

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IF AN LLM WERE A CHARACTER, WOULD IT KNOW ITS OWN STORY? EVALUATING LIFELONG LEARNING IN LLMs

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) can carry out human-like dialogue, but unlike humans, they are stateless due to the superposition property. However, during multi-turn, multi-agent interactions, LLMs begin to exhibit consistent, character-like behaviors—hinting at a form of emergent lifelong learning. Despite this, existing benchmarks often fail to capture these dynamics, primarily focusing on static, open-ended evaluations. To address this gap, we introduce **LIFESTATE-BENCH**, a benchmark designed to assess lifelong learning in LLMs. It features two episodic datasets—Hamlet and a synthetic script collection—rich in narrative structure and character interactions. Our fact-checking evaluation probes models’ self-awareness, episodic memory retrieval, and relationship tracking, across both parametric and non-parametric approaches. Experiments on models like Llama3.1-8B, GPT-4-turbo, and DeepSeek R1, we demonstrate that non-parametric methods significantly outperform parametric ones in managing stateful learning. However, all models exhibit challenges with catastrophic forgetting as interactions extend, highlighting the need for further advancements in lifelong learning.

1 INTRODUCTION

Large language model (LLM)-based dialogue agents exhibit human-like traits (*e.g.*, intent understanding and language expression), making users prone to anthropomorphism Shanahan et al. (2023). However, LLMs differ from humans in their *superposition property* Janus (2022): initially existing as a stateless superposition of simulacra across multiple possible characters Lu et al. (2024). This property emerges from its next-token prediction training on a massive corpus, whereas humans develop through accumulated experiences and memories.

Through sustained interaction, we observe that an initially **stateless** LLM can transition toward more **stateful** characteristics as dialogue context accumulates. At first, an LLM holds multiple characters but gradually settles into a clear character as the dialogue continues. Taking a nuanced view, this character convergence process mirrors how humans update their state through accumulated experience.

This state transition raises a measurable question: How can we quantify an LLM’s state evolution (also called Lifelong learning ability) from superposition to a more consistent state during multi-turn, multi-agent interactions? In this paper, “state” refers to the evolving configuration of an LLM’s

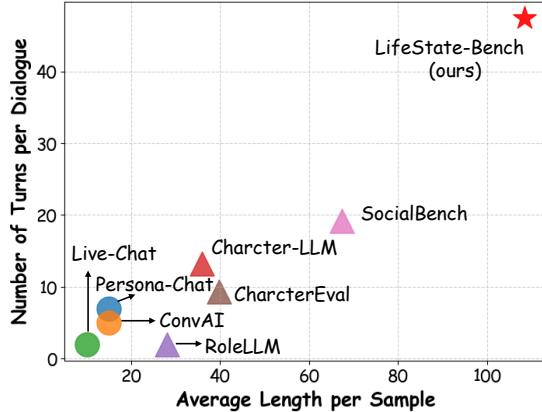


Figure 1: Dataset Statistics. Triangles represent role ability benchmarks, while circles denote dialogue agent benchmarks.

054 internal processes during multi-agent interactions Adams et al. (2012); Sumers et al. (2024), building
 055 on AI cognitive architecture Sun (2004); Newell (1980).

056 While this research question predates LLM area, current exploration remains preliminary with
 057 varying methodologies. Early Persona-Chat series Gao et al. (2023); Zhang et al. (2018); Dinan
 058 et al. (2019) focusing on consistent character responses using seq2seq models, or design social
 059 intelligence questionnaire-based benchmarks Sap et al. (2019); Le et al. (2019). Both limited by
 060 static, non-interactive setups. Ground truths were either open-ended or fixed over time.

061 Generative agents Park et al. (2023) bring LLM-based dialogue agents into interactive human behavior
 062 simulation. This opens new possibilities for modeling state transitions. Later works follow two
 063 directions. First, role ability benchmarks Tu et al. (2024); Wang et al. (2024a); Shao et al. (2023)
 064 focus on role-playing and plot prediction. They improve dialogue realism, but place less emphasis on
 065 tracking factual states during interactions. Second, the Sotopia series Zhou et al. (2024); Wang et al.
 066 (2024b) and SocialBench Chen et al. (2024) accessing social intelligence in open-ended tasks. Their
 067 design often centers around user-defined social goals, which may not align with factual state tracking
 068 or verification.

069 To address these challenges, we propose **LIFESTATE-BENCH** to explore and measure LLMs' lifelong
 070 learning capabilities. As shown in Figure 1, our benchmark surpasses others (*e.g.*, dialogue agents,
 071 role-playing) with longer average sample lengths and more dialogue turns per interaction. Key
 072 features include:

073 **Cumulative Experience.** Inspired by the idea that “human personality emerges from experiences” Shao et al. (2023), we created an episodic dataset with clear timelines. Each episode contains
 074 scene details, character actions, and dialogues to enable continuous agent interaction.

075 **Fact Checking.** Each episode includes fact-based questions related to self-awareness, memory
 076 retrieval, and relationship changes, accompanied by reference answers to ensure objective evaluation.

077 **Memory Testing.** For lifelong learning evaluation, models should retain long-term memory of past
 078 scenes while accessing only recent dialogue. This is tested via (i) non-training methods: episode or
 079 summary concatenation, and (ii) training methods: knowledge editing Wang et al. (2025); Meng et al.
 080 (2023) and LoRA fine-tuning Hu et al. (2022) using historical context.

081 In **LIFESTATE-BENCH**, we selected theatrical scripts, including both existing (*e.g.*, Hamlet) and
 082 synthetic narratives. For existing works, such as Hamlet—a classic play likely present in pretraining
 083 corpora—we use them to assess the model’s memory retention capabilities. To reduce direct string
 084 matching, all character names have been anonymized. In contrast, the synthetic scripts, generated by
 085 Claude and unseen during pretraining, are used to evaluate the model’s ability to adapt to entirely
 086 new content. This contrast allows us to **explore lifelong learning in a realistic setting**, where
 087 models must navigate both familiar and novel domains. Compared to current benchmarks, our dataset
 088 features more interactive characters, closed dialogue turns, and richer content (Table 1). Evaluation
 089 combines LLM-as-judge with human assistance, using predetermined factual answers as criteria.

090 We tested several popular models, including the open-source Llama3.1-8B AI (2024), the closed-
 091 source GPT-4-turbo OpenAI (2023), and the large language reasoning model DeepSeek R1 DeepSeek-
 092 AI et al. (2025). Benchmark-backed experiments show that current models still have much room for
 093 improvement in lifelong learning.

094 In summary, our work contributes in three key areas:

095 • **Two Datasets:** We introduce the Hamlet and synthetic datasets, featuring multi-agent episodic
 096 timelines and scene details to simulate cumulative experiences.

