A Survey on Multilingual Mental Disorders Detection
from Social Media Data

Anonymous ACL submission

Abstract

The increasing prevalence of mental health dis-
orders globally highlights the urgent need for
effective digital screening methods that can be
used in multilingual contexts. Most existing
studies, however, focus on English data, over-
looking critical mental health signals that may
be present in non-English texts. To address this
important gap, we present the first survey on the
detection of mental health disorders using mul-
tilingual social media data. We investigate the
cultural nuances that influence online language
patterns and self-disclosure behaviors, and how
these factors can impact the performance of
NLP tools. Additionally, we provide a compre-
hensive list of multilingual data collections that
can be used for developing NLP models for
mental health screening. Our findings can in-
form the design of effective multilingual mental
health screening tools that can meet the needs
of diverse populations, ultimately improving
mental health outcomes on a global scale.

1 Introduction

It is estimated that nearly half of the population
will develop at least one mental disorder by the
age of 75 (McGrath et al., 2023). Unfortunately,
many people do not seek psychiatric help for men-
tal health issues due to stigma, which manifests
itself differently between cultures and is influenced
by different cultural norms, religious beliefs and
social attitudes (Ahad et al., 2023). Due to the
stigma associated with mental health and the lim-
ited access to professional care around the world,
the World Health Organization (WHO) advocates
for improved delivery of mental health services, in-
cluding digital technologies to deliver remote care. '
There is a pressing need for the integration of re-
mote screening tools and the delivery of culturally

"https://www.who.int/news/item/17-06-2022-who-
highlights-urgent-need-to-transform-mental-health-and-
mental-health-care

adapted digital interventions (Bond et al., 2023).
Remote screening relies on processing language
patterns associated with mental disorders, which
can be identified from short essay writing (Rude
et al., 2004), text messages (Nobles et al., 2018),
or social media (Eichstaedt et al., 2018).

The first well-known study on the detection of
mental disorders using social media was conducted
by De Choudhury et al. (2013). Multiple other
studies have shown that the language used on Face-
book can predict future depression diagnoses found
in medical records, indicating that social media
data could serve as a valuable complement to de-
pression screening (Eichstaedt et al., 2018). The
current methods used for social media screening
focus mainly on English data (Skaik and Inkpen,
2020; Harrigian et al., 2021). Additionally, there
have been multiple workshops and shared tasks
addressing NLP applications to mental health pri-
marily on English data such as eRisk (Parapar et al.,
2024), CLPsych (Chim et al., 2024) and LT-EDI
(Kayalvizhi et al., 2023).

There are important limitations in current
NLP models when processing multilingual men-
tal health-related data. Various studies analyzing
English data from social media have shown that
there are cultural differences in online language
markers of mental disorders (De Choudhury et al.,
2017; Loveys et al., 2018; Aguirre and Dredze,
2021; Rai et al., 2024) and that the NLP models
used for detection do not generalize on data from
non-Western cultures (Aguirre et al., 2021; Ab-
delkadir et al., 2024). Even one of the best predic-
tors of depression in language, the use of the first
person pronoun "I" (Rude et al., 2004), for exam-
ple, has different degrees of association with the
severity of depression across different demographic
groups (Rai et al., 2024). This suggests that mark-
ers of mental disorders in social media language are
not universal. One reason for this variation is that
self-disclosure rates differ between cultures; col-
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lectivist cultures tend to have lower self-disclosure
rates than individualist cultures in online settings
(Tokunaga, 2009). Furthermore, non-native En-
glish speakers tend to use their native language
for more intimate self-disclosures on social media,
with higher rates of negative disclosure compared
to posts in English (Tang et al., 2011). This could
have substantial implications for English-based so-
cial media screening tools, as they can overlook
important signals of mental health disorders that
are present in posts that are not written in English.

Recently, there have been efforts to develop de-
tection models that focus on languages other than
English, such as Portuguese (Santos et al., 2024),
German (Zanwar et al., 2023), Arabic (Almouzini
et al., 2019), and Chinese (Zhu et al., 2024). There
have also been shared tasks specifically designed
to address these issues, such as MentalRiskES
(Marmol-Romero et al., 2023), which focuses on
the early detection of depression, suicide, and eat-
ing disorders in Spanish. To further contribute to
these important efforts, we present the first survey
on mental disorders detection from multilingual
social media data. This survey aims to promote
the development of multilingual NLP models that
take into account cross-cultural and cross-language
differences in online language.

This paper makes the following contributions:

1. We investigate cross-cultural and cross-
language differences in the manifestations of
mental disorders in social media.

2. We provide a comprehensive list of multilin-
gual mental health datasets that capture lin-
guistic diversity and can be used for develop-
ing multilingual NLP models.”

3. We identify and describe several research gaps
and future directions in the detection of multi-
lingual mental disorders using online data.

2 Prior Surveys

In this section, we analyze past surveys on the anal-
ysis of mental disorders from social media data.
Calvo et al. (2017) is considered one of the first
comprehensive surveys, presenting the datasets and
NLP techniques used for mental health status detec-
tion and intervention. The survey explores research
on various mental health conditions and states, in-
cluding depression, mood disorders, psychological

’We make the list available online at
/anonymized_address/, and we will continuously update it.

distress, and suicidal ideation, specifically in non-
clinical texts such as user-generated content from
social media and online forums. Similarly, recent
surveys from Skaik and Inkpen (2020); Harrigian
et al. (2021); Rissola et al. (2021); Zhang et al.
(2022); Garg (2023); Bucur et al. (2025) present the
datasets, features, and models used to detect mental
disorders from online content, focusing mainly on
English language data.

