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Abstract

Computation in recurrent networks of neurons has been hypothesized to occur
at the level of low-dimensional latent dynamics, both in artificial systems and in
the brain. This hypothesis seems at odds with evidence from large-scale neuronal
recordings in mice showing that neuronal population activity is high-dimensional.
To demonstrate that low-dimensional latent dynamics and high-dimensional activity
can be two sides of the same coin, we present an analytically solvable recurrent
neural network (RNN) model whose dynamics can be exactly reduced to a low-
dimensional dynamical system, but generates an activity manifold that has a high
linear embedding dimension. This raises the question: Do low-dimensional latents
explain the high-dimensional activity observed in mouse visual cortex? Spectral
theory tells us that the covariance eigenspectrum alone does not allow us to recover
the dimensionality of the latents, which can be low or high, when neurons are
nonlinear. To address this indeterminacy, we develop Neural Cross-Encoder (NCE),
an interpretable, nonlinear latent variable modeling method for neuronal recordings,
and find that high-dimensional neuronal responses to drifting gratings and sponta-
neous activity in visual cortex can be reduced to low-dimensional latents, while the
responses to natural images cannot. We conclude that the high-dimensional activity
measured in certain conditions, such as in the absence of a stimulus, is explained
by low-dimensional latents that are nonlinearly processed by individual neurons.

1 Introduction

The mammalian cortex comprises a large number of neurons, which, in principle, should allow
it to use a high-dimensional neural code to represent sensory, motor, and cognitive information.
Nevertheless, multi-neuronal recordings in nonhuman primates [1–4] have suggested that cortical
populations perform computations by approximating low-dimensional dynamical systems [5, 6], with
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neuronal firing rates lying on a low-dimensional “neural manifold” [7]. In support of this hypothesis,
low-dimensional dynamics have been inferred from multi-neuronal recordings through a wide variety
of methods [8–23]; they spontaneously emerge in recurrent neural networks (RNNs) trained to solve
behavioral tasks [2, 24–34]; and they appear in several theoretical models of noise-robust neuronal
population dynamics [35–38]. A result that might at first sight challenge the low-dimensional
dynamical systems hypothesis is that visual cortical population activity in mice has high linear
dimension [39, 40] with shared neuronal covariance having a heavy-tailed eigenspectrum (see also
[41] and [42] for recordings in cerebellum and across cortex, respectively). In particular, the shared
covariance eigenspectrum has a power-law tail with an exponent close to 1 (α ≈ 1.04) [39] for
responses to natural images and an exponent of α ≈ 1.14 for spontaneous activity [40]. Are these
two views on the dimensionality of population activity compatible? Namely, can a low-dimensional
dynamical system produce a neural manifold that has a high linear embedding dimension?

Here, we first construct a solvable RNN model that reconciles the low- and high-dimensional
perspectives on population activity by carefully disambiguating the linear dimension of the system
before and after the neurons’ nonlinearity, which we refer to as the pre- and post-activation dimension,
respectively. This dichotomy refines the usual distinction between linear and “intrinsic” dimension
[39, 43, 44], since the intrinsic dimension of a system is the same before and after any continuous,
injective nonlinearity. Using the notions of pre- and post-activation linear dimensions, we show
that our RNN can be exactly reduced to a low-dimensional dynamical system in the space of pre-
activations, making the pre-activations low-dimensional. Then, we show that these latent dynamics
generate high-dimensional post-activation activity that has a power-law covariance eigenspectrum.
(In this work, dimension will always refer to linear dimension, unless stated otherwise.)

Before analyzing experimental recordings, we revisit the spectral theory of infinite-width neural
networks (random feature kernels) [45–47] to quantitatively relate the pre-activation dimension,
the neuronal activation function, and the post-activation covariance eigenspectrum. This three-way
relationship tells us that high-dimensional activity is consistent with both low- and high-dimensional
pre-activations. To uncover the pre-activation dimension of high-dimensional activity in visual cortex,
we perform two-photon calcium recordings of tens of thousands of neurons from mouse visual cortex,
and infer the pre-activation dimension using the Neural Cross-Encoder (NCE), an interpretable,
nonlinear latent variable modeling method which models the activity of each neuron as a simple
linear-nonlinear readout of low-dimensional latents. NCE reveals that both the responses to drifting
gratings and spontaneous activity can be well approximated by low-dimensional pre-activations, but
that responses to natural images cannot. This suggests that the encoding of natural images in visual
cortex is already high-dimensional in the space of pre-activations.

2 Solvable RNN Model

To demonstrate how high-dimensional post-activations can arise from low-dimensional pre-activation
dynamics, we first present a solvable RNN model whose autonomous dynamics is low-dimensional
in the space of pre-activations, but high-dimensional in the space of post-activations, with the
post-activations producing a power-law covariance eigenspectrum.

We consider an RNN consisting of N rate-units (neurons). The pre-activation xi of neuron i evolves
according to

ẋi = −xi +
1

N

N∑
j=1

Wijϕ(xj), (1)

where Wij denotes the synaptic weight from neuron j to neuron i, and ϕ : R → R≥0 is a nonlinear
activation function converting the pre-activations into post-activations (firing rates). To define
the weights Wij , we randomly place neurons on a ring [48–50] by assigning to each neuron i an
independent and uniformly distributed angle θi ∈ [0, 2π) (Fig. 1A). The weights Wij are then given
by the following shifted cosine function:

Wij := J cos(θi − θj −∆). (2)

The shift ∆ in Eq. (2) makes the weights asymmetric, with neurons sending their strongest excitatory
output to neurons located at an angle ∆ counter-clockwise (Fig. 1B). To make the model solvable,
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we assume that the activation function ϕ is the Heaviside step function Θ, i.e.,

ϕ(x) = Θ(x) =

{
1, if x ≥ 0,

0, if x < 0.
(3)
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Figure 1: Solvable RNN model. (A) Schematic of the RNN model. (B) Shifted cosine function
defining the position-dependent synaptic weights Wij . (C) Factorization of weight matrix W as
the product of a 2-column matrix U and two-row matrix VT. (D) Vector field of the dynamics of
the latent variables, κ1 and κ2, in the large-network limit. The latent dynamics produces a stable
limit cycle on the unit circle. (E) Graphical representation of the RNN’s effective dynamics. (F)
Post-activation covariance eigenspectrum. The eigenvalues follow a power-law with decay exponent
α = 2. They are normalized such that the largest eigenvalue is 1. The activation function ϕ used is
the step function defined in Eq. (3). Shown in D and F are theoretical values given by Eqs. (5) and (8),
respectively, which closely match simulations of large networks (see Appendix C).

2.1 Low-dimensional pre-activation dynamics

The RNN model defined above has low-dimensional pre-activation dynamics because the weight
matrix W has rank 2. Indeed, using an elementary trigonometric identity,2 W can be factorized as
the outer product W = UVT of two N × 2-matrices (Fig. 1C), with

U :=

 cos(θ1) sin(θ1)
...

...
cos(θN ) sin(θN )

 and V := J

 cos(θ1 +∆) sin(θ1 +∆)
...

...
cos(θN +∆) sin(θN +∆)

 .

Then, following Beiran et al. [51], we can reduce the N -dimensional system, Eq. (1), to a 2-
dimensional system describing the dynamics of the latent variables κ := U†x, where † denotes the
pseudoinverse and x the N -dimensional vector of pre-activations (x1, . . . , xN )T. The dynamics of
the latent variables follows

κ̇ = −κ+ 1
NVTϕ(Uκ),

2cos(α− β) = cos(α) cos(β) + sin(α) sin(β)
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where ϕ is applied element-wise to the N -dimensional vector of pre-activations Uκ = x. In the
equation above, the vector ϕ(Uκ) = ϕ(x) represents the joint post-activations (firing rates) of the N
neurons.

Taking the number of neurons N → ∞ yields a neural field limit [52] where the sum over neurons
becomes an integral over the ring,

κ̇ = −κ+

∫ 2π

θ=0

v(θ)ϕ (u(θ) · κ) dθ
2π

, (4)

with u(θ) := (cos(θ), sin(θ))T and v(θ) := J(cos(θ +∆), sin(θ +∆))T. Equation (4) describes
the dynamics of the latent variables κ as the solution to a 2-dimensional dynamical system whose
vector field involves an integral over the “circuit structure” [52] (the ring).

Since ϕ is the step function, the integral over the ring in Eq. (4) can be solved, and we obtain the
solvable 2-dimensional dynamical system,

κ̇ = −κ+

(
1 −1
1 1

)
κ

∥κ∥
, (5)

when J := π
√
2 and ∆ := π/4 (derivation presented in Appendix A). Equation (5) generates a stable

limit cycle over the unit circle (Fig. 1D), which implies that the latent variables κ will eventually
rotate on the unit circle indefinitely. In Appendix E, we provide other examples of low-rank RNNs
for which the latent dynamics can be expressed in a tractable form similar to Eq. (5).