097 • **A Benchmark:** **LIFESTATE-BENCH** evaluates LLMs’ lifelong learning abilities via fact-checking
 098 mechanism, using both non-parametric and parametric memory-testing methods.

099 • **Findings and Implications:** Non-parametric methods outperform parametric ones in lifelong
 100 learning, but all models still face challenges with catastrophic forgetting as episodes progress,
 101 suggesting that our benchmark could provide valuable insights for further improvements.

108	109	Benchmarks	Dataset Characteristics					Interaction Design			Evaluation Focus	
			# Samples	Avg Length	Data Source	# Turns	# Agents	Query Type	Answer Type	State	Memory	Metrics
<i>Dialog Agent Benchmarks</i>												
110	PERSONA-CHAT Zhang et al. (2018)	162.0K	15	Crowd	7	2	Chit-chat	Open	✓	✓	PPL, F1, Hit@1	
111	ConvAI Dinan et al. (2019)	131.0K	15	Crowd	5	2	Chit-chat	Open	✓	✓	PPL, F1, Hit@1	
112	Live-Chat Gao et al. (2023)	9.4M	10	Crawled	2	2	Chit-chat	Open	✗	✗	BLEU, ROUGE	
113	MT-Bench Zheng et al. (2023)	3.3K	373	Synthetic	2.9	2	Multi-task	Factual	✗	✗	Model Judge	
<i>Role Ability Benchmarks</i>												
114	Character-LLM Shao et al. (2023)	21.1K	36	Synthetic	13.2	2	Persona	Open	✓	✗	Model Judge	
115	RoleLM Wang et al. (2024a)	168.1K	28.1	Crawled	2	2	Persona	Mixed	✗	✗	ROUGE, Model Judge	
116	CharacterEval Tu et al. (2024)	11.4K	39.8	Crawled	9.3	2	Persona	Open	✗	✗	Model Judge	
117	SocialBench Chen et al. (2024)	30.8K	67.4	Synthetic	19.2	3.8	Social	Mixed	✗	✓	Model Judge	
<i>Long-context Understanding Benchmarks</i>												
118	Long Range Arena Tay et al. (2021)	-	10.0K	Synthetic	1	1	Multi-modal	Factual	✗	✗	Acc, Speed	
119	LongBench Bai et al. (2024)	4.6K	10.0K	Synthetic	1	1	Multi-task	Factual	✗	✗	Acc, F1, ROUGE	
120	L-Eval An et al. (2024)	411	4K-60K	Synthetic	1	1	Multi-task	Mixed	✗	✗	ROUGE, Model Judge	
121	oo-bench Zhang et al. (2024)	130	200.0K	Synthetic	1	1	Multi-task	Factual	✗	✗	Model Judge	
122	LIFESTATE-BENCH-Hamlet	1.3K	125.5	Crawled	66.1	6.6	Social+Memory	Factual	✓	✓	Model Judge	
123	LIFESTATE-BENCH-Synth	202	91.9	Synthetic	28.9	7	Social+Memory	Factual	✓	✓	Model Judge	

Table 1: Comparison of Different Benchmarks. **✗**: not supported; **✓**: fully supported. Data Source indicates the origin of the data. # Turns shows the average conversation turns. # Agents indicates the number of participants in each interaction. Query Type shows the question/task type. Answer Type indicates whether the expected answers are open-ended, factual, or mixed. State shows whether the benchmark maintains interaction state. Memory indicates whether the benchmark evaluates memory capability.

2 RELATED WORK

Anthropomorphic Cognition in LLMs. Early cognitive science Sumers et al. (2024); Laird et al. (1987); Sun (2004) laid the foundation for anthropomorphizing AI, simulating human-like emotional and social behaviors. Role-playing language agents have become increasingly common in simulating collective social behaviors in multi-agent systems. These agents Park et al. (2023) not only enhance social interactions but also contribute to personalized and complex task execution in AI.

Role Ability/Dialog Agents Benchmarks. Role ability Shao et al. (2023); Wang et al. (2024a) and dialogue agent benchmarks Zhang et al. (2018); Dinan et al. (2019); Gao et al. (2023); Zheng et al. (2023) are divided into static and dynamic types. Static models Chen et al. (2023); Tu et al. (2024) focus on predefined roles and fixed interaction patterns, typically applied in basic dialogue tasks. In contrast, dynamic models Chen et al. (2024); Zhou et al. (2024); Wang et al. (2024b) allow agents to accumulate experiences and evolve during interactions, enabling consistency and adaptability over time. These benchmarks are essential for evaluating agent flexibility, memory handling, and long-term interaction capabilities.

Long-context Understanding Benchmarks. Long-context understanding involves models processing large amounts of information over extended interactions. These benchmark Tay et al. (2021); Bai et al. (2024); An et al. (2024); Zhang et al. (2024) tests an agent’s ability to synthesize and recall information from multiple episodes, maintaining coherence across long spans of dialogue. It is crucial for tasks requiring reasoning and the integration of past events to understand complex or narrative-driven content.

3 PROBLEM FORMULATION

We formalize lifelong learning for LLMs as a *state evolution process* in partially observable multi-agent environments to assess their ability to retain and adapt knowledge over time.

3.1 STATE SPACE

The Lifelong Learning ability is evaluated by state transition. In this paper, the state can be broken down into three dimension:

Self-awareness. Can the model maintain a clear understanding of its identity, role, and goals over time? This dimension evaluates the model’s ability to retain and update its self-awareness as it interacts with the environment.

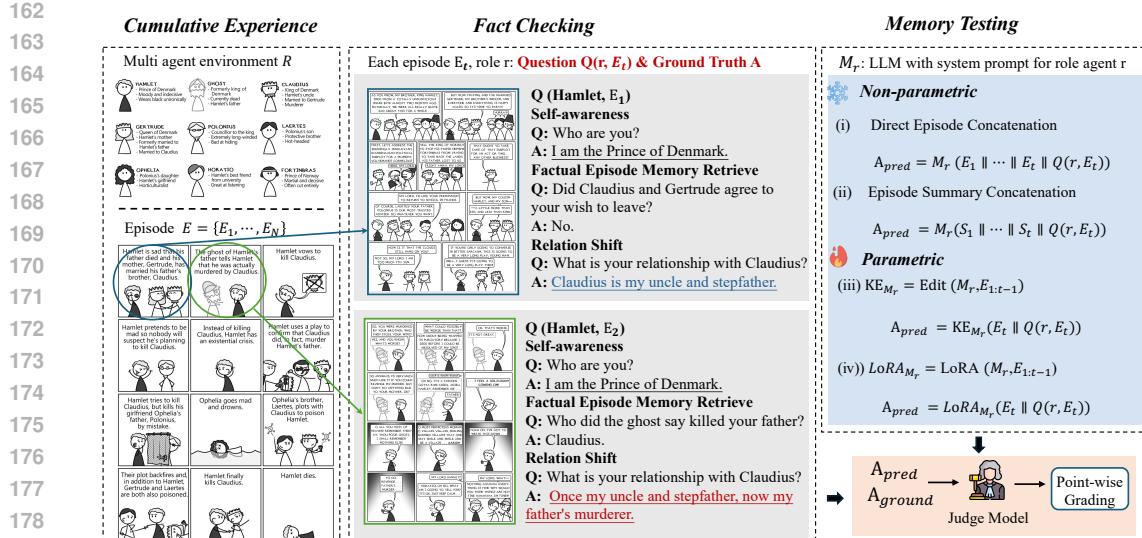


Figure 2: Method Overview. Our benchmark captures three key features: cumulative experience, fact-checking, and memory testing. Finally, the LLM judge scoring system is located in the bottom-right corner.

