
A Survey on Multilingual Mental Disorders Detection
from Social Media Data

Anonymous ACL submission

Abstract

The increasing prevalence of mental health dis-001
orders globally highlights the urgent need for002
effective digital screening methods that can be003
used in multilingual contexts. Most existing004
studies, however, focus on English data, over-005
looking critical mental health signals that may006
be present in non-English texts. To address this007
important gap, we present the first survey on the008
detection of mental health disorders using mul-009
tilingual social media data. We investigate the010
cultural nuances that influence online language011
patterns and self-disclosure behaviors, and how012
these factors can impact the performance of013
NLP tools. Additionally, we provide a compre-014
hensive list of multilingual data collections that015
can be used for developing NLP models for016
mental health screening. Our findings can in-017
form the design of effective multilingual mental018
health screening tools that can meet the needs019
of diverse populations, ultimately improving020
mental health outcomes on a global scale.021

1 Introduction022

It is estimated that nearly half of the population023

will develop at least one mental disorder by the024

age of 75 (McGrath et al., 2023). Unfortunately,025

many people do not seek psychiatric help for men-026

tal health issues due to stigma, which manifests027

itself differently between cultures and is influenced028

by different cultural norms, religious beliefs and029

social attitudes (Ahad et al., 2023). Due to the030

stigma associated with mental health and the lim-031

ited access to professional care around the world,032

the World Health Organization (WHO) advocates033

for improved delivery of mental health services, in-034

cluding digital technologies to deliver remote care.1035

There is a pressing need for the integration of re-036

mote screening tools and the delivery of culturally037

1https://www.who.int/news/item/17-06-2022-who-
highlights-urgent-need-to-transform-mental-health-and-
mental-health-care

adapted digital interventions (Bond et al., 2023). 038

Remote screening relies on processing language 039

patterns associated with mental disorders, which 040

can be identified from short essay writing (Rude 041

et al., 2004), text messages (Nobles et al., 2018), 042

or social media (Eichstaedt et al., 2018). 043

The first well-known study on the detection of 044

mental disorders using social media was conducted 045

by De Choudhury et al. (2013). Multiple other 046

studies have shown that the language used on Face- 047

book can predict future depression diagnoses found 048

in medical records, indicating that social media 049

data could serve as a valuable complement to de- 050

pression screening (Eichstaedt et al., 2018). The 051

current methods used for social media screening 052

focus mainly on English data (Skaik and Inkpen, 053

2020; Harrigian et al., 2021). Additionally, there 054

have been multiple workshops and shared tasks 055

addressing NLP applications to mental health pri- 056

marily on English data such as eRisk (Parapar et al., 057

2024), CLPsych (Chim et al., 2024) and LT-EDI 058

(Kayalvizhi et al., 2023). 059

There are important limitations in current 060

NLP models when processing multilingual men- 061

tal health-related data. Various studies analyzing 062

English data from social media have shown that 063

there are cultural differences in online language 064

markers of mental disorders (De Choudhury et al., 065

2017; Loveys et al., 2018; Aguirre and Dredze, 066

2021; Rai et al., 2024) and that the NLP models 067

used for detection do not generalize on data from 068

non-Western cultures (Aguirre et al., 2021; Ab- 069

delkadir et al., 2024). Even one of the best predic- 070

tors of depression in language, the use of the first 071

person pronoun "I" (Rude et al., 2004), for exam- 072

ple, has different degrees of association with the 073

severity of depression across different demographic 074

groups (Rai et al., 2024). This suggests that mark- 075

ers of mental disorders in social media language are 076

not universal. One reason for this variation is that 077

self-disclosure rates differ between cultures; col- 078

1

https://www.who.int/news/item/17-06-2022-who-highlights-urgent-need-to-transform-mental-health-and-mental-health-care
https://www.who.int/news/item/17-06-2022-who-highlights-urgent-need-to-transform-mental-health-and-mental-health-care
https://www.who.int/news/item/17-06-2022-who-highlights-urgent-need-to-transform-mental-health-and-mental-health-care


lectivist cultures tend to have lower self-disclosure079

rates than individualist cultures in online settings080

(Tokunaga, 2009). Furthermore, non-native En-081

glish speakers tend to use their native language082

for more intimate self-disclosures on social media,083

with higher rates of negative disclosure compared084

to posts in English (Tang et al., 2011). This could085

have substantial implications for English-based so-086

cial media screening tools, as they can overlook087

important signals of mental health disorders that088

are present in posts that are not written in English.089

Recently, there have been efforts to develop de-090

tection models that focus on languages other than091

English, such as Portuguese (Santos et al., 2024),092

German (Zanwar et al., 2023), Arabic (Almouzini093

et al., 2019), and Chinese (Zhu et al., 2024). There094

have also been shared tasks specifically designed095

to address these issues, such as MentalRiskES096

(Mármol-Romero et al., 2023), which focuses on097

the early detection of depression, suicide, and eat-098

ing disorders in Spanish. To further contribute to099

these important efforts, we present the first survey100

on mental disorders detection from multilingual101

social media data. This survey aims to promote102

the development of multilingual NLP models that103

take into account cross-cultural and cross-language104

differences in online language.105

This paper makes the following contributions:106

1. We investigate cross-cultural and cross-107

language differences in the manifestations of108

mental disorders in social media.109

2. We provide a comprehensive list of multilin-110

gual mental health datasets that capture lin-111

guistic diversity and can be used for develop-112

ing multilingual NLP models.2113

3. We identify and describe several research gaps114

and future directions in the detection of multi-115

lingual mental disorders using online data.116

2 Prior Surveys117

In this section, we analyze past surveys on the anal-118

ysis of mental disorders from social media data.119

Calvo et al. (2017) is considered one of the first120

comprehensive surveys, presenting the datasets and121

NLP techniques used for mental health status detec-122

tion and intervention. The survey explores research123

on various mental health conditions and states, in-124

cluding depression, mood disorders, psychological125

2We make the list available online at
/anonymized_address/, and we will continuously update it.

distress, and suicidal ideation, specifically in non- 126

clinical texts such as user-generated content from 127

social media and online forums. Similarly, recent 128

surveys from Skaik and Inkpen (2020); Harrigian 129

et al. (2021); Ríssola et al. (2021); Zhang et al. 130

(2022); Garg (2023); Bucur et al. (2025) present the 131

datasets, features, and models used to detect mental 132

disorders from online content, focusing mainly on 133

English language data. 134

In addition to these surveys, Chancellor and 135

De Choudhury (2020) provides a critical review of 136

the study design and methods used to predict men- 137

tal health status, along with recommendations to 138

improve research in this field. Dhelim et al. (2023) 139

focus on studies that were published during the 140

COVID-19 pandemic. It focuses on general men- 141

tal well-being, loneliness, anxiety, stress, PTSD, 142

depression, suicide, and other mental disorders. 143

Our paper fills an important gap in the literature 144

by offering the first comprehensive survey of re- 145

search on detecting mental disorders in languages 146

other than English. The most related survey to 147

ours is the one by Garg (2024) which focuses ex- 148

clusively on low-resource languages. Our survey, 149

however, has a broader scope as it discusses work 150

on many languages irrespective of their resource- 151

fulness. 152

3 Mental Disorders Detection Tasks 153

Overview 154

To identify datasets and approaches for model- 155

ing the manifestations of mental disorders in lan- 156

guages other than English, we conducted a sys- 157

tematic search on major publication databases, in- 158

cluding ACL Anthology, ACM Digital Library, 159

IEEE Xplore, Springer Nature Link, ScienceDirect, 160

and Google Scholar. In this section, we discuss 161

the most common tasks related to detecting men- 162

tal health disorders that we identified through our 163

search. When available, we include references to 164

studies that focus on languages other than English. 165

The detection of mental health issues through so- 166

cial media is typically approached as a supervised 167

classification task (Figure 1). The most common 168

focus is on the binary classification of mental dis- 169

orders. In this process, a collection of social media 170

posts is used to train an NLP model, which then 171

predicts a binary label that indicates the presence 172

or absence of a mental disorder. Binary classifi- 173

cation can be performed at the post-level, which 174

is often used to predict conditions such as suici- 175
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Figure 1: Overview of tasks related to detecting mental health problems from social media.

