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Abstract
We study iterative signal reconstruction in computed tomography (CT), wherein measurements are
produced by a linear transformation of the unknown signal followed by an exponential nonlinear
map. Approaches based on pre-processing the data with a log transform and then solving the
resulting linear inverse problem are amenable to convex optimization methods but perform poorly
for signals with high dynamic range, as in X-ray imaging of tissue with embedded metal. We
show that a suitably initialized subgradient method applied to a natural nonsmooth, nonconvex loss
function produces iterates that converge to the unknown signal of interest at a geometric rate under
a recently proposed statistical model. Our recovery program enables faster iterative reconstruction
from substantially fewer samples.

1. Introduction

Computed tomography (CT) scans are X-ray imaging procedures widely used in medicine [3], se-
curity screenings [28], non-destructive material evaluation [4], archaeology [6], and others. Several
commercial CT scanners rely on the following model [20]: given a finite set of illumination angles,
{θi}mi=1, we collect measurements

yi = I0 exp (−⟨ai, x⋆⟩) , for i = 1, . . . ,m, (1)

where {ai}mi=1 ⊂ Rd are known coefficients derived from the Radon transform [23] at angles
{θi}mi=1 and x⋆ ∈ Rd is a vectorized representation of the unknown image. To recover x⋆, CT
software applies a logarithmic preprocessing step to the yi [14], resulting in the linear system

⟨ai, x⋆⟩ = ŷi, i = 1, . . . ,m, where ŷi = log (I0/yi) . (2)

The linear inverse problem in (2) is then solved using traditional methods, most commonly the so-
called filtered back-projection (FBP) method. However, the logarithmic transform is numerically
unstable as yi → 0, which is often the case for X-rays passing through high-density materials, and
is known to lead to reconstruction artifacts [16]. This motivates researchers and practitioners to
consider iterative reconstruction methods that operate directly on (1).

Recently, Fridovich-Keil et al. [13] studied iterative reconstruction from CT measurements un-
der a Gaussian measurement model, intended to capture randomness in ray directions. They postu-
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late that when the design vectors ai in (1) are i.i.d. Gaussian, x⋆ can be recovered by solving

x̂ = argmin
x∈Rd

1

2m

m∑
i=1

(
yi − e−⟨ai,x⟩+

)2
. (3)

While working with the measurements directly avoids numerical instability, the optimization prob-
lem in (3) is nonconvex; consequently, iterative methods like gradient descent are not guaranteed to
converge to the solution x⋆. Nevertheless, Fridovich-Keil et al. [13] prove the following:

Theorem 1.1 (Informal; adapted from [13, Theorem 1]) Suppose that ai
i.i.d.∼ N (0, Id) and the

number of measurements m satisfies m ≳ ec∥x⋆∥

∥x⋆∥2
· d. Then solving (3) using gradient descent with

stepsize η and careful initialization produces a sequence of iterates {xk}k≥1 satisfying

∥xk − x⋆∥2 ≤
(
1− ηe−5∥x⋆∥)k ∥x⋆∥2 , (4)

as long as η ≲ e−5∥x⋆∥, with high probability over the choice of design vectors.

Unfortunately, both sample and iteration complexity in Theorem 1.1 depend on ∥x⋆∥ exponentially.

Our contribution. A natural question is whether the aforementioned limitations are essential or
can be sidestepped by choosing a different objective function or reconstruction method. We show
that using a nonsmooth loss function — namely, the least absolute deviation (ℓ1) penalty — and
optimizing it with a suitable modification of the subgradient method with Polyak step [22] yields
exponential improvements to both sample and iteration complexity; see Table 1.

Method Iteration complexity Sample complexity Reference

(PolyakSGM) O
(
∥x⋆∥6 log

(
∥x⋆∥
ε

))
O(∥x⋆∥4 · d) Theorem 2.1

Gradient descent O
(
ec1∥x⋆∥ log

(
∥x⋆∥
ε

))
O
(
ec2∥x⋆∥

∥x⋆∥2
· d

)
Fridovich-Keil et al. [13]

Table 1: Iteration and sample complexity of iterative reconstruction methods.

1.1. Method overview

We propose optimizing the following nonsmooth (ℓ1) penalty:

f(x) :=
1

m

m∑
i=1

|yi − exp(−⟨ai, x⟩+)| . (5)

To optimize f(x) in (5), we use the subgradient method with Polyak step-size initialized at x0 = 0,
labeled as (PolyakSGM) below. Note that f⋆ = f(x⋆) = 0 in the absence of noise.

(PolyakSGM) xk+1 = xk − η · f(xk)− f⋆

∥vk∥2
vk, vk ∈ ∂f(xk), for k = 0, 1, . . .
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Here, ∂f(x) denotes the so-called Clarke subdifferential [9] (see Appendix C). Our analysis
will focus on showing that the loss f in (5) is “well-conditioned” in a neighborhood of the solution
x⋆, a consequence of the following two regularity properties:

(Lipschitz continuity): |f(x)− f(x̄)| ≤ L ∥x− x̄∥ , for all x, x̄ ∈ Rd; (6a)

(Sharp growth): f(x)− f(x⋆) ≥ µ ∥x− x⋆∥ , for all x near x⋆. (6b)

It is well known (see, e.g., Goffin [17], Polyak [22]) that classical subgradient methods converge
linearly for convex functions satisfying (6a)–(6b), with rate governed by the nonsmooth condition
number κ := L/µ. While the loss in (5) is nonconvex, we show that it satisfies a key “aiming”
condition, postulating that subgradients point to the direction of the solution x⋆.

(Aiming) min
v∈∂f(x)

⟨v, x− x⋆⟩ ≥ µ ∥x− x⋆∥ , for all x ∈ B(0; 3 ∥x⋆∥) \ {0}.

The (Aiming) inequality serves two purposes: first, it implies the sharp growth property (6b) in a
neighborhood of x⋆ (Lemma 2.1). Moreover, it ensures iterates of (PolyakSGM) approach x⋆:

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 −
ηµf(xk)

∥vk∥2
∥xk − x⋆∥ < ∥xk − x⋆∥2 , for η small enough.

The focal point of our analysis is establishing (Aiming) and quantifying the moduli of sharp growth
and Lipschitz continuity. We show that, with high probability, Gaussian designs satisfy

L = O(1), and µ = Ω
(
∥x⋆∥−2) , as long as m ≳ d ∥x⋆∥4. (7)

Consequently, we establish that the conditioning of (5) is polynomial in ∥x⋆∥, improving exponen-
tially upon the results of [13], and prove linear convergence of (PolyakSGM) to x⋆.

1.2. Related work

Several algorithms for CT image reconstruction, including the standard FBP method, can be viewed
as discrete approximations of analytical inversion formulas and are relatively inexpensive to im-
plement, in contrast to iterative reconstruction (IR) methods; see [2, 15, 21]. While a comprehen-
sive overview of IR methods is beyond the scope of this article, and can be found in surveys such
as [2, 30], several of these methods are motivated by advances in numerical optimization: examples
include the classical algebraic reconstruction technique (ART) [18], the SAGE method of Fessler
and Hero [11], the ASD-POCS method of Sidky and Pan [24], and the nonconvex ADMM approach
of Barber and Sidky [1]. Few of these works provide estimates on the sample and computational
efficiency of the proposed methods and, when they do, the estimates are typically not adapted to CT
problems. Beyond computed tomography, several works design and analyze first-order methods for
signal recovery in other settings; this includes works that study the sample and computational com-
plexity of recovering a signal from magnitude-only or quadratic measurements [26] (also known as
phase retrieval) and measurements produced by piecewise nonlinearities such as ReLUs [12, 25],
as well as recovering low-rank matrices using the Burer-Monteiro factorization [5, 19].