Factual Episode Memory Retrieve. Can the model retain knowledge and experiences persistently, avoiding catastrophic forgetting or the inability to reuse previously acquired knowledge? This dimension assesses the model’s capacity for long-term memory and knowledge retention.

Relationship Shift. Can the model reason effectively based on long-term memory, particularly in understanding and adapting to changes in relationships between characters or agents? This dimension evaluates the model’s ability to track and reason about evolving relationships.

3.2 MULTI AGENT EPISODES

Multi agent environment. Let \mathcal{M} be a language model acting as role $r \in \mathcal{R}$ with internal state $s_r^{(t)} \in \mathbb{R}^d$, interacting with other agents $\{r'\}_{r' \neq r}$ over discrete timesteps $t \in \{1, \dots, T\}$.

Task format. We formalize the above problems as a time-axis and role-based question-answering task. Assume that for agent r at episode t , each question $Q(r, t)$ is a triple:

$$\text{Input: } Q(r, t) = \langle H(t), c(t), q(r, t) \rangle, \quad (1)$$

$$\text{Output: } A'(r, t) = \mathcal{M}(Q(r, t)), \quad (2)$$

where $H(t)$ denotes the complete history of interactions for role r , $c(t)$ denotes the context window for role r , which may include the entire episode t or a fixed-size subset of recent interactions. $q(r, t)$ is further decomposed into $q_{self}(r, t)$, $q_{fact}(r, t)$, $q_{rel}(r, t)$ corresponding to the three dimensions of the state space from Section 3.1. The output $A'(r, t)$ represents the agent response to the input $Q(r, t)$, which can be evaluated with ground truth answer $A'(r, t)$.

This structured approach allows us to analyze the model’s dynamic characteristics and assess its lifelong learning capabilities in a principled manner.

216 4 LIFE STATE-BENCH: FROM STATELESS TO STATEFUL
217218 To establish a systematic evaluation framework for lifelong learning, LIFE STATE-BENCH integrates
219 three synergistic components: (1) cumulative experience modeling through episodic timelines, (2)
220 multi-dimensional fact-checking mechanisms, and (3) hierarchical memory testing architectures,
221 refer to overview architecture in Figure 2. This tripartite structure enables comprehensive assessment
222 of LLMs’ capacity to maintain persistent states through history interactions.
223224 4.1 CUMULATIVE EXPERIENCE MODELING
225226 Human learning relies on accumulating structured experiences over time Shao et al. (2023). Early
227 dialog agents Zhang et al. (2018); Dinan et al. (2019), however, constructed persona representations
228 from isolated conversations, ignoring temporal dependencies. Lifelong learning requires a *coherent*
229 *timeline* and *factual consistency* across experiences. These early dialog datasets Zhang et al. (2018);
230 Dinan et al. (2019); Gao et al. (2023), while large, often suffer from short dialogues (e.g., fewer than
231 10 turns) and brief exchanges (e.g., fewer than 20 words per sentence).
232233 Recent role play agent Shao et al. (2023); Wang et al. (2024a); Tu et al. (2024) leverage richer sources,
234 such as novels and role-playing platforms, to better capture experience accumulation. Inspired by
235 this, we propose timeline cumulative experience modeling lifelong learning ability.
236237 **Experience Design.** We structure experiences as an ordered sequence:
238

239
$$E = \{E_1, \dots, E_N\}, \quad E_i = (L_i, T_i, N_i, D_i) \quad (3)$$

240

241 where L_i represents the location of the event, T_i denotes the time it occurs, N_i provides scripted
242 narration for context, and D_i contains the dialogues between characters. This structured representation
243 ensures experiences are temporally ordered, contextually rich, and narratively coherent. This ensures
244 experiences are grounded in concrete events rather than isolated conversations.
245246 **Timeline Fact Order.** Unlike conventional chit-chat dialogue, our framework enforces event-driven
247 interactions, ensuring characters accumulate structured, meaningful experiences grounded in concrete
248 events.
249250 **Multi-Scale Interaction.** Each episode includes: Dialogue length averaging 91 – 125 words, with
251 28.9 – 66 dialogue turns, enabling rich interactions. At least $M \geq 4$ characters, capturing complex
252 social dynamics.
253254 By structuring experiences with explicit timelines, factual consistency, and multi-character interactions,
255 we enable dialog agents to learn in a way that mirrors human experiential accumulation.
256257 4.2 FACT-CHECKING MECHANISMS
258259 Our core innovation is the introduction of fact-checking within multi-agent timeline-based dialogues.
260 At the end of each episode, agents are tested with fact-based questions to ensure factual consistency
261 throughout the narrative.
262263 **Challenges.** Existing evaluation datasets mainly assess role-playing agents based on knowledge,
264 linguistic style, or persona, such as using psychological theories (e.g., Big Five, MBTI) Wang et al.
265 (2023); Tu et al. (2024) or focusing on social intelligence like goals and preferences Chen et al.
266 (2024); Zhou et al. (2024). However, these approaches lack fact-checking and typically evaluate role
267 consistency or open-ended questions. Our method, in contrast, centers on questions with factual
268 answers, supported by human-annotated ground truth, generated from the current episode. Specific
269 examples are shown in Figure 2.
270271 **Question Example.** Our fact-checking framework includes three key question types: Self-
272 awareness, Factual Episode Memory Retrieval, and Relationship Shift. Each episode E_t generates
273 these three question types for each role in the episode to systematically evaluate the agent’s factual
274 accuracy and temporal awareness, ensuring consistency across the timeline. Examples can be found
275 in the fact-checking section of Figure 2.
276

270
271
272 Table 2: Comparison of Evaluated Models
273
274
275
276

Model	Size	Open Source	Model Type	Ctx. Length
Llama3.1	8B	✓	Base	128K
GPT4-turbo	-	✗	Chat	128K
DeepSeek R1	671B	✓	Reasoning	128K

277
278 4.3 MEMORY TESTING
279280 To evaluate our framework’s memory capabilities, we conduct controlled testing using non-parametric
281 and parametric approaches to assess the model’s ability to utilize and internalize memory.
282283 **Non-parametric Methods.** Non-parametric methods test the model’s ability to process raw histori-
284 cal data, represented as $E = [E_1; \dots; E_N]$. Key implementations include:
285

- **Direct Episode Concatenation:** Concatenate all previous episodes as a text prefix to test memory with uncompressed information.
- **Summarization and Concatenation:** Generate a summary $S_t = \text{Summary}(E_{1:t})$ using GPT and concatenate it with the current episode to test memory with compressed information.