dal ideation (Huang et al., 2019) and depression176

(Uddin et al., 2019). However, relying solely on177

a single post for decision making can lead to in-178

accurate predictions. Therefore, predictions can179

be made at the user level to detect conditions like180

depression (Hiraga, 2017), anxiety (Zarate et al.,181

2023), bipolar disorder (Sekulić et al., 2018), etc.182

Binary classification at the user level can also be183

modeled as an early risk prediction task, which184

aims to accurately label users as soon as possible,185

allowing the model to make a prediction or wait for186

more data before deciding (Losada and Crestani,187

2016; Parapar et al., 2021).188

Another important task is severity prediction,189

which can be modeled either as an ordinal regres-190

sion / classification task or as a multiclass classi-191

fication task. It is used primarily to predict the192

severity of depression (Naseem et al., 2022; Kabir193

et al., 2023; Sampath and Durairaj, 2022) or the194

risk of suicide attempts (Benjachairat et al., 2024).195

Social media posts can be modeled longitudinally196

to detect moments of change in the mental health197

status of individuals. These shifts or escalations in198

mood can be used as a warning signal for potential199

suicidal behavior (Tsakalidis et al., 2022b).200

There are tasks designed to improve the explain-201

ability of the field, such as symptom prediction202

for mental disorders (Liu et al., 2023; Yadav et al.,203

2020). Another step toward improving the explain-204

ability of model predictions is highlighting ev-205

idence for mental disorders (Chim et al., 2024;206

Varadarajan et al., 2024). Mental health indicators207

from the social media timeline of an individual can208

be used to fill in validated questionnaires, with209

the goal of estimating symptoms of mental disor-210

ders that are usually assessed through survey-based211

methods such as the Beck’s Depression Inventory-212

II (BDI-II)3 for depression assessment (Parapar 213

et al., 2021) or the Eating Disorder Examination 214

Questionnaire (EDE-Q)4 for eating disorders (Para- 215

par et al., 2024). 216

Finally, mental health monitoring systems can 217

analyze social media posts to identify various men- 218

tal health issues. The aggregated results can be 219

used to estimate the prevalence of mental disor- 220

ders within a population. This approach was used 221

during the COVID-19 pandemic to assess mental 222

health burden with results comparable to traditional 223

survey-based methods (Cohrdes et al., 2021). 224

4 Shared Tasks 225

Shared tasks have encouraged interdisciplinary col- 226

laborations between psychologists and computer 227

scientists, leading to the development of systems 228

that help detect mental disorders through the analy- 229

sis of social media. Additionally, these shared tasks 230

have provided benchmark data resources that the 231

research community continues to use, even beyond 232

the official competitions. 233

The Early Detection of Mental Disorders Risk in 234

Spanish (MentalRiskES) is the only shared task 235

focused on detecting mental disorders in languages 236

other than English. MentalRiskES includes tasks 237

such as the detection of depression, anxiety, eating 238

disorders, and suicidal risk in the Spanish language 239

(Mármol-Romero et al., 2023). 240

Other shared tasks are focused only on social 241

media data in English. The Early Risk Prediction 242

on the Internet Lab (eRisk) is an annual compe- 243

tition focusing mainly on the early detection of 244

3https://naviauxlab.ucsd.edu/wp-
content/uploads/2020/09/BDI21.pdf

4https://www.corc.uk.net/media/1273/ede-
q_quesionnaire.pdf
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mental disorders, including depression, self-harm,245

pathological gambling, and eating disorders (Para-246

par et al., 2024). The Workshop on Computational247

Linguistics and Clinical Psychology (CLPsych) in-248

cludes various tasks, such as detecting depression249

and PTSD (Coppersmith et al., 2015), labeling cri-250

sis posts (Milne et al., 2016), identifying moments251

of change (Tsakalidis et al., 2022a), and highlight-252

ing evidence for suicide risk (Chim et al., 2024).253

The Workshop on Language Technology for Equal-254

ity, Diversity, and Inclusion (LT-EDI) organized255

tasks aimed at predicting the severity of depression256

(Kayalvizhi et al., 2023).257

5 Datasets258

In this section, we present the data collections we259

found through the systematic search presented in260

Section 3. Figure 2 presents an overview of these261

languages along with the ranking of the publica-262

tions in which they appeared. The rankings for263

conferences are categorized as A∗, A, B, and C,264

following the CORE Rankings Portal.5 For jour-265

nals, the rankings are classified as Q1, Q2, Q3, and266

Q4, based on the Journal Citation Reports6. There267

are also datasets published in unranked confer-268

ences or journals. The languages most frequently269

represented in the data collections are three high-270

resource languages: Chinese, Arabic, and Spanish.271

Although approximately half of the datasets were272

published in unranked venues, leading to low visi-273

bility for the research, the other half were published274

in high-ranking journals and conferences.275

5.1 Data Sources276

Most of the datasets in English are sourced from277

Twitter7 and Reddit (Harrigian et al., 2021). Most278

non-English datasets in this section were also pri-279

marily collected from Twitter. However, Reddit280

was not as widely used for these data collections281

in non-English contexts. The data collected come282

from various populations and regions, and some of283

the sources are platforms that are exclusive to spe-284

cific countries, such as Sina Weibo8 used in China,285

VKontakte9 used in Russia, Pantip10 in Thailand,286

or Everytime11 in Korea.287

5https://www.core.edu.au/conference-portal
6https://jcr.clarivate.com/
7All the datasets were collected before Twitter changed its

name to X, so we refer to it as ‘Twitter’ in this paper.
8https://weibo.com
9https://vk.com/

10https://pantip.com/
11https://everytime.kr/
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Figure 2: Overview of the languages in the datasets,
their language families, and the ranking of their publi-
cation venues.

5.2 Languages 288

Table 1 presents all the datasets with multilingual 289

data. A more detailed version of the table can 290

be found in Appendix A, Table 2. For classify- 291

ing resource types, we used the framework pro- 292

posed by Joshi et al. (2020). Figure 2 illustrates 293

that most of the languages used in the data col- 294

lections belong to some of the largest language 295

families by number of speakers, specifically the 296

Indo-European, Sino-Tibetan and Afro-Asiatic lan- 297

guage families. The languages most frequently rep- 298

resented in the data collections are high-resource 299

languages: Chinese appears in 25 data collections, 300

Arabic is found in 11 datasets, and Spanish is in- 301

cluded in 10 datasets. Even if most of the languages 302

covered in the data are from high-, mid to high- and 303

mid-resourced languages, we also have some lan- 304

guages with fewer resources, such as Cantonese 305

and Norwegian. The Cantonese data collection 306

was gathered by Gao et al. (2019) from Youtube 307

comments and annotated for the risk of suicide. 308

The Norwegian datasets related to depression were 309

collected from a public online forum in Norway 310

(Uddin et al., 2022; Uddin, 2022). Sinhala lan- 311

guage, which was classified as rare by Joshi et al. 312

(2020) is represented in three research papers. One 313

of the papers contains Facebook data annotated for 314

suicide ideation (Herath and Wijayasiriwardhane, 315

2024), while another contains depression-related 316

data from Twitter and Facebook (Rathnayake and 317
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Language Resource Datasets
Arabic High Almouzini et al. (2019); Alghamdi et al. (2020); Alabdulkreem (2021); Musleh et al. (2022), CairoDep (El-

Ramly et al., 2021), Almars (2022); Maghraby and Ali (2022); Baghdadi et al. (2022), Arabic Dep 10,000
(Helmy et al., 2024), Al-Haider et al. (2024); Abdulsalam et al. (2024); Al-Musallam and Al-Abdullatif (2022)