Notation and basic constructions. We write ⟨X,Y ⟩ := Tr(XTY ) for the Euclidean inner prod-
uct and ∥X∥ =

√
⟨X,X⟩ for the induced norm. We denote the unit sphere in d dimensions by Sd−1

and the Euclidean ball centered at x̄ and radius r by B(x̄; r). We write ∥A∥op := supx∈Sd−1 ∥Ax∥
for the spectral norm of A. Finally, we write A ≲ B to indicate that A ≤ c ·B for a constant c > 0.
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2. Linear convergence of (PolyakSGM)

We now establish the linear convergence of (PolyakSGM). In our analysis, we assume that f is L-
Lipschitz (6a) and satisfies (Aiming); quantitative estimates and formal proofs for both properties
can be found in Appendix A. We first show that (Aiming) nearly implies local sharp growth:

Lemma 2.1 (Solvability lemma) Suppose f is Lipschitz and (Aiming) holds. Then we have:

f(x)− f⋆ ≥ µmin{∥x− x⋆∥ , ∥x∥}, for all x ∈ B(x⋆; ∥x⋆∥). (8)

While (8) is weaker than (6b), we show that the norm of the iterates produced by (PolyakSGM)
stays bounded away from 0 and eventually surpasses the distance to x⋆, whereupon (8) reduces to
sharp growth. Indeed, we have the following implication (see Lemma E.5 for a proof):

∥x− x⋆∥2 ≤ (1− γ0) ∥x⋆∥2 =⇒ min{∥x− x⋆∥ , ∥x∥} ≥ min

{
1,

γ0
2
√
1− γ0

}
· ∥x− x⋆∥ . (9)

In particular, when η ≤ 1
κ the first iterate of (PolyakSGM) satisfies the antecedent condition in (9)

for some γ0 that depends on the design matrix. The convergence analysis proceeds as follows:

∥xk+1 − x⋆∥2 = ∥xk − x⋆∥2 −
ηf(xk)

∥vk∥2
(2 ⟨vk, xk − x⋆⟩ − ηf(xk))

≤ ∥xk − x⋆∥2 −
ηf(xk)

∥vk∥2
(2µ ∥xk − x⋆∥ − ηL ∥xk − x⋆∥) ((Aiming) + (6a))

≤ ∥xk − x⋆∥2 −
ηµf(xk) ∥xk − x⋆∥

L2
, (η ≤ µ/L) (10)

showing that ∥xk+1 − x⋆∥2 < ∥xk − x⋆∥2 unless f(xk) = f⋆ = 0. To deduce linear convergence,
it remains to argue that f(xk) is lower bounded by c · ∥xk − x⋆∥. Indeed, we consider:

• ∥xk − x⋆∥ > 1
2 ∥x⋆∥; while this is true, we use Lemma 2.1 and (9) to deduce

f(xk) ≥ (µγ0/4) ∥xk − x⋆∥ .

• ∥xk − x⋆∥ ≤ 1
2 ∥x⋆∥; by Claim 6, ∥xk∥ ≥ 1

2 ∥x⋆∥. Lemma 2.1 then implies

f(xk) ≥ µmin{∥xk − x⋆∥ , ∥xk∥} ≥ µmin
{
∥xk − x⋆∥ ,

1

2
∥x⋆∥

}
= µ ∥xk − x⋆∥ .

We can also guarantee that (i) iterates enter the ball B(x⋆; 12 ∥x⋆∥) within O(κ3) iterations and (ii)
never escape that ball. Our main result, whose full proof can be found in Appendix B, is as follows:

Theorem 2.1 Let ai
i.i.d.∼ N (0, Id) and m ≳ d · ∥x⋆∥4. Then with probability at least 1 − 4e−d,

(PolyakSGM) with x0 = 0, η ≤ 1
κ , where κ := L

µ , and f⋆ = 0 produces iterates {xk} satisfying

∥xk+1 − x⋆∥2 ≤
{
(1− ηγ0

4κ2
) ∥xk − x⋆∥2 , k < K0,

(1− ηκ−2) ∥xk − x⋆∥2 , k ≥ K0,
(11)

where K0 =
⌈
κ2 log(4)
ηγ0

⌉
, γ0 = 1/30π∥x⋆∥, L ≤ 1 +

√
2d
m and µ ≥ 1

4
√
π(1+9π∥x⋆∥2)

.
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3. Experiments

We perform a set of synthetic experiments using Gaussian designs. We first plot the convergence
behavior of the following 4 methods for different signal scales (see Figure 1):

• (PolyakSGM) with standard Polyak step (η = 1);

• (PolyakSGM) with step-size prescribed by Theorem 2.1;

• Gradient descent (GD) with η ∈ {2−j | −3 ≤ j ≤ 3} achieving the lowest estimation error;

• Gradient descent (GD) with η = exp(−5 ∥x⋆∥), as prescribed by Theorem 1.1.

We find that (PolyakSGM) consistently outperforms GD, while the standard Polyak step (η = 1)
performs best; this suggests that the step-size restriction in Theorem 2.1 might be unnecessary.
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Figure 1: Convergence of (PolyakSGM) compared to gradient descent.

We also study the sample efficiency of (PolyakSGM) compared to gradient descent. To do so,
we generate and solve synthetic problem instances for varying signal scales and oversampling fac-
tors. We declare a solve successful if an estimate x̂ satisfying ∥x̂− x⋆∥ ≤ 10−5 is found within 104

iterations and calculate the empirical recovery probability over 25 runs (see Figure 2). We observe
that gradient descent experiences a sharp cut-off in recovery probability, while (PolyakSGM) can
recover higher-energy signals from substantially fewer measurements.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Signal intensity ‖x?‖

2
4
6
8

10
12
14
16O

ve
rs

a
m

p
li
n

g
fa

ct
or

PolyakSGM (η = 1)

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

Signal intensity ‖x?‖

2
4
6
8

10
12
14
16

Gradient descent (optimized η)

0.00

0.25

0.50

0.75

1.00

Figure 2: Empirical recovery probability for synthetic instances with d = 128. Lighter tiles indicate
higher probability of recovery.
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Appendix A. Regularity properties of the loss function

A.1. Lipschitz continuity

We first show f is Lipschitz continuous with modulus depending entirely on A.

Proposition A.1 (Lipschitz continuity) The loss function is Lipschitz continuous:

|f(x)− f(x̄)| ≤
(

1

m
sup

v∈Sd−1

∥Av∥1
)
· ∥x− x̄∥ , for all x, x̄ ∈ Rd. (12)

In particular, for Gaussian designs, the following holds with probability at least 1− 2e−cd:

|f(x)− f(x̄)| ≤ 1 + 2

√
d

m
, for all x, x̄ ∈ Rd.

Proof Recall that the absolute value function and x 7→ exp(−x+) are 1-Lipschitz. Therefore,

|f(x)− f(x̄)| =
∣∣∣∣∣ 1m

m∑
i=1

|yi − hi(x)| − |yi − hi(x̄)|
∣∣∣∣∣

≤ 1

m

m∑
i=1

|hi(x)− hi(x̄)|

=
1

m

m∑
i=1

∣∣e−⟨ai,x⟩+ − e−⟨ai,x̄⟩+
∣∣

≤ 1

m

m∑
i=1

|⟨ai, x− x̄⟩|

≤ ∥x− x̄∥ · sup
u∈Sd−1

1

m
∥Au∥1 ,

as expected. For Gaussian designs, norm equivalence and [29, Theorem 7.3.3] imply

sup
u∈Sd−1

1

m
∥Au∥1 ≤

1√
m
∥A∥op ≤ 1 + 2

√
d

m

with probability at least 1− 2e−cd; this completes the proof.

Henceforth, we write L := 1
m supv∈Sd−1 ∥Av∥1 for the Lipschitz modulus. This immediately im-

plies the following upper bound on subgradient norms:

sup
x∈Rd

max
v∈∂f(x)

∥v∥ ≤ L. (13)
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A.2. Sharp growth

We continue by establishing that the loss function f grows sharply away from its minimizer:

f(x)− f(x⋆) ≥ µ ∥x− x⋆∥ , for all x “near” x⋆,

where µ is given by the following expression:

µ :=
1

4
√
π(1 + 9π ∥x⋆∥2)

. (14)

For technical reasons, we prove this claim for all x ∈ B(0; 2 ∥x⋆∥), since all iterates of Equa-
tion (PolyakSGM) initialized at 0 remain within that ball. Key to establishing the above claim is
the (Aiming) inequality, which implies sharpness in a neighborhood of x⋆. We now turn to the
proof of the aiming inequality.

A.2.1. PROOF OF THE AIMING INEQUALITY

To establish (Aiming), we first derive a convenient expression for the inner product.

Lemma A.1 (Subdifferential inner product) For any point x ∈ Rd, we have that

⟨∂f(x), x− x⋆⟩ =
1

m

m∑
i=1

e−⟨ai,x⟩ |⟨ai, x− x⋆⟩|1{⟨ai, x⟩ > 0}

+
1

m

m∑
i=1

1{⟨ai, x⟩ = 0} (⟨ai, x⋆⟩+ + sign(0) ⟨ai, x⋆⟩−) .