In addition to these surveys, Chancellor and
De Choudhury (2020) provides a critical review of
the study design and methods used to predict men-
tal health status, along with recommendations to
improve research in this field. Dhelim et al. (2023)
focus on studies that were published during the
COVID-19 pandemic. It focuses on general men-
tal well-being, loneliness, anxiety, stress, PTSD,
depression, suicide, and other mental disorders.

Our paper fills an important gap in the literature
by offering the first comprehensive survey of re-
search on detecting mental disorders in languages
other than English. The most related survey to
ours is the one by Garg (2024) which focuses ex-
clusively on low-resource languages. Our survey,
however, has a broader scope as it discusses work
on many languages irrespective of their resource-
fulness.

3 Mental Disorders Detection Tasks
Overview

To identify datasets and approaches for model-
ing the manifestations of mental disorders in lan-
guages other than English, we conducted a sys-
tematic search on major publication databases, in-
cluding ACL Anthology, ACM Digital Library,
IEEE Xplore, Springer Nature Link, ScienceDirect,
and Google Scholar. In this section, we discuss
the most common tasks related to detecting men-
tal health disorders that we identified through our
search. When available, we include references to
studies that focus on languages other than English.

The detection of mental health issues through so-
cial media is typically approached as a supervised
classification task (Figure 1). The most common
focus is on the binary classification of mental dis-
orders. In this process, a collection of social media
posts is used to train an NLP model, which then
predicts a binary label that indicates the presence
or absence of a mental disorder. Binary classifi-
cation can be performed at the post-level, which
is often used to predict conditions such as suici-
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Figure 1: Overview of tasks related to detecting mental health problems from social media.

dal ideation (Huang et al., 2019) and depression
(Uddin et al., 2019). However, relying solely on
a single post for decision making can lead to in-
accurate predictions. Therefore, predictions can
be made at the user level to detect conditions like
depression (Hiraga, 2017), anxiety (Zarate et al.,
2023), bipolar disorder (Sekuli¢ et al., 2018), etc.
Binary classification at the user level can also be
modeled as an early risk prediction task, which
aims to accurately label users as soon as possible,
allowing the model to make a prediction or wait for
more data before deciding (Losada and Crestani,
2016; Parapar et al., 2021).

Another important task is severity prediction,
which can be modeled either as an ordinal regres-
sion / classification task or as a multiclass classi-
fication task. It is used primarily to predict the
severity of depression (Naseem et al., 2022; Kabir
et al., 2023; Sampath and Durairaj, 2022) or the
risk of suicide attempts (Benjachairat et al., 2024).
Social media posts can be modeled longitudinally
to detect moments of change in the mental health
status of individuals. These shifts or escalations in
mood can be used as a warning signal for potential
suicidal behavior (Tsakalidis et al., 2022b).

There are tasks designed to improve the explain-
ability of the field, such as symptom prediction
for mental disorders (Liu et al., 2023; Yadav et al.,
2020). Another step toward improving the explain-
ability of model predictions is highlighting ev-
idence for mental disorders (Chim et al., 2024;
Varadarajan et al., 2024). Mental health indicators
from the social media timeline of an individual can
be used to fill in validated questionnaires, with
the goal of estimating symptoms of mental disor-
ders that are usually assessed through survey-based
methods such as the Beck’s Depression Inventory-

II (BDI-IT)? for depression assessment (Parapar
et al., 2021) or the Eating Disorder Examination
Questionnaire (EDE-Q)* for eating disorders (Para-
par et al., 2024).

Finally, mental health monitoring systems can
analyze social media posts to identify various men-
tal health issues. The aggregated results can be
used to estimate the prevalence of mental disor-
ders within a population. This approach was used
during the COVID-19 pandemic to assess mental
health burden with results comparable to traditional
survey-based methods (Cohrdes et al., 2021).

4 Shared Tasks

Shared tasks have encouraged interdisciplinary col-
laborations between psychologists and computer
scientists, leading to the development of systems
that help detect mental disorders through the analy-
sis of social media. Additionally, these shared tasks
have provided benchmark data resources that the
research community continues to use, even beyond
the official competitions.

The Early Detection of Mental Disorders Risk in
Spanish (MentalRiskES) is the only shared task
focused on detecting mental disorders in languages
other than English. MentalRiskES includes tasks
such as the detection of depression, anxiety, eating
disorders, and suicidal risk in the Spanish language
(Marmol-Romero et al., 2023).

Other shared tasks are focused only on social
media data in English. The Early Risk Prediction
on the Internet Lab (eRisk) is an annual compe-
tition focusing mainly on the early detection of

3https://naviauxlab.ucsd.edu/wp-
content/uploads/2020/09/BDI21.pdf

*https://www.corc.uk.net/media/1273/ede-
q_quesionnaire.pdf
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mental disorders, including depression, self-harm,
pathological gambling, and eating disorders (Para-
par et al., 2024). The Workshop on Computational
Linguistics and Clinical Psychology (CLPsych) in-
cludes various tasks, such as detecting depression
and PTSD (Coppersmith et al., 2015), labeling cri-
sis posts (Milne et al., 2016), identifying moments
of change (Tsakalidis et al., 2022a), and highlight-
ing evidence for suicide risk (Chim et al., 2024).
The Workshop on Language Technology for Equal-
ity, Diversity, and Inclusion (LT-EDI) organized
tasks aimed at predicting the severity of depression
(Kayalvizhi et al., 2023).