290 However, the limited context window size in non-parametric methods may cause information loss
291 when handling long texts.
292293 **Parametric Methods.** Parametric methods encode memory directly into the model’s parameters.
294 We focus on two techniques:
295

- **Knowledge Editing:** This technique Wang et al. (2025); Meng et al. (2023) updates specific model parameters to integrate episodic knowledge without full retraining, ensuring efficient internalization of key information.
- **LoRA (Low-Rank Adaptation):** LoRA Hu et al. (2022) injects small, trainable updates into specific layers, fine-tuning the model with episode memory E_t to retain past information while preserving generalization.

302 These methods bypass context window limitations and enable efficient memory recall. However, practical issues like precision limitations in knowledge editing and information loss in LoRA fine-
303 tuning may affect their performance, as discussed in the evaluation section.
304306 4.4 DATASET CONSTRUCTION AND ANALYSIS
307308 **Data Collection.** This study utilizes two complementary datasets to support a comprehensive
309 evaluation of lifelong learning in language models. The first dataset is adapted from Shakespeare’s
310 Hamlet, with anonymized character names to reduce memorization. While Hamlet may appear in
311 pretraining data, we retain it as a deliberate challenge. Its rich narrative and evolving character
312 dynamics test the model’s ability to track long-term dependencies beyond rote recall. In contrast,
313 the second dataset is a fully synthetic narrative generated by Claude 3.5 Sonnet Anthropic (2024),
314 featuring a novel plot and emotional arcs. This enables a cleaner evaluation of generalization in
315 unseen scenarios.316 By Hamlet and Midnight Diner, our benchmark captures both ends of the spectrum: memorization vs.
317 adaptation, offering a realistic and nuanced evaluation of lifelong learning in large language models.
318 Details of data collection and illustrative examples can be found in Appendix A and Appendix C,
319 respectively.
320321 **Question-Answer Annotation.** To ensure quality, the annotation of questions was primarily
322 conducted by the authors of this study, all of whom hold master’s degrees. In terms of question
323 design, open-ended questions tend to result in lengthy model-generated answers (e.g., averaging 243
tokens), while structured factual questions (e.g., “who/where/when”) help improve accuracy and

324
 325 Table 3: Performance Comparison on Synthetic and Hamlet Datasets. The **best** and **second-best**
 326 performance in each section are highlighted. The *Avg* column represents the average accuracy, and
 327 the *Std* column represents the standard deviation, showing the variability of the results.
 328

Method	Param. Tuning	Self-awareness		Factual Memory		Relation Shift		ACC		
		Avg	Std	Avg	Std	Avg	Std			
<i>Hamlet Dataset (Total 196 Questions)</i>										
<i>Open-source model: Llama3.1-8B</i>										
Knowledge Editing	✓	67.3	0.78	43.7	1.26	19.2	1.26	21.9		
LoRA-Tune	✓	69.1	0.86	53.6	1.08	22.7	1.31	25.6		
Summary Concatenation	✗	73.5	0.93	54.2	0.96	42.1	0.97	47.0		
Direct Concatenation	✗	74.2	0.77	58.8	1.11	43.7	1.15	58.0		
<i>Closed-source model</i>										
GPT-4-turbo (Summary Conc.)	✗	84.6	1.08	62.7	0.79	54.5	0.88	66.1		
GPT-4-turbo (Direct Conc.)	✗	84.3	1.42	62.3	0.82	54.2	0.64	65.9		
<i>Large reasoning model</i>										
DeepSeek-R1 (Summary Conc.)	✗	85.6	0.93	64.3	0.69	56.5	1.05	65.8		
DeepSeek-R1 (Direct Conc.)	✗	86.4	0.79	63.3	0.77	58.7	0.83	67.3		
<i>Synthetic Dataset (Total 115 Questions)</i>										
<i>Open-source model: Llama3.1-8B</i>										
Knowledge Editing	✓	76.2	0.67	47.3	0.83	27.4	1.23	34.0		
LoRA-Tune	✓	77.7	0.89	51.2	0.93	31.2	1.07	40.7		
Summary Concatenation	✗	83.3	0.79	52.7	1.07	46.6	0.97	50.2		
Direct Concatenation	✗	83.6	0.83	61.4	1.25	45.2	1.24	6.70		
<i>Closed-source model</i>										
GPT-4-turbo (Summary Conc.)	✗	84.2	0.91	74.5	0.72	61.1	0.95	73.3		
GPT-4-turbo (Direct Conc.)	✗	85.4	0.76	75.5	0.69	62.9	0.89	75.6		
<i>Large reasoning model</i>										
DeepSeek-R1 (Summary Conc.)	✗	85.7	0.92	70.1	0.87	62.7	0.93	73.5		
DeepSeek-R1 (Direct Conc.)	✗	87.6	0.93	74.7	0.94	67.4	0.88	74.2		

349
 350 effectively reduce response length. During the experiments, data leakage issues were particularly
 351 notable. Specifically, in the *Hamlet* dataset, when character names were restored, the model could
 352 still generate correct answers without context, indicating that the model might be reasoning by
 353 memorizing classic plot patterns, thereby affecting the evaluation results.
 354

355 **LIFESTATE-BENCH Statistics.** As shown in Table 1, we present the dataset statistics, interaction
 356 design, and evaluation focus of our benchmark.
 357

358 Although our total number of samples is relatively small, each sample is longer on average compared
 359 to dialog agent or role ability benchmarks. Unlike long-context understanding datasets, our benchmark
 360 includes more dialogue turns and a larger number of interacting agents. Additionally, it emphasizes
 361 factual consistency and includes explicit memory probes.
 362

363 5 EVALUATION

364 5.1 EXPERIMENTAL SETUP

365 **Evaluation Methods.** When answering questions about the current episode E_t , all prior episodes
 366 E_1 to E_{t-1} , including dialogues, locations, and times, serve as context. We categorize evaluation
 367 methods into two types: (i) Parametric methods improve memory by updating the model’s internal
 368 parameters. Examples include Knowledge Editing-Grace Hartvigsen et al. (2023), which modifies
 369 weights to incorporate new knowledge, and LoRA Fine-Tuning Hu et al. (2022), a lightweight
 370 low-rank adaptation that reduces forgetting. (ii) Non-parametric methods manage context externally.
 371 Direct Concatenation appends full history but is limited by context length. Summary Concatenation
 372 uses GPT to extract and compress key information, balancing compression with retention for longer
 373 contexts.
 374

