# **BLOCKDECODER: Boosting ASR Decoders** with Context and Merger Modules

**Darshan Prabhu**Department of CSE

IIT Bombay
darshanp@cse.iitb.ac.in

#### Preethi Jyothi

Department of CSE IIT Bombay pjyothi@cse.iitb.ac.in

#### **Abstract**

Attention-based encoder decoder models remain a popular choice for state-of-the-art automatic speech recognition (ASR). These models combine a powerful audio encoder that extracts rich acoustic features with a decoder that autoregressively produces the ASR output. The decoder handles two critical tasks: (1) building rich text-only context and (2) merging acoustic information from the encoder to ensure the predictions remain faithful to the audio. We observe a systematic pattern across the attention distributions of decoder layers in prior architectures: the initial layers direct most attention towards building textual context, while the later layers largely focus on merging acoustic and textual information for the final predictions. Leveraging this key insight, we propose BLOCKDECODER, a novel decoder architecture comprising two distinct components: a text encoder that is purely text-based, and a MERGER that combines information from the audio encoder and text encoder to generate output tokens. Unlike traditional decoders, the MERGER autoregressively predicts a sequence of K tokens within a block of size K, while relying on the same precomputed contextual information from both text and audio encoders across the block. This design choice allows for the efficient reuse of encoder representations. The separation of the decoder into the text encoder and the MERGER promotes modularity and more flexible control of parameters via the number of text encoder and MERGER layers. As a result, BLOCKDECODER yields a significant speedup ( $\sim 2x$ ) compared to traditional decoders, across diverse datasets, languages, and speech tasks, without any degradation in performance. The code is available at https://github.com/csalt-research/blockdecoder.

#### 1 Introduction

Several prominent state-of-the-art automatic speech recognition (ASR) systems are derived from attention-based encoder-decoder architectures [1]. While the audio encoder's role in these architectures is to transform input speech into acoustically-rich representations, the decoder autoregressively generates text by combining acoustic information from the encoder with previously predicted text. Numerous variants of the encoder have been explored for ASR in prior work, ranging from self-supervised architectures [2, 3] to convolutionally-enriched ASR pipelines [4, 5, 6, 7]. In contrast, there have been relatively fewer innovations of the ASR decoder.

The ASR decoder comprises Transformer [8] layers with both self-attention and cross-attention modules. The self-attention module attends to previous tokens at a given time-step, and the cross-attention module attends to speech representations from the audio encoder. We analyze the behaviour of both these attention modules across all decoder layers and make the following key observations: (1) Self-attention increasingly focuses on local context as we progress deeper into the decoder: As shown in Figure 1, the attention weights in the initial decoder layers are well-distributed across the entire sequence.

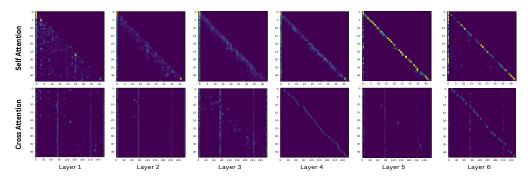


Figure 1: Attention plots illustrating the patterns learned by self-attention and cross-attention blocks across all layers of a standard Transformer decoder in a hybrid CTC/attention ASR system. The plot consists of two rows, one for self-attention and another for cross-attention and six columns, corresponding to the six decoder layers (ordered left to right). Brighter colors indicate higher attention weights. These visualizations are generated for a single example from a model trained on the Librispeech 960h dataset; we see similar patterns across most of the examples.

However, these weights become strongly diagonal as we approach the penultimate layers. A similar phenomenon has been previously observed in the audio encoder [5] but never analyzed in the decoder. (2) *Cross-attention blocks appear to be less effective in the initial decoder layers*: As illustrated in Figure 1, cross-attention in the early layers fail to learn any alignment between the audio and text sequences suggesting they might be redundant in these layers. Figure 6 in Appendix D additionally shows aggregate attention plots over 250 utterances; we see very similar patterns as illustrated in Figure 1.

Based on these systematic attention patterns, the decoder appears to be assigning specific roles to its initial and final layers. Specifically, the initial layers of the decoder are mainly tasked with the generation of text-only context by relying extensively on the token sequence, thus rendering cross-attention less effective. The final layers of the decoder merge textual context from the early layers with acoustic information from the audio encoder for its final predictions. We draw inspiration from these findings and propose BLOCKDECODER as an alternative to the conventional decoder architecture. BLOCKDECODER is partitioned into two sub-modules, a text encoder with only self-attention layers to build textual context and a merger with self-attention and two cross-attention layers to integrate acoustic representations from the audio encoder with contextualized outputs from the text encoder to generate the final predictions. Unlike traditional decoders, the merger is designed to autoregressively generate K tokens (referred to as a *block* of size K, and hence the name BLOCKDECODER), from every position in the token sequence, while relying on the same contextual information from both encoders across the block. This block-based design enables different inference strategies, as discussed in section 3.3, and reduces inference latency. Since the merger combines representations that are already contextualized by the audio and text encoders, a small number of merger layers suffice to achieve high performance, thus resulting in additional latency reductions. Together, these complementary design choices result in BLOCKDECODER containing fewer parameters compared to the traditional decoder, while achieving double the inference speed with no performance degradation on multiple speech tasks.

#### 2 Related Work

ASR systems have significantly evolved in the last decade from deep neural network-hidden Markov model (DNN-HMM) based architectures [9, 10] to fully end-to-end (E2E) ASR systems [11, 12]. These E2E models typically adopt either an encoder-only [13] or an encoder-decoder architecture [1], where the encoder processes the audio while the decoder handles text generation. Prior work has largely focused on improving these architectures either by refining individual components [14, 15] or developing joint training techniques that integrate multiple objectives to enhance model robustness [16]. One such widely-adopted jointly trained model is the CTC+attention system [17], which consists of an audio encoder, an autoregressive decoder and a CTC module. Improvements to hybrid ASR have largely focused on either making the encoder more expressive [4, 18], enhancing the robustness of CTC [19] or introducing new training objectives [20, 21]. While many efforts have aimed towards refining the audio encoder and CTC, comparatively less attention has been given to the decoder despite its critical role in text generation. BLOCKDECODER is a step towards addressing this gap.

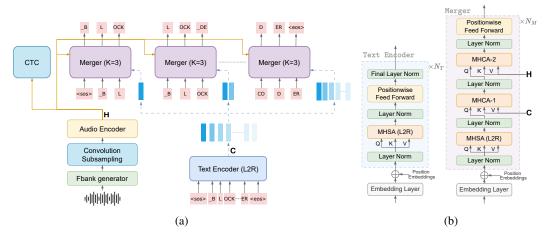


Figure 2: Overview of the Hybrid CTC/Attention framework with our proposed BlockDecoder. (a) Schematic representation highlighting interactions between the audio encoder, text encoder, CTC, and Merger modules during training. For the example transcript "\_Block\_Decoder", we illustrate the Merger's capability of predicting K=3 tokens autoregressively from every position of the token sequence, while being conditioned on the same contextual representations provided by the audio encoder and text encoder. Specifically, at each stage, the Merger receives the representation of a progressively longer text prefix (e.g., [<sos>, \_B] etc.) from text encoder (shown via the blue bars) along with the corresponding audio representation from audio encoder (shown via orange lines), and autoregressively predicts the next three tokens. (b) A detailed expansion of the text encoder and Merger modules, with residual connections and dropout omitted for brevity. Here, MHSA=Multiheaded Self-Attention and MHCA=Multiheaded Cross-Attention.

The autoregressive nature of the decoder in ASR systems contributes to high inference latency. To mitigate this, non-autoregressive (NAR) decoders have been explored [22, 23, 24], allowing parallel token prediction thereby improving inference efficiency. However, like CTC, NAR decoders generally underperform compared to autoregressive decoders. To bridge this gap, hybrid approaches have been proposed, where an NAR decoder first generates an initial prediction, which is then further refined by an autoregressive decoder [25]. Another line of work investigates speculative decoding techniques [26, 27], that predicts multiple future tokens in parallel, thereby further reducing inference costs. While most prior works have focused on eliminating autoregressive decoding or modifying decoding strategies [28], to the best of our knowledge, there have been no detailed investigations of the internal functioning of the decoder to refine its design. In our work, we redesign the decoder based on consistent empirical insights drawn from attention patterns. These design choices are similar in motivation to RNN-Transducer (RNN-T) systems used for streaming ASR [29], which employs separate predictor and joiner modules, each serving a distinct function. However, unlike the joiner in RNN-T, which is a simple feedforward network, we propose the MERGER, that incorporates multiple attention layers, enabling richer and more flexible context integration. Furthermore, we note that our approach operates on blocks of tokens, which is an emerging design choice in recent years [30, 31, 24].

