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Abstract

Attention-based encoder decoder models remain a popular choice for state-of-the-art
automatic speech recognition (ASR). These models combine a powerful audio
encoder that extracts rich acoustic features with a decoder that autoregressively
produces the ASR output. The decoder handles two critical tasks: (1) building
rich text-only context and (2) merging acoustic information from the encoder
to ensure the predictions remain faithful to the audio. We observe a systematic
pattern across the attention distributions of decoder layers in prior architectures:
the initial layers direct most attention towards building textual context, while the
later layers largely focus on merging acoustic and textual information for the final
predictions. Leveraging this key insight, we propose BLOCKDECODER, a novel
decoder architecture comprising two distinct components: a text encoder that
is purely text-based, and a MERGER that combines information from the audio
encoder and text encoder to generate output tokens. Unlike traditional decoders,
the MERGER autoregressively predicts a sequence of K tokens within a block of
size K, while relying on the same precomputed contextual information from both
text and audio encoders across the block. This design choice allows for the efficient
reuse of encoder representations. The separation of the decoder into the text encoder
and the MERGER promotes modularity and more flexible control of parameters via
the number of text encoder and MERGER layers. As a result, BLOCKDECODER
yields a significant speedup (~ 2x) compared to traditional decoders, across diverse
datasets, languages, and speech tasks, without any degradation in performance. The
code is available athttps://github.com/csalt-research/blockdecoder.

1 Introduction

Several prominent state-of-the-art automatic speech recognition (ASR) systems are derived from
attention-based encoder-decoder architectures [1]. While the audio encoder’s role in these architectures
is to transform input speech into acoustically-rich representations, the decoder autoregressively
generates text by combining acoustic information from the encoder with previously predicted
text. Numerous variants of the encoder have been explored for ASR in prior work, ranging from
self-supervised architectures [2, 3] to convolutionally-enriched ASR pipelines [4}15,16,[7]]. In contrast,
there have been relatively fewer innovations of the ASR decoder.

The ASR decoder comprises Transformer [8]] layers with both self-attention and cross-attention mod-
ules. The self-attention module attends to previous tokens at a given time-step, and the cross-attention
module attends to speech representations from the audio encoder. We analyze the behaviour of both
these attention modules across all decoder layers and make the following key observations: (1) Self-at-
tention increasingly focuses on local context as we progress deeper into the decoder: As shown in Fig-
ure[I} the attention weights in the initial decoder layers are well-distributed across the entire sequence.
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Figure 1: Attention plots illustrating the patterns learned by self-attention and cross-attention blocks
across all layers of a standard Transformer decoder in a hybrid CTC/attention ASR system. The
plot consists of two rows, one for self-attention and another for cross-attention and six columns,
corresponding to the six decoder layers (ordered left to right). Brighter colors indicate higher attention
weights. These visualizations are generated for a single example from a model trained on the Librispeech
960h dataset; we see similar patterns across most of the examples.

However, these weights become strongly diagonal as we approach the penultimate layers. A similar
phenomenon has been previously observed in the audio encoder [5] but never analyzed in the decoder.
(2) Cross-attention blocks appear to be less effective in the initial decoder layers: As illustrated in Fig-
ure[T] cross-attention in the early layers fail to learn any alignment between the audio and text sequences
suggesting they might be redundant in these layers. Figure [f]in Appendix [D]additionally shows
aggregate attention plots over 250 utterances; we see very similar patterns as illustrated in Figure[I]

Based on these systematic attention patterns, the decoder appears to be assigning specific roles
to its initial and final layers. Specifically, the initial layers of the decoder are mainly tasked with
the generation of text-only context by relying extensively on the token sequence, thus rendering
cross-attention less effective. The final layers of the decoder merge textual context from the early layers
with acoustic information from the audio encoder for its final predictions. We draw inspiration from
these findings and propose BLOCKDECODER as an alternative to the conventional decoder architecture.
BLOCKDECODRER is partitioned into two sub-modules, a fext encoder with only self-attention layers to
build textual context and a merger with self-attention and two cross-attention layers to integrate acoustic
representations from the audio encoder with contextualized outputs from the text encoder to generate
the final predictions. Unlike traditional decoders, the merger is designed to autoregressively generate
K tokens (referred to as a block of size K, and hence the name BLOCKDECODER), from every position
in the token sequence, while relying on the same contextual information from both encoders across the
block. This block-based design enables different inference strategies, as discussed in section[3.3] and
reduces inference latency. Since the merger combines representations that are already contextualized
by the audio and text encoders, a small number of merger layers suffice to achieve high performance,
thus resulting in additional latency reductions. Together, these complementary design choices
result in BLOCKDECODER containing fewer parameters compared to the traditional decoder, while
achieving double the inference speed with no performance degradation on multiple speech tasks.