375 **Model Selection.** We selected the most recent and widely adopted models as our backbone ar-
 376 chitectures, encompassing open-source model (Llama3.1-8B AI (2024)), closed-source models
 377

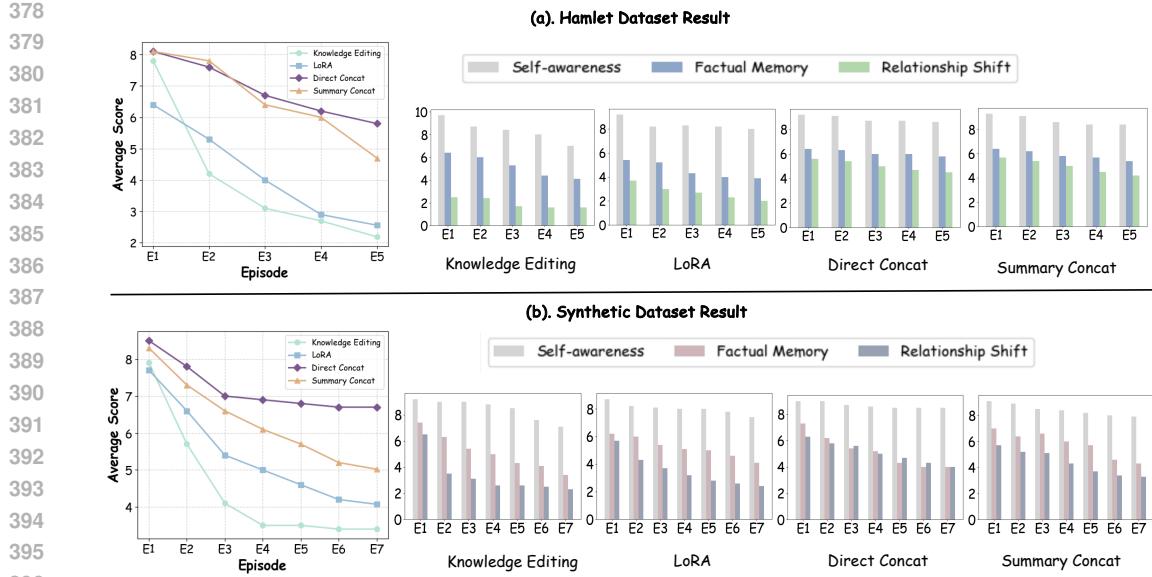


Figure 3: Episode-wise Performance of Hamlet and Synthetic Datasets. This includes the overall performance of various methods, as well as performance from different state perspectives.

(GPT-4-turbo OpenAI (2023)), and state-of-the-art reasoning model (DeepSeek R1 OpenAI (2023)). The distinguishing characteristics of these models are presented in Table 2.

5.2 EXPERIMENTAL RESULTS

Evaluation Protocol. We follow the LLM-as-Judge paradigm Zheng et al. (2023), using the DeepSeek evaluator DeepSeek-AI et al. (2024) for automatic scoring. Each question is paired with a ground truth answer containing factual details and structured reasoning. We use pairwise grading between the model output and ground truth, scoring from 1 to 100. By grounding the evaluation in factual reference answers, this setup ensures more reliable results than open-ended assessments that depend on the model’s internal knowledge. Details of the evaluation prompt and scoring workflow are included in Appendix B.

Overall Performance. The results show clear performance differences across models and datasets. Large reasoning models like DeepSeek-R1 and the proprietary GPT-4-turbo outperform the open-source Llama3.1-8B in all tasks. DeepSeek-R1 achieved the highest overall accuracy (67.3%) on the Hamlet dataset using the direct concatenation method, especially in self-awareness (86.4%) and relation shift (58.7%). On the synthetic dataset, GPT-4-turbo also using direct connection achieved the best overall accuracy (75.6%) and factual memory score (75.5%).

Non-tuning methods (direct and summary connection) perform better than tuning-based methods (knowledge editing and LoRA-Tune), suggesting that leveraging the model’s original context is more effective, and this is intuitive. All methods perform better on the synthetic dataset than on Hamlet, likely due to its more complex characters, plots, and longer dialog samples (As shown in Table 1).

All methods show relatively low standard deviations (most between 0.7-1.2), indicating stable and reliable results. GPT-4-turbo has a higher standard deviation in self-awareness (1.42 on the Hamlet dataset), suggesting some fluctuation. In contrast, DeepSeek-R1 demonstrates more consistent performance, especially in factual memory, with a standard deviation between 0.69-0.94. Overall, DeepSeek-R1 offers the most balanced performance, excelling in complex relation shift tasks, while GPT-4-turbo excels in factual memory.

Episode-wise Performance. Using Llama3.1-8B as an example, we analyzed how each method performs across episodes. As shown in the figure 3, on the Hamlet dataset, model performance generally drops as the story progresses, regardless of parameter tuning. The decline is most severe

432 for the Knowledge Editing method, showing clear signs of catastrophic forgetting. A similar trend
 433 appears in the synthetic dataset, suggesting that our LIFESTATE-BENCH presents challenges for
 434 lifelong learning evaluation. As the story unfolds, model performance decreases on both datasets.
 435 However, the decline is slower and more stable on the *Hamlet* dataset, suggesting the model effectively
 436 leverages prior knowledge and long-term dependencies. In contrast, the synthetic dataset generated
 437 by Claude 3.5 shows a faster and sharper drop in performance, indicating greater difficulty in adapting
 438 to novel, unseen content. This comparison highlights how the two datasets challenge different model
 439 capabilities—memory retention versus generalization.

440
 441 **State Dimension Breakdown.** When broken down by question type, all methods show performance
 442 drops over episodes. The most challenging are questions about shifting relationships, where models
 443 struggle to track evolving dynamics.

444 The direct concatenation method performs consistently across question types and datasets. It is
 445 especially accurate in early episodes (E1–E2) when handling self-awareness and relationship shift.
 446 The summary-concatenation works well for self-awareness and fact recall but performs poorly on
 447 relationship shift questions. This suggests it fails to capture complex relationship changes. Knowledge
 448 Editing (GRACE) and LoRA-Tune perform weakly on self-awareness and memory-related tasks.
 449 Their scores drop quickly over episodes, further showing that parameter-based methods are vulnerable
 450 to forgetting in multi-step and long-term reasoning.

451
 452 **Data Leakage Analysis.** In our observations, despite anonymizing character names in *Hamlet*,
 453 some model outputs still suggest data leakage—for example, predicting future plot details. However,
 454 this is not a flaw of our benchmark but a deliberately designed challenge. It is important to clarify
 455 that LLMs are pre-trained on vast amounts of internet data. In real-world scenarios, LLMs must
 456 balance leveraging existing knowledge with adapting to new information. Our benchmark tests this
 457 ability explicitly.