#### 3 Methodology

# 3.1 Overall Architecture

BLOCKDECODER scaffolds on top of *hybrid CTC/attention models*, a state-of-the-art framework for ASR systems [17]. This framework consists of: a shared audio encoder, an autoregressive decoder and a CTC decoder. Given an input speech sequence  $\mathbf{X} = [x_1, ..., x_{T'}], x_i \in \mathbb{R}^d$ , the audio encoder maps it to a contextualized speech representation  $\mathbf{H} = [h_1, ..., h_T]$ . Both the CTC and autoregressive decoders are conditioned on  $\mathbf{H}$  to produce the label sequence  $\mathbf{y} = [y_1, ..., y_W], y_i \in \mathcal{V}$  where  $\mathcal{V}$  is a predefined token vocabulary. The CTC branch minimizes the Connectionist Temporal Classification (CTC) loss [32] by marginalizing over all possible alignments of  $\mathbf{y}$  with  $\mathbf{H}$ . decoder, on the other hand, is

<sup>&</sup>lt;sup>1</sup>audio encoder typically uses subsampling to reduce the length of the speech sequence to  $T = \lceil T'/S \rceil$ , where S is the sampling factor.

an attention-based autoregressive module that is trained to maximize the conditional likelihood of producing  $y_i$  given  $\mathbf{H}$  and previous tokens  $y_0,...,y_{i-1}$ , where  $y_0$  denotes the <sos> token. In this work, we focus on the decoder by replacing it with our proposed BLOCKDECODER which is more efficient and performs at par with (or better than) the decoder.

#### 3.2 BLOCKDECODER

We replace the standard decoder with two specialized modules: a text encoder and a MERGER, each designed for a specific purpose, as shown in Figure 2. The text encoder generates rich textual context for the token sequence y, that the MERGER further combines along with H, to autoregressively generate K tokens within a block. These two modules are collectively referred to as BLOCKDECODER. Fig. 2a shows a schematic overview of our ASR system incorporating these modules. If the original decoder comprises N layers, then we redistribute these layers (with minor modifications) across the text encoder (in §3.2.1) and MERGER (in §3.2.2) in BLOCKDECODER to be commensurate in size with the decoder.

#### 3.2.1 Text Encoder

The text encoder is a stack of  $N_T$  decoder layers that attends over the token sequence  $\boldsymbol{y}$  to produce contextualized representations. These layers consist only of self-attention and feed-forward sub-layers (and no cross-attention), since text encoder operates only on the text and does not attend to the audio at all. To prevent information leakage, each token  $y_i$  is allowed to attend only to itself and the preceding tokens  $\{y_0, y_1, y_2, ..., y_{i-1}\}$  using appropriate masking. The architecture of the text encoder is shown in Figure 2b. It consists of a stack of  $N_T$  decoder layers that are designed to generate rich textual context for the token sequence  $\boldsymbol{y}$  while preventing information leakage. Specifically, the output  $\mathbf{C}^j$  of the  $j^{\text{th}}$  text encoder layer is calculated as follows:

$$\begin{split} \hat{\mathbf{C}} &= \mathrm{MHSA}(\mathbf{C}^{j-1}, \mathbf{C}^{j-1}, \mathbf{C}^{j-1}, \max) \\ \hat{\mathbf{C}}^{j} &= \mathbf{C}^{j-1} + \mathrm{LayerNorm}_{\mathrm{att}}(\hat{\mathbf{C}}) \\ \hat{\mathbf{C}} &= \hat{\mathbf{C}}^{j} + \mathrm{LayerNorm}_{\mathrm{ff}}(\mathrm{Linear}(\hat{\mathbf{C}}^{j})) \\ \mathbf{C}^{j} &= \mathrm{LayerNorm}_{\mathrm{final}}(\hat{\mathbf{C}}) \end{split}$$

where  $\hat{\mathbf{C}}, \mathbf{C}^j \in \mathbb{R}^{W \times d}$  and  $\max k \in \{\text{True}, \text{False}\}^{W \times W}$ . Here, MHSA(\*) denotes multi-headed self-attention [8]. During attention computation,  $\max k$  serves as a Boolean matrix, where  $\max [a,b]$  indicates whether the  $a^{\text{th}}$  token is allowed to attend to the  $b^{\text{th}}$  token in y. For the text encoder, we set  $\max [a,b] = (b \leq a)$  to prevent information leakage. Finally, the input to the first layer is defined as  $\mathbf{C}^0 = \text{PE} + (\text{Embedding}([y_0,y_1,\ldots,y_W])$ , where PE represents sinusoidal position embeddings. We also employ dropout [33] in every text encoder layer. Additionally, we observe that having LayerNorm\_{\text{final}} at the end of every layer is crucial for stable training of the BLOCKDECODER. We use  $\mathbf{C} \in \mathbb{R}^{W \times d}$  to denote the final output from the text encoder.

#### 3.2.2 MERGER

Given audio context  $\mathbf{H}$  from the audio encoder and text-only context  $\mathbf{C}$  from the text encoder, we introduce MERGER that jointly attends to contexts from both modalities to autoregressively generate a block of K tokens. MERGER achieves this integration via multiple attention blocks, as shown in Figure 2b. Specifically, MERGER first employs a self-attention block, that focuses on local context by causally attending to tokens in the current block. Next, MERGER uses two cross-attention modules for  $\mathbf{C}$  and  $\mathbf{H}$ , respectively. The first cross-attention module attends to the contextualized representations in  $\mathbf{C}$  prior to the current block; the second cross-attention block integrates acoustic features from  $\mathbf{H}$ , thereby ensuring that the tokens generated by MERGER remain faithful to the audio. At the  $i^{\text{th}}$  time step, MERGER is trained to maximize the probability of generating the token sequence  $\{y_i,...,y_{i+K-1}\}$ , conditioned on  $\mathbf{H}$ ,  $\mathbf{C}$  and the previous token  $y_{i-1}$ :

$$P(\{y_i, \, \dots \, y_{i+K-1}\} \mid y_{i-1}, \, \mathbf{H}, \, \mathbf{C}_{0:i-1}) \; = \; \prod_{k=0}^{K-1} \; \; \mathrm{MERGER}(\{y_{i-1}, \, \dots \, y_{i+k-1}\}, \, \mathbf{H}, \, \mathbf{C}_{0:i-1})$$

It is important to note that at time-step i, while generating each of K tokens in a block, MERGER conditions on the same first i entries of  $\mathbf{C}$  written as  $\mathbf{C}_{0:i-1}$ . Since MERGER can predict a block of

K future tokens at each time step, we note that the probability for any token in the block can now be computed using multiple combinations of entries from  $\mathbf{C}$  and the set of preceding tokens. For example, with a block size of 3, the probability of  $y_5$  can be computed using the following combinations:  $(\{y_4\}, \mathbf{C}_{0:4}), (\{y_3, y_4\}, \mathbf{C}_{0:3})$  and  $(\{y_2, y_3, y_4\}, \mathbf{C}_{0:2})$ . Section 3.3 elaborates on multiple inference strategies supported by BLOCKDECODER.

To facilitate efficient attention and loss computations, we create a modified token sequence  $y' = [y_0, y_1, ..., y_{K-1}, y_1, y_2, ..., y_K, ..., y_{W-K+1}, ..., y_W]$  of length  $|y'| = K \times (W - K + 1)$ . This sequence contains (W - K + 1) blocks, each comprising K tokens, that are color-coded for improved readability. (Since the length of y' grows linearly with K, we typically employ small values for K.) This modified sequence now enables us to restrict self- and cross-attention by appropriately configuring the attention masks. Specifically, the output of the  $j^{\text{th}}$  layer  $\mathbf{M}^j$  from MERGER (consisting of  $N_M$  layers overall) is computed as:

$$\begin{split} \hat{\mathbf{M}}^{j} &= \mathrm{MHSA}(\mathbf{M}^{j-1}, \mathbf{M}^{j-1}, \mathbf{M}^{j-1}, \mathrm{mask}_{\mathrm{self}}) \\ \hat{\mathbf{M}} &= \mathbf{M}^{j-1} + \mathrm{LayerNorm}_{\mathrm{self}}(\hat{\mathbf{M}}^{j}) \\ \hat{\mathbf{M}}^{j} &= \mathrm{MHCA}_{\mathrm{context}}(\hat{\mathbf{M}}, \mathbf{C}, \mathbf{C}, \mathrm{mask}_{\mathrm{context}}) \\ \hat{\mathbf{M}} &= \hat{\mathbf{M}} + \mathrm{LayerNorm}_{\mathrm{context}}(\hat{\mathbf{M}}^{j}) \\ \hat{\mathbf{M}}^{j} &= \hat{\mathbf{M}} + \mathrm{LayerNorm}_{\mathrm{audio}}(\mathrm{MHCA}_{\mathrm{audio}}(\hat{\mathbf{M}}, \mathbf{H}, \mathbf{H})) \\ \mathbf{M}^{j} &= \hat{\mathbf{M}} + \mathrm{LayerNorm}_{\mathrm{ff}}(\mathrm{Linear}(\hat{\mathbf{M}}^{j})) \end{split}$$

where  $\hat{\mathbf{M}}^*, \mathbf{M}^j \in \mathbb{R}^{W \times d}$ ,  $\mathrm{MHSA}(*)$  and  $\mathrm{MHCA}(*)$  denote the standard multi-headed self- and cross-attention [8], and  $\mathrm{mask_{self}}, \mathrm{mask_{context}} \in \{0,1\}^{W \times W}$  are Boolean matrices where  $\mathrm{mask}_*[a,b]=1$  indicates that the  $a^{\mathrm{th}}$  item in one sequence is allowed to attend to the  $b^{\mathrm{th}}$  item in another sequence. To constrain self-attention to causally attend over tokens within the block, we set  $\mathrm{mask_{self}}[a,b]=(b < a) \& (\lfloor \frac{b}{K} \rfloor == \lfloor \frac{a}{K} \rfloor)$ . To prevent information leakage from  $\mathbf{C}$ , we set  $\mathrm{mask_{context}}[a,b]=b \leq \lfloor \frac{a}{K} \rfloor$ . Lastly, we use embeddings for tokens within each block of the sequence  $\mathbf{y}'$  with appropriate positional embeddings as an input to MERGER. Finally, the output probabilities from MERGER are generated using a simple feed-forward layer to project to the token vocabulary size  $\mathcal{V}$ , followed by a softmax transformation.