2 Related Work

ASR systems have significantly evolved in the last decade from deep neural network-hidden Markov
model (DNN-HMM) based architectures [9, [10] to fully end-to-end (E2E) ASR systems [[11} [12].
These E2E models typically adopt either an encoder-only [13] or an encoder-decoder architecture [[1]],
where the encoder processes the audio while the decoder handles text generation. Prior work has
largely focused on improving these architectures either by refining individual components [[14}[15]] or
developing joint training techniques that integrate multiple objectives to enhance model robustness [[16]].
One such widely-adopted jointly trained model is the CTC+attention system [[17]], which consists of
an audio encoder, an autoregressive decoder and a CTC module. Improvements to hybrid ASR have
largely focused on either making the encoder more expressive [4}[18]], enhancing the robustness of
CTC [19] or introducing new training objectives [20} 21]]. While many efforts have aimed towards
refining the audio encoder and CTC, comparatively less attention has been given to the decoder despite
its critical role in text generation. BLOCKDECODER is a step towards addressing this gap.
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Figure 2: Overview of the Hybrid CTC/Attention framework with our proposed BLOCKDECODER.
(a) Schematic representation highlighting interactions between the audio encoder, text encoder, CTC,
and MERGER modules during training. For the example transcript "_BLOCK_DECODER", we
illustrate the MERGER’s capability of predicting K = 3 tokens autoregressively from every position
of the token sequence, while being conditioned on the same contextual representations provided by
the audio encoder and text encoder. Specifically, at each stage, the MERGER receives the representation
of a progressively longer text prefix (e.g., [<sos>], [<sos>, _B] etc.) from text encoder (shown via the
blue bars) along with the corresponding audio representation from audio encoder (shown via orange
lines), and autoregressively predicts the next three tokens. (b) A detailed expansion of the text encoder
and MERGER modules, with residual connections and dropout omitted for brevity. Here, MHS A=Multi-
headed Self-Attention and MHCA=Multi-headed Cross-Attention.

The autoregressive nature of the decoder in ASR systems contributes to high inference latency. To
mitigate this, non-autoregressive (NAR) decoders have been explored [22}[23|24], allowing parallel
token prediction thereby improving inference efficiency. However, like CTC, NAR decoders generally
underperform compared to autoregressive decoders. To bridge this gap, hybrid approaches have
been proposed, where an NAR decoder first generates an initial prediction, which is then further
refined by an autoregressive decoder [25]. Another line of work investigates speculative decoding
techniques [26},27]], that predicts multiple future tokens in parallel, thereby further reducing inference
costs. While most prior works have focused on eliminating autoregressive decoding or modifying
decoding strategies [28]], to the best of our knowledge, there have been no detailed investigations
of the internal functioning of the decoder to refine its design. In our work, we redesign the decoder
based on consistent empirical insights drawn from attention patterns. These design choices are similar
in motivation to RNN-Transducer (RNN-T) systems used for streaming ASR [29], which employs
separate predictor and joiner modules, each serving a distinct function. However, unlike the joiner in
RNN-T, which is a simple feedforward network, we propose the MERGER, that incorporates multiple
attention layers, enabling richer and more flexible context integration. Furthermore, we note that our
approach operates on blocks of tokens, which is an emerging design choice in recent years [30,31}24].

3 Methodology

3.1 Overall Architecture

BLOCKDECODER scaffolds on top of hybrid CTC/attention models, a state-of-the-art framework for
ASR systems [17]]. This framework consists of: a shared audio encoder, an autoregressive decoder and
a CTC decoder. Given an input speech sequence X = [x1,...,27/],z; € R?, the audio encoder maps it
to a contextualized speech representation H=[h1,...,h7])'| Both the CTC and autoregressive decoders
are conditioned on H to produce the label sequence y = [y1,...yw],y; € V where V is a predefined
token vocabulary. The CTC branch minimizes the Connectionist Temporal Classification (CTC)
loss [32] by marginalizing over all possible alignments of ¢y with H. decoder, on the other hand, is

'audio encoder typically uses subsampling to reduce the length of the speech sequence to 7' = [T” /S, where
S is the sampling factor.



an attention-based autoregressive module that is trained to maximize the conditional likelihood of
producing y; given H and previous tokens yy,...,4; 1, where 3, denotes the <sos> token. In this work,
we focus on the decoder by replacing it with our proposed BLOCKDECODER which is more efficient
and performs at par with (or better than) the decoder.

3.2 BLOCKDECODER

We replace the standard decoder with two specialized modules: a text encoder and a MERGER, each
designed for a specific purpose, as shown in Figure[2] The text encoder generates rich textual context
for the token sequence y, that the MERGER further combines along with H, to autoregressively generate
K tokens within a block. These two modules are collectively referred to as BLOCKDECODER. Fig.
shows a schematic overview of our ASR system incorporating these modules. If the original decoder
comprises [V layers, then we redistribute these layers (with minor modifications) across the text encoder
(in and MERGER (in in BLOCKDECODER to be commensurate in size with the decoder.

3.2.1 Text Encoder

The text encoder is a stack of N7 decoder layers that attends over the token sequence y to produce
contextualized representations. These layers consist only of self-attention and feed-forward sub-layers
(and no cross-attention), since text encoder operates only on the text and does not attend to the audio at
all. To prevent information leakage, each token y; is allowed to attend only to itself and the preceding
tokens {yo,Y1,Y2,---,yi—1 } using appropriate masking. The architecture of the text encoder is shown
in Figure 2b] It consists of a stack of Ny decoder layers that are designed to generate rich textual
context for the token sequence y while preventing information leakage. Specifically, the output C’
of the j™ text encoder layer is calculated as follows:

C=MHSA(C’*,¢’!,C/ ! mask)
¢’ =C7! 4 LayerNorm,, (€)

C= éj + LayerNormff(Linear(éj )
C’ =LayerNormy,, (C)

where C,C7 € R"*? and mask € {True,False}"” ", Here, MHSA (%) denotes multi-headed
self-attention [8]]. During attention computation, mask serves as a Boolean matrix, where mask[a,b)
indicates whether the ™ token is allowed to attend to the o™ token in y. For the text encoder, we
set mask|a,b] = (b< a) to prevent information leakage. Finally, the input to the first layer is defined
as C° = PE + (Embedding([yo,y1,...,yw]), where PE represents sinusoidal position embeddings.
We also employ dropout [33] in every text encoder layer. Additionally, we observe that having
LayerNormg,, at the end of every layer is crucial for stable training of the BLOCKDECODER. We
use C e RW >4 to denote the final output from the text encoder.