Chinese High Zhang et al. (2014); Huang et al. (2015); Cheng et al. (2017); Shen et al. (2018); Wu et al. (2018); Cao et al.
(2019); Wang et al. (2019); Peng et al. (2019); Huang et al. (2019); Li et al. (2020), WU3D (Wang et al., 2020),
Yao et al. (2020); Yang et al. (2021); Chiu et al. (2021); Sun et al. (2022); Cai et al. (2023); Li et al. (2023);
Guo et al. (2023); Wu et al. (2023); Lyu et al. (2023); Yu et al. (2023); Zhu et al. (2024)

French High Tabak and Purver (2020)
German High Cohrdes et al. (2021); Baskal et al. (2022); Tabak and Purver (2020), SMHD-GER (Zanwar et al., 2023)
Japanese High Tsugawa et al. (2015); Hiraga (2017); Niimi (2021); Cha et al. (2022); Wang et al. (2023)
Spanish High Leis et al. (2019), SAD (López-Úbeda et al., 2019), Valeriano et al. (2020); Ramírez-Cifuentes et al. (2020,

2021); Villa-Pérez et al. (2023), MentalRiskES (Romero et al., 2024), Cremades et al. (2017); Coello-Guilarte
et al. (2019)

Brazilian Por-
tuguese

Mid to High von Sperling and Ladeira (2019); Mann et al. (2020); Santos et al. (2020); de Carvalho et al. (2020), SetembroBR
(Santos et al., 2024), Mendes and Caseli (2024); Oliveira et al. (2024)

Dutch Mid to High Desmet and Hoste (2014, 2018)
Code-Mixed
Hindi-English

Mid to High Agarwal and Dhingra (2021)

Italian Mid to High Tabak and Purver (2020)
Korean Mid to High Lee et al. (2020); Park et al. (2020); Kim et al. (2022b,a); Cha et al. (2022)
Polish Mid to High Wołk et al. (2021)
Russian Mid to High Stankevich et al. (2019); Baskal et al. (2022); Narynov et al. (2020); Stankevich et al. (2020); Ignatiev et al.

(2022)
Turkish Mid to High Baskal et al. (2022)
Bengali Mid Uddin et al. (2019); Victor et al. (2020); Kabir et al. (2022); Tasnim et al. (2022), BanglaSPD (Islam et al.,

2022), Ghosh et al. (2023); Hoque and Salma (2023), BSMDD (Chowdhury et al., 2024)
Indonesian Mid Oyong et al. (2018); Yoshua and Maharani (2024)
Filipino Mid Tumaliuan et al. (2024); Astoveza et al. (2018)
Greek Mid Stamou et al. (2024)
Hebrew Mid Hacohen-Kerner et al. (2022)
Roman Urdu Mid Rehmani et al. (2024); Mohmand et al. (2024)
Thai Mid Katchapakirin et al. (2018); Hemtanon and Kittiphattanabawon (2019); Kumnunt and Sornil (2020); Hemtanon

et al. (2020); Wongaptikaseree et al. (2020); Hämäläinen et al. (2021); Mahasiriakalayot et al. (2022); Boonyarat
et al. (2024); Benjachairat et al. (2024)

Cantonese Low Gao et al. (2019)
Norwegian Low Uddin et al. (2022); Uddin (2022)
Sinhala Rare Rathnayake and Arachchige (2021), EmoMent (Atapattu et al., 2022), Herath and Wijayasiriwardhane (2024)

Table 1: Available non-English datasets for detecting mental disorders.

Arachchige, 2021). The third dataset contains data318

from Facebook, with more fine-grained labeled319

data on the presence of mental illness, anxiety, sui-320

cidal ideation, emotions, psychosomatic symptoms,321

and other manifestations (Atapattu et al., 2022).322

5.3 Mental Disorders323

Figure 3 shows the distribution of mental disor-324

ders in different languages within the datasets. De-325

pression is the most common mental disorder and326

is well-represented in the data. The languages327

that lack data on depression are Cantonese, Dutch,328

Hebrew, Hindi, and Turkish. Suicide is another329

mental disorder that frequently appears in collec-330

tions. In contrast, the mental health problems331

that are least represented include eating disorders,332

obsessive-compulsive disorder (OCD), attention333

deficit / hyperactivity disorder (ADHD), autism334

spectrum disorder (ASD), anxiety, bipolar disorder,335

and schizophrenia.336

5.4 Annotation Procedure 337

Most data collections were manually annotated 338

(Figure 3). Manual annotation was carried out by 339

mental health experts or psychologists (Narynov 340

et al., 2020; de Oliveira et al., 2022), graduate stu- 341

dents who are native speakers of the language of 342

interest (Boonyarat et al., 2024; Uddin et al., 2019), 343

or nonexpert individuals. However, some datasets 344

do not specify who the annotators were or what 345

guidelines they followed during the annotation pro- 346

cess. Most datasets that collect user-level data from 347

online platforms rely on the self-disclosure of men- 348

tal health statuses. For example, they rely on ex- 349

plicit mentions of diagnoses (e.g. “I was diagnosed 350

with depression") (Tabak and Purver, 2020; Villa- 351

Pérez et al., 2023). The third most common anno- 352

tation method involves asking social media users 353

to complete validated questionnaires to diagnose 354

mental disorders. The most frequently used survey- 355

based methods include the CES-D (Tsugawa et al., 356

2015; Lyu et al., 2023), BDI-II (Sun et al., 2022; 357

Stankevich et al., 2019; Ignatiev et al., 2022) or 358
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Figure 3: Overview of the mental disorders addressed
in each dataset, along with the annotation procedures.