5 Datasets

In this section, we present the data collections we
found through the systematic search presented in
Section 3. Figure 2 presents an overview of these
languages along with the ranking of the publica-
tions in which they appeared. The rankings for
conferences are categorized as A*, A, B, and C,
following the CORE Rankings Portal.’ For jour-
nals, the rankings are classified as Q1, Q2, Q3, and
Q4, based on the Journal Citation Reports®. There
are also datasets published in unranked confer-
ences or journals. The languages most frequently
represented in the data collections are three high-
resource languages: Chinese, Arabic, and Spanish.
Although approximately half of the datasets were
published in unranked venues, leading to low visi-
bility for the research, the other half were published
in high-ranking journals and conferences.

5.1 Data Sources

Most of the datasets in English are sourced from
Twitter’ and Reddit (Harrigian et al., 2021). Most
non-English datasets in this section were also pri-
marily collected from Twitter. However, Reddit
was not as widely used for these data collections
in non-English contexts. The data collected come
from various populations and regions, and some of
the sources are platforms that are exclusive to spe-
cific countries, such as Sina Weibo® used in China,
VKontakte? used in Russia, Pamtip10 in Thailand,
or Everytime!! in Korea.

Shttps://www.core.edu.au/conference-portal

®https://jcr.clarivate.com/

7All the datasets were collected before Twitter changed its
name to X, so we refer to it as “Twitter’ in this paper.

8https://weibo.com
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Figure 2: Overview of the languages in the datasets,
their language families, and the ranking of their publi-
cation venues.

5.2 Languages

Table 1 presents all the datasets with multilingual
data. A more detailed version of the table can
be found in Appendix A, Table 2. For classify-
ing resource types, we used the framework pro-
posed by Joshi et al. (2020). Figure 2 illustrates
that most of the languages used in the data col-
lections belong to some of the largest language
families by number of speakers, specifically the
Indo-European, Sino-Tibetan and Afro-Asiatic lan-
guage families. The languages most frequently rep-
resented in the data collections are high-resource
languages: Chinese appears in 25 data collections,
Arabic is found in 11 datasets, and Spanish is in-
cluded in 10 datasets. Even if most of the languages
covered in the data are from high-, mid to high- and
mid-resourced languages, we also have some lan-
guages with fewer resources, such as Cantonese
and Norwegian. The Cantonese data collection
was gathered by Gao et al. (2019) from Youtube
comments and annotated for the risk of suicide.
The Norwegian datasets related to depression were
collected from a public online forum in Norway
(Uddin et al., 2022; Uddin, 2022). Sinhala lan-
guage, which was classified as rare by Joshi et al.
(2020) is represented in three research papers. One
of the papers contains Facebook data annotated for
suicide ideation (Herath and Wijayasiriwardhane,
2024), while another contains depression-related
data from Twitter and Facebook (Rathnayake and
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Language Resource Datasets

Arabic High Almouzini et al. (2019); Alghamdi et al. (2020); Alabdulkreem (2021); Musleh et al. (2022), CairoDep (El-
Ramly et al., 2021), Almars (2022); Maghraby and Ali (2022); Baghdadi et al. (2022), Arabic Dep 10,000
(Helmy et al., 2024), Al-Haider et al. (2024); Abdulsalam et al. (2024); Al-Musallam and Al-Abdullatif (2022)

Chinese High Zhang et al. (2014); Huang et al. (2015); Cheng et al. (2017); Shen et al. (2018); Wu et al. (2018); Cao et al.
(2019); Wang et al. (2019); Peng et al. (2019); Huang et al. (2019); Li et al. (2020), WU3D (Wang et al., 2020),
Yao et al. (2020); Yang et al. (2021); Chiu et al. (2021); Sun et al. (2022); Cai et al. (2023); Li et al. (2023);
Guo et al. (2023); Wu et al. (2023); Lyu et al. (2023); Yu et al. (2023); Zhu et al. (2024)

French High Tabak and Purver (2020)

German High Cohrdes et al. (2021); Baskal et al. (2022); Tabak and Purver (2020), SMHD-GER (Zanwar et al., 2023)

Japanese High Tsugawa et al. (2015); Hiraga (2017); Niimi (2021); Cha et al. (2022); Wang et al. (2023)

Spanish High Leis et al. (2019), SAD (Lépez—Ubeda et al., 2019), Valeriano et al. (2020); Ramirez-Cifuentes et al. (2020,
2021); Villa-Pérez et al. (2023), MentalRiskES (Romero et al., 2024), Cremades et al. (2017); Coello-Guilarte
et al. (2019)

Brazilian Por- | Mid to High von Sperling and Ladeira (2019); Mann et al. (2020); Santos et al. (2020); de Carvalho et al. (2020), SetembroBR

tuguese (Santos et al., 2024), Mendes and Caseli (2024); Oliveira et al. (2024)

Dutch Mid to High Desmet and Hoste (2014, 2018)

Code-Mixed Mid to High Agarwal and Dhingra (2021)

Hindi-English

Italian Mid to High Tabak and Purver (2020)

Korean Mid to High Lee et al. (2020); Park et al. (2020); Kim et al. (2022b,a); Cha et al. (2022)

Polish Mid to High Wolk et al. (2021)

Russian Mid to High Stankevich et al. (2019); Baskal et al. (2022); Narynov et al. (2020); Stankevich et al. (2020); Ignatiev et al.
(2022)

Turkish Mid to High Baskal et al. (2022)

Bengali Mid Uddin et al. (2019); Victor et al. (2020); Kabir et al. (2022); Tasnim et al. (2022), BanglaSPD (Islam et al.,
2022), Ghosh et al. (2023); Hoque and Salma (2023), BSMDD (Chowdhury et al., 2024)

Indonesian Mid Oyong et al. (2018); Yoshua and Maharani (2024)

Filipino Mid Tumaliuan et al. (2024); Astoveza et al. (2018)

Greek Mid Stamou et al. (2024)

Hebrew Mid Hacohen-Kerner et al. (2022)

Roman Urdu Mid Rehmani et al. (2024); Mohmand et al. (2024)

Thai Mid Katchapakirin et al. (2018); Hemtanon and Kittiphattanabawon (2019); Kumnunt and Sornil (2020); Hemtanon
et al. (2020); Wongaptikaseree et al. (2020); Himél4inen et al. (2021); Mahasiriakalayot et al. (2022); Boonyarat
et al. (2024); Benjachairat et al. (2024)

Cantonese Low Gao et al. (2019)

Norwegian Low Uddin et al. (2022); Uddin (2022)

Sinhala Rare Rathnayake and Arachchige (2021), EmoMent (Atapattu et al., 2022), Herath and Wijayasiriwardhane (2024)

Table 1: Available non-English datasets for detecting mental disorders.