(15)

Proof Recall that sign(x) = 1 for x > 0, −1 for x < 0, and sign(0) = [−1, 1]. In turn,

sign(yi − hi(x))

= sign(e−⟨ai,x⟩+ − e−⟨ai,x⋆⟩+)

= sign(e−⟨ai,x⟩+ − e−⟨ai,x⋆⟩+) · (1{⟨ai, x− x⋆⟩ ≥ 0}+ 1{⟨ai, x− x⋆⟩ < 0}) (16)

Note that it suffices to consider 1{⟨ai, x− x⋆⟩ > 0} in the first term of (16), since

1

m

m∑
i=1

sign(yi − hi(x))e
−⟨ai,x⟩ ⟨ai, x− x⋆⟩1{⟨ai, x⟩ ≥ 0}1{⟨ai, x− x⋆⟩ = 0} = 0.

We now proceed on a case-by-case basis.

Case 1: ⟨ai, x− x⋆⟩ < 0. Since all nonzero terms have ⟨ai, x⟩ ≥ 0, this means

0 ≤ ⟨ai, x⟩ < ⟨ai, x⋆⟩ =⇒ ⟨ai, x⋆⟩+ > ⟨ai, x⟩+ =⇒ sign(e−⟨ai,x⟩+ − e−⟨ai,x⋆⟩+) = 1,

via monotonicity of the exponential. This yields the partial sum

1

m

m∑
i=1

sign(yi − hi(x))(−e−⟨ai,x⟩) ⟨ai, x− x⋆⟩1{⟨ai, x⟩ ≥ 0}1{⟨ai, x− x⋆⟩ < 0}

=
1

m

m∑
i=1

e−⟨ai,x⟩ ⟨ai, x⋆ − x⟩1{⟨ai, x⟩ ≥ 0}1{⟨ai, x⋆ − x⟩ > 0}

=
1

m

m∑
i=1

e−⟨ai,x⟩ ⟨ai, x⋆ − x⟩+ 1{⟨ai, x⟩ ≥ 0}. (17)

9



NONLINEAR CT RECONSTRUCTION

Case 2(i): ⟨ai, x− x⋆⟩ > 0 and ⟨ai, x⟩ > 0. Note that we have the following possibilities:

• If ⟨ai, x⋆⟩ < 0, then ⟨ai, x⋆⟩+ = 0. Therefore, ⟨ai, x⟩ > 0 clearly implies

⟨ai, x⟩+ > ⟨ai, x⋆⟩+ , and thus sign(e−⟨ai,x⟩+ − e−⟨ai,x⋆⟩+) = −1.

• If ⟨ai, x⋆⟩ ≥ 0, then ⟨ai, x⋆⟩+ = ⟨ai, x⋆⟩; therefore,

⟨ai, x⟩+ = ⟨ai, x⟩ > ⟨ai, x⋆⟩ = ⟨ai, x⋆⟩+ =⇒ sign(e−⟨ai,x⟩+ − e−⟨ai,x⋆⟩+) = −1.

In either instance, we obtain the partial sum

1

m

m∑
i=1

sign(yi − hi(x))(−e−⟨ai,x⟩) ⟨ai, x− x⋆⟩1{⟨ai, x⟩ > 0}1{⟨ai, x− x⋆⟩ > 0}

=
1

m

m∑
i=1

e−⟨ai,x⟩ ⟨ai, x− x⋆⟩1{⟨ai, x⟩ > 0}1{⟨ai, x− x⋆⟩ > 0}

=
1

m

m∑
i=1

e−⟨ai,x⟩ ⟨ai, x− x⋆⟩+ 1{⟨ai, x⟩ > 0}. (18)

Case 2(ii): ⟨ai, x− x⋆⟩ > 0 and ⟨ai, x⟩ = 0. In this case, we have

0 = ⟨ai, x⟩ > ⟨ai, x⋆⟩ =⇒ ⟨ai, x⟩+ = ⟨ai, x⋆⟩+ = 0.

As a result, sign(yi − hi(x)) can be any value between [−1, 1]. We lower bound

1

m

m∑
i=1

sign(yi − hi(x))(−e−⟨ai,x⟩) ⟨ai, x− x⋆⟩1{⟨ai, x⟩ = 0}1{⟨ai, x− x⋆⟩ > 0}

=
1

m

m∑
i=1

sign(0) ⟨ai, x⋆⟩1{⟨ai, x⟩ = 0}1{⟨ai, x− x⋆⟩ > 0}

=
1

m

m∑
i=1

sign(0) · ⟨ai, x⋆⟩− 1{⟨ai, x⟩ = 0}, (19)

using ⟨ai, x⋆⟩1{⟨ai, x⋆⟩ < 0} = ⟨ai, x⋆⟩− in (19).

These are all the possible cases to consider. Combining Equations (17) to (19) yields

⟨∂f(x), x− x⋆⟩ =
1

m

m∑
i=1

sign(yi − hi(x)) · (−e−⟨ai,x⟩) · ⟨ai, x− x⋆⟩1{⟨ai, x⟩ ≥ 0}

=
1

m

m∑
i=1

e−⟨ai,x⟩ ⟨ai, x− x⋆⟩1{⟨ai, x⟩ > 0}1{⟨ai, x− x⋆⟩ > 0}

− 1

m

m∑
i=1

e−⟨ai,x⟩ ⟨ai, x− x⋆⟩1{⟨ai, x⟩ ≥ 0}1{⟨ai, x− x⋆⟩ < 0}

+
1

m

m∑
i=1

sign(0) ⟨ai, x⋆⟩− 1{⟨ai, x⟩ = 0}

10
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=
1

m

m∑
i=1

e−⟨ai,x⟩ ⟨ai, x− x⋆⟩1{⟨ai, x⟩ > 0}1{⟨ai, x− x⋆⟩ ≥ 0}

+
1

m

m∑
i=1

e−⟨ai,x⟩ ⟨ai, x⋆ − x⟩1{⟨ai, x⟩ ≥ 0}1{⟨ai, x⋆ − x⟩ > 0}

+
1

m

m∑
i=1

sign(0) ⟨ai, x⋆⟩− 1{⟨ai, x⟩ = 0}

=
1

m

m∑
i=1

e−⟨ai,x⟩ ⟨ai, x− x⋆⟩+ 1{⟨ai, x⟩ > 0}

+
1

m

m∑
i=1

e−⟨ai,x⟩ ⟨ai, x⋆ − x⟩+ 1{⟨ai, x⟩ ≥ 0}

+
1

m

m∑
i=1

sign(0) ⟨ai, x⋆⟩− 1{⟨ai, x⟩ = 0}

=
1

m

m∑
i=1

e−⟨ai,x⟩1{⟨ai, x⟩ > 0} (⟨ai, x− x⋆⟩+ + ⟨ai, x⋆ − x⟩+)

+
1

m

m∑
i=1

1{⟨ai, x⟩ = 0} (⟨ai, x⋆⟩+ + sign(0) ⟨ai, x⋆⟩−)

=
1

m

m∑
i=1

e−⟨ai,x⟩1{⟨ai, x⟩ > 0} · |⟨ai, x− x⋆⟩|

+
1

m

m∑
i=1

1{⟨ai, x⟩ = 0}(⟨ai, x⋆⟩+ + sign(0) ⟨ai, x⋆⟩−),

where the last equality follows from the identity [x]+ + [−x]+ = |x|.

With the help of Lemma A.1, we can establish the desired inequality.

Proposition A.2 (Aiming) If ai
i.i.d.∼ N (0, Id), the following holds with probability 1− 2e−cd:

min
ξ∈∂f(x)

⟨ξ, x− x⋆⟩ ≥
1

4
√
π(1 + 9 ∥x⋆∥2)

∥x− x⋆∥ , (20)

uniformly over all x ∈ B(0; 3 ∥x⋆∥) \ {0}.