Neuronal activity, modeled here as the post-activations ϕ(Uκ), are simple linear-nonlinear readouts
of latent variables κ (Fig. 1E). Hence, we have effectively reduced the dynamics of the RNN,
Eq. (1), to a 2-dimensional latent dynamical system. We will say that neuronal activity is a linear-
nonlinear function of latent variables if it is given by the composition of a linear mapping (U) and an
element-wise, nondecreasing nonlinear mapping (ϕ).

2.2 Post-activations produce a power-law eigenspectrum

Since the dynamics of the latent variables is solvable in the large-network limit, and rotates on the
unit circle, we can compute the correlation between the post-activations of two neurons. For any
pair of neurons i and j, with positions θi and θj on the ring, respectively, the correlation of their
post-activations Cij is, in the long-recording limit, given by

Cij =
2

π
(π − |θi − θj |)− 1, (6)

where |θi−θj | := cos−1(cos(θi−θj)) is the absolute angle difference θi and θj (derivation presented
in Appendix B).

We can find the eigenvalue spectrum of post-activations by noting that as the number of recorded
neurons M → ∞, the eigenvalues of the M × M correlation matrix C(M) defined by Eq. (6)
converge to the eigenvalues of an integral operator. Since the angles θi are independently and
uniformly sampled on circle [0, 2π), the correlation matrix C(M) is a so-called Euclidean random
matrix [53], that is, a matrix whose entries are given by the pairwise distances between randomly
sampled points in a given space. Writing λ

(M)
1 ≥ λ

(M)
2 ≥ · · · ≥ λ

(M)
N for the ranked eigenvalues of

the matrix C(M), random matrix theory [54, 55] tells us that, as M → ∞, the scaled eigenvalues
{λ(M)

n /M}Mn=1, converge (in a ℓ2 sense) to the eigenvalues of the integral operator,

f(θ) 7→
∫ 2π

θ′=0

[
2

π
(π − |θ − θ′|)︸ ︷︷ ︸
0-th arc-cosine kernel

−1

]
f(θ′)

dθ′

2π
. (7)

The eigenvalues of this integral operator can be computed analytically. In Eq. (7), we have highlighted
the presence of the 0-th arc-cosine kernel k0(θ, θ′) := π − |θ − θ′| of Cho and Saul [45], which is
well-known in machine learning, and whose eigenvalues have been computed in [46]. In short, by the
rotational invariance of k0, we have that, for any positive integer m, the functions θ 7→ cos(mθ) and
θ 7→ sin(mθ) are orthogonal eigenfunctions of the operator Eq. (7) sharing the same eigenvalue,

2

π2

∫ π

θ=0

(π − θ) cos(mθ)dθ =
2

π2

1− (−1)m

m2
.
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Using this result, we obtain that the ranked eigenvalues λ1 ≥ λ2 ≥ . . . of the operator Eq. (7) are
given by

λn =
4

π2
(2⌊(n− 1)/2⌋+ 1)−2, ∀n ∈ N∗, (8)

that is, eigenvalues come in identical pairs that decay exactly as a power law with decay exponent
α = 2 (Fig. 1F). Hence, post-activations are high-dimensional in the sense that their covariance
eigenspectrum has a heavy tail [39]. Although the model presented assumed, for simplicity, a cosine
lateral connectivity on the ring, Eq. (2), similar results can be derived for more general lateral
connectivity; see Appendix D for an example.

In summary, this solvable model shows that low-dimensional dynamics in the space of pre-activations
can generate high-dimensional post-activations. The heavy tail of the covariance eigenspectrum
implies that post-activations are not confined to any finite-dimensional linear subspace. Formally, the
smallest vector space containing the post-activations generated by our model has the same size as the
infinite-dimensional reproducing kernel Hilbert space associated with the kernel k0. We stress that,
in this model, the heavy tail of the post-activation eigenspectrum is not due to noise, since we used a
deterministic, non-chaotic RNN. Also, all the results presented above remain exact if the rate-units in
Eq. (1) are replaced by linear-nonlinear-Poisson neurons, as spike noise cancels out in the limits we
consider [38, 52].

3 Post-activation eigenspectrum depends on pre-activation dimension and
activation function

To shed light on the relationship between the post-activation eigenspectrum, pre-activation dimension,
and the activation function ϕ, we now turn to a more general setup, which allows us to relax some of
the strong assumptions of the solvable model (Fig. 1E). First, we allow the number of latent variables
d to be greater than 2, assuming that the latent variables, henceforth denoted by z (instead of κ),
are uniformly distributed on the unit sphere Sd−1 in Rd. We assume that the pre-activations of the
network are determined by passing the latent activity through a N × d feedforward weight matrix U
with i.i.d. standard normal entries. In this setup (Fig. 2A), we call d the pre-activation dimension, as
it sets the linear dimensionality of the pre-activations. In the solvable model of Sec. 2.2, for example,
the pre-activation dimension was d = 2 (Fig. 1E). Finally, we replace the step function, Eq. (3), by
the general rectified power activation function

ϕp,c(x) := [max(0, x+ c)]p, (9)

where the activation parameter p ∈ R≥0 is a nonnegative real value and the bias c ∈ R. (By
convention, ϕ0,c(x) := Θ(x+ c).)

This setup can be analyzed within the framework of random feature kernels (see [56, Sec. 9.5]).
Denoting µd−1 the uniform probability measure on the sphere Sd−1, let us take T independent latent
variable samples z1, . . . , zT from µd−1, and define the N × T post-activation matrix A(N,T ) :=
(ϕp,c(Uz1), . . . , ϕp,c(UzT )). In the limits N → ∞ and T → ∞ taken successively, the covariance
eigenspectrum of A(N,T ) converges (when properly scaled) to the eigenvalue spectrum of the integral
operator

f(z) 7→
∫
Sd−1

Kp,c,d(z, z
′)f(z′)dµd−1(z

′), (10)

where Kp,c,d : Sd−1 × Sd−1 → R is the random feature kernel

Kp,c,d(z, z
′) := Eξ∼N (0,Id)[ϕp,c(ξ · z)ϕp,c(ξ · z′)] (11)

(see [46, 56] or Appendix F for more details).

Drawing intuition from Fourier analysis, the smoothness of a function (here the kernel) should be
related to the decay rate of its Fourier transform (here the eigenspectrum)—the smoother the function,
the faster the decay rate of its Fourier transform. Known results on the eigenvalues of random feature
kernels for the cases p = 0 and p = 1, with c = 0, confirm this intuition and show how it extends to
general integers d [46]. Extrapolating those results to any nonnegative p and any real c, we get the
following conjecture.
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Figure 2: Eigenspectrum of the random feature kernel (11). (A) Schematic of the feedforward
setup (in the case of three input variables). (B) Comparison between simulations of the eigenspectrum
decay rate α and the theoretical value predicated by Conjecture 1, for p ∈ [0, 2] and d = 2, 3, 4. Up to
finite-size effects (number of neurons N = 2 ·104 and number of inputs T = 104), simulations match
the theoretical prediction α = 1 + 2p+1

d−1 . (In this plot, c = 0.) (C) Simulations of the eigenspectrum
for various bias parameter c, while keeping p and d fixed. (In this plot, p = 0 and d = 2, which gives
α = 2. Eigenvalues are normalized as in Fig. 1F.)

Conjecture 1. For any p ∈ R≥0, c ∈ R, and any integer d ≥ 2, the ranked eigenvalues λ1 ≥ λ2 ≥
. . . of the integral operator (10) obey the following power-law decay:

λn ≍ n−α with α = 1 +
2p+ 1

d− 1
, (12)

where an ≍ bn means limn→+∞ an/bn = C ∈ (0,+∞).

To the best of our knowledge, Conjecture 1 is not a straightforward consequence of any existing result
in theoretical machine learning [47, 57, 58] or harmonic analysis [59–62], hence our presentation
of Eq. (12) as a conjecture. Note that when the activation parameter p is an integer, ϕp,c is p-times
weakly differentiable, that is, the first p weak derivatives3 of ϕp,c are all locally integrable. This, and
the fact that the bias c does not affect the decay rate, suggest a further extension of the conjecture
to more general activation functions, with p replaced by the weak differentiability of the activation
function.