Arachchige, 2021). The third dataset contains data
from Facebook, with more fine-grained labeled
data on the presence of mental illness, anxiety, sui-
cidal ideation, emotions, psychosomatic symptoms,
and other manifestations (Atapattu et al., 2022).

5.3 Mental Disorders

Figure 3 shows the distribution of mental disor-
ders in different languages within the datasets. De-
pression is the most common mental disorder and
is well-represented in the data. The languages
that lack data on depression are Cantonese, Dutch,
Hebrew, Hindi, and Turkish. Suicide is another
mental disorder that frequently appears in collec-
tions. In contrast, the mental health problems
that are least represented include eating disorders,
obsessive-compulsive disorder (OCD), attention
deficit / hyperactivity disorder (ADHD), autism
spectrum disorder (ASD), anxiety, bipolar disorder,
and schizophrenia.

5.4 Annotation Procedure

Most data collections were manually annotated
(Figure 3). Manual annotation was carried out by
mental health experts or psychologists (Narynov
et al., 2020; de Oliveira et al., 2022), graduate stu-
dents who are native speakers of the language of
interest (Boonyarat et al., 2024; Uddin et al., 2019),
or nonexpert individuals. However, some datasets
do not specify who the annotators were or what
guidelines they followed during the annotation pro-
cess. Most datasets that collect user-level data from
online platforms rely on the self-disclosure of men-
tal health statuses. For example, they rely on ex-
plicit mentions of diagnoses (e.g. “I was diagnosed
with depression") (Tabak and Purver, 2020; Villa-
Pérez et al., 2023). The third most common anno-
tation method involves asking social media users
to complete validated questionnaires to diagnose
mental disorders. The most frequently used survey-
based methods include the CES-D (Tsugawa et al.,
2015; Lyu et al., 2023), BDI-II (Sun et al., 2022;
Stankevich et al., 2019; Ignatiev et al., 2022) or
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Figure 3: Overview of the mental disorders addressed
in each dataset, along with the annotation procedures.

tools specifically designed for certain populations,
such as the TMHQ'? (Katchapakirin et al., 2018).
Another reliable annotation approach is conducting
clinical interviews to assess mental health prob-
lems (Wotk et al., 2021). Less common and nois-
ier annotation methods include identifying posts
based on the presence of specific keywords (Lépez-
Ubeda et al., 2019), by forum membership (Agar-
wal and Dhingra, 2021), or automatic annotation
through another model trained on mental health
data (Cohrdes et al., 2021).

5.5 Availability of Data Collections

Of the 108 datasets listed in Table 1, only 23 are
publicly available for download without any re-
strictions. These datasets focus on the detection of
depression, suicide, and anorexia and are in vari-
ous languages, including Arabic, Bengali, Brazil-
ian Portuguese, Chinese, Hebrew, Hindi, Spanish,
Russian, Roman Urdu, and Thai. For 15 of the
datasets, access can be obtained by contacting the
authors of the respective research papers, while
four datasets require users to complete a data agree-
ment to gain access. Additionally, four datasets are
unavailable due to the sensitive nature of the data.
For the remaining datasets, the research papers do
not provide any information on data availability.
Details about the availability of data collections
can be found in Appendix A, Table 2.

'>Thai Mental Health Questionnaire

6 Mental Disorders Detection Approaches

In this section, we present the NLP methods pro-
posed for the detection of mental disorders in the
datasets in Section 5. Most approaches are mono-
lingual and specifically target only one non-English
language.

Classical approaches Most approaches use
Bag-of-Words, TF-IDF, or Word2 Vec for text repre-
sentation, which are then used as input for classical
machine learning models (Almouzini et al., 2019;
Alghamdi et al., 2020; Helmy et al., 2024) or deep
learning models (Mann et al., 2020; Tasnim et al.,
2022; Ghosh et al., 2023).

Pre-trained transformer-based models ~ While
multilingual models like XLLM-Roberta and Multi-
lingual BERT demonstrate strong performance in
downstream tasks, only two studies focus exclu-
sively on these models (Kabir et al., 2022; Hoque
and Salma, 2023). In contrast, twelve of the pa-
pers in Section 5 rely on pre-trained monolingual
models specific to the target language, such as Chi-
nese BERT (Yao, 2024), AraBERT (Abdulsalam
et al., 2024), German BERT (Zanwar et al., 2023),
Bangla BERT (Chowdhury et al., 2024) and oth-
ers. In addition, seven research papers evaluate
both language-adapted and multilingual models
(Hacohen-Kerner et al., 2022; Oliveira et al., 2024).

Translation Zahran et al. (2025) presented
a comprehensive evaluation of LLMs on Arabic
data related to depression, suicidal ideation, anxi-
ety, and others. The authors found that LLMs per-
formed better on original Arabic datasets compared
to data that had been translated into English. Other
works also rely on the detection using data trans-
lated from the target language to English (Vajrobol
et al., 2023). However, Schoene et al. (2025) has
shown that automatically translating suicide dic-
tionaries from English to low-resource languages
often leads to spelling errors and fails to capture
the cultural nuances of the speakers of the target
language. When developing mental health models
in other languages, some studies rely on translation
from English to the target language, such as Greek
(Skianis et al., 2024) or various Indian languages
(Rajderkar and Bhat, 2024).