To ensure that **C** is contextually rich, we allocate the majority of our layer budget to the text encoder. With **H** and **C** being substantially rich in information, even a small number of MERGER layers are adequate to effectively combine both modalities. This careful division of responsibilities between a cross-attention-free text encoder (that generates contextualized textual representations) and a lightweight MERGER (that allows late integration of speech and text information) enables BLOCKDECODER to function accurately and significantly faster than the traditional decoder.

#### 3.3 Inference Strategies

During inference, we employ label-synchronous autoregressive beam search proposed by [17] to find the best hypothesis. That is, at the  $i^{th}$  decoding step, the score for the partially decoded hypothesis  $\hat{y}_{\leq i}$  is computed as a weighted combination of the log probabilities from both CTC and BLOCKDECODER. Specifically:

$$S(\hat{\mathbf{y}}_{< i}) = \delta \times S_{\text{ctc}}(\hat{\mathbf{y}}_{< i}) + (1 - \delta) \times S_{\text{att}}(\hat{\mathbf{y}}_{< i})$$
(1)

where  $\delta \in [0,1]$  is a hyperparameter that determines the relative importance of the two scores  $\mathcal{S}_{ctc}$  and  $\mathcal{S}_{att}$  from the CTC and BLOCKDECODER modules, respectively.  $\mathcal{S}_{att}$  can be computed using various combinations of inputs to the text encoder and MERGER. We explore three inference strategies to compute the score for the partially decoded hypothesis  $\hat{y}_{< i}$ , as illustrated in Figure 3.

# 3.3.1 Strategy 1: Naive Block Decoding

The simplest approach involves making a forward pass through both text encoder and MERGER at every decoding step, by utilizing all positions within the block. Specifically, the attention score for  $\hat{y}_{\leq i}$  is computed as:

$$\mathcal{S}_{\text{att}}(\hat{\pmb{y}}_{\leq i})\!=\!\log(\prod_{j=1}^{i}\!\text{MERGER}(\{y_{j-K},\!...,\!y_{j-1}\},\!\mathbf{H},\!\mathbf{C}'))$$

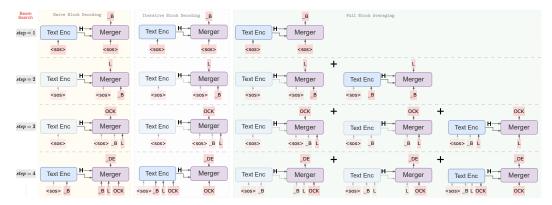


Figure 3: Overview of the three inference strategies across the first four beam search steps. "Text Enc" refers to the text encoder. From left to right: (1) **Naive Block Decoding**: Score obtained from only the last position within the block, requiring one forward pass through both the text encoder and MERGER at each step. (2) **Iterative Block Decoding**: Score computed iteratively within the block, requiring one forward pass through MERGER at each step, and one pass through text encoder every K steps. (3) **Full Block Averaging**: Score averaged across all valid input combinations to text encoder and MERGER, requiring one forward pass through text encoder and multiple passes through MERGER at each step.

where  $\mathbf{C}' = \text{text encoder}(\{y_0, y_1, ... y_{j-K}\})$ . This approach always utilizes the last position within the block while generating the score. This approach is sub-optimal as it involves forward passes through both text encoder and MERGER at every decoding step.

#### 3.3.2 Strategy 2: Iterative Block Decoding

To truly exploit the MERGER's blockwise ability to predict K tokens, we adopt an *iterative block decoding* approach, where the MERGER continuously predicts K tokens before performing a forward pass through the text encoder to update the context vector  $\mathbf{C}'$ . Here, the score for  $\hat{\mathbf{y}}_{\leq i}$  is computed as:

$$\mathcal{S}_{\mathrm{att}}(\hat{oldsymbol{y}}_{\leq i}) \!=\! \log(\prod_{j=1}^{i}\!\mathrm{MERGER}(\{y_s,\!...,\!y_{j-1}\},\!oldsymbol{\mathsf{H}},\!oldsymbol{\mathsf{C}}'))$$

where  $\mathbf{C}' = \text{text encoder}(\{y_0, y_1, ... y_s\})$  and  $s = \lfloor \frac{j-1}{K} \rfloor \times K$ . Since the MERGER contains only a few layers and we make a forward pass through text encoder once every K steps, this strategy is more efficient compared to the previous strategy.

#### 3.3.3 Strategy 3: Full Block Averaging

This last approach aims to boost performance by utilizing the scores from all the positions within the block. The final score for  $\hat{y}_{\leq i}$  is computed as the average of the scores from all the combinations of  $\mathbf{C}'$  and the preceding tokens as shown below:

$$\mathcal{S}_{\text{att}}(\hat{\pmb{y}}_{\leq i})\!=\!\log\!\left(\prod_{j=1}^{i}\frac{1}{K}\!\sum_{k=1}^{K}\text{MERGER}(\{y_{j-k},\!..,\!y_{j-1}\},\!\mathbf{H},\!\mathbf{C}')\right)$$

where  $\mathbf{C}' = \text{text encoder}(\{y_0, y_1, ... y_{j-k}\})$ . While this strategy improves performance, it incurs higher inference latency due to K invocations of MERGER as opposed to a single invocation in the previous strategy.

#### 3.4 Complexity of BLOCKDECODER

We analyze the computational complexity of BLOCKDECODER in comparison to the standard decoder. Let T be the length of the acoustic features  $\mathbf{H}$ , W denote the length of the token sequence  $\mathbf{y}$ , K be the block size for the MERGER and d denote the dimensionality for the attention computations. (For ASR, typically  $W \ll T$ .) BLOCKDECODER consists of  $N_T$  and  $N_M$  layers in text encoder and MERGER, respectively. (Recall that  $N = N_T + N_M$ .)

Table 1: Performance comparisons (CER or WER %) between BLOCKDECODER and the baseline Transformer decoder across three datasets and two encoder architectures. indicates no statistically significant WER difference compared to the baseline, as determined by the MAPSSWE test [34]. denotes significant improvement in RTF, while  $\triangleright$  indicates RTF performance comparable to the baseline.

| Method                                       |            | Librispeech  | -100h (WER)             | )                    | Tedlium2 (WER) |        |                      | AIS        | AISHELL (CER) |                      |  |
|----------------------------------------------|------------|--------------|-------------------------|----------------------|----------------|--------|----------------------|------------|---------------|----------------------|--|
| Memou                                        | Params (M) | Test Clean ↓ | Test Other $\downarrow$ | RTF ↓                | Params (M)     | Test ↓ | RTF ↓                | Params (M) | Test ↓        | RTF ↓                |  |
| Conformer [4]                                |            |              |                         |                      |                |        |                      |            |               |                      |  |
| w/ Transformer Decoder                       | 34.2       | 6.75         | 17.74                   | 1.38                 | 30.8           | 7.69   | 2.16                 | 33.6       | 4.58          | 0.44                 |  |
| w/ BlockDecoder                              |            |              |                         |                      |                |        |                      |            |               |                      |  |
| <ul> <li>Naive Block Decoding</li> </ul>     | 33.7       | 6.63         | 17.63                   | $0.73_{(\sim 1.9x)}$ | 30.2           | 7.81   | $1.02_{(\sim 2.1x)}$ | 33.1       | 4.76          | $0.28_{(\sim 1.6x)}$ |  |
| <ul> <li>Iterative Block Decoding</li> </ul> | 33.7       | 6.72         | 17.70                   | $0.66_{(\sim 2.1x)}$ | 30.2           | 7.92   | $0.90_{(\sim 2.4x)}$ | 33.1       | 4.75          | $0.25_{(\sim 1.8x)}$ |  |
| <ul> <li>Full Block Averaging</li> </ul>     | 33.7       | 6.58         | 17.62                   | 1.68 ▷               | 30.2           | 7.79   | 2.39 ▷               | 33.1       | 4.63          | 0.51 ▷               |  |
| E-Branchformer [6]                           |            |              |                         |                      |                |        |                      |            |               |                      |  |
| w/ Transformer Decoder                       | 38.5       | 6.39         | 17.03                   | 1.52                 | 35.0           | 7.44   | 2.17                 | 37.9       | 4.50          | 0.45                 |  |
| w/ BlockDecoder                              |            |              |                         |                      |                |        |                      |            |               |                      |  |
| <ul> <li>Naive Block Decoding</li> </ul>     | 37.9       | 6.15         | 16.82                   | $0.77_{(\sim 2.0x)}$ | 34.5           | 7.61   | $1.04_{(\sim 2.1x)}$ | 37.4       | 4.61          | $0.30_{(\sim 1.5x)}$ |  |
| <ul> <li>Iterative Block Decoding</li> </ul> | 37.9       | 6.19         | 16.94                   | $0.67_{(\sim 2.3x)}$ | 34.5           | 7.60   | $0.91_{(\sim 2.4x)}$ | 37.4       | 4.61          | $0.26_{(\sim 1.7x)}$ |  |
| <ul> <li>Full Block Averaging</li> </ul>     | 37.9       | 6.14         | 16.85                   | 1.68 ▷               | 34.5           | 7.61   | 2.40 ▷               | 37.4       | 4.53          | 0.54 ▷               |  |

We focus primarily on comparing the total number of attention calculations required for a single example during training and inference.