We tested Conjecture 1 numerically by performing PCA on large post-activation matrices A(N,T ).
The linear and continuous dependence of the decay exponent α on the activation parameter p predicted
by Eq. (12) was confirmed in simulations (Fig. 2B). Simulations also confirmed that the bias c of the
activation function does not affect the decay rate (Fig. 2C), a fact already mentioned in [63, 64].

To summarize, the spectral theory of random feature kernels suggests a three-way relationship between
the power-law tail exponent of the post-activation eigenspectrum, the pre-activation dimension, and
the activation function. This relationship should hold when we can consider the neurons as linear-
nonlinear functions of the latent vector, with weights that vary randomly and independently between
neurons. The relationship suggests that, when high-dimensional neuronal activity (modeled here as
post-activations) is observed [39, 40], two scenarios are possible: high-dimensional activity could
arise from nonlinear transformation of low-dimensional latent states, or it could reflect pre-activations
that are already high-dimensional. To distinguish these two scenarios, we propose, in what follows, a
method for inferring the pre-activation dimension of neuronal activity in experimental recordings.

4 Latent Variable Modeling of Neuronal Recordings

To estimate the input dimensionality of neuronal activity in mouse visual cortex (as defined in Sec.
3) we developed the Neural Cross-Encoder (NCE), a nonlinear generalization of Reduced Rank
Regression. Using NCE, we show that high-dimensional neuronal responses to drifting gratings

3The k-th weak derivative of a function f : R → R is the defined as the function g ∈ L1
loc that satisfies∫

R φ(x)g(x)dx = (−1)k
∫
R φ

(k)(x)f(x)dx, for all φ ∈ C∞
c (R).
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are well-approximated by a linear-nonlinear readout of a low dimensional latent variable, whereas
responses to natural images are not. Finally, we apply NCE to high-dimensional spontaneous
dynamics in the cortex and find that they are well-approximated by a linear-nonlinear readout of
low-dimensional latents.

4.1 Experimental Data

We conducted large-scale volumetric two-photon microscopy on awake, adult mice during visual
stimulation and spontaneous activity. We targeted primary and higher visual cortices with a Light
Beads Microscope [65], and extracted deconvolved activity traces for 19,223 ± 2,948 neurons using
Suite3D [66] as described in Appendix H. Recordings were performed in three stimulus conditions:
(1) responses to 320 full-field drifting grating stimuli with 2-14 repeats each; (2) responses to 1866
natural images with 2 repeats each; (3) spontaneous activity in the absence of stimuli for 10-15
minutes.

4.2 Neural Cross-Encoder (NCE)

The Neural Cross-Encoder (NCE) divides neurons randomly into two sets: a source set and a target
set. It predicts the activity bt of the target set from the source set at via a non-linear readout of a
set of latents, zt (Fig. 3A). NCE uses a multi-layer feedforward encoder E that ends in a bottleneck
layer whose activity zt = E(at) represents a low-dimensional latent state estimated from the source
neurons. The reason to use this rather than an autoencoder, which predicts one set of neurons from
themselves, is to discard variability that is not shared across neurons. The NCE we used here has a
single power-ReLU output layer, matching the setup of section 3, and a 3-layer encoder allowing
flexible estimation of latent variables, so that the number of latent variables can be readily interpreted
as the pre-activation dimension. We train NCE with stochastic gradient descent on source-target
activity pairs as described in Appendix I. When all nonlinearities are removed, NCE becomes
equivalent to Reduced Rank Regression [67]. When predicting stimulus-driven activity, we pair the
activity of source and target neurons on different repeats of the same stimulus, to also discard shared
variability that is not related to the stimulus [39].

Linear-nonlinear readout. The recorded activity of a set of target neurons at time t, b̃t ∈ RB ,
is modeled as a weighted sum of the latent variables, zt ∈ Rd, passed through a nondecreasing
nonlinearity:

bt = ϕp,c(Uzt) + r. (13)
Here, ϕp,c is the rectified power activation function, defined in Eq. 9, with a power parameter p that is
constant across neurons, a pre-activation bias that varies across neurons encoded by an N -dimensional
vector c, and a post-activation added bias r to account for non-zero baseline firing rates. The decoder
parameters {p, c,U, r} are learned alongside the encoder parameters of E . The fact that the decoder,
Eq. (13), has a single-layer is crucial as it allows us to interpret the latents (zt) as linear factors of
the observed neurons’ pre-activations (Uzt). It is this constrained decoder that allows us to infer
the pre-activation dimension of neuronal activity; in comparison, a multi-layer decoder as used in
[13, 23] would infer something closer to the intrinsic dimension of neuronal activity, which is not our
goal.

4.3 Results

NCE identifies the latent dimensionality of simulated data. To validate that NCE can identify
the pre-activation latent variables, we test it on simulated data generated from the toy model in
Sec. 2 with a ReLU readout (p = 1) and d = 2. NCE recovers the true latents up to a scaling and
a shift (Fig 3B). Moreover, NCE can explain all of the variance in the population with only two
pre-activation dimensions, while the corresponding linear model (Reduced Rank Regression) requires
more dimensions (Fig 3C).

Pre-activation dimension is low for grating responses, high for natural image responses. We
next consider the pre-activation dimensional of visual stimulus responses of visual cortex neurons.
To ensure that the NCE focused on the stimulus responses, and not correlated ongoing activity such
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Figure 3: Validation of the Neural Cross Encoder (A) Schematic of the NCE. B Simulated
pre-activation latents of a two-dimensional toy model (top), and the inferred pre-activation latents
using NCE (bottom). C Reconstruction score as a function of pre-activation dimensionality for Linear
(RRR) and NCE models on simulated data.

as spontaneous activity or encoding of movements, the activity of the target cells and the source cells
were taken from different repeats of the same stimuli. In the case of drifting gratings, for which
we know there is a low-dimensional latent variable (the grating orientation), an NCE model with
low-dimensional pre-activations accurately predicts neuronal responses (Fig. 4A,B). NCE requires
fewer dimensions (5.5 ± 1.2, mean ± std) than the corresponding linear model (13.9 ± 3.0) to
predict 95% of the explainable variance (defined as the maximum variance explained across all d in
both models). On the other hand, NCE models with low pre-activation dimension are not sufficient
to predict responses to natural images (Fig. 4C,D), requiring 93.9 ± 6.0 dimensions to reach the
threshold, suggesting that natural images produce high-dimensional representations in the space of
pre-activations (but see Limitations below). Linear models only account for a smaller fraction of the
total variance (Fig. 4D), and therefore underestimate the dimensionality of natural image responses
(48.0± 13.1).

Spontaneous activity has low pre-activation dimension. Spontaneous activity is well predicted
by NCE with low pre-activation dimension (Fig. 4E,F). Across all recordings, spontaneous activity of
1000 target neurons has an estimated pre-activation dimension d of 7.0±1.0 (mean ± std.), somewhat
larger than grating responses but substantially lower than natural images responses (Fig. 4G,H). The
linear model finds a similar dimension (7.5± 2.0), though its performance deteriorates at high pre-
activation dimensions due to overfitting, while the NCE performance remains consistent (Fig. 4F).

These results indicate that visual cortex activity can be modeled as a linear-nonlinear transformation
of a latent vector, which is low-dimensional for grating responses and spontaneous activity, but
high-dimensional for natural image responses. In the case of grating responses, we find latents that
resemble the sine and cosine of the stimulus angle (Fig. 4A)—this is what one would expect to find if
neurons follow the canonical model of simple cells in visual cortex [68]. On the other hand, during
spontaneous activity, the dynamics of the latent variables are correlated with the running speed of the
mouse, and are perhaps related to its arousal state (see Appendix I.4).

5 Summary of Technical Contributions and Previous Works

Latent dynamics of low-rank RNNs Low-rank RNNs are tractable models of how the brain can
perform computations through low-dimensional population dynamics [36, 51, 69–72]. In particular,
the dynamics of certain low-rank RNNs, in the large-network limit, reduce to that of “effective
circuits”, i.e., dynamical systems describing the evolution of the latent variables [51, 52, 73]. A
limitation of these effective dynamical systems is that the expression of the vector field involves an
integral over the distribution of weights (the “circuit structure” [52]), making them somewhat opaque
and costly to solve numerically in general. In this work (Sec. 2.1 and Appendix E), we prove that, in

8



pr
ed

ic
tio

n
(d

 =
 3

)

Natural Images

la
te

nt
s

ac
tiv

ity
image identity0 950 3000 time (s)

Spontaneous

ac
tiv

ity
pr

ed
ic

tio
n

(d
 =

 3
)

la
te

nt
s

A. C.

H.

G.

E.