3.2.2 MERGER

Given audio context H from the audio encoder and text-only context C from the text encoder, we
introduce MERGER that jointly attends to contexts from both modalities to autoregressively generate
a block of K tokens. MERGER achieves this integration via multiple attention blocks, as shown
in Figure[2b] Specifically, MERGER first employs a self-attention block, that focuses on local context
by causally attending to tokens in the current block. Next, MERGER uses two cross-attention modules
for C and H, respectively. The first cross-attention module attends to the contextualized representations
in C prior to the current block; the second cross-attention block integrates acoustic features from H,
thereby ensuring that the tokens generated by MERGER remain faithful to the audio. At the i time
step, MERGER is trained to maximize the probability of generating the token sequence {y;,...yi+x -1},
conditioned on H, C and the previous token y; _1:

K-1
P{yi - yivr -1} | vie1, H, Coiica) = H MERGER ({yi-1, - Yi+k—1}, H, Co:i—1)
k=0

It is important to note that at time-step ¢, while generating each of K tokens in a block, MERGER
conditions on the same first ¢ entries of C written as Cg.;_1. Since MERGER can predict a block of



K future tokens at each time step, we note that the probability for any token in the block can now be
computed using multiple combinations of entries from C and the set of preceding tokens. For example,
with a block size of 3, the probability of y5 can be computed using the following combinations:

({y4},Co.4), {ys,y4},Co:3) and ({y2,v3,y4},Co:2). Section elaborates on multiple inference
strategies supported by BLOCKDECODER.

To facilitate efficient attention and loss computations, we create a modified token sequence
Y = Y0, Y15 YK —1,V1, YW —K+1---,yw] of length [y'| = K x (W — K +1). This
sequence contains (W — K + 1) blocks each comprising K tokens, that are color-coded for improved
readability. (Since the length of y’ grows linearly with K, we typically employ small values for K.)
This modified sequence now enables us to restrict self- and cross-attention by appropriately configuring
the attention masks. Specifically, the output of the ;" layer M from MERGER (consisting of Ny,
layers overall) is computed as:

N’ = MHSA (M~ M~ W " maskq)
M=M"! +LayerNormself(|\7|'j )

W = MHCA coniex (M,C,C maskeonex:)

M=M+ LayerNorInconlexl(Mj )

andio(MHC A0 (MH,H))
M =M+ LayerNorrnff(Lirlear(Mj )

where M M € RY <4, MHSA (x) and MHCA () denote the standard multi-headed self- and cross-

attention [8]], and masker, maskcontext € {0,1}WXW are Boolean matrices where mask,[a,b] = 1
indicates that the a™ item in one sequence is allowed to attend to the b item in another sequence. To
constrain self-attention to causally attend over tokens within the block, we set maskself[a,b] =(b<
a)& (| &) ==%]). Topreventinformation leakage from C, we setmaskmmext [a,b] =b<|+]. Lastly,
we use embeddings for tokens within each block of the sequence ¥’ with appropriate positional embed-
dings as an input to MERGER. Finally, the output probabilities from MERGER are generated using a sim-

ple feed-forward layer to project to the token vocabulary size V), followed by a softmax transformation.

N =M +LayerNorm,

To ensure that C is contextually rich, we allocate the majority of our layer budget to the text encoder.
With H and C being substantially rich in information, even a small number of MERGER layers
are adequate to effectively combine both modalities. This careful division of responsibilities
between a cross-attention-free text encoder (that generates contextualized textual representations)
and a lightweight MERGER (that allows late integration of speech and text information) enables
BLOCKDECODER to function accurately and significantly faster than the traditional decoder.

3.3 Inference Strategies

During inference, we employ label-synchronous autoregressive beam search proposed by [17]] to find
the best hypothesis. That is, at the i decoding step, the score for the partially decoded hypothesis Y<i
is computed as a weighted combination of the log probabilities from both CTC and BLOCKDECODER.
Specifically:

S(Qgi)=5X5ctc(l7§i)+(1—5)XSan(QSi) (1)
where 0 € [0,1] is a hyperparameter that determines the relative importance of the two scores S and
Sy from the CTC and BLOCKDECODER modules, respectively. S, can be computed using various
combinations of inputs to the text encoder and MERGER. We explore three inference strategies to
compute the score for the partially decoded hypothesis §<;, as illustrated in Figure

3.3.1 Strategy 1: Naive Block Decoding

The simplest approach involves making a forward pass through both text encoder and MERGER at
every decoding step, by utilizing all positions within the block. Specifically, the attention score for
Y<; is computed as:

Su(<i) =log(] [MERGER ({y;_k,....y;-1},H,C))
j=1
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Figure 3: Overview of the three inference strategies across the first four beam search steps. "Text Enc"
refers to the text encoder. From left to right: (1) Naive Block Decoding: Score obtained from only the
last position within the block, requiring one forward pass through both the text encoder and MERGER
at each step. (2) Iterative Block Decoding: Score computed iteratively within the block, requiring one
forward pass through MERGER at each step, and one pass through text encoder every K steps. (3) Full
Block Averaging: Score averaged across all valid input combinations to text encoder and MERGER,
requiring one forward pass through text encoder and multiple passes through MERGER at each step.

where C’ = text encoder({yo,y1,---y;—x }). This approach always utilizes the last position within the
block while generating the score. This approach is sub-optimal as it involves forward passes through
both text encoder and MERGER at every decoding step.

3.3.2 Strategy 2: Iterative Block Decoding

To truly exploit the MERGER’s blockwise ability to predict K tokens, we adopt an iterative block
decoding approach, where the MERGER continuously predicts K tokens before performing a forward
pass through the text encoder to update the context vector C’. Here, the score for Y<; 1s computed as:

Su(<i) =log(] [MERGER ({ys,....y;-1},H,C"))

j=1

where C' = text encoder({yo,y1,...ys }) and s= | L1 | x K. Since the MERGER contains only a few
layers and we make a forward pass through text encoder once every K steps, this strategy is more
efficient compared to the previous strategy.

3.3.3 Strategy 3: Full Block Averaging

This last approach aims to boost performance by utilizing the scores from all the positions within the
block. The final score for §<; is computed as the average of the scores from all the combinations of

C’ and the preceding tokens as shown below:

. K

N ol

Sall(yﬁi):k)g *Z MERGER({yj*k7"7yj*1}7ch/)
i K

where C' = text encoder({yo,y1,...yj—x }). While this strategy improves performance, it incurs higher

inference latency due to K invocations of MERGER as opposed to a single invocation in the previous

strategy.

3.4 Complexity of BLOCKDECODER

We analyze the computational complexity of BLOCKDECODER in comparison to the stan-
dard decoder. Let T be the length of the acoustic features H, W denote the length of the
token sequence y, K be the block size for the MERGER and d denote the dimensionality for
the attention computations. (For ASR, typically W <« T.) BLOCKDECODER consists of
Np and N, layers in text encoder and MERGER, respectively. (Recall that N = Np + Njy.)



Table 1: Performance comparisons (CER or WER %) between BLOCKDECODER and the baseline
Transformer decoder across three datasets and two encoder architectures.  indicates no statistically
significant WER difference compared to the baseline, as determined by the MAPSSWE test [34].

denotes significant improvement in RTF, while > indicates RTF performance comparable to the baseline.

Method Librispeech-100h (WER) [ Tedlium2 (WER) [ AISHELL (CER)
| Params (M) | TestClean | Test Other | RTF| | Params (M) | Test RTF| | Params(M) | Test| RTF |
Conformer [4]
w/ Transformer Decoder | 342 | 675 17.74 138 | 308 | 7.69 216 | 336 | 458 0.44
w/ BLOCKDECODER
— Naive Block Decoding 337 6.63 1763 | 0.73(~10v) 30.2 781 | 1.02~a10) 33.1 476 | 0.28(w160)
— Iterative Block Decoding 33.7 6.72 17.70 0.66(2.1) 30.2 792 0.90(~244) 33.1 475 0.25(u1sx)
— Full Block Averaging 33.7 6.58 17.62 1.68" 30.2 7.79 239" 33.1 4.63 0.51"

E-Branchformer [0}
w/ Transformer Decoder | 385 | 639 17.03 152 | 350 | 744 217 | 379 | 450 045
w/ BLOCKDECODER

— Naive Block Decoding 37.9 6.15 16.82 0.77 (~2.0x) 34.5 7.61 1.04(~2.1x) 37.4 4.61  0.30(~15x)
— Iterative Block Decoding 37.9 6.19 16.94 0.67 (~23x) 345 7.60 | 0.91(4x) 374 4.61  0.26(~17x)
— Full Block Averaging 37.9 6.14 16.85 1.68" 34.5 7.61 240" 37.4 4.53 0.54%

We focus primarily on comparing the ~ Table 2: WERs of BLOCKDECODER and other well-known
total number of attention calculations  ASR systems (from prior work) on Librispeech 960h.
required for a single example during

training and inference. Without LM

& Method Paxﬁms Test — Test | —
During training, the text encoder takes Tramsdncer M) | clean™ Other
y asits input while the M/ER(?EB USeS  Transformer [21] 139 24 56 B
the modified sequence ¥y’ as its input,  ContextNet [14] 1127 21 46 B
where |y'| = (W — K + 1)K =  Conformer (M) [4] 30.7 23 50 -
WK. Thus, the overall attention (é(%“(f;(’fmef(L) (4] 118.8 21 43 -
lclomputatmrll ff)r BfLSCJI\([DEI;ggER QuartzNet (L) [35) 19 | 39 113 | -

as a comp exity o (N ( )+ Hybrid CTC+Attention
NM(WK + WK + WKT)d) Transformer [36] 270 2.9 7.0 -
in comparison to decoder that takes  Conformer [37) 116.2 29 70 -
O(N(W2 + WT)d) time. UpOIl fur- Conformer (L) (6] 147.8 2.2 4.7 -