tools specifically designed for certain populations,359

such as the TMHQ12 (Katchapakirin et al., 2018).360

Another reliable annotation approach is conducting361

clinical interviews to assess mental health prob-362

lems (Wołk et al., 2021). Less common and nois-363

ier annotation methods include identifying posts364

based on the presence of specific keywords (López-365

Úbeda et al., 2019), by forum membership (Agar-366

wal and Dhingra, 2021), or automatic annotation367

through another model trained on mental health368

data (Cohrdes et al., 2021).369

5.5 Availability of Data Collections370

Of the 108 datasets listed in Table 1, only 23 are371

publicly available for download without any re-372

strictions. These datasets focus on the detection of373

depression, suicide, and anorexia and are in vari-374

ous languages, including Arabic, Bengali, Brazil-375

ian Portuguese, Chinese, Hebrew, Hindi, Spanish,376

Russian, Roman Urdu, and Thai. For 15 of the377

datasets, access can be obtained by contacting the378

authors of the respective research papers, while379

four datasets require users to complete a data agree-380

ment to gain access. Additionally, four datasets are381

unavailable due to the sensitive nature of the data.382

For the remaining datasets, the research papers do383

not provide any information on data availability.384

Details about the availability of data collections385

can be found in Appendix A, Table 2.386

12Thai Mental Health Questionnaire

6 Mental Disorders Detection Approaches 387

In this section, we present the NLP methods pro- 388

posed for the detection of mental disorders in the 389

datasets in Section 5. Most approaches are mono- 390

lingual and specifically target only one non-English 391

language. 392

Classical approaches Most approaches use 393

Bag-of-Words, TF-IDF, or Word2Vec for text repre- 394

sentation, which are then used as input for classical 395

machine learning models (Almouzini et al., 2019; 396

Alghamdi et al., 2020; Helmy et al., 2024) or deep 397

learning models (Mann et al., 2020; Tasnim et al., 398

2022; Ghosh et al., 2023). 399

Pre-trained transformer-based models While 400

multilingual models like XLM-Roberta and Multi- 401

lingual BERT demonstrate strong performance in 402

downstream tasks, only two studies focus exclu- 403

sively on these models (Kabir et al., 2022; Hoque 404

and Salma, 2023). In contrast, twelve of the pa- 405

pers in Section 5 rely on pre-trained monolingual 406

models specific to the target language, such as Chi- 407

nese BERT (Yao, 2024), AraBERT (Abdulsalam 408

et al., 2024), German BERT (Zanwar et al., 2023), 409

Bangla BERT (Chowdhury et al., 2024) and oth- 410

ers. In addition, seven research papers evaluate 411

both language-adapted and multilingual models 412

(Hacohen-Kerner et al., 2022; Oliveira et al., 2024). 413

Translation Zahran et al. (2025) presented 414

a comprehensive evaluation of LLMs on Arabic 415

data related to depression, suicidal ideation, anxi- 416

ety, and others. The authors found that LLMs per- 417

formed better on original Arabic datasets compared 418

to data that had been translated into English. Other 419

works also rely on the detection using data trans- 420

lated from the target language to English (Vajrobol 421

et al., 2023). However, Schoene et al. (2025) has 422

shown that automatically translating suicide dic- 423

tionaries from English to low-resource languages 424

often leads to spelling errors and fails to capture 425

the cultural nuances of the speakers of the target 426

language. When developing mental health models 427

in other languages, some studies rely on translation 428

from English to the target language, such as Greek 429

(Skianis et al., 2024) or various Indian languages 430

(Rajderkar and Bhat, 2024). 431

Multilingual approaches Methods developed 432

for multiple languages simultaneously utilize cross- 433

lingual embeddings and make use of information 434

from languages with more mental health-related 435
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resources, such as English, to make predictions on436

Spanish data (Coello-Guilarte et al., 2019). Lee437

et al. (2020) developed a cross-lingual model for438

suicidal ideation by translating data from Korean to439

English and Chinese. They used existing dictionar-440

ies related to suicidal ideation in these languages441

to inform predictions on the Korean language.442

7 Cross-cultural and Cross-language443

Differences in Mental Health444

Expression445

Culture influences the sources of distress, how it446

is expressed, how it is interpreted, the process of447

seeking help, and the responses of others (Kirmayer448

et al., 2001). In addition, the way people perceive449

themselves influences their mental health. In West-450

ern cultures, there is a strong emphasis on personal451

narratives, and people tend to express their emo-452

tions more openly, a trend that is reflected in online453

posts (Tokunaga, 2009). In contrast, in Asian soci-454

eties, individuals often internalize their emotional455

struggles or express them indirectly, influenced by456

their collectivist values (Broczek et al., 2024). Al-457

though negative self-thoughts are a common char-458

acteristic of depression, in East Asian contexts,459

self-criticism is often viewed as a sign of healthy460

functioning (Gotlib and Hammen, 2008).461

Symptoms of mental disorders Cultural differ-462

ences in the interpretation of mental health symp-463

toms can lead individuals of certain backgrounds464

to minimize the psychological effects of mental465

distress. Instead, they may report more socially ac-466

ceptable somatic symptoms (Kirmayer et al., 2001).467

Somatic symptoms are common across various cul-468

tures, but the ways in which they are reported or469

understood can differ. In addition, there are cul-470

turally specific idioms of distress associated with471

mental disorders. One such example is the term472

“nervios” (translated as “nerves” in English), which473

is a syndrome of distress primarily studied in Latin474

American communities. This syndrome manifests475

with psychological and somatic symptoms and has476

a high comorbidity with anxiety and mood disor-477

ders (De Snyder et al., 2000). The DSM-V (Ameri-478

can Psychiatric Association, 2013), which is used479

for the assessment of mental disorders, includes480

cultural concepts of distress to help clinicians rec-481

ognize how individuals from various cultures ex-482

press psychological issues.483

Mental health expressions in online language 484

Online expression varies between cultures and has 485

been extensively studied among English-speaking 486

individuals from different regions (De Choudhury 487

et al., 2017; Loveys et al., 2018; Pendse et al., 2019; 488

Aguirre and Dredze, 2021; Rai et al., 2024). When 489

analyzing data from a peer-support mental health 490

community, Loveys et al. (2018) found that mani- 491

festations of negative emotions differ between de- 492

mographic groups. Moreover, Pendse et al. (2019) 493

compared the language used by a majority sample 494

(including posts from users in the US, UK, and 495

Canada) to samples from users in India, Malaysia, 496

and the Philippines. The study revealed that the 497

first group used more clinical language when ex- 498

pressing their mental distress. 499

Variation of features across cultures The ten- 500

dency for self-focused attention, often referred to as 501

“I”-language, is considered one of the strongest pre- 502

dictors of depression in language (Mihalcea et al., 503

2024). However, this association has not been ob- 504

served in non-Western individuals (Rai et al., 2024), 505

nor in speakers of Chinese (Lyu et al., 2023) or Ro- 506

manian (Trifu et al., 2024). In addition to the lower 507

levels of self-disclosure on social media among 508

non-Western users, it is essential to consider the 509

morphological differences between languages. Al- 510

though in English the pronoun “I” serves as a signif- 511

icant indicator of depression, its usage in other lan- 512

guages requires special consideration of linguistic 513

characteristics. For instance, English requires the 514

explicit inclusion of nouns or pronouns as subjects 515

in sentences. In contrast, some languages, such 516

as Chinese and Romanian, are pro-drop languages, 517

allowing the subject of the action to be omitted 518

(Koeneman and Zeijlstra, 2019). This feature may 519

lead to a reduced frequency of the personal pronoun 520

“I” in these languages. 521

Mental health metaphors Indicators of mental 522

disorders are often displayed through metaphors. 523

Depression is often described as weight, pres- 524

sure, or darkness, and is often portrayed using 525

containment metaphors (Charteris-Black, 2012). 526

Metaphors are often used by individuals to articu- 527

late their experience and psychologists in the thera- 528

peutic process (Mould et al., 2010). Mental illness 529

metaphors have been extensively studied in English 530

(Charteris-Black, 2012; Lazard et al., 2016) and 531

have been used to predict mental states (Shi et al., 532

2021; Zhang et al., 2021). With the exception of re- 533

search in Spanish (Coll-Florit and Climent, 2023), 534
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there is a notable lack of resources to understand535