Proof We first argue that we can effectively ignore the second term in the expression furnished by
Lemma A.1, since it corresponds to a zero-measure event (for any x ̸= 0). To show this formally,
we first note that since sign(0) = [−1, 1] and 1{⟨ai, x⟩ = 0} = [0, 1] the contribution of the
second term is always at least

1

m

m∑
i=1

1{⟨ai, x⟩ = 0} (⟨ai, x⋆⟩+ + sign(0) ⟨ai, x⋆⟩−) ≥
1

m

m∑
i=1

I{⟨ai, x⟩ = 0} ⟨ai, x⋆⟩− ,

11
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writing I{E} = 1 when E happens and 0 otherwise. We now write

I{⟨ai, x⟩ = 0} ⟨ai, x⋆⟩− = I{⟨ai, u⟩ = 0}
(
����:0⟨ai, u⟩ ⟨u, x⋆⟩+ ⟨Pu⊥ai, Pu⊥x⋆⟩

)
−

(d)
= I{⟨ai, u⟩ = 0} · ⟨ãi, Pu⊥x⋆⟩− , ãi ∼ N (0, Id) ⊥⊥ ai,

where we write u = x/∥x∥, Pu⊥ = (I − uuT), and use the fact that the variables ⟨ai, u⟩ and Pu⊥ai
are uncorrelated (thus independent) Gaussians to replace Pu⊥ai with an independent copy Pu⊥ ãi.
From independence, it follows that

E [⟨ai, x⋆⟩− 1{⟨ai, x⟩ = 0}] ≥ E [I{⟨ai, x⟩ = 0} · ⟨ai, x⋆⟩−]
= E [I{⟨ai, u⟩ = 0}]E [⟨ãi, Pu⊥x⋆⟩−]
=(((((((P (⟨ai, u⟩ = 0) · E [⟨ãi, Pu⊥x⋆⟩−]
= 0, (21)

where P (⟨ai, u⟩ = 0) since ai is standard Gaussian and u ̸= 0. In light of (21), we may ignore the
second term in Lemma A.1 in lower-bounding the expectation, since that term has a nonnegative
contribution. Continuing from the expression furnished by Lemma (A.1), we obtain

⟨∂f(x), x− x⋆⟩ =
1

m

m∑
i=1

exp(−⟨ai, x⟩) |⟨ai, x⋆ − x⟩|1{⟨ai, x⟩ ≥ 0}

=
∥x− x⋆∥

m

m∑
i=1

exp(−⟨ai, u⟩ ∥x∥) |⟨ai, v⟩|1{⟨ai, u⟩ ≥ 0}

≥ ∥x− x⋆∥
m

m∑
i=1

exp(−3 ⟨ai, u⟩ ∥x⋆∥) |⟨ai, v⟩|1{⟨ai, u⟩ ≥ 0}

(d)
=
∥x− x⋆∥

m

m∑
i=1

exp (−3βi ∥x⋆∥)
∣∣βi ⟨u, v⟩+ β⊥

i ∥Pu⊥v∥
∣∣1{βi ≥ 0},

writing u := x
∥x∥ and v := x⋆−x

∥x⋆−x∥ . Here, βi, β⊥
i

i.i.d.∼ N (0, 1) arise from the decomposition

⟨ai, v⟩ =
〈
uuTai, v

〉
+

〈
(I − uuT)ai, v

〉
= ⟨ai, u⟩ ⟨u, v⟩+

〈
(I − uuT)ai, v

〉
(d)
= ⟨ai, u⟩ ⟨u, v⟩+

〈
(I − uuT)ãi, v

〉
(ai ⊥⊥ ãi ∼ N (0, Id))

= ⟨ai, u⟩ ⟨u, v⟩+
〈
ãi, (I − uuT)v

〉
(d)
= βi ⟨u, v⟩+ β⊥

i ∥(I − uuT)v∥,

writing βi = ⟨ai, u⟩ ∼ N (0, 1) and using the identity ⟨ãi, z⟩ ∼ N (0, ∥z∥2); we also recognize
(I − uuT) = Pu⊥ . We now consider two cases for the correlation ⟨u, v⟩:
Case 1: ⟨u, v⟩ ≥ 0. In this case, we may lower bound the sum by the following expression:

⟨∂f(x), x− x⋆⟩

12
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≥ ∥x− x⋆∥
m

m∑
i=1

exp(−3βi ∥x⋆∥)
∣∣βi ⟨u, v⟩+ β⊥

i ∥Pu⊥v∥
∣∣1{βi ≥ 0, β⊥

i ≥ 0}

=
∥x− x⋆∥

m

m∑
i=1

exp(−3βi ∥x⋆∥)
(
βi |⟨u, v⟩|+ β⊥

i ∥Pu⊥v∥
)
1{βi ≥ 0, β⊥

i ≥ 0}. (22)

Case 2: ⟨u, v⟩ < 0. In this case, we may lower bound the sum by the following expression:

⟨∂f(x), x− x⋆⟩

≥ ∥x− x⋆∥
m

m∑
i=1

exp(−3βi ∥x⋆∥)
∣∣βi ⟨u, v⟩+ β⊥

i ∥Pu⊥v∥
∣∣1{βi ≥ 0, β⊥

i ≤ 0}

=
∥x− x⋆∥

m

m∑
i=1

exp(−3βi ∥x⋆∥)
(
βi(−⟨u, v⟩)− β⊥

i ∥Pu⊥v∥
)
1{βi ≥ 0, β⊥

i ≤ 0}

(d)
=
∥x− x⋆∥

m

m∑
i=1

exp(−3βi ∥x⋆∥)
(
βi |⟨u, v⟩|+ β̃⊥

i ∥Pu⊥v∥
)
1{βi, β̃⊥

i ≥ 0}, (23)

where β̃i ∼ N (0, 1) ⊥⊥ βi, using the fact that the expression inside the absolute value is nonpositive.
Since the sum in (23) is distributionally identical to (22), it suffices to study

(♮) :=
1

m

m∑
i=1

exp(−3βi ∥x⋆∥)
(
βi |⟨u, v⟩|+ β⊥

i ∥Pu⊥v∥
)
1{βi, β⊥

i ≥ 0}. (24)

Taking expectations with respect to β and β⊥ and writing γ := 3 ∥x⋆∥ for brevity, we obtain

Eβ,β⊥
[
exp(−γβ)

(
β |⟨u, v⟩|+ β⊥ ∥Pu⊥v∥

)
1{β, β⊥ ≥ 0}

]
= |⟨u, v⟩| · Eβ [exp(−γβ)β+] · P

(
β⊥ ≥ 0

)
+ ∥Pu⊥v∥Eβ⊥ [β⊥

+ ] · Eβ [exp(−γβ)1{β ≥ 0}]

=
|⟨u, v⟩|

4

(√
2

π
− γ exp

(
γ2

2

)
erfc

(
γ√
2

))
+
∥Pu⊥v∥

4

√
2

π
exp

(
γ2

2

)
erfc

(
γ√
2

)
≥ |⟨u, v⟩|

4(1 + πγ2)
·
√

2

π
+
∥Pu⊥v∥

4

√
2

π
exp

(
γ2

2

)
erfc

(
γ√
2

)
=

|⟨u, v⟩|
4(1 + πγ2)

·
√

2

π
+
∥Pu⊥v∥

4γ

√
2

π
· γ exp

(
γ2

2

)
erfc

(
γ√
2

)
≥

√
1

8π
·min{ 1

1 + πγ2
,
1

2γ
} (|⟨u, v⟩|+ ∥Pu⊥v∥)

≥
√

1

8π
· 1

1 + πγ2
∥Puv + Pu⊥v∥

=

√
1

8π

1

1 + πγ2
,

using Lemma E.1 in the second equality, Lemma E.4 in the first inequality, Lemma E.3 and the
bound γ ≥ 1 in the second inequality, the fact that |⟨u, v⟩| = ∥Puv∥ and the triangle inequality in

13
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the last inequality, and v ∈ Sd−1 in the last step. As a result, we have

E[⟨∂f(x), x− x⋆⟩] ≥
∥x− x⋆∥√

8π
(
1 + 9π ∥x⋆∥2

) , for any x ∈ B(0; 3 ∥x⋆∥). (25)

Given (25), we finish off the proof with a concentration argument.

High-probability version. Our proof relies on the generic chaining technique [27] using the re-
finements of [10]. Setting the stage, consider a random process indexed by a set T , (Zt)t∈T . We
say that (Zt) has mixed tails with respect to metrics (d1, d2) if

P (|Zt − Zs| ≥ ud1(s, t) +
√
ud2(s, t)) ≤ e−u. (26)

Under (26), [10, Theorem 3.5] shows that for any t0 ∈ T , it holds that

P
(
sup
t∈T
|Zt − Zt0 | ≥ C(γ1(T , d1) + γ2(T , d2)) + udiamd1(T ) +

√
udiamd2(T )

)
≤ e−u,

(27)
where diamd(T ) := sups,t∈T d(s, t) and γα(T , d) is the Talagrand’s γ-functional:

γα(T , d) = inf
(Tk)

sup
t∈T

∞∑
k=0

2
k/αd(t, Tk), Tk ∈ {H ⊂ T | |H| ≤ 22

k}.