: : : : : _ Branchformer [5] 116.2 2.4 5.5 -
ther §1mp11ﬁcat10n (detalled n .Ap Branchformer (L) [6] 146.7 2.2 4.8 -
pendlx }@’ we show that ChOOSIHg E-Branchformer [6] 148.9 2.1 4.5 -
K= 55— N7 allows BLOCKDECODER  Qur baselines (Hybrid)
to operate with approximately the E-Branchformer
same number of attention operations — w/Transformer Decoder | 1489 | 2.1 46 | 7734
as decoder Our work (Hybrid)

: — w/BLOCKDECODER | 1468 | 21 44 | 2983260

During inference with beam-search (of
B beam width), the standard decoder  Table 3: Comparison (accuracy % and F1) of our system

takes O(WB(NW + NT)d) against Transformer decoder baseline on the SLU task.
time for its attention calculations.

In contrast, BLOCKDECODER Method ‘ Params [ Intent [ Enfity [ pop,
with naive block decoding takes —gmm M) [ TestAce.f | SLU-F17 |
O(WB(NW + Ny (K+T))d) time. — w/ Transf. Decoder 109.5 ‘ 85.9 ‘ 0.76 ‘ 2.46
Since K <T and Nj; < N, BLOCK- — w/ BLOCKDECODER 107.4 859 0.77 1.17(<2.1x)
DECODER requires significantly fewer E'B“i;‘/c}T‘fZ;‘:‘fefD[gmder o 672 078 -
attention operations than  decoder. —w/ BLOCI’(DECODER l()le ‘ 87t1 ‘ 0:78 ‘ 1.31@2_4,()

The time complexity of iterative
block decoding is similar to that of the naive strategy, but benefits from making a forward pass
through text encoder only once every K steps thus leading to slightly faster inference. The complexity
of full block averaging and other details are in Appendix[A]

4 Experiments

4.1 Experimental Setup

Datasets. We show experiments on two tasks: ASR and Spoken Language Understanding (SLU).
For ASR, we use: (1) Librispeech [38]] consisting of 1000 hours of English read audiobooks with
100-hour and 960-hour training splits, (2) Tedlium?2 [39] consisting of 200 hours of TED talk recordings,



Table 4: CERs/WERs of BLOCKDECODER and Table 5: WERs of BLOCKDECODER with varying
the baseline decoder across five languages from block sizes on Librispeech 100h using two training
the MCV corpus. All experiments use the E- strategies: (1) full: MERGER trained on every
Branchformer as encoder. ¢ indicates the lan- block (2) sampled: MERGER trained on a random

guages for which CER is reported. subset of blocks.
Language | Decoderused | Params | Dev| Test| RTF | . Training | Training Test Test
Chinese ¢ | Transformer 51.1M 14.0 13.6 0.41 Block size Strategy | Time (hrs) | Clean $ Other + RTF |
Ours 50.5M | 142 138 | 0.22ui99 Baseline = 154 64 17.0 1.52
Czech Transformer 47.4M 124 134 0.49 K=1 full 15.2 6.7 17.3 0.73(~2.1x)
Ours 469M | 127 138 | 0.25(u200 K=3 full 15.6 6.2 169 0.67(~230)
. Transformer 47.4M 9.5 10.1 0.73 - full 16.2 6.3 17.1 0.66(~2.3x
Italian | o 469M | 97 105 | 03700y K=5"1 Gmpled 15.4 6.4 17.7 0.65(~2_3x;
Japanese ¢ | Transformer 49.9M 53 12.1 0.43 K=7 full 17.0 6.2 16.9 0.65(~2.3x)
Ours 49.4M 5.5 123 0.28(~15x) sampled 153 6.9 18.2 0.65(~2.3x)
Tamil Transformer 47.4M 17.4 20.0 0.57 K=9 full 17.5 6.5 17.4 0.65(~2.3x)
Ours 469M | 175 201 | 031uisg sampled 153 14.9 2.6 065230

(3) Aishell [40] containing 170 hours of Mandarin Chinese speech data, and (4) Mozilla Common-
Voice [41], a multilingual dataset with durations ranging from 10 to 2500 hours per language. We select
five languages with training data spanning 100 to 400 hours. For SLU, we use the SLURP corpus [42],
a 60-hour multi-domain English dataset evaluated for intent classification and entity recognition.

Implementation Details. All our experiments are conducted using the ESPnet toolkit [43]] on NVIDIA
A100 and A6000 GPUSEI Across all experiments, we apply 3-way speed perturbation with ratios
{0.9,1.0,1.1}, along with SpecAugment [44]]. Our experimental setup follows the recommended
configurations in ESPnet recipes. Across all experiments, we employ standard efficient inference
techniques such as KV-caching and Automatic Mixed Precision (AMP). For SLU experiments, we first
train the model with an ASR objective, where the output label sequences are sentences with intent and
entity-related tags. Then, during inference, we first decode the sequence as in ASR, and then compute
SLU metrics by parsing the decoded output. A detailed summary of the hyperparameters used for each
dataset is available in Appendix Real-time factor (RTF) E] values are reported using CPU inference
for all experiments. Finally, unless explicitly stated, all BLOCKDECODER related experiments use
ablock size of K =3, Nr =4 text encoder layers, and Nj; =2 MERGER layers.