During training, the text encoder takes y as its input while the MERGER uses the modified sequence y' as its input, where  $|y'| = (W - K + 1)K \approx WK$ . Thus, the overall attention computation for BLOCKDECODER has a complexity of  $O(N_T(W^2d) + N_M(WK^2 + W^2K + WKT)d)$  in comparison to decoder that takes  $O(N(W^2 + WT)d)$  time. Upon further simplification (detailed in Appendix A), we show that choosing  $K \approx \frac{N}{2N_M}$  allows BLOCKDECODER to operate with approximately the same number of attention operations as decoder.

During inference with beam-search (of B beam width), the standard decoder takes O(WB(NW+NT)d) time for its attention calculations. In contrast, BLOCKDECODER with naive block decoding takes  $O(WB(NW+N_M(K+T))d)$  time. Since  $K \ll T$  and  $N_M \ll N$ , BLOCKDECODER requires significantly fewer attention operations than decoder. The time complexity of iterative

Table 2: WERs of BLOCKDECODER and other well-known ASR systems (from prior work) on Librispeech 960h.

|                                            | · · · · · · · · · · · · · · · · · · · | ı               | ****            |                          |
|--------------------------------------------|---------------------------------------|-----------------|-----------------|--------------------------|
|                                            | Params                                |                 | Withou          | it LM                    |
| Method                                     | (M)                                   | Test<br>Clean ↓ | Test<br>Other ↓ | RTF ↓                    |
| Transducer                                 |                                       |                 |                 |                          |
| Transformer [21]                           | 139                                   | 2.4             | 5.6             | -                        |
| ContextNet [14]                            | 112.7                                 | 2.1             | 4.6             | -                        |
| Conformer (M) [4]                          | 30.7                                  | 2.3             | 5.0             | -                        |
| Conformer (L) [4]                          | 118.8                                 | 2.1             | 4.3             | -                        |
| CTC                                        | •                                     |                 |                 |                          |
| QuartzNet (L) [35]                         | 19                                    | 3.9             | 11.3            | -                        |
| Hybrid CTC+Attention                       | '                                     |                 |                 | '                        |
| Transformer [36]                           | 270                                   | 2.9             | 7.0             | -                        |
| Conformer [37]                             | 116.2                                 | 2.9             | 7.0             | -                        |
| Conformer (L) [6]                          | 147.8                                 | 2.2             | 4.7             | -                        |
| Branchformer [5]                           | 116.2                                 | 2.4             | 5.5             | -                        |
| Branchformer (L) [6]                       | 146.7                                 | 2.2             | 4.8             | -                        |
| E-Branchformer [6]                         | 148.9                                 | 2.1             | 4.5             | -                        |
| Our baselines (Hybrid)                     |                                       |                 |                 |                          |
| E-Branchformer                             |                                       |                 |                 |                          |
| <ul> <li>w/ Transformer Decoder</li> </ul> | 148.9                                 | 2.1             | 4.6             | 7.734                    |
| Our work (Hybrid)                          |                                       |                 |                 | ,                        |
| - w/ BlockDecoder                          | 146.8                                 | 2.1             | 4.4             | 2.983 <sub>(~2.6x)</sub> |

Table 3: Comparison (accuracy % and F1) of our system against Transformer decoder baseline on the SLU task.

| Method                                 | Params<br>(M) | Intent Test Acc. ↑ | Entity<br>SLU-F1↑ | RTF↓                 |
|----------------------------------------|---------------|--------------------|-------------------|----------------------|
| Conformer [4]                          |               |                    |                   |                      |
| <ul> <li>w/ Transf. Decoder</li> </ul> | 109.5         | 85.9               | 0.76              | 2.46                 |
| - w/ BlockDecoder                      | 107.4         | 85.9               | 0.77              | $1.17_{(\sim 2.1x)}$ |
| E-Branchformer [6]                     |               |                    |                   | ` ` `                |
| <ul> <li>w/ Transf. Decoder</li> </ul> | 110.2         | 87.2               | 0.78              | 3.11                 |
| — w/ BlockDecoder                      | 108.1         | 87.1               | 0.78              | $1.31_{(\sim 2.4x)}$ |

block decoding is similar to that of the naive strategy, but benefits from making a forward pass through text encoder only once every K steps thus leading to slightly faster inference. The complexity of full block averaging and other details are in Appendix A.

#### 4 Experiments

#### 4.1 Experimental Setup

**Datasets.** We show experiments on two tasks: ASR and Spoken Language Understanding (SLU). For ASR, we use: (1) Librispeech [38] consisting of 1000 hours of English read audiobooks with 100-hour and 960-hour training splits, (2) Tedlium2 [39] consisting of 200 hours of TED talk recordings,

the MCV corpus. All experiments use the Eguages for which CER is reported.

| Language                | Decoder used | Params | Dev ↓ | Test ↓ | RTF ↓                |
|-------------------------|--------------|--------|-------|--------|----------------------|
| Chinese <sup>♦</sup>    | Transformer  | 51.1M  | 14.0  | 13.6   | 0.41                 |
| Cilliese                | Ours         | 50.5M  | 14.2  | 13.8   | $0.22_{(\sim 1.9x)}$ |
| Czech                   | Transformer  | 47.4M  | 12.4  | 13.4   | 0.49                 |
| Czecii                  | Ours         | 46.9M  | 12.7  | 13.8   | $0.25_{(\sim 2.0x)}$ |
| Italian                 | Transformer  | 47.4M  | 9.5   | 10.1   | 0.73                 |
| Italiali                | Ours         | 46.9M  | 9.7   | 10.5   | $0.37_{(\sim 2.0x)}$ |
| Japanese \( \rightarrow | Transformer  | 49.9M  | 5.3   | 12.1   | 0.43                 |
| Japanese                | Ours         | 49.4M  | 5.5   | 12.3   | $0.28_{(\sim 1.5x)}$ |
| Tamil                   | Transformer  | 47.4M  | 17.4  | 20.0   | 0.57                 |
| Tallill                 | Ours         | 46.9M  | 17.5  | 20.1   | $0.31_{(\sim 1.8x)}$ |

Table 4: CERs/WERs of BLOCKDECODER and Table 5: WERs of BLOCKDECODER with varying the baseline decoder across five languages from block sizes on Librispeech 100h using two training strategies: (1) full: MERGER trained on every Branchformer as encoder.  $\diamond$  indicates the lan-block (2) **sampled**: MERGER trained on a random subset of blocks.

| Block size | Training<br>Strategy | Training<br>Time (hrs) | Test<br>Clean ↓ | Test<br>Other ↓ | RTF ↓                |
|------------|----------------------|------------------------|-----------------|-----------------|----------------------|
| Baseline   | _                    | 15.4                   | 6.4             | 17.0            | 1.52                 |
| K=1        | full                 | 15.2                   | 6.7             | 17.3            | $0.73_{(\sim 2.1x)}$ |
| K=3        | full                 | 15.6                   | 6.2             | 16.9            | $0.67_{(\sim 2.3x)}$ |
| K=5        | full                 | 16.2                   | 6.3             | 17.1            | $0.66_{(\sim 2.3x)}$ |
| K = 0      | sampled              | 15.4                   | 6.4             | 17.7            | $0.65_{(\sim 2.3x)}$ |
| K=7        | full                 | 17.0                   | 6.2             | 16.9            | $0.65_{(\sim 2.3x)}$ |
| K = i      | sampled              | 15.3                   | 6.9             | 18.2            | $0.65_{(\sim 2.3x)}$ |
| K=9        | full                 | 17.5                   | 6.5             | 17.4            | $0.65_{(\sim 2.3x)}$ |
| 11 — 3     | sampled              | 15.3                   | 14.9            | 29.6            | $0.65_{(\sim 2.3x)}$ |

(3) Aishell [40] containing 170 hours of Mandarin Chinese speech data, and (4) Mozilla Common-Voice [41], a multilingual dataset with durations ranging from 10 to 2500 hours per language. We select five languages with training data spanning 100 to 400 hours. For SLU, we use the SLURP corpus [42], a 60-hour multi-domain English dataset evaluated for intent classification and entity recognition.

