to MAESTRO  0.25 9.61 0.19 5.71 0.18 2.03 0.00 0.00

Relative Evaluation
KLD OA KLD OA KLD OA

total_used_pitch 003 81.79% 0.09 80.45% 0.09 80.98%
total_pitch_class_hist 0.61 80.20% 0.14 78.01% 0.17 75.66%
pitch_range 0.13  8596% 0.02 88.78%  0.02  89.58%
avg_pitch_shift 0.00 86.25% 0.04 88.44% 0.06 84.66%
total_used_note 135 27.13% 130 3039% 1.12  32.05%
avg_IOI 0.16  83.25% 0.02 90.27% 0.03 90.51%
note_length_hist 044  4720% 062 5251% 050 59.45%
note_length_transition_matrix 030 5590% 046 60.06% 036 66.20%
Average 038  6846% 034 7093% 030 72.39%
FMD 187.53 193.45 187.34
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