4.2 Main Results

Table E] compares the word error rates (WERs) of BLOCKDECODER with a standard Trans-
former decoder (referred to as baseline) across three widely used ASR tasks: Librispeech 100h
and Tedlium2 for English, and Aishell for Mandarin. For each dataset, we experiment with two
state-of-the-art encoder architectures: Conformer [4] and E-Branchformer [6] and report results on all
three inference strategies outlined in Section[3.3] We find that BLOCKDECODER consistently matches
or outperforms the baselines despite having fewer parameters and achieves significant latency gains.
The first two inference strategies are fast, achieving a near 2x speedup in RTF by effectively utilizing
the block structure while the third strategy does not improve RTF but yields a slight performance boost.
Iterative block decoding yields the best RTF gains and will be used in all subsequent experiments
(unless specified otherwise).

In Table |2} we further compare the WERs between BLOCKDECODER and decoder on the full Lib-
rispeech 960-hour dataset, along with other prominent baselines from prior work. Even on a large-
scale dataset, BLOCKDECODER remains comparable in performance with the strongest baseline,
E-Branchformer, while achieving nearly a 2.5x speedup in RTF on CPUs. Additionally, since inference
on Librispeech 960h often employs a large beam size, in Appendix[E] we also compare the performance
of BLOCKDECODER against the decoder with inference using GPUs. Even in this setting, BLOCKDE-
CODER achieves better RTF and FLOPs (Floating Point Operations) compared to the standard decoder.

4.3 More Task and Language Experiments

Non-English ASR. In Table[d] we show additional experiments on five languages from diverse
language families of the MCV corpus (Chinese, Czech, Italian, Japanese, Tamil). BLOCKDECODER

We ensure that all experiments for a particular dataset are conducted on the same GPU and environment.
3RTF is the ratio between the time taken by the model to process the input and the actual input duration.



consistently yields WERs comparable to the baseline across all languages while maintaining significant
latency gains.

SLU task. In TableE], we show results on an SLU task, SLURP [42]], and evaluate using accuracy and
F1-score on intent classification and entity recognition, respectively. As with ASR, BLOCKDECODER
for SLU also results in comparable performance to the baseline and significantly improves latency.

4.4 Ablations and Analysis

Attention plots. Figure[]shows the attention patterns learned by the text encoder and MERGER
trained on Librispeech 960h. Figure [fa] shows self-attention plots of the textencoder with
well-distributed attention distributions across the sequence for all layers, indicating that
the textencoder focuses on a global, text-only context. Figures [4b] and show atten-
tion plots for the two cross-attention blocks of the MERGER. The first cross-attention
block that attends to text encoder’s output is predominantly diagonal, reinforcing the idea that
the global context produced by the textencoder is sufficiently informative for the MERGER.

The second cross-attention block, that

attends to the audio encoder’s output, . .
demonstrates accurate alignment with ~ ~ ”
the audio features, thus highlighting -
the importance of these blocks ininte- . .
grating contexts. ; .

Impact of the number of MERGER
layers. Figure[d]illustrates the effect

(a)
of varying the number of MERGER | . .
layers (Nps) inthe BLOCKDECODER. - -
We see that a single MERGER layer (i.e. - . .
Ny = 1) is sufficient to achieve rea- : .
sonable WERs while yielding a signif- -y - SN - B

icant latency gain with a nearly 3.5x Layer Layer2 Loyt e
speedup. Adding a secon.d le.lyer (i.e (b) (©)

Ny =2)matches the baselinein WER, ) )

while still maintaining a 2x latency Figure 4: Attention plots demonstrating the patterns
gain. As the number of MERGER lay- learned by self- and cross-attentions from BLOCKDE-
ers increases, performance continues CODER. () textencoder’s self-attention (b) MERGER’S
to improve, while consistently achiey- Cross-attention w/ text encoder (¢c) MERGER's cross-attention

ing better RTF than the baseline. w/ audio encoder.

Effect of number of merger layers on BlockDecoder

Impact of block size K. Table [3
presents a comparison of BLOCKDE-
CODER’s performance on Librispeech
100h for varying block sizes K =
{1,3,5,7,9}. As larger K increases
training time, we also explore an al-
ternative training strategy in which

the MERGER is trained on only a ran- 1651 i , . N =4 , .
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equivalent in length to the original Figure 5: Comparison of the performance of BLOCKDE-

input y (marked as sampled). All CODERon changing number of MERGER layers. WERs are
non-sampled variants achieve perfor- from the test-other split of Librispeech 100h.

mance comparable to the baseline

while demonstrating substantial RTF improvements. RTF gains initially increase with K since iterative
block decoding requires fewer forward passes through text encoder. The gains subsequently plateau
with larger K values due to the increased computational overhead of the MERGER that offsets latency
benefits gained from skipping text encoder. Additionally, as K increases, we see a slight degradation in
performance, due to the increased complexity of the MERGER’s learning objective. All sampling-based
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experiments underperform relative to their non-sampled counterparts, likely due to insufficient training,
but match the baseline in terms of training time.