metaphors of mental illness in other languages.536

It is essential to consider the various cultural537

and multilingual differences when developing au-538

tomated methods to predict mental disorders based539

on language. These differences may explain why540

many studies have shown that models designed541

to predict mental illnesses often fail to generalize542

(Aguirre et al., 2021; Aguirre and Dredze, 2021;543

Abdelkadir et al., 2024).544

8 Research Gaps545

In this section, we highlight several research gaps546

that we hope will be explored in future studies.547

Lack of mental health-related data for low-548

resource languages As presented in Section 5,549

most data collection in non-English languages are550

often from mid- and high-resourced languages,551

with the exception of Cantonese, Norwegian, and552

Sinhala. Currently, many languages remain under-553

represented, including high-resourced languages554

like French and mid-to-high resource languages555

such as Finnish, Croatian, and Vietnamese. More-556

over, there is a lack of data collections for low-557

resource languages, which may hinder the develop-558

ment of online screening tools for individuals who559

speak these languages. Although few studies have560

used automatic translation for building datasets in561

languages other than English, it cannot accurately562

capture the cultural nuances of native speakers of563

the target language (Schoene et al., 2025).564

Cross-lingual expressions in underrepresented565

mental disorders Although there are mental566

health-related datasets available in non-English567

data, most of them primarily focus on depression568

and suicide. Other mental disorders, such as anxi-569

ety, OCD, bipolar disorder, and PTSD, are under-570

represented. To gain a better understanding of how571

these disorders manifest in the online language, the572

research community needs more linguistically di-573

verse collections that encompass a wider range of574

mental disorders. This approach would not only575

facilitate a broader exploration of mental health576

expressions in various languages, but also help de-577

velop more inclusive and effective online mental578

health screening tools worldwide.579

Multilingual approaches As highlighted in Sec-580

tion 6, most NLP approaches have focused on pro-581

cessing data in a single target language, with multi-582

lingual approaches addressing multiple languages583

being almost nonexistent. Most existing NLP mod- 584

els developed for mental disorders detection do 585

not support multiple languages effectively, which 586

limits their applicability in multicultural and mul- 587

tilingual settings where mental health issues may 588

manifest differently. 589

Annotation transparency in mental health data 590

collections Although most of the datasets pre- 591

sented in this paper rely on manual annotation for 592

labeling the data related to mental disorders, it is 593

often unclear who did the annotations. The authors 594

of the research papers should provide specific de- 595

tails about the annotation process, such as whether 596

the annotators are mental health experts or non- 597

experts, if they are native speakers of the target 598

language, and whether they understand the cultural 599

differences in the manifestations of mental disor- 600

ders. These factors significantly impact the quality 601

and reliability of the data, as understanding cultural 602

nuances is essential in interpreting mental health 603

expressions. 604

Explainability in multilingual mental health re- 605

search While many mental health studies in En- 606

glish emphasize the importance of explainable ap- 607

proaches (Yang et al., 2023a; Souto et al., 2023; 608

Yang et al., 2023b), there is a significant opportu- 609

nity for applying explainable approaches to non- 610

English languages. Currently, few studies have 611

examined model explainability in Bengali (Ghosh 612

et al., 2023) and Thai (Vajrobol et al., 2023). These 613

methods may help in understanding the various 614

manifestations of mental disorders in different lan- 615

guages. 616

9 Conclusion 617

In this paper, we presented a comprehensive re- 618

view of research for mental disorders detection 619

from multilingual data sourced from social media. 620

We highlight cross-cultural and multilingual dif- 621

ferences in mental health expressions and provide 622

a comprehensive list of data collections that can 623

be used to develop multilingual NLP models for 624

online mental health screening. Our focus was on 625

non-English resources, as most previous research 626

has focused on English (Skaik and Inkpen, 2020; 627

Harrigian et al., 2021). Lastly, we presented sev- 628

eral gaps in current research that we hope will be 629

addressed in future interdisciplinary studies. 630
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Limitations631

Our paper aims to provide a comprehensive re-632

view of cross-cultural language differences and the633

datasets available for developing multilingual NLP634

models. We included 108 data collections in this635

study and carefully reviewed each paper cited in636

our survey. However, it is possible that we may637

have overlooked some works that do not explicitly638

mention in their title or abstract that they focus on639

non-English languages.640
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Konstantinos Skianis, A Doğruöz, and John Pavlopou-1305
los. 2024. Leveraging llms for translating and clas-1306
sifying mental health data. In Proceedings of the1307
Fourth Workshop on Multilingual Representation1308
Learning (MRL 2024), pages 236–241.1309

Eliseo Bao Souto, Anxo Pérez, and Javier Parapar. 2023.1310
Explainability, interpretability, depression detection,1311
social media. arXiv preprint arXiv:2310.13664.1312

Vivian Stamou, George Mikros, George Markopou-1313
los, and Spyridoula Varlokosta. 2024. Establishing1314
control corpora for depression detection in modern1315
greek: Methodological insights. In Proceedings1316
of the Fifth Workshop on Resources and Process-1317
Ing of linguistic, para-linguistic and extra-linguistic1318
Data from people with various forms of cogni-1319
tive/psychiatric/developmental impairments@ LREC-1320
COLING 2024, pages 68–76.1321

Maxim Stankevich, Andrey Latyshev, Evgenia Ku-1322
minskaya, Ivan Smirnov, and Oleg Grigoriev. 2019.1323
Depression detection from social media texts. In1324
Elizarov, A., Novikov, B., Stupnikov., S (eds.) Data An-1325
alytics and Management in Data Intensive Domains:1326
XXI International Conference DAMDID/RCDL, page1327
352.1328

Maxim Stankevich, Ivan Smirnov, Natalia Kiselnikova,1329
and Anastasia Ushakova. 2020. Depression detection1330
from social media profiles, pages 181–194.1331

Lijing Sun, Yu Luo, et al. 2022. Identification and1332
analysis of depression and suicidal tendency of sina1333
weibo users based on machine learning. Advances in1334
Educational Technology and Psychology, 6(9):108–1335
117.1336

Tom Tabak and Matthew Purver. 2020. Temporal men-1337
tal health dynamics on social media. In Workshop on1338
NLP for COVID-19 (Part 2) at EMNLP 2020.1339

Dai Tang, Tina Chou, Naomi Drucker, Adi Robertson,1340
William C Smith, and Jeffery T Hancock. 2011. A1341
tale of two languages: strategic self-disclosure via1342
language selection on facebook. In Proceedings of1343
the ACM 2011 conference on Computer supported1344
cooperative work, pages 387–390.1345

Farzana Tasnim, Sultana Umme Habiba, Nuren Nafisa, 1346
and Afsana Ahmed. 2022. Depressive bangla text 1347
detection from social media post using different data 1348
mining techniques. In Computational Intelligence in 1349
Machine Learning: Select Proceedings of ICCIML 1350
2021, pages 237–247. Springer. 1351

Robert S Tokunaga. 2009. High-speed internet access 1352
to the other: The influence of cultural orientations 1353
on self-disclosures in offline and online relationships. 1354
Journal of Intercultural Communication Research, 1355
38(3):133–147. 1356

Raluca Nicoleta Trifu, Bogdan Nemes, , Dana Cristina 1357
Herta, Carolina Bodea-Hategan, Dorina Anca Talas, , 1358
and Horia Coman. 2024. Linguistic markers for ma- 1359
jor depressive disorder: a cross-sectional study using 1360
an automated procedure. Frontiers in Psychology, 1361
15:1355734. 1362

Adam Tsakalidis, Jenny Chim, Iman Munire Bilal, Ayah 1363
Zirikly, Dana Atzil-Slonim, Federico Nanni, Philip 1364
Resnik, Manas Gaur, Kaushik Roy, Becky Inkster, 1365
et al. 2022a. Overview of the clpsych 2022 shared 1366
task: Capturing moments of change in longitudinal 1367
user posts. In Proceedings of the Eighth Workshop on 1368
Computational Linguistics and Clinical Psychology, 1369
pages 184–198. 1370

Adam Tsakalidis, Federico Nanni, Anthony Hills, Jenny 1371
Chim, Jiayu Song, and Maria Liakata. 2022b. Identi- 1372
fying moments of change from longitudinal user text. 1373
In Proc. of ACL, pages 4647–4660. 1374

Sho Tsugawa, Yusuke Kikuchi, Fumio Kishino, Ko- 1375
suke Nakajima, Yuichi Itoh, and Hiroyuki Ohsaki. 1376
2015. Recognizing depression from twitter activity. 1377
In Proceedings of the 33rd annual ACM conference 1378
on human factors in computing systems, pages 3187– 1379
3196. 1380

Faye Beatriz Tumaliuan, Lorelie Grepo, and Eu- 1381
gene Rex Jalao. 2024. Development of depression 1382
data sets and a language model for depression detec- 1383
tion: mixed methods study. JMIR Data, 5:e53365. 1384

Abdul Hasib Uddin, Durjoy Bapery, and Abu 1385
Shamim Mohammad Arif. 2019. Depression analy- 1386
sis of bangla social media data using gated recurrent 1387
neural network. In 2019 1st International conference 1388
on advances in science, engineering and robotics 1389
technology (ICASERT), pages 1–6. IEEE. 1390

Md Zia Uddin. 2022. Depression detection in text us- 1391
ing long short-term memory-based neural structured 1392
learning. In 2022 International Conference on In- 1393
novations in Science, Engineering and Technology 1394
(ICISET), pages 408–414. IEEE. 1395

Md Zia Uddin, Kim Kristoffer Dysthe, Asbjørn Følstad, 1396
and Petter Bae Brandtzaeg. 2022. Deep learning 1397
for prediction of depressive symptoms in a large tex- 1398
tual dataset. Neural Computing and Applications, 1399
34(1):721–744. 1400