D. F.B.

3600 stimulus direction

la
te

nt
s

pr
ed

ic
tio

n
(d

 =
 3

)

Drifting Gratings

ac
tiv

ity

Fr
ac

tio
n 

of
 V

ar
ia

nc
e

Ex
pl

ai
ne

d 
(n

or
m

.)

Pre-Activation Dim (d)
2 32 512

0

1

NCE
Linear

Fr
ac

tio
n 

of
Va

ria
nc

e
Ex

pl
ai

ne
d 

(n
or

m
.)

Pre-Activation Dim (d)
2 32 512

0

1

NCE
Linear

Fr
ac

tio
n

of
Va

ria
nc

e
Ex

pl
ai

ne
d 

(n
or

m
.)

2 32 512
0

1

NCE
Linear

Pre-Activation Dim (d)

Pr
e-

A
ct

iv
at

io
n 

D
im

 (
d)

Fr
ac

tio
n 

of
 V

ar
ia

nc
e

Ex
pl

ai
ne

d 
(n

or
m

.)

Pre-Activation Dim (d)
1 16 256

0

1

grating
spont
natimg

grating spont natimg

10 1

10 2

grating (5.5±1.2)
spont (7.0±1.0)
natimg (93.9±6.0)

Figure 4: Pre-activation dimension in visual cortex depends on stimulus condition. (A) Rasters
of true (bottom) and predicted (top) neuronal activity, and estimated latents (middle) for 1000 example
neurons using an NCE with pre-activation dimension d = 3, for drifting grating responses. (B)
Fraction of variance explained as a function of pre-activation dimension for an example session of
grating responses. Plotted values are the mean across source/target selections for NCE (purple) and
Reduced Rank Regression (green). Shaded regions are the standard deviation across source/target
selections. All experiments contain 500 source and 1000 target neurons, and all scores are computed
on a held-out test set. (C,D) Same as A,B for natural image responses. (E,F) Same as A,B
for spontaneous activity. (G) Estimated pre-activation dimension d sufficient to capture 95% of
explainable variance in the NCE across the three conditions. Each point is the mean for a single
imaging session, error bars indicate the min/max across source/target selections. (H) Fraction of
variance explained by NCE models with varying pre-activation dimension (log scale) across the three
conditions. Each line represents a single imaging session.

several special cases that are beyond the case treated in [74], the integral over the weight distribution
can be solved, yielding simple exact equations for the latent dynamics.

Eigenvalue decay of random feature kernels In the infinite-width limit, two-layer neural networks
with random input weights behave like random feature kernels that depend on the distribution of input
weights and the activation function of the neurons in the hidden layer [56, Sec. 9.5]. This functional
perspective can be generalized to deep networks [45, 75] and constitute the basis of the Neural
Tangent Kernel formalism for studying learning dynamics [76]. When the activation function is the
ReLU, the decay rate of the eigenvalues has been proven to be polynomial [46, 47, 58, 64, 77, 78],
even when inputs are not assumed to be uniformly distributed on the sphere [58]; for general results
on dot-product kernels, see [57, 61, 63, 79, 80]. In this work, we propose a simple formula that links
the power-law exponent of the eigenvalue decay rate, the power of the rectified-power activation
function, and the input dimensionality. This formula, which goes beyond known results [46, 47, 64],
is presented as a conjecture that we test in simulations.

Latent variable modeling of neuronal activity While most latent variable models of neuronal
activity were originally developed for electrophysiological recordings [8–23], some are tailored for
calcium recordings [81–83]. These models vary in their mechanistic interpretability: The inferred
latents are either abstract variables, for example when the model’s mapping from latents to neuronal
activity involves a multi-layer neural network [13, 23], or they can be interpreted as linear factors of
the neurons’ pre-activations, as in [9, 10]. With nonlinear dimensionality reduction methods such as
CEBRA [84] or Rastermap [85], latent variables are also abstract as there is no explicit mapping going
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from the latents to neuronal activity. In this work (Sec. 4), we developed NCE, a latent variable model
for calcium recordings that models neuronal activity as an interpretable linear-nonlinear readout
of latent variables. NCE also uses a cross-encoding scheme, which allows it to discard variability
not shared across neurons. We demonstrate that NCE is capable of identifying a low-dimensional
pre-activation space even when the recorded neuronal activity has high linear dimension.

6 Discussion

Dimensionality of neural systems The solvable RNN model we proposed produces cyclic pop-
ulation dynamics that is low-dimensional in the space of pre-activations, and high-dimensional in
the space of post-activations (firing rates). Thus, an RNN can produce trajectories that are simulta-
neously low-dimensional and high-dimensional, depending on the variables being considered. In
this work, we focused on the notion of linear dimensionality and adopted an infinite-dimensional
Hilbert space formalism borrowed from kernel methods to characterize the linear dimensionality of
firing rate trajectories in the large-network limit. Of course, the “intrinsic” dimension of neuronal
activity is equal to 1, since the dynamics is periodic; this highlights the important distinction between
intrinsic and linear (or “embedding”) dimension of neuronal activity (see also [43, 44]). The type of
high-dimensional activity our model produces is computationally relevant: It can be exploited by a
downstream readout neuron to represent arbitrary periodic functions (see also [86]), or, following
the random readout approach of [87, 88], it can be used to represent a Gaussian process prior over
periodic functions (see Appendix G).

Two definitions of high-dimensional neuronal activity have been studied in neuroscience. Throughout
this work, we define high-dimensional neuronal activity to mean a covariance eigenspectrum with
a heavy tail that decays strictly faster that 1/n [39]. This definition is well-suited for systems
generating activity whose pairwise correlations do not converge to zero in the limit of large network
size. In contrast, random chaotic RNNs––solvable models whose pairwise correlations do converge
to zero––produce a different form of high-dimensional activity, where the eigenspectrum decays
slower than 1/n [89], reflecting noise that is not shared between neurons. While a comprehensive
comparison of these two types of high-dimensional activity is beyond the scope of this work, we
mention that the latter is relevant when one wants to study the noisiness of neuronal responses [90].

Pre-activations and subthreshold membrane potentials We developed NCE to disentangle the
linear dimension of neuronal activity and of the neurons’ pre-activations. We show that even when
activity is high-dimensional, it can be well-explained with low-dimensional pre-activations in the
case of grating responses and spontaneous activity. From a biological point of view, how should
we interpret the pre-activations inferred by NCE? If one assumes that the link between synaptic
integration and neuronal firing is well approximated by a simple nonlinear activation function in
cortical neurons, as NCE does, one could argue that pre-activations represent estimates of the
neurons’ synaptic inputs or subthreshold membrane potentials. This is an experimental prediction
that large-scale voltage imaging of neuronal populations [91] may make testable in the near future.

Limitations Training NCE, which is a non-convex optimization problem, can be challenging when
neural data is limited. The duration of imaging experiments is limited to 3.5 h, which yields only
a few thousand training examples per session for tens of thousands of neurons; thus, optimization
can get stuck in local minima. To facilitate training, we limit to fitting only 1000 highly responsive
neurons at a time, and use tools such as data augmentation and pretraining as described in Appendix I.
The fact that we were not able to accurately predict neuronal responses to natural images with a
low-dimensional NCE model does not necessarily exclude the possibility for such a model to exist,
and one could possibly find it with a larger training set or a different model class/hyperparameter
configuration. Note that this work did not revisit the problem of how to estimate the tail of the shared
covariance eigenspectrum from neuronal recordings, which is discussed in [39, 40, 92, 93].
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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Appendix

A Derivation of the latent dynamics Eq. (5) from Eq. (4)

To go from Eq. (4) to Eq. (5), we only have to solve the integral∫ 2π

θ=0

v(θ)ϕ(u(θ) · κ) dθ
2π

,

with u(θ) = (cos θ, sin θ)T and v(θ) = J(cos(θ +∆), sin(θ +∆))T. (The symbol · above denotes
the dot product.) Using the polar change of coordinate,

κ = ∥κ∥
(
cosϑ
sinϑ

)
, (14)

we have∫ 2π

θ=0

v(θ)ϕ(u(θ) · κ) dθ
2π

= J

∫ 2π

θ=0

(
cos(θ +∆)
sin(θ +∆)

)
ϕ

(
∥κ∥

(
cos θ
sin θ

)
·
(
cosϑ
sinϑ

))
dθ

2π

= J

∫ 2π

θ=0

(
cos(θ +∆)
sin(θ +∆)

)
ϕ (∥κ∥ cos(ϑ− θ))

dθ

2π
.