BLOCKDECODER versus CTC only models. CTC-only models are a popular alternative to encoder-
decoder architectures due to their fast inference enabled by greedy decoding. However, they are known
to significantly underperform compared to encoder-decoder models. Hybrid CTC encoder-decoder
architectures are a popular choice to achieve state-of-the-art performance; hence, we primarily focus
on this framework. Further detailed performance comparison between BLOCKDECODER and multiple
CTC-only models (that focus on efficiency) are presented in Appendix[C|

Decoder without cross-attention layers. We also investigate a simplified variant of BLOCKDE-
CODER, which retains the decoder architecture but removes cross-attention blocks from the initial
layers. This modification results in worse performance compared to our proposed BLOCKDECODER.
Further details are in Appendix|[B]

Adaptation of BLOCKDECODER to other settings. Our proposed architecture is particularly
effective in settings where the encoder output is substantially longer than the target sequence (e.g.,
ASR). Similar input-output dynamics exist in tasks such as document summarization, which often
involves long input sequences and shorter outputs, making them promising candidates for adaptations
of BLOCKDECODER. Moreover, since BLOCKDECODER separates the decoder into a text-only encoder
and a merger module, our framework naturally supports replacing the text encoder with a pretrained
LLM, thereby enabling seamless ASR-LLM integration. Finally, the architectural modularity we
introduce could inspire efficient pruning or compression strategies for large-scale models such as
Whisper [1]], thereby accelerating inference, especially for real-time applications.

5 Conclusion

In this work, we propose BLOCKDECODER, a novel decoder architecture for ASR inspired by attention
patterns observed in traditional Transformer decoders, specifically that cross-attention is under-utilized
in initial layers and self-attention becomes more localized in later layers. BLOCKDECODER consists of
a text encoder, tasked with generating rich text-only context and a MERGER, responsible for efficiently
integrating audio and text contexts to autoregressively produce K tokens within a block. Together,
these modules ensure that BLOCKDECODER is on-par with (or better than) the standard decoder, while
achieving significant RTF gains across a wide range of languages and tasks. The block structure within
the MERGER opens up avenues for further investigations into inference methods, optimizations, and
additional performance enhancements.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this paper, we propose a more efficient decoder architecture for ASR. The
motivation and design are detailed in Section[3] and we support our claims through a range of
experiments across diverse tasks and setups, presented in detail in Section[d]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* Itis fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Although we do not discuss the limitations in depth, Section.4]highlights a few
key shortcomings of our approach along with potential directions to address them.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and

how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
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Answer: [Yes]

Justification: In Section[3.4] we present acomprehensive time complexity comparison between
our approach and baseline architectures, with detailed proofs provided in Appendix[A]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All our experiments are conducted on publicly available datasets using an
open-source toolkit. Further details are provided in Section [4.1] and the corresponding
hyperparameters are also listed in Appendix[F

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) Ifthe contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We conduct all our experiments on publicly available datasets using an open-
source toolkit, as detailed in Section@ We plan to release our code, configurations, and
models upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These details can be found in Section[d.T)and Appendix [F|
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct MAPSSWE tests on all our experiments to show that the results are
comparable with the baseline.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]
Justification: These details can be found in Section[4.11
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special considera-
tion due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have appropriately cited all the datasets and open-source code used in our
experiments. More details are available in Section[d.1]

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Detailed Complexity Analysis of BLOCKDECODER

Let T denote the length of the acoustic features H, 1/ be the length of the token sequence y, K be the
block size for the MERGER and let d be the dimensionality for the attention computations. Additionally,
N is the total number of layers in the original decoder, and Np and N, are the number of layers in
text encoder and MERGER respectively. As discussed in Section[3.2] we choose N and N such that
N = Nr+ Nj,. The goal here, as outlined in Section is to mainly compare the total number of
attention computations between our BLOCKDECODER and the traditional decoder. To begin with, we
know that, during training, decoder takes O(NW?2d+ NWTd) time for all its attention calculations.
In comparison, BLOCKDECODER has a time complexity of:

2 2 2
O( Np(W2d) +Ny( WK2d  +  W2Kd + WKTd )

text encoder Self-Attention  Cross-Attention Cross-Attention
within the block over C over H
MERGER

Simplifying this expression, we get:
:0(NT(W2d)+NM(WK2d+W2Kd+WKTd))

O((N - NM)(W2d)+NM(WK2d+W2Kd+WKTd)) (Since N = Ny +Nyy)
(N(W2d)+Ny(WK2d+W2Kd—W?d+WKTd))

(NW?2d+ Ny (WEK?d+W?Kd+W KTd))
(
(
(

Q

Q

NW?2d+NyWKd(K+W +T))
NW?2d+NyWKdA(2T))  (Since K < T and W < T)
NW?2d42Ny KWTd))

Q

0
O
0
0
0

Q

Doing an elementwise comparison with the time complexity of the decoder, we find:

N
N~2NyK = K~ ——
M 2N

Similarly, during inference, we employ beam search to generate the B-best hypothesis, where B denotes
the beam width. In the case of the traditional decoder, the time complexity for performing inference
onyis O(WBN(W+T)d). Thatis, in total, we perform W beam steps (since |y |= W), with each
step processing B partial hypothesis, which are all passed through N decoder layers, where each layer
first performs self-attention over the previously generated tokens, followed by cross-attention over the
acoustic features H. These operations result in W4T attention computations, for a single forward pass
of one entry in the beam. In contrast, we show that our BLOCKDECODER significantly reduces the
number of attention computations required for beam-search. Given that BLOCKDECODER supports
multiple inference strategies, we now analyze the time complexity for each of those approaches.