15



Vajratiya Vajrobol, Nitisha Aggarwal, Unmesh Shukla,1401
Geetika Jain Saxena, Sanjeev Singh, and Amit Pundir.1402
2023. Explainable cross-lingual depression identi-1403
fication based on multi-head attention networks in1404
thai context. International Journal of Information1405
Technology, pages 1–16.1406

Kid Valeriano, Alexia Condori-Larico, and José Sulla-1407
Torres. 2020. Detection of suicidal intent in spanish1408
language social networks using machine learning.1409
International Journal of Advanced Computer Science1410
and Applications, 11(4).1411

Vasudha Varadarajan, Allison Lahnala, Gane-1412
san Adithya V, Gourab Dey, Siddharth Mangalik,1413
Ana-Maria Bucur, Nikita Soni, Rajath Rao, Kevin1414
Lanning, Isabella Vallejo, Lucie Flek, H. Andrew1415
Schwartz, Charles Welch, and Ryan L Boyd. 2024.1416
Archetypes and entropy: Theory-driven extraction of1417
evidence for suicide risk. In Proceedings of CLPsych1418
Workshop, EACL.1419

Debasish Bhattacharjee Victor, Jamil Kawsher,1420
Md Shad Labib, and Subhenur Latif. 2020. Machine1421
learning techniques for depression analysis on1422
social media-case study on bengali community. In1423
2020 4th International Conference on Electronics,1424
Communication and Aerospace Technology (ICECA),1425
pages 1118–1126. IEEE.1426

Miryam Elizabeth Villa-Pérez, Luis A Trejo,1427
Maisha Binte Moin, and Eleni Stroulia. 2023.1428
Extracting mental health indicators from english and1429
spanish social media: A machine learning approach.1430
IEEE Access, 11:128135–128152.1431

Otto von Sperling and Marcelo Ladeira. 2019. Mining1432
twitter data for signs of depression in brazil. In Anais1433
do VII Symposium on Knowledge Discovery, Mining1434
and Learning, pages 25–32. SBC.1435

Lidong Wang, Yin Zhang, Bin Zhou, Shihua Cao, Key-1436
ong Hu, and Yunfei Tan. 2024. Automatic depres-1437
sion prediction via cross-modal attention-based multi-1438
modal fusion in social networks. Computers and1439
Electrical Engineering, 118:109413.1440

Siqin Wang, Huan Ning, Xiao Huang, Yunyu Xiao,1441
Mengxi Zhang, Ellie Fan Yang, Yukio Sadahiro, Yan1442
Liu, Zhenlong Li, Tao Hu, et al. 2023. Public surveil-1443
lance of social media for suicide using advanced deep1444
learning models in japan: time series study from1445
2012 to 2022. Journal of medical internet research,1446
25:e47225.1447

Xiaofeng Wang, Shuai Chen, Tao Li, Wanting Li, Yejie1448
Zhou, Jie Zheng, Yaoyun Zhang, and Buzhou Tang.1449
2019. Assessing depression risk in chinese mi-1450
croblogs: a corpus and machine learning methods. In1451
2019 IEEE International conference on healthcare1452
informatics (ICHI), pages 1–5. IEEE.1453

Yiding Wang, Zhenyi Wang, Chenghao Li, Yilin Zhang,1454
and Haizhou Wang. 2020. A multimodal feature1455
fusion-based method for individual depression detec-1456
tion on sina weibo. In 2020 IEEE 39th International1457

Performance Computing and Communications Con- 1458
ference (IPCCC), pages 1–8. IEEE. 1459

Agnieszka Wołk, Karol Chlasta, and Paweł Holas. 2021. 1460
Hybrid approach to detecting symptoms of depres- 1461
sion in social media entries. 1462

Konlakorn Wongaptikaseree, Panida Yomaboot, Kan- 1463
tinee Katchapakirin, and Yongyos Kaewpitakkun. 1464
2020. Social behavior analysis and thai mental health 1465
questionnaire (tmhq) optimization for depression de- 1466
tection system. IEICE TRANSACTIONS on Informa- 1467
tion and Systems, 103(4):771–778. 1468

En-Liang Wu, Chia-Yi Wu, Ming-Been Lee, Kuo- 1469
Chung Chu, and Ming-Shih Huang. 2023. Devel- 1470
opment of internet suicide message identification and 1471
the monitoring-tracking-rescuing model in taiwan. 1472
Journal of affective disorders, 320:37–41. 1473

Min Yen Wu, Chih-Ya Shen, En Tzu Wang, and Arbee 1474
L. P. Chen. 2018. A deep architecture for depres- 1475
sion detection using posting, behavior, and living 1476
environment data. Journal of Intelligent Information 1477
Systems, 54:225–244. 1478

Shweta Yadav, Jainish Chauhan, Joy Prakash Sain, 1479
Krishnaprasad Thirunarayan, Amit P. Sheth, and 1480
Jeremiah Schumm. 2020. Identifying depres- 1481
sive symptoms from tweets: Figurative language 1482
enabled multitask learning framework. CoRR, 1483
abs/2011.06149. 1484

Kailai Yang, Shaoxiong Ji, Tianlin Zhang, Qianqian Xie, 1485
and Sophia Ananiadou. 2023a. Towards interpretable 1486
mental health analysis with chatgpt. arXiv preprint 1487
arXiv:2304.03347. 1488

Kailai Yang, Tianlin Zhang, Ziyan Kuang, Qianqian 1489
Xie, and Sophia Ananiadou. 2023b. Mentalllama: 1490
Interpretable mental health analysis on social me- 1491
dia with large language models. arXiv preprint 1492
arXiv:2309.13567. 1493

Tingting Yang, Fei Li, Donghong Ji, Xiaohui Liang, 1494
Tian Xie, Shuwan Tian, Bobo Li, and Peitong Liang. 1495
2021. Fine-grained depression analysis based on 1496
chinese micro-blog reviews. Information Processing 1497
& Management, 58(6):102681. 1498

Xiaoxu Yao, Guang Yu, Xianyun Tian, and Jingyun 1499
Tang. 2020. Patterns and longitudinal changes in 1500
negative emotions of people with depression on sina 1501
weibo. Telemedicine and e-Health, 26(6):734–743. 1502

Zheng Yao. 2024. A multi-model approach to detec- 1503
tion of depression in the chinese social media entries. 1504
In 2024 5th International Seminar on Artificial In- 1505
telligence, Networking and Information Technology 1506
(AINIT), pages 2148–2151. IEEE. 1507

Elroi Yoshua and Warih Maharani. 2024. Depression de- 1508
tection of users in social-media twitter using decision 1509
tree with word2vec. Inform: Jurnal Ilmiah Bidang 1510
Teknologi Informasi dan Komunikasi, 9(1):95–100. 1511

16

https://arxiv.org/abs/2011.06149
https://arxiv.org/abs/2011.06149
https://arxiv.org/abs/2011.06149
https://arxiv.org/abs/2011.06149
https://arxiv.org/abs/2011.06149


Yang Yu, Qi Li, and Xiaoqian Liu. 2023. Automatic1512
anxiety recognition method based on microblog text1513
analysis. Frontiers in Public Health, 11:1080013.1514

Noureldin Zahran, Aya E Fouda, Radwa J Hanafy, and1515
Mohammed E Fouda. 2025. A comprehensive evalu-1516
ation of large language models on mental illnesses in1517
arabic context. arXiv preprint arXiv:2501.06859.1518

Sourabh Zanwar, Daniel Wiechmann, Yu Qiao, and1519
Elma Kerz. 2023. Smhd-ger: a large-scale bench-1520
mark dataset for automatic mental health detection1521
from social media in german. In Findings of the Asso-1522
ciation for Computational Linguistics: EACL 2023,1523
pages 1526–1541.1524

Daniel Zarate, Michelle Ball, Maria Prokofieva, Vassilis1525
Kostakos, and Vasileios Stavropoulos. 2023. Iden-1526
tifying self-disclosed anxiety on twitter: A natural1527
language processing approach. Psychiatry Research,1528
330:115579.1529