Implementation Details. All our experiments are conducted using the ESPnet toolkit [43] on NVIDIA A100 and A6000 GPUs.<sup>2</sup> Across all experiments, we apply 3-way speed perturbation with ratios {0.9,1.0,1.1}, along with SpecAugment [44]. Our experimental setup follows the recommended configurations in ESPnet recipes. Across all experiments, we employ standard efficient inference techniques such as KV-caching and Automatic Mixed Precision (AMP). For SLU experiments, we first train the model with an ASR objective, where the output label sequences are sentences with intent and entity-related tags. Then, during inference, we first decode the sequence as in ASR, and then compute SLU metrics by parsing the decoded output. A detailed summary of the hyperparameters used for each dataset is available in Appendix F. Real-time factor (RTF) <sup>3</sup> values are reported using CPU inference for all experiments. Finally, unless explicitly stated, all BLOCKDECODER related experiments use a block size of K = 3,  $N_T = 4$  text encoder layers, and  $N_M = 2$  MERGER layers.

#### 4.2 Main Results

Table 1 compares the word error rates (WERs) of BLOCKDECODER with a standard Transformer decoder (referred to as baseline) across three widely used ASR tasks: Librispeech 100h and Tedlium2 for English, and Aishell for Mandarin. For each dataset, we experiment with two state-of-the-art encoder architectures: Conformer [4] and E-Branchformer [6] and report results on all three inference strategies outlined in Section 3.3. We find that BLOCKDECODER consistently matches or outperforms the baselines despite having fewer parameters and achieves significant latency gains. The first two inference strategies are fast, achieving a near 2x speedup in RTF by effectively utilizing the block structure while the third strategy does not improve RTF but yields a slight performance boost. Iterative block decoding yields the best RTF gains and will be used in all subsequent experiments (unless specified otherwise).

In Table 2, we further compare the WERs between BLOCKDECODER and decoder on the full Librispeech 960-hour dataset, along with other prominent baselines from prior work. Even on a largescale dataset, BLOCKDECODER remains comparable in performance with the strongest baseline, E-Branchformer, while achieving nearly a 2.5x speedup in RTF on CPUs. Additionally, since inference on Librispeech 960h often employs a large beam size, in Appendix E, we also compare the performance of BLOCKDECODER against the decoder with inference using GPUs. Even in this setting, BLOCKDE-CODER achieves better RTF and FLOPs (Floating Point Operations) compared to the standard decoder.

#### 4.3 More Task and Language Experiments

Non-English ASR. In Table 4, we show additional experiments on five languages from diverse language families of the MCV corpus (Chinese, Czech, Italian, Japanese, Tamil). BLOCKDECODER

 $<sup>^2</sup>$ We ensure that all experiments for a particular dataset are conducted on the same GPU and environment.

<sup>&</sup>lt;sup>3</sup>RTF is the ratio between the time taken by the model to process the input and the actual input duration.

consistently yields WERs comparable to the baseline across all languages while maintaining significant latency gains.

**SLU task.** In Table 3, we show results on an SLU task, SLURP [42], and evaluate using accuracy and F1-score on intent classification and entity recognition, respectively. As with ASR, BLOCKDECODER for SLU also results in comparable performance to the baseline and significantly improves latency.

# 4.4 Ablations and Analysis

**Attention plots.** Figure 4 shows the attention patterns learned by the text encoder and MERGER trained on Librispeech 960h. Figure 4a shows self-attention plots of the text encoder with well-distributed attention distributions across the sequence for all layers, indicating that the text encoder focuses on a global, text-only context. Figures 4b and 4c show attention plots for the two cross-attention blocks of the MERGER. The first cross-attention block that attends to text encoder's output is predominantly diagonal, reinforcing the idea that the global context produced by the text encoder is sufficiently informative for the MERGER.

The second cross-attention block, that attends to the audio encoder's output, demonstrates accurate alignment with the audio features, thus highlighting the importance of these blocks in integrating contexts.

Impact of the number of MERGER layers. Figure 5 illustrates the effect of varying the number of MERGER layers  $(N_M)$  in the BLOCKDECODER. We see that a single MERGER layer (i.e.  $N_M=1$ ) is sufficient to achieve reasonable WERs while yielding a significant latency gain with a nearly 3.5x speedup. Adding a second layer (i.e  $N_M=2$ ) matches the baseline in WER, while still maintaining a 2x latency gain. As the number of MERGER layers increases, performance continues to improve, while consistently achieving better RTF than the baseline.

Impact of block size K. Table 5 presents a comparison of BLOCKDE-CODER's performance on Librispeech 100h for varying block sizes  $K = \{1,3,5,7,9\}$ . As larger K increases training time, we also explore an alternative training strategy in which the MERGER is trained on only a random subset of  $\frac{|y|}{K}$  blocks such that the total number of tokens is roughly equivalent in length to the original input y (marked as sampled). All non-sampled variants achieve performance comparable to the baseline

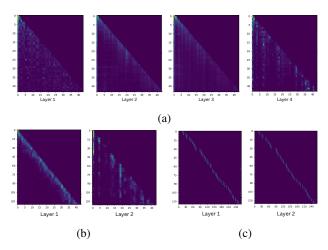


Figure 4: Attention plots demonstrating the patterns learned by self- and cross-attentions from BLOCKDE-CODER. (a) text encoder's self-attention (b) MERGER's cross-attention w/ text encoder (c) MERGER's cross-attention w/ audio encoder.

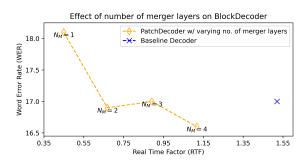


Figure 5: Comparison of the performance of BLOCKDE-CODER on changing number of MERGER layers. WERs are from the test-other split of Librispeech 100h.

while demonstrating substantial RTF improvements. RTF gains initially increase with K since iterative block decoding requires fewer forward passes through text encoder. The gains subsequently plateau with larger K values due to the increased computational overhead of the MERGER that offsets latency benefits gained from skipping text encoder. Additionally, as K increases, we see a slight degradation in performance, due to the increased complexity of the MERGER's learning objective. All sampling-based

experiments underperform relative to their non-sampled counterparts, likely due to insufficient training, but match the baseline in terms of training time.

**BLOCKDECODER versus CTC only models.** CTC-only models are a popular alternative to encoder-decoder architectures due to their fast inference enabled by greedy decoding. However, they are known to significantly underperform compared to encoder-decoder models. Hybrid CTC encoder-decoder architectures are a popular choice to achieve state-of-the-art performance; hence, we primarily focus on this framework. Further detailed performance comparison between BLOCKDECODER and multiple CTC-only models (that focus on efficiency) are presented in Appendix C.

**Decoder without cross-attention layers.** We also investigate a simplified variant of BLOCKDECODER, which retains the decoder architecture but removes cross-attention blocks from the initial layers. This modification results in worse performance compared to our proposed BLOCKDECODER. Further details are in Appendix B.

Adaptation of BLOCKDECODER to other settings. Our proposed architecture is particularly effective in settings where the encoder output is substantially longer than the target sequence (e.g., ASR). Similar input-output dynamics exist in tasks such as document summarization, which often involves long input sequences and shorter outputs, making them promising candidates for adaptations of BLOCKDECODER. Moreover, since BLOCKDECODER separates the decoder into a text-only encoder and a merger module, our framework naturally supports replacing the text encoder with a pretrained LLM, thereby enabling seamless ASR-LLM integration. Finally, the architectural modularity we introduce could inspire efficient pruning or compression strategies for large-scale models such as Whisper [1], thereby accelerating inference, especially for real-time applications.

#### 5 Conclusion

In this work, we propose BLOCKDECODER, a novel decoder architecture for ASR inspired by attention patterns observed in traditional Transformer decoders, specifically that cross-attention is under-utilized in initial layers and self-attention becomes more localized in later layers. BLOCKDECODER consists of a text encoder, tasked with generating rich text-only context and a MERGER, responsible for efficiently integrating audio and text contexts to autoregressively produce K tokens within a block. Together, these modules ensure that BLOCKDECODER is on-par with (or better than) the standard decoder, while achieving significant RTF gains across a wide range of languages and tasks. The block structure within the MERGER opens up avenues for further investigations into inference methods, optimizations, and additional performance enhancements.

#### Acknowledgments

The authors would like to thank all the anonymous reviewers and chairs for their valuable feedback and constructive suggestions, resulting in significant improvements in the quality of this submission.

#### References

- [1] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision, 2022.
- [2] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework for self-supervised learning of speech representations. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 12449–12460. Curran Associates, Inc., 2020.
- [3] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked prediction of hidden units. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 29:3451–3460, 2021.