The first step in our proof is to verify condition (26) for the random process at hand.

Claim 1 (Mixed tail condition) For any (u, v) ∈ Sd−1 × Sd−1 and i ∈ [m], let

Zi(u, v) := exp (−3 ⟨ai, u⟩ ∥x⋆∥) |⟨ai, v⟩|1{⟨ai, u⟩ > 0}+ I{⟨ai, u⟩ = 0} ⟨ai, x⋆⟩− . (28)

Then the process Z(u, v) := 1
m

∑m
i=1 Zi(u, v)− E [Zi(u, v)] satisfies (26) with

d1 =
(1 + 3 ∥x⋆∥)deuc

m
, d2 =

(1 + 3 ∥x⋆∥)deuc√
m

,

where deuc denotes the Euclidean metric on Rd × Rd.

With Claim 1 at hand, we can invoke (27) for T := (Sd−1 × Sd−1) ∪ {0}:

P
(
sup
u,v
|Z(u, v)| ≥ C(γ1(T , d1) + γ2(T , d2)) + tdiamd1(T ) +

√
tdiamd2(T )

)
≤ 2e−t.

(29)
To simplify (29), we bound the γ-functionals using Dudley’s entropy integral method.

Claim 2 (Dudley bounds I) Let T := (Sd−1 × Sd−1) ∪ {0}. We have

diamd1(T ) ≲
(1 + 3 ∥x⋆∥)

m
, γ1(T , d1) ≲

(1 + 3 ∥x⋆∥)d
m

. (30)

Claim 3 (Dudley bounds II) Let T := (Sd−1 × Sd−1) ∪ {0}. We have

diamd2(T ) ≲
(1 + 3 ∥x⋆∥)√

m
, γ2(T , d2) ≲ (1 + 3 ∥x⋆∥)

√
d

m
. (31)

14
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Combining Equation (29) and Claims 2 and 3, we obtain

P
(
sup
u,v
|Z(u, v)| ≥ C(1 + 3 ∥x⋆∥)

(√
d

m
+

d

m

))
≤ P

(
sup
u,v
|Z(u, v)| ≥ C (γ1(T , d1) + γ2(T , d2)) + d · diamd1(T ) +

√
d · diamd2(T )

)
≤ 2e−d.

By definition of Z(u, v) and (25), it follows that

1

m

m∑
i=1

e−3⟨ai,u⟩∥x⋆∥ |⟨ai, v⟩|1{⟨ai, u⟩ ≥ 0} ≥ 1√
8π

(
1 + 9π ∥x⋆∥2

) − C

(√
d

m
+

d

m

)
,

uniformly over u, v ∈ Sd−1, with probability 1− 2e−d. Therefore, we conclude that

min
v∈∂f(x)

⟨v, x− x⋆⟩ ≥
∥x− x⋆∥

4
√
π
(
1 + 9π ∥x⋆∥2

) , ∀x ∈ B(0; 3 ∥x⋆∥) \ {0},
with probability at least 1− 2e−d, as long as m ≳ d · (1+ 9π ∥x⋆∥2)2 ≳ d ∥x⋆∥4. Finally, we place
the proofs of Claims 1 to 3 in Appendix D.

Appendix B. Convergence analysis

In this section, we analyze the convergence of (PolyakSGM). First, we denote

ρ := η
(µ
L

)2 γ0
4
, ρ := η

(µ
L

)2
, γ0 =

1

30π ∥x⋆∥
, and T0 :=

⌈
log(4)

ρ

⌉
(32)

for brevity. A quick discussion about their roles in the convergence analysis is in order:

• ρ is the contraction factor achieved while ∥xt − x⋆∥ ≥ 1
2 ∥x⋆∥.

• ρ > ρ is the contraction factor achieved after ∥xt − x⋆∥ < 1
2 ∥x⋆∥.

• T0 is an upper bound on the number of iterations elapsed until ∥xt − x⋆∥ < 1
2 ∥x⋆∥.

As the above quantities suggest, our convergence analysis outlines a “slow” and “fast” phase of
convergence (albeit both following a geometric rate). Crucially, Equation (PolyakSGM) does not
employ a different stepsize for the two phases: the distinction is only for theoretical purposes and –
as demonstrated in our numerical experiments – does not affect the practical behavior of the method.
For that reason, we believe it is just an artifact of our analysis.

We now turn to the analysis of the algorithm. We define the following events:

Aslow(t) :=
{
∥xt+1 − x⋆∥2 ≤ (1− ρ) ∥xt − x⋆∥2

}
, (33a)

Afast(t) :=
{
∥xt+1 − x⋆∥2 ≤ (1− ρ) ∥xt − x⋆∥2

}
, (33b)

Bslow(t) :=
{γ0

2
≤ ∥xt∥ ≤ 2 ∥x⋆∥

}
, Bfast(t) :=

{1

2
∥x⋆∥ ≤ ∥xt∥ ≤ 2 ∥x⋆∥

}
. (33c)
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We also recall that x0 = 0 and f⋆ = 0 throughout. Our analysis is inductive: initially,

∥x1 − x⋆∥2 ≤ (1− γ0) ∥x⋆∥2 , where γ0 :=
1

30π ∥x⋆∥
. (34)

The following Lemma contains a formal proof of (34).

Lemma B.1 (Properties at initialization) Suppose ai
i.i.d.∼ N (0, Id) and let

v0 = −
1

m

m∑
i=1

ai1{⟨ai, x⋆⟩ > 0} ∈ ∂f(x0).

Then, if m ≳ d ∥x⋆∥2 and η ≤ 1
3
√
π

, the following holds with probability 1− 2e−d:

⟨v0, x0 − x⋆⟩ ≥ ∥x⋆∥
(√

1

2π
−
√

2d

m

)
, (35a)

∥x1 − x⋆∥2 ≤
(
1− η

10
√
π ∥x⋆∥

)
∥x⋆∥2 . (35b)

Proof The inclusion v0 ∈ ∂f(x0) can be verified by the chain rule. For (35a), we write

⟨v0, x0 − x⋆⟩ =
1

m

m∑
i=1

⟨ai, x⋆⟩+

(d)
= ∥x⋆∥ ·

1

m

m∑
i=1

(βi)+,

where βi
i.i.d.∼ N (0, 1). For the latter sum, we calculate

E

[
1

m

m∑
i=1

(βi)+

]
=

√
1

2π
.

Moreover, the sum is 1√
m

-Lipschitz with respect to the random parameters:∣∣∣∣∣ 1m
m∑
i=1

(βi)+ −
1

m

m∑
i=1

(β̄i)+

∣∣∣∣∣ ≤ 1

m

m∑
i=1

|βi − β̄i| =
1

m
∥β − β̄∥1 ≤

1√
m
∥β − β̄∥ ,

using the fact that x 7→ max(x, 0) is 1-Lipschitz and norm equivalence. Consequently, the Gaussian
Lipschitz concentration inequality [29, Theorem 5.2.2] yields

P
(∣∣∣∣⟨v0, x0 − x⋆⟩ −

∥x⋆∥√
2π

∣∣∣∣ ≥ ∥x⋆∥ · t) ≤ 2 exp

(
−mt2

2

)
.

Setting t =
√

2d
m above yields (35a). For (35b), we will require an auxiliary result, whose proof is

deferred to Appendix D.

16



NONLINEAR CT RECONSTRUCTION

Claim 4 Suppose that m ≳ d ∥x⋆∥2 and ∥x⋆∥ ≥ 1. Then

P
(
f(0) ≤ 1

5

)
≤ exp (−d) . (36)

With Claim 4 at hand, we have the following chain of inequalities:

∥x1 − x⋆∥2

= ∥x⋆∥2 +
η2f(0)2

∥v0∥2
+ 2η

f(0)

∥v0∥2
⟨v0, x⋆⟩

≤ ∥x⋆∥2 −
ηf(0)

∥v0∥2
(
2

(√
1

2π
−

√
2d

m

)
∥x⋆∥ − ηL ∥x⋆∥

)
((35a) + Prop. A.1)

≤ ∥x⋆∥2 −
ηf(0)

∥v0∥2
1√
π
∥x⋆∥

(
m ≳ d and η ≤ 1

3
√
π

)
≤ ∥x⋆∥2

(
1− η

5L
√
π ∥x⋆∥

)
((35b))

≤ ∥x⋆∥2
(
1− η

10
√
π ∥x⋆∥

)
,

using L ≤ 2 for m ≳ d in the last inequality.