Recalling that ϕ is the Heaviside step function Θ, we have

J

∫ 2π

θ=0

(
cos(θ +∆)
sin(θ +∆)

)
ϕ (∥κ∥ cos(ϑ− θ))

dθ

2π
= J

∫ 2π

θ=0

(
cos(θ +∆)
sin(θ +∆)

)
Θ(∥κ∥ cos(ϑ− θ))

dθ

2π

=
J

2π

∫ ϑ+π/2

θ=ϑ−π/2

(
cos(θ +∆)
sin(θ +∆)

)
dθ.

The integral above can be solved, which yields

J

2π

∫ ϑ+π/2

θ=ϑ−π/2

(
cos(θ +∆)
sin(θ +∆)

)
dθ =

J

2π

[
sin(θ +∆)

− cos(θ +∆)

]ϑ+π/2

θ=ϑ−π/2

=
J

π

(
sin(ϑ+ π

2 +∆)
− cos(ϑ+ π

2 +∆)

)
.

Using the sum and difference trigonometric identities,

sin(ϑ+ π
2 +∆) = sin(π2 +∆) cosϑ+ cos(π2 +∆) sinϑ,

− cos(ϑ+ π
2 +∆) = − cos(π2 +∆) cosϑ+ sin(π2 +∆) sinϑ,

we can write
J

π

(
sin(ϑ+ π

2 +∆)
− cos(ϑ+ π

2 +∆)

)
=

J

π

(
sin(π2 +∆) cos(π2 +∆)

− cos(π2 +∆) sin(π2 +∆)

)(
cosϑ
sinϑ

)
︸ ︷︷ ︸
=κ/∥κ∥

where we revert the polar change of coordinate, Eq. (14). Plugging in J = π
√
2 and ∆ = π/4, we

obtain
J

π

(
sin(π2 +∆) cos(π2 +∆)

− cos(π2 +∆) sin(π2 +∆)

)
κ

∥κ∥
=

√
2

(
sin( 3π4 ) cos( 3π4 )

− cos( 3π4 ) sin(3π4 )

)
κ

∥κ∥
=

(
1 −1
1 1

)
κ

∥κ∥
.

B Derivation of pairwise correlations Eq. (6)

First, we compute the time-average and the standard deviation of the post-activation of neuron i,

ϕ

((
cos θi
sin θi

)
· κ
)
,

assuming that the latent variables κ rotate at constant speed on the unit circle (which is the asymptotic
behavior of the dynamical system Eq. (5)). Using again the polar change of coordinate Eq. (14) and
recalling that ϕ = Θ (the Heaviside step function), we have

ϕ

((
cos θi
sin θi

)
· κ
)

= Θ

((
cos θi
sin θi

)
·
(
cosϑ
sinϑ

))
= Θ(cos(θi − ϑ)).
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The time-average of the post-activation of the neuron i is

r̄i :=

∫ 2π

ϑ=0

Θ(cos(θi − ϑ))
dϑ

2π
=

∫ θi+π/2

ϑ=θi−π/2

dϑ

2π
=

1

2
. (15)

Similarly, the variance the post-activation of neuron i is

σ2
i :=

∫ 2π

ϑ=0

Θ(cos(θi − ϑ))2
dϑ

2π
− r̄2i =

∫ θi+π/2

ϑ=θi−π/2

dϑ

2π
− 1

4
=

1

4
. (16)

Hence, the correlation Cij between any pair of neurons i and j is

Cij = 4

∫ 2π

ϑ=0

Θ(cos(θi − ϑ))Θ(cos(θj − ϑ))
dϑ

2π
− 4× 1

4
. (17)

Developing the product in the integrand above, we see that it only remains to compute the integral∫ 2π

ϑ=0

Θ(cos(θi − ϑ))Θ(cos(θj − ϑ))
dϑ

2π
.

Using the change of variable ϑ = θi +
π
2 − ϑ̃, we have∫ 2π

ϑ=0

Θ(cos(θi − ϑ))Θ(cos(θj − ϑ))
dϑ

2π
=

∫ 2π

ϑ̃=0

Θ(cos(ϑ̃− π
2 ))Θ(cos(ϑ̃+ θj − θi − π

2 ))
dϑ̃

2π

=

∫ π

ϑ̃=0

Θ(cos(ϑ̃+ θj − θi − π
2 ))

dϑ̃

2π
.

Without loss of generality, we assume that θj − θi ≥ 0 (otherwise, permute the indices j and i). We
then distinguish two cases: If θj − θi ≤ π,∫ π

ϑ̃=0

Θ(cos(ϑ̃+ θj − θi − π
2 ))

dϑ̃

2π
=

∫ π

ϑ̃=θj−θi

dϑ̃

2π
=

1

2π
(π − θj − θi),

if θj − θi > π,∫ π

ϑ̃=0

Θ(cos(ϑ̃+ θj − θi − π
2 ))

dϑ̃

2π
=

∫ θj−θi−π

ϑ̃=0

dϑ̃

2π
=

1

2π
(θj − θi − π).

However, by the definition of the absolute angle difference |θi − θj | := cos−1(cos(θi − θj)), we
know that

π − |θj − θi| =
{
π − θj − θi, if θj − θi ≤ π,

θj − θi − π, if θj − θi > π.

Hence, ∫ 2π

ϑ=0

Θ(cos(θi − ϑ))Θ(cos(θj − ϑ))
dϑ

2π
=

1

2π
(π − |θj − θi|), (18)

and we can verify that the equality above is invariant upon permutation of the indices i and j. Using
Eqs. (15), (16), and (18) in Eq. (17), we obtain

Cij =
2

π
(π − |θi − θj |)− 1.

C Simulation of an RNN with a finite number of neurons

To verify that the theory for infinite-size networks presented in Sec. 2 gives a good approximation of
the activity of RNNs with a large but finite number of neurons, we simulated the dynamics of an RNN
with N = 1000 neurons. The simulation shows that the latent variables κ are attracted to a limit
cycle (Fig. 5A) and covariance of the network’s activity has a power-law eigenspectrum (Fig. 5A), as
predicted by the theory for the infinite-size network.
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A B

Figure 5: Simulation of an RNN with N = 1000 neurons. (A) Same as Fig. 1D, but with the
addition of the trajectory (red curve) of the latent variables κ obtained from a simulation of the
finite-size RNN. (B) Same as Fig. 1F, but with the addition of the PCA eigenspectrum (red dashed
curve) obtained from the simulated activity of the finite-size RNN (only the first 400 eigenvalues are
shown). The theory derived for infinite-size networks gives a good approximation of the activity of
an RNN with N = 1000 neurons.

D Solvable model with more general lateral connectivity

To illustrate that the analytical results obtained in Sec. 2 can be generalized to models with lateral
connectivity that are more general than the rank-2, cosine connectivity prescribed by Eq. (2), we
present here a solvable model where the weight matrix W is of rank 4 (inspired by model studied in
[52]). Let us consider an RNN with N neurons and with a weight matrix given by

Wij := J [cos(θi − θj −∆) + β cos(2(θi − θj)−∆)] , (19)

where the parameter β ≥ 0 fixes the importance of the higher frequency component, cos(2(θi −
θj)−∆), of the connectivity. As in Sec. 2, the activation function ϕ is assumed to be the Heaviside
step function Θ. Note that when β = 0, we recover the rank-2 RNN of Sec. 2. Following the same
steps as in Sec. 2.1, and defining κ := U†x, the 4-dimensional vector of latent variables, we obtain
that in the limit N → ∞, the dynamics of the latent variables κ follows

κ̇ = −κ+

∫ 2π

θ=0

v(θ)ϕ (u(θ) · κ) dθ
2π

, (20)

where

u(θ) := (cos(θ), sin(θ), cos(2θ), sin(2θ))T,

v(θ) := J(cos(θ +∆), sin(θ +∆), β cos(2θ +∆), β sin(2θ +∆))T.

If we assume that at time t = 0, κ3(0) = κ3(0) = 0, i.e., the third and forth latent variables are null,
we can use a polar change of coordinate similar to that used in Appendix A and write

u(θ) · κ = ∥κ∥ cos(ϑ− θ).

Then, recalling that ϕ = Θ, we can solve the integral in Eq. (20) and, choosing J := π
√
2 and

∆ := π/4 as in Sec. 2, we find that

∫ 2π

θ=0

J

 cos(θ +∆)
sin(θ +∆)

β cos(2θ +∆)
β sin(2θ +∆)

Θ(∥κ∥ cos(ϑ− θ))
dθ

2π
=

 1
∥κ∥

(
1 −1
1 1

)(
κ1

κ2

)
0
0

 .