- [4] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming Pang. Conformer: Convolution-augmented transformer for speech recognition. In *Interspeech* 2020, pages 5036–5040, 2020.
- [5] Yifan Peng, Siddharth Dalmia, Ian Lane, and Shinji Watanabe. Branchformer: Parallel MLP-attention architectures to capture local and global context for speech recognition and understanding. In *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pages 17627–17643. PMLR, 17–23 Jul 2022.
- [6] Kwangyoun Kim, Felix Wu, Yifan Peng, Jing Pan, Prashant Sridhar, Kyu J. Han, and Shinji Watanabe. E-branchformer: Branchformer with enhanced merging for speech recognition. In 2022 IEEE Spoken Language Technology Workshop (SLT), pages 84–91, 2023.
- [7] Darshan Prabhu, Yifan Peng, Preethi Jyothi, and Shinji Watanabe. Multi-convformer: Extending conformer with multiple convolution kernels. In *Interspeech* 2024, pages 232–236, 2024.
- [8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017.
- [9] Frank Seide, Gang Li, and Dong Yu. Conversational speech transcription using context-dependent deep neural networks. In *Interspeech 2011*, pages 437–440, 2011.
- [10] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. *IEEE Signal Processing Magazine*, 29(6):82–97, 2012.
- [11] Jinyu Li. Recent advances in end-to-end automatic speech recognition. *APSIPA Transactions on Signal and Information Processing*, 11(1):–, 2022.
- [12] Rohit Prabhavalkar, Takaaki Hori, Tara N. Sainath, Ralf Schlüter, and Shinji Watanabe. End-to-end speech recognition: A survey. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 32:325–351, 2024.
- [13] Yifan Peng, Yui Sudo, Muhammad Shakeel, and Shinji Watanabe. OWSM-CTC: An open encoder-only speech foundation model for speech recognition, translation, and language identification. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 10192–10209, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
- [14] Wei Han, Zhengdong Zhang, Yu Zhang, Jiahui Yu, Chung-Cheng Chiu, James Qin, Anmol Gulati, Ruoming Pang, and Yonghui Wu. Contextnet: Improving convolutional neural networks for automatic speech recognition with global context. In *Interspeech 2020*, pages 3610–3614, 2020.
- [15] Ziqiang Zhang, Long Zhou, Junyi Ao, Shujie Liu, Lirong Dai, Jinyu Li, and Furu Wei. SpeechUT: Bridging speech and text with hidden-unit for encoder-decoder based speech-text pre-training. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pages 1663–1676, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics.
- [16] Yui Sudo, Shakeel Muhammad, Brian Yan, Jiatong Shi, and Shinji Watanabe. 4d asr: Joint modeling of ctc, attention, transducer, and mask-predict decoders. In *Interspeech* 2023, pages 3312–3316, 2023.
- [17] Shinji Watanabe, Takaaki Hori, Suyoun Kim, John R. Hershey, and Tomoki Hayashi. Hybrid ctc/attention architecture for end-to-end speech recognition. *IEEE Journal of Selected Topics in Signal Processing*, 11(8):1240–1253, 2017.
- [18] Zengwei Yao, Liyong Guo, Xiaoyu Yang, Wei Kang, Fangjun Kuang, Yifan Yang, Zengrui Jin, Long Lin, and Daniel Povey. Zipformer: A faster and better encoder for automatic speech recognition. In *The Twelfth International Conference on Learning Representations*, 2024.

- [19] Hairong Liu, Zhenyao Zhu, Xiangang Li, and Sanjeev Satheesh. Gram-CTC: Automatic unit selection and target decomposition for sequence labelling. In Doina Precup and Yee Whye Teh, editors, *Proceedings of the 34th International Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 2188–2197. PMLR, 06–11 Aug 2017.
- [20] Kanishka Rao, Haşim Sak, and Rohit Prabhavalkar. Exploring architectures, data and units for streaming end-to-end speech recognition with rnn-transducer. In 2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), pages 193–199, 2017.
- [21] Qian Zhang, Han Lu, Hasim Sak, Anshuman Tripathi, Erik McDermott, Stephen Koo, and Shankar Kumar. Transformer transducer: A streamable speech recognition model with transformer encoders and rnn-t loss. In *ICASSP 2020 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 7829–7833, 2020.
- [22] Yosuke Higuchi, Shinji Watanabe, Nanxin Chen, Tetsuji Ogawa, and Tetsunori Kobayashi. Mask ctc: Non-autoregressive end-to-end asr with ctc and mask predict. In *Interspeech* 2020, pages 3655–3659, 2020.
- [23] Ethan A. Chi, Julian Salazar, and Katrin Kirchhoff. Align-refine: Non-autoregressive speech recognition via iterative realignment. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou, editors, *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 1920–1927, Online, June 2021. Association for Computational Linguistics.
- [24] Tianzi Wang, Xurong Xie, Zhaoqing Li, Shoukang Hu, Zengrui Jin, Jiajun Deng, Mingyu Cui, Shujie Hu, Mengzhe Geng, Guinan Li, Helen Meng, and Xunying Liu. Towards effective and efficient non-autoregressive decoding using block-based attention mask. In *Interspeech* 2024, pages 262–266, 2024.
- [25] Zhengkun Tian, Jiangyan Yi, Jianhua Tao, Shuai Zhang, and Zhengqi Wen. Hybrid autoregressive and non-autoregressive transformer models for speech recognition. *IEEE Signal Processing Letters*, 29:762–766, 2022.
- [26] Yael Segal-Feldman, Aviv Shamsian, Aviv Navon, Gill Hetz, and Joseph Keshet. Whisper in medusa's ear: Multi-head efficient decoding for transformer-based asr, 2024.
- [27] Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, Deming Chen, and Tri Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. In *Proceedings of the 41st International Conference on Machine Learning*, ICML'24. JMLR.org, 2025.
- [28] Niko Moritz, Takaaki Hori, and Jonathan Le Roux. Triggered attention for end-to-end speech recognition. In *ICASSP* 2019 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5666–5670, 2019.
- [29] Yanzhang He, Tara N. Sainath, Rohit Prabhavalkar, Ian McGraw, Raziel Alvarez, Ding Zhao, David Rybach, Anjuli Kannan, Yonghui Wu, Ruoming Pang, Qiao Liang, Deepti Bhatia, Yuan Shangguan, Bo Li, Golan Pundak, Khe Chai Sim, Tom Bagby, Shuo-yiin Chang, Kanishka Rao, and Alexander Gruenstein. Streaming end-to-end speech recognition for mobile devices. In *ICASSP* 2019 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6381–6385, 2019.
- [30] LILI YU, Daniel Simig, Colin Flaherty, Armen Aghajanyan, Luke Zettlemoyer, and Mike Lewis. MEGABYTE: Predicting million-byte sequences with multiscale transformers. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- [31] Namgyu Ho, Sangmin Bae, Taehyeon Kim, hyunjik.jo, Yireun Kim, Tal Schuster, Adam Fisch, James Thorne, and Se-Young Yun. Block transformer: Global-to-local language modeling for fast inference. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.

- [32] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In *Proceedings of the 23rd International Conference on Machine Learning*, page 369–376, New York, NY, USA, 2006. Association for Computing Machinery.
- [33] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. *Journal of Machine Learning Research*, 15(56):1929–1958, 2014.
- [34] L. Gillick and S.J. Cox. Some statistical issues in the comparison of speech recognition algorithms. In *International Conference on Acoustics, Speech, and Signal Processing*, pages 532–535 vol.1, 1989.
- [35] Samuel Kriman, Stanislav Beliaev, Boris Ginsburg, Jocelyn Huang, Oleksii Kuchaiev, Vitaly Lavrukhin, Ryan Leary, Jason Li, and Yang Zhang. Quartznet: Deep automatic speech recognition with 1d time-channel separable convolutions. In *ICASSP 2020 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 6124–6128, 2020.
- [36] Gabriel Synnaeve, Qiantong Xu, Jacob Kahn, Tatiana Likhomanenko, Edouard Grave, Vineel Pratap, Anuroop Sriram, Vitaliy Liptchinsky, and Ronan Collobert. End-to-end ASR: from supervised to semi-supervised learning with modern architectures. In ICML 2020 Workshop on Self-supervision in Audio and Speech, 2020.
- [37] Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang. Recent developments on espnet toolkit boosted by conformer. In *ICASSP 2021 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 5874–5878, 2021.
- [38] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An asr corpus based on public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210, 2015.
- [39] Anthony Rousseau, Paul Deléglise, and Yannick Estève. Enhancing the TED-LIUM corpus with selected data for language modeling and more TED talks. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, *Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)*, pages 3935–3939, Reykjavik, Iceland, May 2014. European Language Resources Association (ELRA).
- [40] Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao Zheng. Aishell-1: An open-source mandarin speech corpus and a speech recognition baseline. In 2017 20th Conference of the Oriental Chapter of the International Coordinating Committee on Speech Databases and Speech I/O Systems and Assessment (O-COCOSDA), pages 1–5, 2017.
- [41] Rosana Ardila, Megan Branson, Kelly Davis, Michael Kohler, Josh Meyer, Michael Henretty, Reuben Morais, Lindsay Saunders, Francis Tyers, and Gregor Weber. Common voice: A massively-multilingual speech corpus. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis, editors, *Proceedings of the Twelfth Language Resources and Evaluation Conference*, pages 4218–4222, Marseille, France, May 2020. European Language Resources Association.
- [42] Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojanski, and Verena Rieser. SLURP: A spoken language understanding resource package. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 7252–7262, Online, November 2020. Association for Computational Linguistics.
- [43] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin Chen, Adithya Renduchintala, and Tsubasa Ochiai. ESPnet: End-to-end speech processing toolkit. In *Proceedings of Interspeech*, pages 2207–2211, 2018.

- [44] Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le. Specaugment: A simple data augmentation method for automatic speech recognition. In *Interspeech 2019*, pages 2613–2617, 2019.
- [45] Jaesong Lee and Shinji Watanabe. Intermediate loss regularization for ctc-based speech recognition. In *ICASSP 2021 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 6224–6228, 2021.

# **NeurIPS Paper Checklist**

#### 1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: In this paper, we propose a more efficient decoder architecture for ASR. The motivation and design are detailed in Section 3, and we support our claims through a range of experiments across diverse tasks and setups, presented in detail in Section 4.

#### Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
  contributions made in the paper and important assumptions and limitations. A No or NA
  answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

#### 2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Although we do not discuss the limitations in depth, Section 4.4 highlights a few key shortcomings of our approach along with potential directions to address them.

#### Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

#### 3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: In Section 3.4, we present a comprehensive time complexity comparison between our approach and baseline architectures, with detailed proofs provided in Appendix A.

#### Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they
  appear in the supplemental material, the authors are encouraged to provide a short proof
  sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

#### 4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All our experiments are conducted on publicly available datasets using an open-source toolkit. Further details are provided in Section 4.1 and the corresponding hyperparameters are also listed in Appendix F.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

#### 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We conduct all our experiments on publicly available datasets using an opensource toolkit, as detailed in Section 4.1. We plan to release our code, configurations, and models upon acceptance.

#### Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

#### 6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: These details can be found in Section 4.1 and Appendix F.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

#### 7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct MAPSSWE tests on all our experiments to show that the results are comparable with the baseline.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

# 8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: These details can be found in Section 4.1.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

#### 9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
  deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

# 10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

#### 11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
  not require this, but we encourage authors to take this into account and make a best faith
  effort.

#### 12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have appropriately cited all the datasets and open-source code used in our experiments. More details are available in Section 4.1.

# Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

#### 13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

### 14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

# 15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

# 16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

# A Detailed Complexity Analysis of BLOCKDECODER

Let T denote the length of the acoustic features  $\mathbf{H}$ , W be the length of the token sequence  $\mathbf{y}$ , K be the block size for the MERGER and let d be the dimensionality for the attention computations. Additionally, N is the total number of layers in the original decoder, and  $N_T$  and  $N_M$  are the number of layers in text encoder and MERGER respectively. As discussed in Section 3.2, we choose  $N_T$  and  $N_M$  such that  $N=N_T+N_M$ . The goal here, as outlined in Section 3.4, is to mainly compare the total number of attention computations between our BLOCKDECODER and the traditional decoder. To begin with, we know that, during training, decoder takes  $O(NW^2d+NWTd)$  time for all its attention calculations. In comparison, BLOCKDECODER has a time complexity of:

$$\underbrace{O(\underbrace{N_T(W^2d)}_{\text{text encoder}} + N_M(\underbrace{WK^2d}_{\text{Self-Attention}} + \underbrace{W^2Kd}_{\text{Cross-Attention}} + \underbrace{WKTd}_{\text{over }\mathbf{C}}))}_{\text{within the block}}$$

Simplifying this expression, we get:

$$= O(N_T(W^2d) + N_M(WK^2d + W^2Kd + WKTd))$$

$$= O((N - N_M)(W^2d) + N_M(WK^2d + W^2Kd + WKTd))$$
 (Since  $N = N_T + N_M$ )
$$= O(N(W^2d) + N_M(WK^2d + W^2Kd - W^2d + WKTd))$$

$$\approx O(NW^2d + N_M(WK^2d + W^2Kd + WKTd))$$

$$\approx O(NW^2d + N_MWKd(K + W + T))$$

$$\approx O(NW^2d + N_MWKd(2T))$$
 (Since  $K \ll T$  and  $W \ll T$ )
$$\approx O(NW^2d + 2N_MKWTd)$$

Doing an elementwise comparison with the time complexity of the decoder, we find:

$$N \approx 2N_M K \Longrightarrow K \approx \frac{N}{2N_M}$$

Similarly, during inference, we employ beam search to generate the B-best hypothesis, where B denotes the beam width. In the case of the traditional decoder, the time complexity for performing inference on  ${\bf y}$  is O(WBN(W+T)d). That is, in total, we perform W beam steps (since  $|{\bf y}|=W$ ), with each step processing B partial hypothesis, which are all passed through N decoder layers, where each layer first performs self-attention over the previously generated tokens, followed by cross-attention over the acoustic features  ${\bf H}$ . These operations result in W+T attention computations, for a single forward pass of one entry in the beam. In contrast, we show that our BLOCKDECODER significantly reduces the number of attention computations required for beam-search. Given that BLOCKDECODER supports multiple inference strategies, we now analyze the time complexity for each of those approaches.

**NAIVE BLOCK DECODING & ITERATIVE BLOCK DECODING:** Although ITERATIVE BLOCK DECODING makes a forward pass through text encoder once every K steps, asymptotically, the total number of attention computations are still equivalent to NAIVE BLOCK DECODING. Thus, to calculate the overall time complexity, we assume that a forward pass through both the text encoder and MERGER at each beam-step is performed. Then, the time complexity becomes:

$$O(WB(N_TW+N_M(K+W+T))d)$$

Simplifying this expression, we get:

$$=O(WB(N_TW+N_M(K+W+T))d)$$

$$=O(WB((N_T+N_M)W+N_M(K+T))d)$$

$$=O(WB(NW+N_M(K+T))d) (Since  $N=N_T+N_M$ )
$$\approx O(WB(NW+N_MT)d) (Since  $K \ll T$ )$$$$

Finally, since  $N_M \ll N$ , the overall time complexity is significantly smaller than that of the standard decoder. Although ITERATIVE BLOCK DECODING is of the same time complexity as NAIVE BLOCK DECODING, since modern hardwares are optimized for parallel computations, it further reduces inference time.

**FULL BLOCK AVERAGING:** This strategy involves making multiple forward passes through the MERGER. As a result, it has an overall time complexity of:

$$O(WB(N_TW+N_MK(K+W+T))d)$$

Simplifying this expression, we get:

$$=O(WB(N_TW+N_MK(K+W+T))d)$$

$$=O(WB((N-N_M)W+N_MK(K+W+T))d) \quad (Since N=N_T+N_M)$$

$$=O(WB(NW+N_M(K^2+(K-1)W+KT))d)$$

$$\approx O(WB(NW+N_M(K^2+KW+KT))d)$$

$$\approx O(WB(NW+N_MK(K+W+T))d) \quad (Since K \approx \frac{N}{2N_M})$$

$$\approx O(WB(NW+N_M\frac{N}{2N_M}(K+W+T))d) \quad (Since K \approx \frac{N}{2N_M})$$

$$\approx O(WB(NW+\frac{N}{2}(K+W+T))d)$$

$$\approx O(WB(NW+\frac{N}{2}(W+T))d) \quad (Since K \ll T)$$

$$\approx O(WB(NW+\frac{N}{2}(W+T))d)$$

$$\approx O(WB(NW+\frac{N}{2}(W+T))d)$$

Thus, with  $K \approx \frac{N}{2N_M}$ , this strategy requires approximately similar number of operations as the standard decoder.

# B BLOCKDECODER vs decoder with cross-attentions only in the later layers

A simpler variant of our architecture can be designed by removing cross-attention blocks from few initial layers of the standard decoder. Since cross-attention in the decoder typically causes the performance bottleneck, reducing the number of such blocks should improve the decoder efficiency. Table 6 presents a performance comparison between the baseline, this simplified decoder variant and our BLOCKDECODER. We observe that removing cross-attention blocks does provide significant latency gains, but at the cost of performance degradation. However, our proposed BLOCKDECODER still achieves the best RTF gain and exhibits no performance degradation, owing to its ability to effectively utilize the block structure.

Table 6: Performance comparison (CER or WER %) between Transformer decoder, our BLOCK-DECODER and a variant of decoder containing cross-attentions only at the later layers (referred to as decoder<sub>efficient</sub>) on Librispeech 100h dataset. All experiments use the E-Branchformer as encoder.

| Architecture                 | Params | Test Clean ↓ | Test Other ↓ | RTF ↓                |
|------------------------------|--------|--------------|--------------|----------------------|
| Transformer decoder          | 38.5M  | 6.39         | 17.03        | 1.52                 |
| decoder <sub>efficient</sub> | 37.5M  | 6.51         | 17.26        | $0.73_{(\sim 2.1x)}$ |
| BLOCKDECODER                 | 37.9M  | 6.19         | 16.94        | $0.66_{(\sim 2.3x)}$ |

# C BLOCKDECODER vs CTC-only architectures

In this section, we evaluate BLOCKDECODER against vanilla CTC-only models and a widely used CTC-only variant, InterCTC [45], which introduces auxiliary CTC objectives at intermediate encoder layers.

Since CTC-only models rely solely on the encoder, we increase their number of encoder layers to match the total number of layers (encoder + decoder) in BLOCKDECODER. Table 7 presents a performance comparison between the standard Transformer Decoder, the vanilla CTC-only model, InterCTC, and our BLOCKDECODER. As shown, CTC-only models yield significantly worse performance compared to both the full Transformer decoder and BLOCKDECODER. Although CTC-only models offer faster inference due to their greedy decoding, this comes at a notable cost in recognition accuracy. These results support our claim that BLOCKDECODER achieves a more favorable trade-off between latency and performance.