Dongyu Zhang, Nan Shi, Ciyuan Peng, Abdul Aziz,1530
Wenhong Zhao, and Feng Xia. 2021. Mam: a1531
metaphor-based approach for mental illness detec-1532
tion. In International Conference on Computational1533
Science, pages 570–583. Springer.1534

Lei Zhang, Xiaolei Huang, Tianli Liu, Ang Li, Zhenxi-1535
ang Chen, and Tingshao Zhu. 2014. Using linguistic1536
features to estimate suicide probability of chinese1537
microblog users. In International Conference on1538
Human Centered Computing, pages 549–559.1539

Tianlin Zhang, Annika M Schoene, Shaoxiong Ji, and1540
Sophia Ananiadou. 2022. Natural language process-1541
ing applied to mental illness detection: a narrative1542
review. NPJ digital medicine, 5(1):46.1543

Zhenwen Zhang, Jianghong Zhu, Zhihua Guo,1544
Yu Zhang, Zepeng Li, and Bin Hu. 2024. Natural lan-1545
guage processing for depression prediction on sina1546
weibo: Method study and analysis. JMIR Mental1547
Health, 11:e58259.1548

Jianghong Zhu, Zhenwen Zhang, Zhihua Guo, and1549
Zepeng Li. 2024. Sentiment classification of anxiety-1550
related texts in social media via fuzing linguistic and1551
semantic features. IEEE Transactions on Computa-1552
tional Social Systems.1553

17



A Appendix1554

Table 2: List of Non-English available datasets for mental disorders-related tasks using data posted on online
platforms.

Dataset Language Mental disorder Platform Annotation Procedure Label Dataset Size Availab.
Almouzini et al.
(2019)

Arabic depression Twitter Self-disclosure Binary 89 users, 2.7K
posts

UNK

Alghamdi et al.
(2020)

Arabic depression Online
forums

Manual annotation Binary 20K posts UNK

Alabdulkreem
(2021)

Arabic depression Twitter Manual annotation Binary 200 users UNK

Musleh et al. (2022) Arabic depression Twitter CES-D and self-
disclosure

Binary, DSM-5
symptoms

4.5K posts UNK

CairoDep (El-Ramly
et al., 2021)

Arabic depression Twitter,
Reddit,
Online
forums

Keywords, Manual anno-
tation

Binary 2.4K posts FREE

Almars (2022) Arabic depression Twitter Manual annotation Binary 6.1K posts UNK
Maghraby and Ali
(2022)

Arabic depression Twitter PHQ-9 PHQ-9 symp-
toms

1.2K posts FREE

AraDepSu (Hassib
et al., 2022)

Arabic depression, sui-
cide

Twitter Manual annotation Depression,
depression
with suicidal
ideation,
or non-
depression

20K posts UNK

Arabic Dep 10,000
(Helmy et al., 2024)

Arabic depression Twitter Manual annotation Binary 10K posts FREE

Al-Haider et al.
(2024)

Arabic OCD Twitter Manual annotation Binary 8.7K posts UNK

Baghdadi et al.
(2022)

Arabic suicide Twitter Manual annotation Binary 2K posts FREE

Abdulsalam et al.
(2024)

Arabic suicide Twitter Manual annotation Binary 5.7K posts UNK

Al-Musallam and
Al-Abdullatif (2022)

Arabic depression Twitter Manual annotation Binary 6k posts UNK

Uddin et al. (2019) Bengali depression Twitter Manual annotation Binary 1.1K posts FREE
Victor et al. (2020) Bengali depression Facebook,

Twitter
Manual annotation Binary 30K posts UNK

Kabir et al. (2022) Bengali depression Facebook Manual annotation Depression
severity

5K posts FREE

Tasnim et al. (2022) Bengali depression Facebook Manual annotation Binary 7K posts UNK
BanglaSPD Islam
et al. (2022)

Bengali suicide Facebook Manual annotation Binary 1.7K posts UNK

Ghosh et al. (2023) Bengali depression Facebook,
Twitter,
YouTube

Manual annotation Binary 15K posts AUTH

Hoque and Salma
(2023)

Bengali depression Facebook Manual annotation Depression
severity

2.5K posts UNK

BSMDD (Chowd-
hury et al., 2024)

Bengali depression Reddit,
Twitter

Manual annotation Binary 28K posts FREE

von Sperling and
Ladeira (2019)

Brazilian
Portuguese

depression Twitter Self-disclosure Binary 2.9K users UNK

Mann et al. (2020) Brazilian
Portuguese

depression Instagram BDI Binary 221 users UNK

Santos et al. (2020) Brazilian
Portuguese

depression Twitter Self-disclosure Binary 224 users UNK

de Carvalho et al.
(2020)

Brazilian
Portuguese

suicide Twitter Manual annotation Possibly/Strongly
concerning,
Safe to ignore

2.4K posts UNK

SetembroBR (San-
tos et al., 2024)

Brazilian
Portuguese

depression Twitter Self-disclosure Binary 18.8K users FREE

Mendes and Caseli
(2024)

Brazilian
Portuguese

depression symp-
toms

Facebook Manual annotation Depression
symptoms

780 posts UNK

Oliveira et al. (2024) Brazilian
Portuguese

suicide Twitter Manual annotation Binary 3.7K posts FREE

Gao et al. (2019) Cantonese suicide Youtube Manual annotation Binary 5K posts UNK
Zhang et al. (2014) Chinese suicide Sina Weibo SPS SPS score 697 users UNK
Huang et al. (2015) Chinese suicide Sina Weibo Manual annotation Binary 7.3K posts UNK
Cheng et al. (2017) Chinese suicide Sina Weibo Suicide Probability

Scale (SPS), DASS-21
Binary 974 users UNK

Shen et al. (2018) Chinese depression Sina Weibo Self-disclosure Binary 1.1K users UNK
Wu et al. (2018) Chinese depression Facebook CES-D Binary 1.4K users UNK
Cao et al. (2019) Chinese suicide Sina Weibo Manual checking of

self-report and/or
appartenence to a
suicide-related commu-
nity

Binary 7K users DUA

Wang et al. (2019) Chinese depression Sina Weibo Manual annotation Depression
severity

13.9K users UNK

Peng et al. (2019) Chinese depression Sina Weibo Manual annotation Binary 387 users UNK
Huang et al. (2019) Chinese suicide Sina Weibo Manual annotation Binary 18.5K posts UNK
Li et al. (2020) Chinese depression Sina Weibo Self-disclosure Binary 1.8K users FREE
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Dataset Language Mental disorder Platform Annotation Procedure Label Dataset Size Availab.
WU3D (Wang et al.,
2020)

Chinese depression Sina Weibo Depression-related key-
words

Binary 32K users FREE

Yao et al. (2020) Chinese depression Sina Weibo Manual, automatic anno-
tation

Binary 2.7K users UNK

Yang et al. (2021) Chinese depression Sina Weibo Manual annotation Depression
severity

6.1K posts AUTH

Chiu et al. (2021) Chinese, En-
glish

depression Instagram Depression-related key-
words

Binary 520 users UNK

Sun et al. (2022) Chinese suicide, depres-
sion

Sina Weibo BDI, SDS, Manual anno-
tation

Binary / Pos-
sibly/Strongly
concerning,
Safe to ignore

203 users,
1.2K posts

UNK

Cai et al. (2023) Chinese depression Sina Weibo Self-disclosure and man-
ual annotation

Binary 23K users FREE

Li et al. (2023) Chinese depression Sina Weibo Self-disclosure, manual
annotation

Binary 4.8K users UNK

Guo et al. (2023) Chinese depression Sina Weibo Manual annotation Binary 3.1K users UNK
Wu et al. (2023) Chinese suicide Dcard and

PTT
Manual annotation Risk levels 2K posts UNK

Lyu et al. (2023) Chinese depression Sina Weibo CES-D Binary 789 users AUTH
Yu et al. (2023) Chinese anxiety Sina Weibo Self-Rating Anxiety