Multilingual approaches Methods developed
for multiple languages simultaneously utilize cross-
lingual embeddings and make use of information
from languages with more mental health-related



resources, such as English, to make predictions on
Spanish data (Coello-Guilarte et al., 2019). Lee
et al. (2020) developed a cross-lingual model for
suicidal ideation by translating data from Korean to
English and Chinese. They used existing dictionar-
ies related to suicidal ideation in these languages
to inform predictions on the Korean language.

7 Cross-cultural and Cross-language
Differences in Mental Health
Expression

Culture influences the sources of distress, how it
is expressed, how it is interpreted, the process of
seeking help, and the responses of others (Kirmayer
et al., 2001). In addition, the way people perceive
themselves influences their mental health. In West-
ern cultures, there is a strong emphasis on personal
narratives, and people tend to express their emo-
tions more openly, a trend that is reflected in online
posts (Tokunaga, 2009). In contrast, in Asian soci-
eties, individuals often internalize their emotional
struggles or express them indirectly, influenced by
their collectivist values (Broczek et al., 2024). Al-
though negative self-thoughts are a common char-
acteristic of depression, in East Asian contexts,
self-criticism is often viewed as a sign of healthy
functioning (Gotlib and Hammen, 2008).

Symptoms of mental disorders Cultural differ-
ences in the interpretation of mental health symp-
toms can lead individuals of certain backgrounds
to minimize the psychological effects of mental
distress. Instead, they may report more socially ac-
ceptable somatic symptoms (Kirmayer et al., 2001).
Somatic symptoms are common across various cul-
tures, but the ways in which they are reported or
understood can differ. In addition, there are cul-
turally specific idioms of distress associated with
mental disorders. One such example is the term
“nervios” (translated as “nerves” in English), which
is a syndrome of distress primarily studied in Latin
American communities. This syndrome manifests
with psychological and somatic symptoms and has
a high comorbidity with anxiety and mood disor-
ders (De Snyder et al., 2000). The DSM-V (Ameri-
can Psychiatric Association, 2013), which is used
for the assessment of mental disorders, includes
cultural concepts of distress to help clinicians rec-
ognize how individuals from various cultures ex-
press psychological issues.

Mental health expressions in online language
Online expression varies between cultures and has
been extensively studied among English-speaking
individuals from different regions (De Choudhury
etal., 2017; Loveys et al., 2018; Pendse et al., 2019;
Aguirre and Dredze, 2021; Rai et al., 2024). When
analyzing data from a peer-support mental health
community, Loveys et al. (2018) found that mani-
festations of negative emotions differ between de-
mographic groups. Moreover, Pendse et al. (2019)
compared the language used by a majority sample
(including posts from users in the US, UK, and
Canada) to samples from users in India, Malaysia,
and the Philippines. The study revealed that the
first group used more clinical language when ex-
pressing their mental distress.

Variation of features across cultures The ten-
dency for self-focused attention, often referred to as
“I”-language, is considered one of the strongest pre-
dictors of depression in language (Mihalcea et al.,
2024). However, this association has not been ob-
served in non-Western individuals (Rai et al., 2024),
nor in speakers of Chinese (Lyu et al., 2023) or Ro-
manian (Trifu et al., 2024). In addition to the lower
levels of self-disclosure on social media among
non-Western users, it is essential to consider the
morphological differences between languages. Al-
though in English the pronoun “I” serves as a signif-
icant indicator of depression, its usage in other lan-
guages requires special consideration of linguistic
characteristics. For instance, English requires the
explicit inclusion of nouns or pronouns as subjects
in sentences. In contrast, some languages, such
as Chinese and Romanian, are pro-drop languages,
allowing the subject of the action to be omitted
(Koeneman and Zeijlstra, 2019). This feature may
lead to a reduced frequency of the personal pronoun
“I” in these languages.

Mental health metaphors Indicators of mental
disorders are often displayed through metaphors.
Depression is often described as weight, pres-
sure, or darkness, and is often portrayed using
containment metaphors (Charteris-Black, 2012).
Metaphors are often used by individuals to articu-
late their experience and psychologists in the thera-
peutic process (Mould et al., 2010). Mental illness
metaphors have been extensively studied in English
(Charteris-Black, 2012; Lazard et al., 2016) and
have been used to predict mental states (Shi et al.,
2021; Zhang et al., 2021). With the exception of re-
search in Spanish (Coll-Florit and Climent, 2023),



there is a notable lack of resources to understand
metaphors of mental illness in other languages.

It is essential to consider the various cultural
and multilingual differences when developing au-
tomated methods to predict mental disorders based
on language. These differences may explain why
many studies have shown that models designed
to predict mental illnesses often fail to generalize
(Aguirre et al., 2021; Aguirre and Dredze, 2021;
Abdelkadir et al., 2024).

8 Research Gaps

In this section, we highlight several research gaps
that we hope will be explored in future studies.

Lack of mental health-related data for low-
resource languages As presented in Section 5,
most data collection in non-English languages are
often from mid- and high-resourced languages,
with the exception of Cantonese, Norwegian, and
Sinhala. Currently, many languages remain under-
represented, including high-resourced languages
like French and mid-to-high resource languages
such as Finnish, Croatian, and Vietnamese. More-
over, there is a lack of data collections for low-
resource languages, which may hinder the develop-
ment of online screening tools for individuals who
speak these languages. Although few studies have
used automatic translation for building datasets in
languages other than English, it cannot accurately
capture the cultural nuances of native speakers of
the target language (Schoene et al., 2025).