458 Including *Hamlet* allows us to probe whether models truly understand and reason about long-term
 459 dependencies, rather than merely recalling memorized content. In contrast, the synthetic dataset
 460 generated by Claude 3.5 Sonnet provides a clean environment to evaluate the model’s generalization
 461 and adaptation to novel contexts. By combining these two types of data, our benchmark reflects a
 462 realistic spectrum of challenges—from memory retention to adaptation—rather than simply avoiding
 463 data leakage.

464 6 CONCLUSION

465
 466 We introduce LIFESTATE-BENCH, a novel benchmark designed to evaluate the lifelong learning
 467 ability of LLMs through multi-agent, multi-turn interactions. Unlike prior static assessments,
 468 LIFESTATE-BENCH simulates cumulative experiences by organizing interactions as episodic scripts
 469 enriched with scene and character dynamics. It enables objective measurement of state evolution via
 470 fact-based questions, exploring self-awareness, factual memory retrieve, and relationship shifts. Our
 471 experiments on both open-/closed-source and state-of-the-art reasoning models reveal that LLMs still
 472 struggle with consistent state retention across episodes. LIFESTATE-BENCH proves effective in high-
 473 lighting these challenges and shows that non-parametric methods better preserve long-term context.
 474 These results confirm its value as a diagnostic tool for developing more stateful, memory-capable
 475 LLMs.

476 7 LIMITATIONS

477
 478 Although individual samples in the dataset are sufficiently long, the overall number of samples is
 479 limited, which may somewhat restrict the diversity of training and evaluation scenarios. Additionally,
 480 this work primarily focuses on dialogue-based models, with potential future extensions to code
 481 generation or vision and other multimodal tasks. Finally, the benchmark currently emphasizes factual
 482 questions and does not yet cover more subjective and complex cognitive abilities such as emotion
 483 modeling or planning. In the future, we plan to synthesize more diverse datasets to further enhance
 484 the benchmark’s robustness and applicability.

486 ETHICS STATEMENT
487488 This work introduces LIFESTATE-BENCH, a benchmark for evaluating lifelong learning and memory
489 retention in large language models. All experiments are based on publicly available datasets and
490 open-source models. No human subjects or private data are involved, and no new datasets are created.
491 The benchmark is intended for academic research to study knowledge retention and forgetting, not
492 for harmful applications. We identify no significant ethical risks related to bias, privacy, or misuse.
493 All experiments comply with the license terms of the datasets and models used.494
495 REPRODUCIBILITY STATEMENT
496497 We provide detailed descriptions of the benchmark construction, evaluation protocols, and experi-
498 mental setup. Section 4 outlines the design of LIFESTATE-BENCH, while Section 5.1 describes
499 model configurations and hyperparameters. All underlying datasets are publicly available, and we
500 followed standard preprocessing and evaluation procedures. Implementation code, benchmark scripts,
501 and experiment configurations are included in the supplementary materials. Additional details and
502 complete results are reported in the appendix.503
504 REFERENCES
505506 Sam S. Adams, Itamar Arel, Joscha Bach, Robert Coop, Rod Furlan, Ben Goertzel, J. Storrs Hall,
507 Alexei V. Samsonovich, Matthias Scheutz, Matthew Schlesinger, Stuart C. Shapiro, and John F.
508 Sowa. Mapping the landscape of human-level artificial general intelligence. *AI Mag.*, 33(1):25–
509 42, 2012. doi: 10.1609/aimag.V33I1.2322. URL <https://doi.org/10.1609/aimag.v33i1.2322>.510
511 Meta AI. Meta llama 3.1, 2024. URL <https://ai.meta.com/blog/meta-llama-3-1/>.
512 Accessed: 2024-02-16.513 Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong,
514 and Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models. In
515 Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting
516 of the Association for Computational Linguistics (Volume 1: Long Papers)*, ACL 2024, Bangkok,
517 Thailand, August 11-16, 2024, pp. 14388–14411. Association for Computational Linguistics, 2024.
518 doi: 10.18653/V1/2024.ACL-LONG.776. URL <https://doi.org/10.18653/v1/2024.acl-long.776>.519
520 Anthropic. Claude 3.5. <https://www.anthropic.com/claude>, 2024. Large language
521 model.522
523 Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
524 Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
525 multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and Vivek
526 Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational
527 Linguistics (Volume 1: Long Papers)*, ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 3119–
528 3137. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.172.
529 URL <https://doi.org/10.18653/v1/2024.acl-long.172>.530
531 Hongzhan Chen, Hehong Chen, Ming Yan, Wenshen Xu, Gao Xing, Weizhou Shen, Xiaojun Quan,
532 Chenliang Li, Ji Zhang, and Fei Huang. Socialbench: Sociality evaluation of role-playing con-
533 versational agents. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the
534 Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting,
535 August 11-16, 2024*, pp. 2108–2126. Association for Computational Linguistics, 2024. doi:
536 10.18653/V1/2024.FINDINGS-ACL.125. URL <https://doi.org/10.18653/v1/2024.findings-acl.125>.537
538 Nuo Chen, Yan Wang, Haiyun Jiang, Deng Cai, Yuhang Li, Ziyang Chen, Longyue Wang, and
539 Jia Li. Large language models meet harry potter: A dataset for aligning dialogue agents with
characters. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Findings of the Association
for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023*, pp. 8506–8520.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.570.
URL <https://doi.org/10.18653/v1/2023.findings-emnlp.570>.

594 *tional Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.*
 595 OpenReview.net, 2022. URL <https://openreview.net/forum?id=nZeVKeeFYf9>.
 596

597 Janus. Simulators. LessWrong online forum, September 2022. URL <https://www.lesswrong.com/posts/vJFdjigzmcXMhNTsx/>.
 598

599 John E. Laird, Allen Newell, and Paul S. Rosenbloom. SOAR: an architecture for general intelligence.
 600 *Artif. Intell.*, 33(1):1–64, 1987. doi: 10.1016/0004-3702(87)90050-6. URL [https://doi.org/10.1016/0004-3702\(87\)90050-6](https://doi.org/10.1016/0004-3702(87)90050-6).
 601

602 Matthew Le, Y-Lan Boureau, and Maximilian Nickel. Revisiting the evaluation of theory of mind
 603 through question answering. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.),
 604 *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the*
 605 *9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong*
 606 *Kong, China, November 3-7, 2019*, pp. 5871–5876. Association for Computational Linguistics,
 607 2019. doi: 10.18653/V1/D19-1598. URL <https://doi.org/10.18653/v1/D19-1598>.
 608

609 Keming Lu, Bowen Yu, Chang Zhou, and Jingren Zhou. Large language models are superpositions
 610 of all characters: Attaining arbitrary role-play via self-alignment. In Lun-Wei Ku, Andre Martins,
 611 and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for*
 612 *Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16,*
 613 *2024*, pp. 7828–7840. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
 614 *ACL-LONG.423*. URL <https://doi.org/10.18653/v1/2024.acl-long.423>.
 615