We now turn to a sequence of supporting Lemmas. The first one shows that the norms of the
iterates remain bounded while the algorithm is in its “slow” phase.

Lemma B.2 We have that {Aslow(j)}j≤t =⇒ Bslow(t+ 1).

Proof We have the following chain of inequalities:

∥xt+1 − x⋆∥2
(Aslow(t))

≤ (1− ρ̄) ∥xt − x⋆∥2
(Aslow(j))1<j<t

≤ (1− ρ̄)t−1 ∥x1 − x⋆∥2
(Aslow(1))

≤ (1− ρ̄)t−1 (1− γ0) ∥x⋆∥2 .

Consequently, taking off squares and using the inequality
√
1− x ≤ 1− x

2 yields

∥xt+1 − x⋆∥ ≤
(
1− γ0

2

)
∥x⋆∥ .

Invoking Claim 6 with δ := γ0/2 yields the result.

The next Lemma shows the algorithm continues making progress (at a rate depending on ρ)
while the iterates remain within the tube B(0; 2 ∥x⋆∥) \ B(0; γ0/2).

Lemma B.3 We have that {Aslow(j)j<t,Bslow(t)} =⇒ Aslow(t) for any η ≤ µ
L and t ≥ 1.

17
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Proof Note that Bslow(t) guarantees xt ∈ B(0; 2 ∥x⋆∥) \ {0}. By (Aiming) and (8)

f(xt)− f⋆ ≥ µ ·min{∥xt − x⋆∥ , ∥xt∥}, and ⟨vt, xt − x⋆⟩ ≥ µ ∥xt − x⋆∥ .

At the same time, the events Aslow(j)j<t guarantee that

∥xt − x⋆∥2 ≤ (1− ρ̄)t−1 (1− γ0) ∥x⋆∥2 ≤ (1− γ0) ∥x⋆∥2 .

Invoking Lemma E.5 with δ := γ0 leads to

f(xt)− f⋆ ≥ µ ·min{∥xt − x⋆∥ , ∥xt∥} ≥ µ · γ0
4
∥xt − x⋆∥ . (37)

From Lemma A.1 and Equation (37), it follows that

∥xt+1 − x⋆∥2 ≤
∥∥∥∥xt − x⋆ − η

f(xt)

∥vt∥2
vt

∥∥∥∥2
= ∥xt − x⋆∥2 −

ηf(xt)

∥vt∥2
(2 ⟨vt, xt − x⋆⟩ − ηf(xt))

≤ ∥xt − x⋆∥2 −
ηf(xt)

∥vt∥2
(2µ ∥xt − x⋆∥ − ηL ∥xt − x⋆∥)

≤ ∥xt − x⋆∥2 − η
(µ
L

)2 γ0
4
∥xt − x⋆∥2

= ∥xt − x⋆∥2 (1− ρ) ,

using the range of η in the penultimate inequality. This proves Aslow(t).

The forthcoming Lemmas describe the behavior of the algorithm once iterates are in the ball
B(x⋆; 12 ∥x⋆∥). Lemma B.4 shows that the algorithm indeed enters this region after sufficient
progress; the remaining Lemmas mirror Lemmas B.2 and B.3.

Lemma B.4 We have {Aslow(j)}j<T0 =⇒ Bfast(T0).

Proof Iterating the inequalities furnished by the events Aslow(j) for j < T0 yields

∥xT0 − x⋆∥2 ≤ (1− ρ)T0 ∥x⋆∥2 ≤ exp (−T0ρ) ∥x⋆∥2 ≤
1

4
∥x⋆∥2 ,

using the fact that T0 = ⌈log(4)/ρ⌉. Appealing to Claim 6 with δ = 1/2 implies

∥xt∥ = sup
u∈Sd−1

⟨xt, u⟩ ≥
1

∥x⋆∥
⟨xt, x⋆⟩ ≥

1

2
∥x⋆∥ ,

showing the lower bound in Bfast(T0). For the upper bound, the reverse triangle inequality yields

∥xT0 − x⋆∥ <
1

2
∥x⋆∥ =⇒ ∥xT0∥ ≤

(
1 +

1

2

)
∥x⋆∥ ,

as expected. This completes the proof of Bfast(T0).

18
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Lemma B.5 We have that {Afast(j)T0≤j<t,Bfast(t)} =⇒ Afast(t) for any η ≤ µ
L and t ≥ T0.

Proof We start by noting that Bfast(t) combined with (8) guarantee that

f(xt)− f⋆ ≥ µ ·min{∥xt∥ , ∥xt − x⋆∥} ≥ µ ·min
{1

2
∥x⋆∥ , ∥xt − x⋆∥

}
.

Concurrently, {Afast(j)}T0≤j<t implies ∥xt − x⋆∥ ≤ ∥xT0 − x⋆∥ ≤ 1
2 ∥x⋆∥. Consequently,

f(xt)− f⋆ ≥ µ ∥xt − x⋆∥ .

The rest follows mutatis-mutandis from the proof of Lemma B.3.

Lemma B.6 We have {Afast(j)}T0≤j≤t =⇒ Bfast(t+ 1).

Proof On the events Afast(j) for T0 ≤ j ≤ t, we have

∥xt+1 − x⋆∥ ≤ (1− ρ)t−T0 ∥xT0 − x⋆∥ ≤
1

2
∥x⋆∥ .

We deduce the lower bound in Bfast(t+1) from the preceding display and Claim 6; the upper bound
follows from the reverse triangle inequality.

Appendix C. Clarke subdifferential of the loss

In this section, we provide an explicit calculation of ∂f(x). With the help of the chain rule, we have

∂f(x) =
1

m

m∑
i=1

sign(yi − hi(x)) · (−e−⟨ai,x⟩+)ai1{⟨ai, x⟩ ≥ 0}, (38a)

where sign(x) :=


1, x > 0,

−1, x < 0,

[−1, 1], x = 0,

, and 1{x ≥ 0} :=


1, x > 0

0, x < 0,

[0, 1] x = 0.

(38b)

Remark 1 Our implementation uses sign(0) = 0 and 1{x ≥ 0} = 1 if x = 0 in (38b).

Appendix D. Omitted proofs

Proof of Claim 1. Let (u, v) and (ū, v̄) ∈ Sd−1 × Sd−1 and consider the difference Zi(u, v) −
Zi(ū, v̄). Writing γ := 3 ∥x⋆∥, we obtain

∥Zi(u, v)− Zi(ū, v̄)∥ψ1
≤

∥∥(|⟨ai, v⟩| − |⟨ai, v̄⟩|)e−⟨ai,u⟩γ1{⟨ai, u⟩ ≥ 0}
∥∥
ψ1

+
∥∥(e−⟨ai,u⟩γ1{⟨ai, u⟩ ≥ 0} − e−⟨ai,ū⟩γ1{⟨ai, ū⟩ ≥ 0}) |⟨ai, v̄⟩|

∥∥
ψ1

+ ∥⟨ai, x⋆⟩− (I{⟨ai, u⟩ = 0− I{⟨ai, ū⟩ = 0}})∥
ψ1

≤ ∥|⟨ai, v − v̄⟩|∥ψ1
+ γ ∥|⟨ai, u− ū⟩| |⟨a, v̄⟩|∥ψ1
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≤ ∥v − v̄∥+ ∥u− ū∥ · γ

≲ (1 + γ)

∥∥∥∥[uv
]
−
[
ū
v̄

]∥∥∥∥ ,
using the fact that the mapping x 7→ e−γx1{x ≥ 0} is γ-Lipschitz on x ≥ 0, as well as the property
∥XY ∥ψ1

≤ ∥X∥ψ2
∥Y ∥ψ2

[29, Lemma 2.7.7]; in particular, using the latter property implies that
the last term in the decomposition satisfies

∥⟨ai, x⋆⟩− (I{⟨ai, u⟩ = 0} − I{⟨ai, ū⟩ = 0})∥
ψ1

≲ ∥I{⟨ai, u⟩ = 0}∥ψ2
+ ∥I{⟨ai, ū⟩ = 0}∥ψ2

= 0,

where the last line follows from [29, Proposition 2.5.2] and the identity

∥I{⟨ai, u⟩ = 0}∥Lp = (E [(I{⟨ai, u⟩ = 0})p])
1
p

= (E [I{⟨ai, u⟩ = 0}])
1
p

= 0.