Cross-lingual expressions in underrepresented
mental disorders Although there are mental
health-related datasets available in non-English
data, most of them primarily focus on depression
and suicide. Other mental disorders, such as anxi-
ety, OCD, bipolar disorder, and PTSD, are under-
represented. To gain a better understanding of how
these disorders manifest in the online language, the
research community needs more linguistically di-
verse collections that encompass a wider range of
mental disorders. This approach would not only
facilitate a broader exploration of mental health
expressions in various languages, but also help de-
velop more inclusive and effective online mental
health screening tools worldwide.

Multilingual approaches As highlighted in Sec-
tion 6, most NLP approaches have focused on pro-
cessing data in a single target language, with multi-
lingual approaches addressing multiple languages

being almost nonexistent. Most existing NLP mod-
els developed for mental disorders detection do
not support multiple languages effectively, which
limits their applicability in multicultural and mul-
tilingual settings where mental health issues may
manifest differently.

Annotation transparency in mental health data
collections Although most of the datasets pre-
sented in this paper rely on manual annotation for
labeling the data related to mental disorders, it is
often unclear who did the annotations. The authors
of the research papers should provide specific de-
tails about the annotation process, such as whether
the annotators are mental health experts or non-
experts, if they are native speakers of the target
language, and whether they understand the cultural
differences in the manifestations of mental disor-
ders. These factors significantly impact the quality
and reliability of the data, as understanding cultural
nuances is essential in interpreting mental health
expressions.

Explainability in multilingual mental health re-
search While many mental health studies in En-
glish emphasize the importance of explainable ap-
proaches (Yang et al., 2023a; Souto et al., 2023;
Yang et al., 2023b), there is a significant opportu-
nity for applying explainable approaches to non-
English languages. Currently, few studies have
examined model explainability in Bengali (Ghosh
et al., 2023) and Thai (Vajrobol et al., 2023). These
methods may help in understanding the various
manifestations of mental disorders in different lan-
guages.

9 Conclusion

In this paper, we presented a comprehensive re-
view of research for mental disorders detection
from multilingual data sourced from social media.
We highlight cross-cultural and multilingual dif-
ferences in mental health expressions and provide
a comprehensive list of data collections that can
be used to develop multilingual NLP models for
online mental health screening. Our focus was on
non-English resources, as most previous research
has focused on English (Skaik and Inkpen, 2020;
Harrigian et al., 2021). Lastly, we presented sev-
eral gaps in current research that we hope will be
addressed in future interdisciplinary studies.



Limitations

Our paper aims to provide a comprehensive re-
view of cross-cultural language differences and the
datasets available for developing multilingual NLP
models. We included 108 data collections in this
study and carefully reviewed each paper cited in
our survey. However, it is possible that we may
have overlooked some works that do not explicitly
mention in their title or abstract that they focus on
non-English languages.
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A Appendix

Table 2: List of Non-English available datasets for mental disorders-related tasks using data posted on online
platforms.