From the equality above, we deduce that κ1(t), κ2(t) follow the same dynamics as in the rank-2
network of Sec. 2, and κ3(t) = κ4(t) = 0, for all t > 0, i.e., the third and forth latent variables
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Figure 6: Simulation of the latent dynamics of an RNN with connectivity given by Eq. (19). In
this simulation, N = 104, β = 0.25, and all latent variables are initialized at 0 at time t = 0. The
simulation shows that κ1 and κ2 converge to a limit cycle, whereas κ3 and κ4 remain close to 0.

remain null at all times. Although we do not perform here a formal stability analysis of the limit cycle
in the plane (κ1, κ2, 0, 0), we verified numerically that the latent variables of an RNN with N = 104

neurons follow a limit cycle confined to the plane (κ1, κ2, 0, 0), when β is not too large (Fig. 6).

Since the generalized model we have proposed can produce a limit cycle in the space or pre-activations
that is identical to that of the rank-2 model of Sec. 2, we know that, when in this limit cycle, the
post-activations of the neurons produce a power-law eigenspectrum identical to that of the rank-2
model. Hence, we have shown that the strong assumption of a rank-2, cosine weight matrix, Eq. (2),
is not strictly necessary for an RNN to produce 2-dimensional latent dynamics and high-dimensional
activity in the space of post-activations.

E Random low-rank RNNs with tractable latent dynamics

The model analyzed in Sec. 2 is not the only model for which a simple expression for the latent
dynamics can be obtained. To illustrate this fact, we re-use the general definition of RNN dynamics,
Eq. (1), but consider here the class of low-rank RNNs with rank-d weights matrices W given by

W = UMUT, (21)

where U is an N × d random matrix with i.i.d. standard normal entries and M ∈ Rd×d is an
arbitrary “overlap” matrix [51]. As explained in [51], thanks to the fact that the “patterns” U are
Gaussian, the dynamics of the d-dimensional latent variable vector κ := U†x can be described, in
the large-network limit N → ∞, by the dynamical system

κ̇ = −κ+ EY∼N (0,1)

[
Y ϕ(Y ∥κ∥)

]
M

κ

∥κ∥
. (22)

In the present work, we go one step further and ask whether the expectation EY∼N (0,1)

[
Y ϕ(Y ∥κ∥)

]
can be solved, in order to yield simpler expressions for the latent dynamics. The following proposition
shows that the answer is positive when the activation function ϕ is either (i) a step function, (ii) a
ReLU function, or (iii) a Gaussian cumulative distribution function

Proposition 1. (i) For any bias b ∈ R, if ϕ is the step function ϕ = Θ(x+ b), Eq. (22) reduces to

κ̇ = −κ+
1√
2π

exp
(
− b2

2∥κ∥2

)
M

κ

∥κ∥
.

(ii) For any bias b ∈ R, if ϕ is the ReLU function ϕ = max(0, x+ b), Eq. (22) reduces to

κ̇ = −κ+
1

2

(
1 + erf

(
b√

2∥κ∥

))
Mκ. (23)
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(iii) For any mean µ ∈ R and variance σ2 ≥ 0, if ϕ is the Gaussian c.d.f. ϕ(x) =
1√
2πσ

∫ x

t=−∞ exp
(
− (t−µ)2

2σ2

)
dt, Eq. (22) reduces to

κ̇ = −κ+
e−µ2/(2(σ2+∥κ∥2))√

2π(σ2 + ∥κ∥2)
M

κ

∥κ∥
. (24)

The proposition shows the nontrivial effect of the activation function has on the latent dynamics.
For example, let us take again d = 2. When ϕ is the step function with bias b = 0, and if

M =
√
2π

(
1 −1
1 1

)
, we recover the latent dynamics Eq. (5), which generates a stable limit cycle.

In contrast, when ϕ is the ReLU function with bias b = 0, Eq. (23) becomes the linear system
κ̇ = −κ +Mκ, which can generate rotational dynamics but cannot generate a stable limit cycle.
Note that Eq. (24) generalizes a previous result obtained for the erf activation function, used as an
approximation of tanh [74].

Proof. The prove these statements, it suffices to solve the integral,

EY∼N (0,1)

[
Y ϕ(Y ∥κ∥)

]
=

∫ ∞

y=−∞
y ϕ(y∥κ∥) 1√

2π
e−

y2

2 dy,

for the three different functions ϕ.

For (i),∫ ∞

y=−∞
yΘ(y∥κ∥+ b)

1√
2π

e−
y2

2 dy =

∫ ∞

y=− b
∥κ∥

y
1√
2π

e−
y2

2 dy =
1√
2π

exp
(
− b2

2∥κ∥2

)
.

For (ii), ∫ ∞

y=−∞
ymax(0, y∥κ∥+ b)

1√
2π

e−
y2

2 dy =

∫ ∞

y=− b
∥κ∥

y(y∥κ∥+ b)
1√
2π

e−
y2

2 dy,

and we integrate by parts,∫ ∞

y=− b
∥κ∥

y(y∥κ∥+ b)
1√
2π

e−
y2

2 dy

=

[
−(y∥κ∥+ b)

1√
2π

e−
y2

2

]∞
y=− b

∥κ∥︸ ︷︷ ︸
=0

+∥κ∥
∫ ∞

y=− b
∥κ∥

1√
2π

e−
y2

2 dy

=
1

2

(
1 + erf

(
b√

2∥κ∥

))
∥κ∥.

For (iii), we first integrate by parts,∫ ∞

y=−∞
y ϕ(y∥κ∥) 1√

2π
e−

y2

2 dy =

∫ ∞

y=−∞
ϕ′(y∥κ∥) 1√

2π
e−

y2

2 dy

=

∫ ∞

y=−∞

1√
2πσ

exp
(
− (y∥κ∥−µ)2

2σ2

) 1√
2π

e−
y2

2 dy.
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Then, we complete the square,∫ ∞

y=−∞

1√
2πσ

exp
(
− (y∥κ∥−µ)2

2σ2

) 1√
2π

e−
y2

2 dy

=
1√
2π

∫ ∞

y=−∞

1√
2πσ

exp

(
−∥κ∥2y2 − 2µ∥κ∥y + µ2 + σ2y2

2σ2

)
dy

=
1√
2π

∫ ∞

y=−∞

1√
2πσ

exp

(
−σ2 + ∥κ∥2

2σ2

(
y − µ∥κ∥

σ2 + ∥κ∥2

)2

+
µ2∥κ∥2

2σ2(σ2 + ∥κ∥2)
− µ2

2σ2

)
dy

=
1√

2π(σ2 + ∥κ∥2)

∫ ∞

y=−∞

√
σ2 + ∥κ∥2√

2πσ
exp

(
−σ2 + ∥κ∥2

2σ2

(
y − µ∥κ∥

σ2 + ∥κ∥2

)2
)
dy︸ ︷︷ ︸

=1

× exp

(
− µ2

2(σ2 + ∥κ∥2)

)
.

F From the eigenvalues of the activity matrix A(N,T ) to the eigenvalues of the
random feature kernel operator Eq. (10)

First, we recall that the eigenvalues λ(N,T )
1 ≥ λ

(N,T )
2 ≥ . . . of the “covariance matrix”,

C(N,T ) :=
1

T
A(N,T )(A(N,T ))T,

are related to the eigenvalues η(N,T )
1 ≥ η

(N,T )
2 ≥ . . . of the “Gram matrix”,

G(N,T ) :=
1

N
(A(N,T ))TA(N,T ).

Indeed, using the singular value decomposition of A(N,T ), one can easily verify that

λ
(N,T )
n

N
=

η
(N,T )
n

T
, ∀n ∈ [[1,min(N,T )]].

By the law of large numbers, in the limit N → ∞, the entries of the Gram matrix G(N,T ) converge
to an expectation corresponding to the random feature kernel Eq. (11): For any 1 ≤ s, t ≤ T ,

G
(N,T )
s,t =

1

N

N∑
i=1

ϕp,c(uizs)ϕp,c(uizt)
a.s.−−−−→

N→∞
Eξ∼N (0,1)[ϕp,c(ξ·zs)ϕp,c(ξ·zt)] = Kp,c,d(zs, zt),

where ui above denotes the i-th row of the N × d random matrix U. Hence, as N → ∞, the
eigenvalues η(N,T )

n of the Gram matrix G(N,T ) converge to the eigenvalues η(T )
n of the kernel matrix

K(T ) := (Kp,c,d(zs, zt))1≤s,t≤T .

Furthermore, we have that

lim
N→∞

λ
(N,T )
n

N
=

η
(T )
n

T
.