From the Bernstein inequality [29, Corollary 2.8.3], it follows that

P (|Z(u, v)− Z(ū, v̄)| ≥ t) ≤ 2e
−cmin

{
mt2

(1+γ)2d2euc((u,v),(ū,v̄))
, mt
(1+γ)deuc((u,v),(ū,v̄))

}
, (39)

where Z(u, v) :=
1

m

m∑
i=1

Zi(u, v)− E[Zi(u, v)].

To argue that Z(u, v) has mixed tails, we let

d1 =
(1 + γ)deuc

m
, d2 =

(1 + γ)deuc√
m

, s = t · d1((u, v), (ū, v̄)) +
√
t · d2((u, v), (ū, v̄)).

Substituting in (39), and noting s ≥ td1((u, v), (ū, v̄)) and s2 ≥ td22((u, v), (ū, v̄)), we obtain

P (|Z(u, v)− Z(ū, v̄)| ≥ s) ≤ 2 exp

(
−cmin

{
s2

d22
,
s

d1

})
≤ 2e−ct.

Relabeling and adjusting constants yields the mixed tail condition. ■

Proof of Claim 2. Using Dudley’s entropy integral method yields

γ1(T , d1) =
1 + γ

m
γ1(T , ∥·∥)

≲
1 + γ

m

∫ ∞

0
log+N (T , u) du

=
1 + γ

m

∫ ∞

0
log+N (T , u)du

=
1 + γ

m

∫ 1

0
logN (T , u)du
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≲
(1 + γ)d

m

∫ 1

0
log

1

ε
dε

=
(1 + 3 ∥x⋆∥)d

m
,

using the fact that the ϵ-covering number of the unit sphere is (1/ϵ)d, thus the covering number of
their Cartesian product is (1/ϵ)2d. At the same time,

diamd1(T ) = sup
s,t∈T

d1(s, t)

=
1 + 3 ∥x⋆∥

m
sup
s,t∈T

deuc(s, t)

≤ 1 + 3 ∥x⋆∥
m

·
√

sup
u,ū∈Sd−1

∥u− ū∥2 + sup
v,v̄∈Sd−1

∥v − v̄∥2

≤ 2
√
2(1 + 3 ∥x⋆∥)

m
,

as expected. This completes the proof. ■

Proof of Claim 3. Proceeding as in the proof of Claim 2, we obtain

γ2(T , d2) =
1 + γ√

m
γ2(T , ∥·∥)

≲
1 + γ√

m

∫ ∞

0

√
logN (T , u)du

=
1 + γ√

m

∫ diam(T )

0

√
logN (T , u)du

≲
(1 + γ)

√
d

m

∫ 1

0

√
log

1

ε
dε

= (1 + 3 ∥x⋆∥)
√

d

m
.

Similarly, to control the diameter under d2 we obtain

diamd2(T ) = sup
s,t∈T

d2(s, t)

=
1 + 3 ∥x⋆∥√

m
sup
s,t∈T

deuc(s, t)

≤ 1 + 3 ∥x⋆∥√
m

·
√

sup
u,ū∈Sd−1

∥u− ū∥2 + sup
v,v̄∈Sd−1

∥v − v̄∥2

≤ 2
√
2(1 + 3 ∥x⋆∥)√

m
,

as expected. This completes the proof. ■

21



NONLINEAR CT RECONSTRUCTION

Proof of Claim 4. Note that when x = 0, yi − hi(0) = 1− exp (−⟨ai, x⋆⟩+). As a result,

f(0) =
1

m

m∑
i=1

1− exp (−⟨ai, x⋆⟩+)

= 1− 1

m

m∑
i=1

exp

(
−∥x⋆∥

〈
ai,

x⋆
∥x⋆∥

〉
+

)
(d)
= 1− 1

m

m∑
i=1

exp (−(βi)+ ∥x⋆∥) , βi ∼ N (0, 1). (40)

We now argue the sum in (40) concentrates. To that end, we first calculate its expectation:

E[f(0)] = 1− E[e−β+∥x⋆∥]

= 1− 1

2

(
1 + exp

(∥x⋆∥2
2

)
erfc

(∥x⋆∥√
2

))
=

1

2

(
1− exp

(∥x⋆∥2
2

)
erfc

(∥x⋆∥√
2

))
.

To show the sum concentrates, we use the Gaussian Lipschitz inequality. We have

1

m

m∑
i=1

(1− exp(−⟨ai, x⋆⟩+))−
1

m

m∑
i=1

(1− exp(−⟨ãi, x⋆⟩+))

=
1

m

m∑
i=1

exp(−⟨ãi, x⋆⟩+)− exp(−⟨ai, x⋆⟩+)

≤ 1

m

m∑
i=1

|⟨ai − ãi, x⋆⟩|

≤ ∥x⋆∥√
m

∥∥A− Ã
∥∥
F
, where A = [a1 . . . am]

T
, Ã := [ã1 . . . ãm]

T
,

using the fact that the function x 7→ exp(−x+) is 1-Lipschitz. We deduce that f(0) is Lipschitz
with modulus ∥x⋆∥√

m
with respect to the random vectors {ai}i=1,...,m. Invoking the Gaussian Lipschitz

concentration inequality [29, Theorem 5.2.2] yields

P
(
|f(0)− E [f(0)]| ≥ ∥x⋆∥

√
2d

m

)
≤ 2 exp (−d) . (41)

Finally, we bound E [f(0)] for ∥x⋆∥ ≥ 1. Indeed, Lemma E.2 shows exp(u
2

2 )erfc( u√
2
) is monotone

decreasing on u ∈ (0,∞). As a result, we can lower bound the expectation by

E [f(0)] =
1

2

(
1− exp

(∥x⋆∥2
2

)
erfc

(∥x⋆∥√
2

))
≥ 1

2

(
1−√e · erfc

(
1√
2

))
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≥ 1

2
(1− 0.53)

= 0.235,

after numerically evaluating
√
e · erfc(1/

√
2) ≤ 0.53. Adjusting m so that

√
2d
m ≤ 0.035 and

plugging it into (41) yields the desired lower bound. ■

D.1. Proof of Lemma 2.1

Proof The main stepping stone to (8) is the following “decrease principle” (see [8, Theorem 3.2.8]
for a version using the so-called proximal subdifferential):

Claim 5 (Decrease principle) Let f be locally Lipschitz and fix ρ, µ > 0. Suppose that

z ∈ B(x; ρ), ζ ∈ ∂f(z) =⇒ ∥ζ∥ ≥ µ, (42)

Then the following inequality holds:

inf
z∈B(x;ρ)

f(z) ≤ f(x)− ρµ. (43)

Before proving Claim 5, we show how it implies the conclusion in (8). Indeed, suppose the conclu-
sion were false; then, for some x ∈ B(x⋆; ∥x⋆∥), there is ρ > 0 such that

min (∥x− x⋆∥ , ∥x∥) > ρ >
f(x)− f⋆

µ
.

From Lemma E.5 and ∥x∥ ≤ 2 ∥x⋆∥ it follows that

min (∥x− x⋆∥ , ∥x∥ ,dist(x,Bc(0; 3 ∥x⋆∥)) = min(∥x− x⋆∥ , ∥x∥) > ρ >
f(x)− f⋆

µ
. (44)

At the same time, since min(·) is associative, we have that

min(∥x∥ ,dist(x,Bc(0; 3 ∥x⋆∥))) = dist (x, (B(0; 3 ∥x⋆∥) \ {0})c) .
Consequently, it follows that

B(x; ρ) ⊂ B(0; 3 ∥x⋆∥) \ {0}, ∥x− x⋆∥ > ρ.

The second conclusion in the display above implies that x ̸= x⋆. Therefore,

x ∈ B(0; 3 ∥x⋆∥) \ {0, x⋆} (Aiming)
=⇒ min

v∈∂f(x)
∥v∥ ≥ µ.