Dataset Language Mental disorder | Platform Annotation Procedure Label Dataset Size Availab.
Almouzini et al. | Arabic depression Twitter Self-disclosure Binary 89 users, 2.7K | UNK
(2019) posts
Alghamdi et al. | Arabic depression Online Manual annotation Binary 20K posts UNK
(2020) forums
Alabdulkreem Arabic depression Twitter Manual annotation Binary 200 users UNK
(2021)
Musleh et al. (2022) Arabic depression Twitter CES-D and self- | Binary, DSM-5 4.5K posts UNK
disclosure symptoms
CairoDep (El-Ramly Arabic depression Twitter, Keywords, Manual anno- Binary 2.4K posts FREE
etal., 2021) Reddit, tation
Online
forums
Almars (2022) Arabic depression Twitter Manual annotation Binary 6.1K posts UNK
Maghraby and Ali Arabic depression Twitter PHQ-9 PHQ-9 symp- 1.2K posts FREE
(2022) toms
AraDepSu (Hassib Arabic depression, sui- | Twitter Manual annotation Depression, 20K posts UNK
et al., 2022) cide depression
with  suicidal
ideation,
or non-
depression
Arabic Dep 10,000 Arabic depression Twitter Manual annotation Binary 10K posts FREE
(Helmy et al., 2024)
Al-Haider et al. | Arabic OCD Twitter Manual annotation Binary 8.7K posts UNK
(2024)
Baghdadi et al. | Arabic suicide Twitter Manual annotation Binary 2K posts FREE
(2022)
Abdulsalam et al. | Arabic suicide Twitter Manual annotation Binary 5.7K posts UNK
(2024)
Al-Musallam  and Arabic depression Twitter Manual annotation Binary 6k posts UNK
Al-Abdullatif (2022)
Uddin et al. (2019) Bengali depression Twitter Manual annotation Binary 1.1K posts FREE
Victor et al. (2020) Bengali depression Facebook, Manual annotation Binary 30K posts UNK
Twitter
Kabir et al. (2022) Bengali depression Facebook Manual annotation Depression 5K posts FREE
severity
Tasnim et al. (2022) Bengali depression Facebook Manual annotation Binary 7K posts UNK
BanglaSPD  Islam | Bengali suicide Facebook Manual annotation Binary 1.7K posts UNK
et al. (2022)
Ghosh et al. (2023) Bengali depression Facebook, Manual annotation Binary 15K posts AUTH
Twitter,
YouTube
Hoque and Salma | Bengali depression Facebook Manual annotation Depression 2.5K posts UNK
(2023) severity
BSMDD (Chowd- | Bengali depression Reddit, Manual annotation Binary 28K posts FREE
hury et al., 2024) Twitter
von Sperling and Brazilian depression Twitter Self-disclosure Binary 2.9K users UNK
Ladeira (2019) Portuguese
Mann et al. (2020) Brazilian depression Instagram BDI Binary 221 users UNK
Portuguese
Santos et al. (2020) Brazilian depression Twitter Self-disclosure Binary 224 users UNK
Portuguese
de Carvalho et al. | Brazilian suicide Twitter Manual annotation Possibly/Strongly| 2.4K posts UNK
(2020) Portuguese concerning,
Safe to ignore
SetembroBR (San- | Brazilian depression Twitter Self-disclosure Binary 18.8K users FREE
tos et al., 2024) Portuguese
Mendes and Caseli Brazilian depression symp- | Facebook Manual annotation Depression 780 posts UNK
(2024) Portuguese toms symptoms
Oliveira et al. (2024) Brazilian suicide Twitter Manual annotation Binary 3.7K posts FREE
Portuguese
Gao et al. (2019) Cantonese suicide Youtube Manual annotation Binary 5K posts UNK
Zhang et al. (2014) Chinese suicide Sina Weibo SPS SPS score 697 users UNK
Huang et al. (2015) Chinese suicide Sina Weibo Manual annotation Binary 7.3K posts UNK
Cheng et al. (2017) Chinese suicide Sina Weibo Suicide Probability | Binary 974 users UNK
Scale (SPS), DASS-21
Shen et al. (2018) Chinese depression Sina Weibo Self-disclosure Binary 1.1K users UNK
Wu et al. (2018) Chinese depression Facebook CES-D Binary 1.4K users UNK
Cao et al. (2019) Chinese suicide Sina Weibo Manual checking of | Binary 7K users DUA
self-report and/or
appartenence to  a
suicide-related commu-
nity
Wang et al. (2019) Chinese depression Sina Weibo Manual annotation Depression 13.9K users UNK
severity
Peng et al. (2019) Chinese depression Sina Weibo Manual annotation Binary 387 users UNK
Huang et al. (2019) Chinese suicide Sina Weibo Manual annotation Binary 18.5K posts UNK
Li et al. (2020) Chinese depression Sina Weibo Self-disclosure Binary 1.8K users FREE
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WU3D (Wang etal.,, | Chinese depression Sina Weibo Depression-related key- | Binary 32K users FREE
2020) words
Yao et al. (2020) Chinese depression Sina Weibo Manual, automatic anno- | Binary 2.7K users UNK
tation
Yang et al. (2021) Chinese depression Sina Weibo Manual annotation Depression 6.1K posts AUTH
severity
Chiu et al. (2021) Chinese, En- | depression Instagram Depression-related key- | Binary 520 users UNK
glish words
Sun et al. (2022) Chinese suicide, depres- Sina Weibo BDI, SDS, Manual anno- | Binary / Pos- 203 users, UNK
sion tation sibly/Strongly 1.2K posts
concerning,
Safe to ignore
Cai et al. (2023) Chinese depression Sina Weibo Self-disclosure and man- | Binary 23K users FREE
ual annotation
Li et al. (2023) Chinese depression Sina Weibo Self-disclosure, manual Binary 4.8K users UNK
annotation
Guo et al. (2023) Chinese depression Sina Weibo Manual annotation Binary 3.1K users UNK
Wau et al. (2023) Chinese suicide Dcard and Manual annotation Risk levels 2K posts UNK
PTT
Lyu et al. (2023) Chinese depression Sina Weibo CES-D Binary 789 users AUTH
Yu et al. (2023) Chinese anxiety Sina Weibo Self-Rating ~ Anxiety | SAS score 1K users N/A
Scale
Zhu et al. (2024) Chinese anxiety Sina Weibo Manual annotation Binary 6K posts UNK
Wang et al. (2024) Chinese depression Sina Weibo Manual annotation Binary 14.8K users AUTH
Yao (2024) Chinese depression Sina Weibo Manual annotation Binary 200 users AUTH
Zhang et al. (2024) Chinese depression Sina Weibo Manual annotation Binary 1.6K users UNK
Desmet and Hoste Dutch suicide Online Manual annotation Fine-grained la- | 1.3K posts UNK
(2014) forums bels
Desmet and Hoste Dutch suicide Online Manual annotation Fine-grained la- | 10K posts UNK