Finally, by a theorem from Koltchinskii and Giné [54, Theorem 3.1], the scaled eigenvalues η(T )
n /T

of the of the kernel matrix K(T ) converge (in a ℓ2 sense) to the eigenvalues λn of the integral operator
Eq. (10). In conclusion, we have that, for any given n,

lim
T→∞

lim
N→∞

λ
(N,T )
n

N
= λn.
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G Gaussian processes from RNNs

As in Appendix B, we start from an infinite-size network where the latent variables κ rotate at
constant speed on the unit circle. Using again the change of coordinate Eq. (14), the post-activation
(firing rate) of a neuron with location θi is

Θ(cos(θi − ϑ)),

where ϑ is the angle of the latent variable κ. Also, from Eq. (5), one can easily deduce that the norm
of the velocity vector is always

√
cos(ϑ)2 + sin(ϑ)2 = 1, which implies that the cycle time period

of the system is 2π.

Taking M independently and uniformly sampled neurons on the circle, we consider the random
projection readout

g(M)(ϑ) :=
1√
M

M∑
i=1

w̃iΘ(cos(θi − ϑ)),

where the readout weights w̃1, w̃2, . . . , w̃M are i.i.d. standard normal variables that are also indepen-
dent from the random angles θi. Since the readout g(M) is a weighted sum of 2π-periodic functions,
g(M) is itself a 2π-periodic function.

As the number of randomly sampled neurons M tends to infinity, the random readout g(M) converges
in law to a Gaussian process on the circle S1. To see this, we first compute the mean and covariance
of the 2π-periodic function g(M), as M → ∞. For the mean, we have

E

[
1√
M

M∑
i=1

w̃iΘ(cos(θi − ϑ))

]
=

1√
M

M∑
i=1

E [w̃i]︸ ︷︷ ︸
=0

E [Θ(cos(θi − ϑ))] = 0,

for any M . For the covariance, we have, we have, for any pair of angles ϑ and ϑ′,

E

[
1√
M

M∑
i=1

w̃iΘ(cos(θi − ϑ))
1√
M

M∑
i=1

w̃iΘ(cos(θi − ϑ′))

]
=

1

M

M∑
i=1

Θ(cos(θi − ϑ))Θ(cos(θi − ϑ′)),

using that E[w̃i
2] = 1 and E[w̃iw̃j ] = 0 when i ̸= j. By the law of large numbers,

1

M

M∑
i=1

Θ(cos(θi − ϑ))Θ(cos(θi − ϑ′))
a.s.−−−−→

M→∞
Eθ∼U([0,2π])[Θ(θ − ϑ)Θ(θ − ϑ′)],

and using the same line of arguments we used to derive Eq. (18) in Appendix B, we obtain
Eθ∼U([0,2π])[Θ(θ − ϑ)Θ(θ − ϑ′)] = π − |ϑ− ϑ′| = k0(ϑ, ϑ

′).

Then, by the multivariate central limit theorem, we have that, for any finite sequence of angles
ϑ1, ϑ2, . . . , ϑm,

(g(M)(ϑ1), g
(M)(ϑ2), . . . , g

(M)(ϑm))T
L−−−−→

M→∞
X ∼ N (0,Σ), (25)

where

Σ :=


π π − |ϑ1 − ϑ2| . . . π − |ϑ1 − ϑm|

π − |ϑ2 − ϑ1| π . . . π − |ϑ2 − ϑm|
...

...
. . .

...
π − |ϑm − ϑ1| π − |ϑm − ϑ2| . . . π

 .

By the Kolmogorov extension theorem, there exists a Gaussian process on S1, g ∼ GP(0, k0), such
that X can be replaced by (g(ϑ1), g(ϑ2), . . . , g(ϑm))T in Eq. (25), for any finite sequence of angles
θ1, θ2, . . . , θm. Hence, we have shown that the random projection readout g(M) defines a random
2π-periodic function that has the same law as a Gaussian process as M → ∞.

In summary, the above arguments show that our solvable RNN model can be used to draw samples
from a periodic Gaussian process. In other words, it can represent a Gaussian process prior over
periodic functions. This indicates that the Gaussian process framework originally developed for
infinite-width feedforward neural networks [87, 88] also applies, in certain cases, to large networks
with recurrent dynamics.
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H In vivo experimental methods

Neuronal Recordings Transgenic mice expressing the GCamP6s calcium indicator [94] in all
excitatory cortical neurons (CamKII x Ai162) were implanted with a 4mm imaging window over
visual cortex. Mice were headfixed under a custom Light Beads Microscope [65], modified with
an optical stabilization module. A volumetric field of view of 2× 2× 0.3 mm3 over primary and
higher visual areas was imaged with 2-3 µm lateral and 20 µm axial voxel spacing, with volume
rates between 4.1-4.5 Hz. During recordings, mice were not anesthetized and were free to run on a
low-resistance treadmill.

Visual Stimulation Visual stimuli were delivered via three screens that covered approximately
270◦ horizontally and 70◦ vertically of the visual field of the mouse. During drifting grating
experiments, full-field drifting gratings with a temporal frequency of 2.0Hz and spatial frequency
of 0.04 cycles/degree were presented for 2 s, with an inter-stimulus interval (ISI) drawn from a
uniform distribution between 2-3 s. A sequence of 720 stimuli was presented with random directions
drawn from a uniform distribution of integer angles ranging from 0◦ to 359◦. The same set of 720
stimuli was repeated in a new random order in the second half of the experiment. For natural image
experiments, 1866 unique stimuli were presented, each composed of a mosaic of three distinct natural
images. The images were chosen from the same set presented in [39]. Each stimulus was presented
for 0.8 s with a random ISI between 0.9-1.3 s. Stimuli were presented in two shuffled sequences
such that each stimulus was presented twice. For sessions of spontaneous activity, no stimuli were
displayed and the screens were grey. Mice were awake, free to run (as in the other sessions) for 10 to
15 minutes of imaging.

Data preprocessing To detect cells and extract neuronal activity from volumetric fluorescence
movies, we used Suite3D [66], an analysis pipeline for motion-correction, cell detection and signal
extraction from volumetric two-photon data. After semi-automated curation, we analyzed activity
from 19,223 ± 2,948 (mean ± std) neurons per experiment, across 10 experiments (4 spontaneous
activity, 3 natural images, 3 drifting gratings, across three mice). The extracted cell fluorescence was
deconvolved after neuropil substraction. Deconvolved traces were re-sampled at 5Hz and aligned
to stimulus onset events. For stimulus response sessions, we projected out the activity along the
top 30 principal components (PCs) of spontaneous activity (computed on a spontaneous session
recorded consecutively from the same mouse), similar to what was done in [39]. To compute stimulus
responses, neuronal activity within a response window was averaged (0.5 s for images, 2.0 s for
gratings) to produce a single value per neuron per stimulus presentation. Deconvolved spontaneous
activity was resampled using linear interpolation at 5 Hz.

The recordings covered part of primary visual cortex, higher visual areas AM, PM, LM, and RL, with
occasional inclusion of some somatosensory areas. We confirmed the recorded area via retinotopic
mapping using sparse noise stimuli. To determine stimulus responsiveness, we used the signal-related
variance metric to determine what fraction of a neuron’s variance could be explained by stimuli
(described in Stringer et al. Nature 2019). In a typical recording with 22,000 neurons, the top 1000
cells had 49% stimulus-related variance, the next 1000 had 22%, 14%, 10% and so on, where the
10,000th cell had 3%. The responsive neurons were distributed across primary and higher visual
cortices, and the selection of source and target neurons was agnostic to location.

I Neural Cross-Encoder

I.1 Datasets

For all three data conditions (gratings, natural images and spontaneous activity), we compared the
performance of the (nonlinear) NCE model to (linear) Reduced Rank Regression on the same datasets.
For results in Fig. 4 we used datasets with 500 source neurons and 1,000 target neurons. For stimulus-
driven conditions (gratings and images), the source neurons were chosen to be the 500 neurons with
the most reliable stimulus-evoked responses, quantified by the fraction of stimulus-related variance
defined in Ref. [39]. 1,000 target neurons were chosen from the 2,000 non-source neurons with the
highest stimulus-related variance. For the spontaneous condition, the target and source neurons were
selected at random from the full population. We repeated the model fit for each condition and session
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five times with random initializations and neuron selections. In all cases, source and target neuron
sets were non-overlapping.

To reduce the impact of non-stimulus related activity in stimulus-driven conditions, we used the
fact that each stimulus was presented multiple times, and trained the model to predict the activity
of the target neurons on one repeat of a stimulus from the activity of the source neurons on a
different repeat, using all possible permutations. For example, if the same stimulus was shown
at times t1, t2, the network was trained to minimize the sum of the squared Euclidean distances
∥b̃t2 − bt2∥2 + ∥b̃t1 − bt1∥2, where b̃ is the recorded activity and b is the NCE reconstruction.