Table 7: Performance comparison (CER or WER %) between Transformer decoder, vanilla CTC-only, InterCTC, and our BLOCKDECODER on Librispeech 100h dataset. All experiments use the E-Branchformer as an encoder.

| Architecture        | Params | Test Clean ↓ | <b>Test Other</b> ↓ | <b>RTF</b> ↓         |
|---------------------|--------|--------------|---------------------|----------------------|
| Transformer decoder | 38.5M  | 6.39         | 17.03               | 1.52                 |
| BLOCKDECODER        | 37.9M  | 6.19         | 16.94               | $0.66_{(\sim 2.3x)}$ |
| Vanilla CTC-only    | 37.9M  | 10.05        | 23.87               | $0.36_{(\sim 4.2x)}$ |
| InterCTC            | 37.9M  | 8.80         | 21.29               | $0.37_{(\sim 4.1x)}$ |

# **D** Aggregate Attention Plots

Figure 6 presents aggregated self-attention and cross-attention plots computed over 250 utterances using the decoder from a model trained on the full Librispeech dataset. The observed patterns are consistent with those in Figure 1. To generate these plots, we first select utterances with a minimum audio length of  $T_{\min}$  and a minimum label sequence length of  $W_{\min}$  and then compute the average attention scores over the first  $T_{\min}$  audio frames and  $W_{\min}$  label positions.

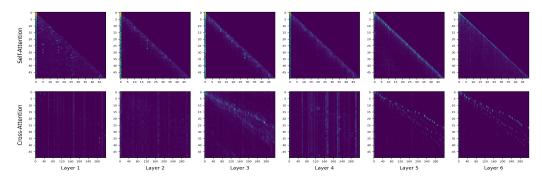


Figure 6: Attention plots illustrating the patterns learned by self-attention and cross-attention blocks across all layers of a standard Transformer decoder in a hybrid CTC/attention ASR system. The plot consists of two rows, one for self-attention and another for cross-attention and six columns, corresponding to the six decoder layers (ordered left to right). Brighter colors indicate higher attention weights. These visualizations are generated by aggregating attention scores over 250 utterances using the decoder of a model trained on the Librispeech 960h dataset.

# E Detailed Results on LibriSpeech 960h

Table 8 presents the complete results on Librispeech 960h dataset, with inference conducted on both CPU and GPU. A condensed version of these results is provided in Table 2. As outlined in Section 4.2, with CPU based inference, BLOCKDECODER achieves a nearly 2.5x speedup over the strongest baselines. However, in the case of GPU-based inference, the RTF values for BLOCKDECODER and the baseline are nearly identical. Through detailed profiling, we found that the majority of GPU inference time is spent on bookkeeping operations performed by the toolkit to support beam search, while the actual decoder forward passes contribute only a small fraction to the total inference time. Since

modifying the entire inference pipeline of the toolkit is both cumbersome and beyond the scope of this work, we additionally report the average total FLOPs (Floating Point Operations) and the mean decoder forward time incurred solely by the decoder during beam search. This offers a more focused assessment of the decoder's computational efficiency. As shown in Table 8, our proposed BLOCKDECODER reduces the FLOPs and the decoder forward time by approximately 60% compared to the baseline across both CPU and GPU-based inference.

Table 8: Comparison of the performance (WER %) of our system against other architectures on the full Librispeech dataset. Here, DFT stands for "Decoder Forward Time".

|                                            | Вомонья       |                 | Common                                     | Metrics                   | CPU Iı               | ıference              | GPU In                | ference               |
|--------------------------------------------|---------------|-----------------|--------------------------------------------|---------------------------|----------------------|-----------------------|-----------------------|-----------------------|
| Method                                     | Params<br>(M) | Test<br>Clean ↓ | $\mathbf{\overset{Test}{Other}}\downarrow$ | Average FLOPs (in TFLOPs) | RTF↓                 | Average DFT (in sec)  | RTF ↓                 | Average DFT (in sec)  |
| Transducer                                 |               |                 |                                            |                           |                      |                       |                       |                       |
| Transformer [21]                           | 139           | 2.4             | 5.6                                        | -                         | -                    | -                     | -                     | -                     |
| ContextNet [14]                            | 112.7         | 2.1             | 4.6                                        | -                         | -                    | -                     | -                     | -                     |
| Conformer (M) [4]                          | 30.7          | 2.3             | 5.0                                        | -                         | -                    | -                     | -                     | -                     |
| Conformer (L) [4]                          | 118.8         | 2.1             | 4.3                                        | -                         | -                    | -                     | -                     | -                     |
| CTC                                        |               |                 |                                            |                           |                      |                       |                       |                       |
| QuartzNet (L) [35]                         | 19            | 3.9             | 11.3                                       | -                         | -                    | -                     | -                     | -                     |
| Hybrid CTC+Attention                       | •             |                 |                                            |                           |                      |                       |                       |                       |
| Transformer [36]                           | 270           | 2.9             | 7.0                                        | -                         | -                    | -                     | -                     | -                     |
| Conformer [37]                             | 116.2         | 2.9             | 7.0                                        | -                         | -                    | -                     | -                     | -                     |
| Conformer (L) [6]                          | 147.8         | 2.2             | 4.7                                        | -                         | -                    | -                     | -                     | -                     |
| Branchformer [5]                           | 116.2         | 2.4             | 5.5                                        | -                         | -                    | -                     | -                     | -                     |
| Branchformer (L) [6]                       | 146.7         | 2.2             | 4.8                                        | -                         | -                    | -                     | -                     | -                     |
| E-Branchformer [6]                         | 148.9         | 2.1             | 4.5                                        | -                         | -                    | -                     | -                     | -                     |
| Our baselines (Hybrid)                     |               |                 |                                            |                           |                      |                       |                       |                       |
| E-Branchformer                             |               |                 |                                            |                           |                      |                       |                       |                       |
| <ul> <li>w/ Transformer Decoder</li> </ul> | 148.9         | 2.1             | 4.6                                        | 3.08                      | 7.73                 | 53.24                 | 0.338                 | 0.232                 |
| Our work (Hybrid)                          |               |                 |                                            |                           |                      |                       |                       |                       |
| - w/ BlockDecoder                          | 146.8         | 2.1             | 4.4                                        | $1.13_{(\sim 2.7x)}$      | $2.98_{(\sim 2.6x)}$ | $16.02_{(\sim 3.3x)}$ | $0.306_{(\sim 1.1x)}$ | $0.151_{(\sim 1.5x)}$ |

# F Implementation Details

The hyper-parameters used in all our experiments are reported in Table 9.

Table 9: A detailed summary of the configurations used for every dataset mentioned in our experiments.

|                                                        | Libris     | speech     | Tedlium2   | Aishell    | Ci          | CLUDD   |
|--------------------------------------------------------|------------|------------|------------|------------|-------------|---------|
| Hyper-parameters                                       | 100h       | 960h       | 1eanum2    | Aisneii    | Commonvoice | SLURP   |
| Frontend                                               |            |            |            |            |             |         |
| window length                                          | 400        | 512        | 400        | 512        | 400         | 512     |
| hop length                                             | 160        | 160        | 160        | 128        | 160         | 128     |
| SpecAug                                                | ,          |            |            | ,          |             |         |
| time warp window                                       | 5          | 5          | 5          | 5          | 5           | 5       |
| num of freq masks                                      | 2          | 2          | 2          | 2          | 2           | 2       |
| freq mask width                                        | (0, 27)    | (0, 27)    | (0, 27)    | (0, 27)    | (0, 30)     | (0, 30) |
| num of time masks                                      | 5          | 10         | 5          | 10         | 2           | 2       |
| time mask width                                        | (0, 0.05T) | (0, 0.05T) | (0, 0.05T) | (0, 0.05T) | (0, 40)     | (0, 40) |
| Architecture                                           |            |            |            |            |             |         |
| feature size (d)                                       | 256        | 512        | 256        | 256        | 256         | 512     |
| attention heads $(h)$                                  | 4          | 8          | 4          | 4          | 4           | 8       |
| num of encoder layers $(N_E)$                          | 12         | 17         | 12         | 12         | 12          | 12      |
| encoder hidden size $(d_{\text{hidden}}^{\text{enc}})$ | 1024       | 1024       | 1024       | 1024       | 2048        | 1024    |
| depth-wise conv kernel                                 | 31         | 31         | 31         | 31         | 31          | 31      |
| num of decoder layers $(N)$                            | 6          | 6          | 6          | 6          | 6           | 6       |
| decoder hidden size $(d_{\text{hidden}}^{\text{dec}})$ | 2048       | 2048       | 2048       | 2048       | 2048        | 2048    |
| Training                                               |            |            |            |            |             |         |
| epochs                                                 | 70         | 80         | 50         | 60         | 50          | 60      |
| learning rate                                          | 2e-3       | 2e-3       | 2e-3       | 1e-3       | 1.0         | 1e-3    |
| warmup steps                                           | 15k        | 40k        | 15k        | 35k        | 25k         | 35k     |
| weight decay                                           | 1e-6       | 1e-6       | 1e-6       | 1e-6       | 1e-6        | 1e-6    |
| Gradient Accum steps                                   | 4          | 4          | 2          | 1          | 1           | 1       |
| dropout rate                                           | 0.1        | 0.1        | 0.1        | 0.1        | 0.1         | 0.1     |
| ctc weight $(\delta)$                                  | 0.3        | 0.3        | 0.3        | 0.3        | 0.3         | 0.3     |
| label smoothing weight                                 | 0.1        | 0.1        | 0.1        | 0.1        | 0.1         | 0.1     |