(2018) forums bels
Abdelkadir et al. | English, depression Twitter Self-disclosure, Manual Binary 531 users UNK
(2024) Ali et al. but from annotation
(2024) different
populations
Tumalivan et al. | Filipino, En- | depression Twitter PHQ-9 Binary 72 users AUTH
(2024) glish
Astoveza et al. | Filipino, suicide Twitter Manual annotation Binary 2.1K posts UNK
(2018) Taglish
Cohrdes et al. (2021) German depression Twitter Automatic  annotation Binary 88K posts AUTH
for PHQ-8 symptoms
SMHD-GER (Zan- | German depression, Reddit Manual annotation Labels for mul- | 28K posts DUA
war et al., 2023) ADHD, anx- tiple disorders
iety, bipolar,
OCD, PTSD,
schizophrenia
Baskal et al. (2022) German, eating disorders Reddit, Manual annotation Binary 3K posts AUTH
Russian, Tumblr
Turkish,
English
Tabak and Purver | German, depression Twitter Self-disclosure Binary 5K users UNK
(2020) French, Ital-
ian, Spanish,
English
Hacohen-Kerner Hebrew anorexia Online Manual annotation Binary 200 posts FREE
et al. (2022) forums
Agarwal and Dhin- | Code-Mixed suicide Reddit Subreddit membership Binary 6.4K posts FREE
gra (2021) Hindi-
English
Oyong et al. (2018) Indonesian depression Twitter Manual annotation Binary 55 users UNK
Yoshua and Maha- | Indonesian depression Twitter DASS-42 Binary 184 users UNK
rani (2024)
Tsugawa et al. | Japanese depression Twitter CES-D, BDI Binary 209 users UNK
(2015)
Hiraga (2017) Japanese depression Online Self-disclosure Binary 101 users UNK
blogs
Niimi (2021) Japanese depression TOBYO Blog theme Binary 901 users UNK
Wang et al. (2023) Japanese suicide Twitter Manual annotation Binary 30K posts N/A
Lee et al. (2020) Korean suicide Naver Cafe Membership in a forum Binary 31K posts UNK
Park et al. (2020) Korean suicide Online Manual annotation Risk levels 2.7K posts AUTH
forums
Kim et al. (2022a) Korean suicide Twitter Manual annotation Binary 20K  posts, | UNK
414 users
Kim et al. (2022b) Korean depression Online PHQ-9, Manual annota- | PHQ-9 score, 60 users, 28K UNK
forums tion PHQ-9 symp- | posts
toms
Jung et al. (2023) Korean suicide Twitter Manual annotation Binary 20k posts UNK
Cha et al. (2022) Korean, depression Twitter, Ev- | Lexicon-based auto- | Binary 26M  posts, | AUTH
Japanese, erytime matic annotation 22K posts
English
Stamou et al. (2024) Modern depression Twitter Self-disclosure Binary 78 users AUTH
Greek
Uddin (2022) Norwegian depression Online Manual annotation Binary 21.8K posts UNK
forums
Uddin et al. (2022) Norwegian depression Online Manual annotation Binary 30K posts UNK
forums
Wotk et al. (2021) Polish depression Facebook, Self-disclosure, clinical Binary 262 users UNK
Reddit interview
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Rehmani et al. | Roman Urdu depression Facebook Manual annotation Depression 3K posts AUTH
(2024) severity
Mohmand et al. | Roman Urdu depression Twitter Keywords-based annota- | Depression 25K posts FREE
(2024) tions + Expert review severity
Stankevich et al. | Russian depression VKontakte BDI BDI score 531 users UNK
(2019)
Narynov et al. | Russian depression VKontakte Manual annotation Binary 34K posts FREE
(2020)
Stankevich et al. | Russian depression VKontakte BDI BDI score 1.3K users UNK
(2020)
Ignatiev et al. (2022) | Russian depression VKontakte BDI Binary 619 users DUA
Rathnayake and Sinhala depression Twitter, Manual annotation Binary 1K posts UNK
Arachchige (2021) Facebook
EmoMent (Atapattu Sinhala, En- | mental illness Facebook Manual annotation mental ill- | 2.8K posts AUTH
et al., 2022) glish ness, sadness,
suicidal, anx-
iety/stress,
psychoso-
matic, other,
irrelevant
Herath and Wi- | Sinhala suicide Facebook Manual annotation Binary 300 posts UNK
jayasiriwardhane
(2024)
Leis et al. (2019) Spanish depression Twitter Self-disclosure, manual Binary 540 users, 1K | FREE
annotation posts
SAD Lépez-Ubeda | Spanish anorexia Twitter Hashtags Binary 5.7K posts FREE
etal. (2019)
Valeriano et al. | Spanish suicide Twitter Manual annotation Binary 2K posts FREE
(2020)
Ramirez-Cifuentes Spanish suicide Twitter Manual annotation Binary 252 users N/A
et al. (2020)
Ramirez-Cifuentes Spanish anorexia Twitter Manual annotation Anorexia, 645 users N/A
etal. (2021) control, under
treatment,
recovered,
doubtful
Villa-Pérez et al. | Spanish, En- | depression, Twitter Self-disclosure Labels for mul- | 6K users DUA
(2023) glish ADHD, anxiety, tiple disorders
ASD, bipolar,
eating disorders,
OCD, PTSD,
schizophrenia
MentalRiskES Spanish depression, anxi- | Telegram Manual annotation Binary + suffer 1.2K users AUTH
Romero et al. (2024) ety, suicide, eat- + in favour (sf),
ing disorders suffer + against
(sa), suffer +
other (so) for
Depression
Cremades et al. | Spanish, En- | suicide Facebook, Manual annotation Binary 97 posts FREE
(2017) glish Twitter,
Blogspot,
Reddit,
Pinterest
Coello-Guilarte et al. | Spanish, En- | depression Twitter Self-disclosure Binary 316 users FREE
(2019) glish
Katchapakirin et al. | Thai depression Facebook TMHQ Binary 35 users UNK
(2018)
Hemtanon and Thai depression Facebook Manual annotation Binary 1.5K posts UNK
Kittiphattanabawon
(2019)
Kumnunt and Sornil Thai depression Pantip Hashtags Binary 31K posts UNK
(2020)
Hemtanon et al. | Thai depression Facebook PHQ-9 Binary 160 users UNK
(2020)
‘Wongaptikaseree Thai depression Facebook TMHQ Binary 600 users UNK
et al. (2020)
Himildinen et al. | Thai depression Online Manual annotation Binary 900 posts FREE
(2021) blogs
Mahasiriakalayot Thai depression Twitter Manual annotation Depression 3.1K posts UNK
et al. (2022) symptoms
Boonyarat et al. | Thai suicide Twitter Manual annotation Binary + 6 2.4K posts FREE
(2024) emotions
Benjachairat et al. | Thai suicide Twitter Manual annotation C-SSRS Labels 5.1K posts AUTH

(2024)
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