616 Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-
 617 editing memory in a transformer. In *The Eleventh International Conference on Learning*
 618 *Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL
 619 <https://openreview.net/forum?id=MkbcAHIYgyS>.
 620

621 Allen Newell. Physical symbol systems. *Cogn. Sci.*, 4(2):135–183, 1980. doi: 10.1207/
 622 S15516709COG0402\2. URL https://doi.org/10.1207/s15516709cog0402_2.
 623

624 OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
 625 URL <https://doi.org/10.48550/arXiv.2303.08774>.
 626

627 Joon Sung Park, Joseph C. O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
 628 Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior. In Sean Follmer,
 629 Jeff Han, Jürgen Steimle, and Nathalie Henry Riche (eds.), *Proceedings of the 36th Annual ACM*
 630 *Symposium on User Interface Software and Technology, UIST 2023, San Francisco, CA, USA,*
 631 *29 October 2023- 1 November 2023*, pp. 2:1–2:22. ACM, 2023. doi: 10.1145/3586183.3606763.
 632 URL <https://doi.org/10.1145/3586183.3606763>.
 633

634 Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Socialiqa: Com-
 635 monsense reasoning about social interactions. *CoRR*, abs/1904.09728, 2019. URL [http://arxiv.org/abs/1904.09728](https://arxiv.org/abs/1904.09728).
 636

637 Murray Shanahan, Kyle McDonell, and Laria Reynolds. Role play with large language models. *Nat.*,
 638 623(7987):493–498, 2023. doi: 10.1038/S41586-023-06647-8. URL <https://doi.org/10.1038/s41586-023-06647-8>.
 639

640 Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-lm: A trainable agent for role-
 641 playing. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Con-*
 642 *ference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore, De-*
 643 *cember 6-10, 2023*, pp. 13153–13187. Association for Computational Linguistics, 2023. doi:
 644 10.18653/V1/2023.EMNLP-MAIN.814. URL <https://doi.org/10.18653/v1/2023.emnlp-main.814>.
 645

646 Theodore R. Sumers, Shunyu Yao, Karthik Narasimhan, and Thomas L. Griffiths. Cognitive
 647 architectures for language agents. *Trans. Mach. Learn. Res.*, 2024, 2024. URL <https://openreview.net/forum?id=li6ZCvflQJ>.
 648

649 Ron Sun. Desiderata for cognitive architectures. *Philosophical psychology*, 17(3):341–373, 2004.

648 Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
 649 Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena : A benchmark for efficient
 650 transformers. In *9th International Conference on Learning Representations, ICLR 2021, Virtual*
 651 *Event, Austria, May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=qVyeW-grC2k>.

652

653 Quan Tu, Shilong Fan, Zihang Tian, Tianhao Shen, Shuo Shang, Xin Gao, and Rui Yan. Charactereval:
 654 A chinese benchmark for role-playing conversational agent evaluation. In Lun-Wei Ku, Andre
 655 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for*
 656 *Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16,*
 657 *2024*, pp. 11836–11850. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
 658 *ACL-LONG.638*. URL <https://doi.org/10.18653/v1/2024.acl-long.638>.

659

660 Noah Wang, Zhongyuan Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu, Hongcheng
 661 Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang Zhang, Wanli Ouyang, Ke Xu,
 662 Wenhao Huang, Jie Fu, and Junran Peng. Roleilm: Benchmarking, eliciting, and enhancing role-
 663 playing abilities of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
 664 (eds.), *Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand*
 665 *and virtual meeting, August 11-16, 2024*, pp. 14743–14777. Association for Computational
 666 Linguistics, 2024a. doi: 10.18653/V1/2024.FINDINGS-ACL.878. URL <https://doi.org/10.18653/v1/2024.findings-acl.878>.

667

668 Ruiyi Wang, Haofei Yu, Wenxin Sharon Zhang, Zhengyang Qi, Maarten Sap, Yonatan Bisk, Graham
 669 Neubig, and Hao Zhu. Sotopia- π : Interactive learning of socially intelligent language agents. In
 670 Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting*
 671 *of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,*
 672 *Thailand, August 11-16, 2024*, pp. 12912–12940. Association for Computational Linguistics,
 673 2024b.

674

675 Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge
 676 editing for large language models: A survey. *ACM Comput. Surv.*, 57(3):59:1–59:37, 2025. doi:
 677 10.1145/3698590. URL <https://doi.org/10.1145/3698590>.

678

679 Xintao Wang, Quan Tu, Yaying Fei, Ziang Leng, and Cheng Li. Does role-playing chatbots cap-
 680 ture the character personalities? assessing personality traits for role-playing chatbots. *CoRR*,
 681 abs/2310.17976, 2023. doi: 10.48550/ARXIV.2310.17976. URL <https://doi.org/10.48550/arXiv.2310.17976>.

682

683 Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston.
 684 Personalizing dialogue agents: I have a dog, do you have pets too? In Iryna Gurevych and Yusuke
 685 Miyao (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational*
 686 *Linguistics, ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers*, pp.
 687 2204–2213. Association for Computational Linguistics, 2018. doi: 10.18653/V1/P18-1205. URL
 688 <https://aclanthology.org/P18-1205/>.

689

690 Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
 691 Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. inftybench: Extending long
 692 context evaluation beyond 100k tokens. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
 693 (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*
 694 *(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 15262–15277.
 695 Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.814. URL
 696 <https://doi.org/10.18653/v1/2024.acl-long.814>.

697

698 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
 699 Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez,
 700 and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In Alice Oh,
 701 Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.),
 702 *Advances in Neural Information Processing Systems 36: Annual Conference on Neural*
 703 *Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December*
 704 *10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/91f18a1287b398d378ef22505bf41832-Abstract-Datasets_and_Benchmarks.html.

702 Xuhui Zhou, Hao Zhu, Leena Mathur, Ruohong Zhang, Haofei Yu, Zhengyang Qi, Louis-Philippe
 703 Morency, Yonatan Bisk, Daniel Fried, Graham Neubig, and Maarten Sap. SOTPIA: interactive
 704 evaluation for social intelligence in language agents. In *The Twelfth International Conference on*
 705 *Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024.
 706
 707

708 A DATASET CONSTRUCTION DETAILS

710 **Dataset Construction.** LIFESTATE-BENCH evaluates large language models’ (LLMs) ability to
 711 retain and reason over long-term state information in narrative environments. It includes two types of
 712 scripts:

- 713 • **Hamlet** (English): An existing classical play. All character names are anonymized to reduce
 714 data leakage. It primarily tests memory retention when prior exposure may exist.
- 715 • **Midnight Diner** (Chinese & English): A synthetic script generated via Claude 3.5 Sonnet.
 716 It is not part of any public pretraining corpus and focuses on evaluating adaptation to novel
 717 content.