Scale
SAS score 1K users N/A

Zhu et al. (2024) Chinese anxiety Sina Weibo Manual annotation Binary 6K posts UNK
Wang et al. (2024) Chinese depression Sina Weibo Manual annotation Binary 14.8K users AUTH
Yao (2024) Chinese depression Sina Weibo Manual annotation Binary 200 users AUTH
Zhang et al. (2024) Chinese depression Sina Weibo Manual annotation Binary 1.6K users UNK
Desmet and Hoste
(2014)

Dutch suicide Online
forums

Manual annotation Fine-grained la-
bels

1.3K posts UNK

Desmet and Hoste
(2018)

Dutch suicide Online
forums

Manual annotation Fine-grained la-
bels

10K posts UNK

Abdelkadir et al.
(2024) Ali et al.
(2024)

English,
but from
different
populations

depression Twitter Self-disclosure, Manual
annotation

Binary 531 users UNK

Tumaliuan et al.
(2024)

Filipino, En-
glish

depression Twitter PHQ-9 Binary 72 users AUTH

Astoveza et al.
(2018)

Filipino,
Taglish

suicide Twitter Manual annotation Binary 2.1K posts UNK

Cohrdes et al. (2021) German depression Twitter Automatic annotation
for PHQ-8 symptoms

Binary 88K posts AUTH

SMHD-GER (Zan-
war et al., 2023)

German depression,
ADHD, anx-
iety, bipolar,
OCD, PTSD,
schizophrenia

Reddit Manual annotation Labels for mul-
tiple disorders

28K posts DUA

Baskal et al. (2022) German,
Russian,
Turkish,
English

eating disorders Reddit,
Tumblr

Manual annotation Binary 3K posts AUTH

Tabak and Purver
(2020)

German,
French, Ital-
ian, Spanish,
English

depression Twitter Self-disclosure Binary 5K users UNK

Hacohen-Kerner
et al. (2022)

Hebrew anorexia Online
forums

Manual annotation Binary 200 posts FREE

Agarwal and Dhin-
gra (2021)

Code-Mixed
Hindi-
English

suicide Reddit Subreddit membership Binary 6.4K posts FREE

Oyong et al. (2018) Indonesian depression Twitter Manual annotation Binary 55 users UNK
Yoshua and Maha-
rani (2024)

Indonesian depression Twitter DASS-42 Binary 184 users UNK

Tsugawa et al.
(2015)

Japanese depression Twitter CES-D, BDI Binary 209 users UNK

Hiraga (2017) Japanese depression Online
blogs

Self-disclosure Binary 101 users UNK

Niimi (2021) Japanese depression TOBYO Blog theme Binary 901 users UNK
Wang et al. (2023) Japanese suicide Twitter Manual annotation Binary 30K posts N/A
Lee et al. (2020) Korean suicide Naver Cafe Membership in a forum Binary 31K posts UNK
Park et al. (2020) Korean suicide Online

forums
Manual annotation Risk levels 2.7K posts AUTH

Kim et al. (2022a) Korean suicide Twitter Manual annotation Binary 20K posts,
414 users

UNK

Kim et al. (2022b) Korean depression Online
forums

PHQ-9, Manual annota-
tion

PHQ-9 score,
PHQ-9 symp-
toms

60 users, 28K
posts

UNK

Jung et al. (2023) Korean suicide Twitter Manual annotation Binary 20k posts UNK
Cha et al. (2022) Korean,

Japanese,
English

depression Twitter, Ev-
erytime

Lexicon-based auto-
matic annotation

Binary 26M posts,
22K posts

AUTH

Stamou et al. (2024) Modern
Greek

depression Twitter Self-disclosure Binary 78 users AUTH

Uddin (2022) Norwegian depression Online
forums

Manual annotation Binary 21.8K posts UNK

Uddin et al. (2022) Norwegian depression Online
forums

Manual annotation Binary 30K posts UNK

Wołk et al. (2021) Polish depression Facebook,
Reddit

Self-disclosure, clinical
interview

Binary 262 users UNK
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Dataset Language Mental disorder Platform Annotation Procedure Label Dataset Size Availab.
Rehmani et al.
(2024)

Roman Urdu depression Facebook Manual annotation Depression
severity

3K posts AUTH

Mohmand et al.
(2024)

Roman Urdu depression Twitter Keywords-based annota-
tions + Expert review

Depression
severity

25K posts FREE

Stankevich et al.
(2019)

Russian depression VKontakte BDI BDI score 531 users UNK

Narynov et al.
(2020)

Russian depression VKontakte Manual annotation Binary 34K posts FREE

Stankevich et al.
(2020)

Russian depression VKontakte BDI BDI score 1.3K users UNK

Ignatiev et al. (2022) Russian depression VKontakte BDI Binary 619 users DUA
Rathnayake and
Arachchige (2021)

Sinhala depression Twitter,
Facebook

Manual annotation Binary 1K posts UNK

EmoMent (Atapattu
et al., 2022)

Sinhala, En-
glish

mental illness Facebook Manual annotation mental ill-
ness, sadness,
suicidal, anx-
iety/stress,
psychoso-
matic, other,
irrelevant

2.8K posts AUTH

Herath and Wi-
jayasiriwardhane
(2024)

Sinhala suicide Facebook Manual annotation Binary 300 posts UNK

Leis et al. (2019) Spanish depression Twitter Self-disclosure, manual
annotation

Binary 540 users, 1K
posts

FREE

SAD López-Úbeda
et al. (2019)

Spanish anorexia Twitter Hashtags Binary 5.7K posts FREE

Valeriano et al.
(2020)

Spanish suicide Twitter Manual annotation Binary 2K posts FREE

Ramírez-Cifuentes
et al. (2020)

Spanish suicide Twitter Manual annotation Binary 252 users N/A

Ramírez-Cifuentes
et al. (2021)

Spanish anorexia Twitter Manual annotation Anorexia,
control, under
treatment,
recovered,
doubtful

645 users N/A

Villa-Pérez et al.
(2023)

Spanish, En-
glish

depression,
ADHD, anxiety,
ASD, bipolar,
eating disorders,
OCD, PTSD,
schizophrenia

Twitter Self-disclosure Labels for mul-
tiple disorders

6K users DUA

MentalRiskES
Romero et al. (2024)

Spanish depression, anxi-
ety, suicide, eat-
ing disorders

Telegram Manual annotation Binary + suffer
+ in favour (sf),
suffer + against
(sa), suffer +
other (so) for
Depression

1.2K users AUTH

Cremades et al.
(2017)

Spanish, En-
glish

suicide Facebook,
Twitter,
Blogspot,
Reddit,
Pinterest

Manual annotation Binary 97 posts FREE

Coello-Guilarte et al.
(2019)

Spanish, En-
glish

depression Twitter Self-disclosure Binary 316 users FREE

Katchapakirin et al.
(2018)

Thai depression Facebook TMHQ Binary 35 users UNK

Hemtanon and
Kittiphattanabawon
(2019)

Thai depression Facebook Manual annotation Binary 1.5K posts UNK

Kumnunt and Sornil
(2020)

Thai depression Pantip Hashtags Binary 31K posts UNK

Hemtanon et al.
(2020)

Thai depression Facebook PHQ-9 Binary 160 users UNK

Wongaptikaseree
et al. (2020)

Thai depression Facebook TMHQ Binary 600 users UNK

Hämäläinen et al.
(2021)

Thai depression Online
blogs

Manual annotation Binary 900 posts FREE

Mahasiriakalayot
et al. (2022)

Thai depression Twitter Manual annotation Depression
symptoms

3.1K posts UNK

Boonyarat et al.
(2024)

Thai suicide Twitter Manual annotation Binary + 6
emotions

2.4K posts FREE

Benjachairat et al.
(2024)

Thai suicide Twitter Manual annotation C-SSRS Labels 5.1K posts AUTH
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