As a result, invoking Claim 5, we obtain

0 ≤ inf
x̄∈B(x;ρ)

f(x̄)− f⋆ ≤ (f(x)− f⋆)− ρµ
(44)
< 0, (45)

which is a contradiction with our assumption that (8) fails; therefore, (8) must hold.
Proof [Proof of Claim 5] It remains to prove Claim 5. Since this is essentially the same as [8,
Theorem 3.2.8], with the proximal subdifferential replaced by the Clarke subdifferential, it suffices
to repeat its proof with a single modification: instead of applying the version of the mean-value
inequality from [8, Theorem 3.2.6], we invoke [7, Theorem 4.1], which is valid for the Clarke
subdifferential.

This completes the proof of the Lemma.
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Appendix E. Technical results

Lemma E.1 For X ∼ N (0, 1), we have that

E
[
e−cX1{X ≥ 0}

]
=

1

2
exp

(
c2

2

)
erfc

(
c√
2

)
, (46a)

E
[
e−cXX+

]
=

1

2

(√
2

π
− c exp

(
−c2

2

)
erfc

(
c√
2

))
. (46b)

Proof The first expectation is the integral

E
[
e−cX1{X ≥ 0}

]
=

∫ ∞

0

1√
2π

exp

(
−x2

2
− cx

)
dx

=

∫ ∞

0

1√
2π

exp

(
−
(
x2

2
+ cx+

c2

2

))
exp

(
c2

2

)
dx

= exp

(
c2

2

)∫ ∞

0

1√
2π

exp

(
−(x+ c)2

2

)
dx

= exp

(
c2

2

)∫ ∞

c√
2

1√
π
exp

(
−z2

)
dz (z ← x+ c√

2
)

= exp

(
c2

2

)
1

2
· 2√

π

∫ ∞

c√
2

exp
(
−z2

)
dz

=
1

2
exp

(
c2

2

)
erfc

(
c√
2

)
,

using the definition of erfc in the last equality; this proves (46a). The second expectation is

E
[
e−cXX+

]
=

∫ ∞

0

x√
2π

exp

(
−x2

2
− cx

)
dx

=

∫ ∞

0

(x+ c)√
2π

exp

(
−x2

2
− cx

)
dx− c ·

∫ ∞

0

1√
2π

exp

(
−x2

2
− cx

)
dx

= exp

(
c2

2

)∫ ∞

c√
2

z ·
√

2

π
exp

(
−z2

)
dz − c

2
exp

(
c2

2

)
erfc

(
c√
2

)
,

recognizing the integral from (46a) in the second term. Note that

d

dz
e−z

2
= −2ze−z2 =⇒

∫ ∞

0
z ·

√
2

π
e−z

2
dz = −

√
2

π

1

2

{
e−z

2
}∞

c√
2

=
1

2
exp

(
−c2

2

)√
2

π
,

cancelling out the leading exp(c2/2); this proves (46b).

Lemma E.2 The function f(x) := exp(x2) · erfc(x) is monotone decreasing for x ≥ 0.
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Proof The first derivative of f is equal to

f ′(x) = 2x · exp(x2)erfc(x)− 2√
π
.

We now use the inequality erfc(x) ≤ 2e−x2

√
π(x+
√
x2+4/π)

, which yields

f ′(x) ≤ 2x · 2√
π
· 1

x+
√
x2 + 4/π

− 2√
π

<
4x√
π
· 1

2x
− 2√

π

≤ 0,

which completes the proof of the claim.

Lemma E.3 The function φ(x) := x exp(x2) · erfc(x) is monotone increasing for x ≥ 0.

Proof The first derivative of φ is

φ′(x) = exp(x2)(2x2 + 1)erfc(x)− 2x√
π

Clearly, φ′(0) > 0. Now for any x > 0, we have

ex
2
erfc(x) ≥ 2√

π(x+
√
x2 + 2)

=
2√
π

1

x
(
1 +

√
1 + 2

x2

)
(♯)
>

2

x
√
π

1

2 + 1
x2

=
2√
π

1

2x+ 1
x

=
2x√
π

1

2x2 + 1
,

where (♯) follows from
√
1 + x < 1 + x

2 , valid for any x > 0. Finally, multiplying with (2x2 + 1)
and subtracting 2x/

√
π yields φ′(x) > 0 for any x > 0, completing the proof.

Lemma E.4 For any x ≥ 1, the following bound holds:

x exp

(
x2

2

)
erfc

(
x√
2

)
≤

√
2

π

(
1− 1

1 + πx2

)
. (47)
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Proof Starting from the known inequality

erfc(x) ≤ 2e−x
2

√
π(x+

√
x2 + 4

π )
,

we successively obtain

x exp(x2/2)erfc(x/
√
2) ≤ 2x√

π

1

x√
2
+

√
x2

2 + 4
π

=
2
√
2√
π

1

1 +
√
1 + 8

πx2

≤ 2
√
2√
π

1

2 + 2
πx2

=

√
2

π

1

1 + 1
πx2

,

where the last inequality is due to the fact that

√
1 + y2 ≥ 1 +

y2

4
, ∀y ∈ [0, 1].

Finally, we rewrite the last fraction as

1

1 + 1
πx2

=
1 + 1

πx2

1 + 1
πx2

−
1
πx2

1 + 1
πx2

= 1− 1

πx2 + 1
.

This completes the proof of (47).

Lemma E.5 Suppose that x satisfies ∥x− x⋆∥2 < (1− δ) ∥x⋆∥2. Then

min (∥x− x⋆∥ , ∥x∥ ,dist(x,Bc(0; 3 ∥x⋆∥))) ≥ min{1, δ

2
√
1− δ

} · ∥x− x⋆∥ .

Proof We have the following sequence of inequalities:

dist(x,Bc(0; 3 ∥x⋆∥)) =
∥∥x− projBc(0;3∥x⋆∥)(x)

∥∥
=

∥∥x− x⋆ + x⋆ − projBc(0;3∥x⋆∥)(x)
∥∥

≥
∥∥x⋆ − projBc(0;3∥x⋆∥)(x)

∥∥− ∥x− x⋆∥
≥

∥∥x⋆ − projBc(0;3∥x⋆∥)(x⋆)
∥∥− ∥x− x⋆∥

>
∥∥x⋆ − projBc(0;3∥x⋆∥)(x⋆)

∥∥− ∥x⋆∥
≥ 2 ∥x⋆∥ − ∥x⋆∥
> ∥x− x⋆∥ ,
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which follow from ∥x− projC(y)∥ ≥ ∥x− projC(x)∥, our assumptions on ∥x− x⋆∥, and∥∥x⋆ − projBc(0;3∥x⋆∥)(x⋆)
∥∥ ≥ ∥∥projBc(0;3∥x⋆∥)(x⋆)

∥∥− ∥x⋆∥ ≥ 3 ∥x⋆∥ − ∥x⋆∥ = 2 ∥x⋆∥ .

This shows that ∥x− x⋆∥ < dist(x,Bc(0; 3 ∥x⋆∥)). At the same time,

(1− δ) ∥x⋆∥2 ≥ ∥x− x⋆∥2

= ∥x∥2 + ∥x⋆∥2 − 2 ⟨x, x⋆⟩
≥ ∥x⋆∥2 − 2 ⟨x, x⋆⟩

⇔
〈
x,

x⋆
∥x⋆∥

〉
≥ δ

2
∥x⋆∥ .

From the previous display and our assumption ∥x− x⋆∥ ≤
√
1− δ ∥x⋆∥, we deduce

∥x∥ = sup
u∈Sd−1

⟨x, u⟩

≥
〈
x,

x⋆
∥x⋆∥

〉
≥ δ

2
∥x⋆∥

=
δ

2

∥x⋆∥
∥x− x⋆∥

· ∥x− x⋆∥

≥ δ

2
√
1− δ

∥x− x⋆∥ ,

which completes the proof of the claim.

Claim 6 For any x satisfying ∥x− x⋆∥ ≤ (1− δ) ∥x⋆∥, we have ⟨x, x⋆⟩ ≥ δ ∥x⋆∥2.

Proof The proof follows from the following inequality:

⟨x, x⋆⟩ = ⟨x− x⋆, x⋆⟩+ ∥x⋆∥2 ≥ ∥x⋆∥ (∥x⋆∥ − ∥x− x⋆∥) ≥ δ ∥x⋆∥2 .

using the bound on ∥x− x⋆∥ in the last step.
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