For the spontaneous condition, to capture the temporal structure in the latent dynamics, we used
multiple timepoints of the source neurons to estimate the latent variable at a single timepoint. To
predict zt, we took a window of size L timepoints and concatenated the source activity within this time
window, increasing the input dimensionality of the encoder: zt = E([at−L

2
, . . . ,at, . . .at+L

2 −1]).
The number and size of the hidden layers were unchanged. For the experiments presented, the time
window was 1.2 s (L = 6 timepoints).

In all three conditions, the paired source-target datasets were split into train-validation-test sets with
a 50%-20%-30% split. For stimulus-driven datasets, the split was done using stimulus identity to
ensure that all permuted pairs of repeats of a single stimulus were in the same set after splitting. For
spontaneous datasets, instead of assigning each timepoint to one of three sets independently, we
separated the time series into 10 s chunks with 2 s buffers between each chunk, and assigned each
chunk to one of three sets. This procedure prevents the training set from contaminating the test set
through the slow temporal autocorrelation of calcium signals.

I.2 Model Fitting

Linear models were fit on the training set using the closed-form solution of Reduced Rank Regression
with a ridge penalty. The ridge penalty (which varied between 10−1-106) giving the best performance
in the validation set was selected.

For the NCE, the encoder is a 3-layer feedforward network with ReLU activation functions. The
hidden layers contain (500, 250, 100) units. The parameters of the encoder E and the parameters of
the decoder, i.e., the readout weights and biases U ∈ RB×d and c ∈ RB , the activation parameter p,
and the baseline firing rates r0 ∈ RB , were learned by minimizing the mean-squared error (MSE)
loss 1

T

∑T
t=1 ∥b̃t − bt∥2, where bt = ϕp,c(UE(at)) + r (bt is the predicted activity of the target

neurons, at is the recorded activity of the source neurons, and E represents the encoder). NCE models
were trained in two phases: pretraining and fine-tuning. In the pretraining phase, we used a form
of knowledge distillation [95]. Instead of predicting the activity of target neurons directly, the NCE
was trained on the predicted activity of target neurons from the best-fitting linear model, one that
potentially had a higher pre-activation dimension, d, than the NCE. In the fine-tuning phase, the NCE
was trained to predict the true neuronal activity.

In both phases of training, we augmented the training set by adding noise to the activity of source
neurons. First, we added Poisson-like shot noise present in two-photon recordings by generating
zero-mean Gaussian noise with a variance equal to the activity of each neuron at a given timepoint,
scaled by a factor of 0.05. Next, we added independent Gaussian noise with a mean of 0 and variance
of 0.05. Finally, we incorporated multiplicative noise, multiplying the activity of each neuron at each
timepoint with an independent Gaussian random variable with a mean of 1 and variance of 0.05. The
original source dataset was concatenated with three noise-augmented datasets to produce the final
training set.

In each phase, parameters were optimized through stochastic gradient descent using Adam [96] and
a batch size of 2,048, with a learning rate of 10−3, momentum parameters β1 = 0.85, β2 = 0.95,
and an L2 penalty of 10−5. Model parameters were randomly initialized with Kaiming initialization
[97]. Within each phase, we iterated between optimizing the readout parameters, encoder parameters,
and all parameters. At each iteration, the model with the best validation performance, evaluated
using the coefficient of determination, was selected. Once models were fitted, we report the fraction
of explained variance on the test set. To normalize this value to only account for the “explainable”
variance, we computed the coefficient of determination of each model, and normalized by the
maximum of the best model across all pre-activation dimensionalities for the given set of neurons.
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I.3 Hyperparameter Selection

The architecture of the encoder, the numbers of source and target neurons, as well as the training
parameters were selected to balance computational efficiency with performance. The encoder is a
feedforward network with parametrized by the number of layers (depth) and the number of units
in the first layer (width), with the width of each successive layer reduced by a factor of two. We
conducted grid searches on example sessions across a range of values of d and found that the resulting
performance is only mildly sensitive to the encoder of the architecture (see Tables 1,2, 3, 4 for
representative examples).

Table 1: Normalized R2 for an example grating session with d = 4

Layer size \ # Layers 3 2 1
1000 0.97 0.97 0.96
500 0.97 0.97 0.94
250 0.95 0.96 0.94

Table 2: Normalized R2 for an example natural image session with d = 8

Layer size \ # Layers 3 2 1
1000 0.54 0.55 0.52
500 0.55 0.56 0.53
250 0.56 0.54 0.51

Table 3: Normalized R2 for an example natural image session with d = 32

Layer size \ # Layers 3 2 1
1000 0.91 0.89 0.89
500 0.91 0.92 0.89
250 0.92 0.91 0.91

Table 4: Normalized R2 for an example natural image session with d = 64

Layer size \ # Layers 3 2 1
1000 0.97 0.98 0.96
500 0.95 0.92 0.98
250 0.98 0.99 1.00

Due to computational constraints, we subset the full population of neurons into 1000 source and 500
target neurons. Varying these numbers up to 2000 neurons does not substantially affect the results
shown in Figure 4. Tables 5, 6 reports the fraction of explainable variance explained (normalized R2)
for a representative example session of grating responses, fit with varying subset sizes. Increasing
the number of cells beyond 2000 somewhat reduces performance and we suggest two potential
explanations. First, due to animal health concerns our experiments are of limited duration, hence a
typical session produces only 1000 training examples. This may not be enough to train a relatively
large encoder network with >1000 input neurons. Second, only a fraction of neurons recorded have
reliable stimulus responses, and including more cells introduces a large amount of non-stimulus-
related variance.
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Table 5: Normalized R2 with an NCE model for an example grating session with d = 4

# Target \ # Source 100 500 1000 2000
100 0.98 0.96 0.96 0.97
500 0.98 0.97 0.94 0.93
1000 0.98 0.97 0.94 0.91
2000 0.99 0.97 0.97 0.92

Table 6: Normalized R2 with an RRR model for an example grating session with d = 4

# Target \ # Source 100 500 1000 2000
100 0.92 0.88 0.86 0.86
500 0.91 0.85 0.84 0.84
1000 0.89 0.84 0.83 0.83
2000 0.90 0.85 0.87 0.84

For the remaining hyperparameters, we explored the hyperparameter space with the Optuna optimizer
(Akiba et al. KDD 2019). We found that the performance of the NCE is not sensitive to modest
variations in learning rate, batch size, and momentum.

I.4 Latent dynamics of spontaneous activity

To determine whether the extracted latent variables related to the behavioral state of the animal, we
compared them to the running speed of the animal. For each session of spontaneous activity, we
trained an NCE model with a pre-activation dimension of 4, as described above. After training, we
took the activity of the source neurons across the entire session (removing the train/validation/test
splits), and computed the inferred latents.

The running speed of the mouse is highly correlated with inferred latent variables. We computed the
correlation coefficient between each latent and the running speed, and found high positive or negative
correlations for most variables. This supports the hypothesis that the latents inferred by the NCE are
related to the behavioral state of the animal.
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Figure 7: Extracted latents correlate with running speed. For four example sessions of sponta-
neous activity, the dynamics of the extracted latents zi (purple) are correlated with the running speed
(black). Correlation coefficient between each latent and running speed is reported in parentheses on
the y-axis. All curves are smoothed with a 1s Gaussian kernel for visualization only.
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I.5 Compute Resources

Volumetric calcium movies were processed using a custom workstation running Ubuntu 20.04.6 LTS
with an Intel(R) Xeon(R) w9-3475X CPU (36 cores, 2.20 GHz), NVIDIA RTX A4500 GPU (20GB
VRAM), and 512 GB DDR5 RAM. Preprocessing with Suite3D took <20 hours per session.

All NCE experiments were performed on a workstation running Windows 10 Pro, with an Intel (R)
Core(TM) i7-11700k CPU (8 cores, 3.6 GHz), NVIDIA RTX 3060 GPU (12GB VRAM), and 128
GB DDR4 RAM. Total runtime of all NCE experiments was <96 hours. All preliminary experiments
that are not reported in the paper were conducted on this workstation, with similar runtimes.

I.6 Software and Licenses

This work makes use of several publicly available software resources including: Python (PSF
License), Matplotlib (PSF License), NumPy (BSD License), SciPy (BSD License), CuPy (MIT
License), PyTorch (BSD-3 License), Suite3D (AGPL-3 License).

I.7 Code and Data Availability

All data and code used to train the NCE and generate the results, as well as code used for simula-
tions in Fig. 2, are shared via Figshare: https://figshare.com/s/aac82eac1829b7ec406e and Github:
https://github.com/alihaydaroglu/NCE.
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