719 Each episode includes: *Scene information*: time, location, participants. *Full dialogues*: grounded in
 720 realistic narrative progression. *Role cards*: character background, personality traits, and relationships.
 721 *QA pairs*: fact-based questions with reference answers for evaluation, centered on (1) self-awareness,
 722 (2) memory retrieval, and (3) relationship changes. Data was stored in JSON format, structured in the
 723 following hierarchy: EspiodeID → Question-Answer ID → (Question, Reference answer).

724 **Prompt for Synthetic Data Generation (Claude).** To construct the Midnight Diner dataset, we
 725 used Claude 3.5 Sonnet to generate original episodes, role cards, and dialogue timelines. The prompt
 726 is shown in Table 4.

728 **Prompt:** Please help me generate an original multi-episode drama script, including detailed
 729 character profiles, a full dialogue-based script, and a timeline of events. The requirements are:
 730

- 731 • The setting is a “*Midnight Diner*” with fixed staff and rotating customers.
- 732 • Each episode should explore a central theme, such as character growth, emotional
 733 conflict, or relationship change.
- 734 • Each character should have a clear background, personality, and relationship dynamics.
- 735 • The dialogue should be natural and realistic, reflecting everyday emotional depth.

736 The output should include:

- 737 1. Full script in dialogue form;
- 738 2. Structured character cards;
- 739 3. Scene-level metadata such as time, place, and involved characters.

743 Table 4: Instruction prompt used to generate drama-style episodes.

746 B EVALUATION PROTOCOL

748 We follow the LLM-as-Judge paradigm Zheng et al. (2023), using the DeepSeek evaluator DeepSeek-
 749 AI et al. (2024) for automatic scoring. Each model-generated answer is compared against the
 750 reference answer and scored from 1 to 10 based on alignment and correctness Zheng et al. (2023).

751 **Evaluation Prompt.** Each triplet (question, model answer, reference answer) is scored using the
 752 following prompt summarized in Table 5

754 **Scoring Workflow.** Algorithm 1 illustrates the overall scoring workflow. For each question-answer
 755 pair in the dataset, the question, model answer, and reference answer are first extracted. Then, a

756 **Prompt:**
 757 The known question is: [QUESTION].
 758 The original answer is: [MODEL_ANSWER].
 759 The target answer is: [REFERENCE_ANSWER].
 760
 761 Please provide a score for the original answer based on the following criteria:
 762 1–2: irrelevant or seriously incorrect;
 763 3–4: minor errors, low quality;
 764 5–6: medium quality;
 765 7–8: close to reference, good quality;
 766 9–10: same as reference answer.
 767
 768
 769 Please return only a number from 0 to 10.
 770

771 Table 5: Prompt for scoring the original answer based on a reference.
 772773 **Algorithm 1** Evaluation via LLM Scoring

774 1: Initialize `total_score` $\leftarrow 0$, `count` $\leftarrow 0$
 775 2: **for** each QA pair $(q, a_{\text{model}}, a_{\text{ref}})$ in dataset **do**
 776 3: Construct prompt with $q, a_{\text{model}}, a_{\text{ref}}$
 777 4: `response` $\leftarrow \text{LLM}.\text{API}(\text{prompt})$
 778 5: `score` $\leftarrow \text{parse_score}(\text{response})$
 779 6: `total_score` $\leftarrow \text{total_score} + \text{score}$, `count` $\leftarrow \text{count} + 1$
 780 7: **end for**
 781 8: `average_score` $\leftarrow \text{total_score} / \text{count}$
 782 9: **return** `average_score`

783
 784 prompt is constructed and sent to the large language model API to obtain a score. Finally, all scores
 785 are accumulated and the average score is computed as the overall performance metric.
 786

787 **Reproducibility.** We provide a Python script `eval.py` implementing the full pipeline using the
 788 OpenAI-compatible API.
 789

790 C DATA EXAMPLE

791 To illustrate the structure of our dataset, we present a stylized excerpt adapted from *Hamlet*, Act I,
 792 Scene I. Each scene is annotated with a title, a list of participating characters, dialogue entries, and
 793 character-centric question-answer (QA) annotations across multiple perspectives.
 794

795 SCENE SAMPLE

796
 797 **Scene Title:** *SCENE I. Elsinore. A platform before the castle.*
 798 **Characters:** Person7, Person10, Person26
 799 **Dialogues:**

- 800 • **Action:** *Person10 at his post. Enter to him Person26.*
- 801 • **Person26:** Who's there?
- 802 • **Person10:** Nay, answer me: stand, and unfold yourself.
- 803 • **Person26:** Long live the king!
- 804 • **Person10:** Person26?
- 805 • **Person26:** He.
- 806 • **Person10:** You come most carefully upon your hour.
- 807 • **Person26:** 'Tis now struck twelve; get thee to bed, Person10.
- 808 • ...

810 CHARACTER QA ANNOTATIONS
811812 Each character is annotated with multi-perspective QA entries covering (1) Self-Perception, (2)
813 Memory and Decision-Making, and (3) Plot Interaction. All answers are phrased in first-person,
814 grounded in dialogue context.815
816 **Person10**817
818 • **Self-awareness:**
819 *Q: What is your position in the royal palace?*
820 **A:** I am a soldier, responsible for guarding the court.
821 • **Factual Episode Memory Retrieve:**
822 *Q: Who is taking over your shift tonight?*
823 **A:** Person26.
824 *Q: Who did Person26 ask you to call over quickly?*
825 **A:** His watch partners, Person31 and Person5.826 **Person26**
827828
829 • **Self-awareness:**
830 *Q: What is your position in the royal palace?*
831 **A:** I am a soldier, responsible for guarding the court.
832 • **Factual Episode Memory Retrieve:**
833 *Q: Whose shift did you take over tonight?*
834 **A:** Person10's.
835 *Q: Who was with you the first time you saw Person21?*
836 **A:** I was with Person5 when we first saw Person21.
837 *Q: Where did you see Person21?*
838 **A:** At the watchtower of the castle.
839 *Q: When did you see Person21?*
840 **A:** Last night, just as the clock struck.
841 • **Factual Episode Memory Retrieve:**
842 *Q: Who does Person21 resemble?*
843 **A:** Person21 bears a striking resemblance to the late king.
844 *Q: Did Person21 appear again tonight? What did it do?*
845 **A:** Yes, Person21 appeared again tonight. It did not speak; it just silently departed.

846 NOTE

847 Identifiers like “Person5” and “Person21” are anonymized character IDs used during preprocessing.
848 Each QA entry reflects context-specific knowledge, enabling multi-perspective reasoning and temporal
849 memory modeling. This structure facilitates evaluation of consistent character behaviors across
850 scenes.851
852
853
854
855
856
857
858
859
860
861
862
863