NAIVE BLOCK DECODING & ITERATIVE BLOCK DECODING: Although ITERATIVE BLOCK
DECODING makes a forward pass through text encoder once every K steps, asymptotically, the total
number of attention computations are still equivalent to NATVE BLOCK DECODING. Thus, to calculate
the overall time complexity, we assume that a forward pass through both the text encoder and MERGER
at each beam-step is performed. Then, the time complexity becomes:

O(WB(NrW+Npy (K+W+T))d)

Simplifying this expression, we get:
=O(WB(NpW+Npy (K+W+T))d)
=O(WB((N1+Nu )W +Nuy (K+T))d)
=O(WB(NW+Ny (K+T))d) (Since N=Nr-+Ny)
~O(WB(NW+NyT)d) (Since K <T)
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Finally, since Nj; < N, the overall time complexity is significantly smaller than that of the standard
decoder. Although ITERATIVE BLOCK DECODING is of the same time complexity as NAIVE BLOCK
DECODING, since modern hardwares are optimized for parallel computations, it further reduces
inference time.

FULL BLOCK AVERAGING: This strategy involves making multiple forward passes through the
MERGER. As aresult, it has an overall time complexity of:

O(WB(NgW + Ny K (K +W+T))d)

Simplifying this expression, we get:
*O(WB(NTW+NMK(K+W+T))d)
OWB((N—-Ny)W+Ny K(K+W+T))d)  (Since N =Np+Nyy)
=O(WB(NW 4Ny (K2 +(K -1)W+KT))d)
(WB(NW +Ny (K*+KW+KT))d)
(WB(
(WB(

Q

WB(NW+Ny K(K+W+T))d)

Q

0
0
0O

Q

N
(K+W+T))d) (Since K~———)

WB(NW+N
* MoNu 2Ny

O(WB(NW+N(K+W+T))d)

O(WB(NW+N(W+T)) d) (Since K< T)

O(WB(¥+¥))@

~O(W BN (W +T))d)

Thus, with K’ = 55—, this strategy requires approximately similar number of operations as the standard
decoder.

B BLOCKDECODER vs decoder with cross-attentions only in the later layers

A simpler variant of our architecture can be designed by removing cross-attention blocks from few
initial layers of the standard decoder. Since cross-attention in the decoder typically causes the per-
formance bottleneck, reducing the number of such blocks should improve the decoder efficiency.
Table[6]presents a performance comparison between the baseline, this simplified decoder variant and
our BLOCKDECODER. We observe that removing cross-attention blocks does provide significant la-
tency gains, but at the cost of performance degradation. However, our proposed BLOCKDECODER still
achieves the best RTF gain and exhibits no performance degradation, owing to its ability to effectively
utilize the block structure.

Table 6: Performance comparison (CER or WER %) between Transformer decoder, our BLOCK-
DECODER and a variant of decoder containing cross-attentions only at the later layers (referred to
as decoder,cient) On Librispeech 100h dataset. All experiments use the E-Branchformer as encoder.

Architecture Params | TestClean|  Test Other | RTF |
Transformer decoder 38.5M 6.39 17.03 1.52
decoderefﬁciem 37.5M 6.51 17.26 0.73(,\/2,1)()
BLOCKDECODER 37.9M 6.19 16.94 0.66(~53y)

C BLOCKDECODER vs CTC-only architectures

In this section, we evaluate BLOCKDECODER against vanilla CTC-only models and a widely used CTC-
only variant, InterCTC [45], which introduces auxiliary CTC objectives at intermediate encoder layers.
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Since CTC-only models rely solely on the encoder, we increase their number of encoder layers to match
the total number of layers (encoder + decoder) in BLOCKDECODER. Table[7]presents a performance
comparison between the standard Transformer Decoder, the vanilla CTC-only model, InterCTC, and
our BLOCKDECODER. As shown, CTC-only models yield significantly worse performance compared
to both the full Transformer decoder and BLOCKDECODER. Although CTC-only models offer faster
inference due to their greedy decoding, this comes at a notable cost in recognition accuracy. These
results support our claim that BLOCKDECODER achieves a more favorable trade-off between latency
and performance.

Table 7: Performance comparison (CER or WER %) between Transformer decoder, vanilla CTC-only,
InterCTC, and our BLOCKDECODER on Librispeech 100h dataset. All experiments use the
E-Branchformer as an encoder.

Architecture Params | TestClean|  Test Other | RTF |
Transformer decoder 38.5M 6.39 17.03 1.52
BLOCKDECODER 37.9M 6.19 16.94 0.66(~3x)
Vanilla CTC-only 37.9M 10.05 23.87 0.36(~4.2x)
InterCTC 37.9M 8.80 21.29 0.37 (~4.1x)

D Aggregate Attention Plots

Figure[6] presents aggregated self-attention and cross-attention plots computed over 250 utterances
using the decoder from a model trained on the full Librispeech dataset. The observed patterns are
consistent with those in Figure[I] To generate these plots, we first select utterances with a minimum
audio length of T},;, and a minimum label sequence length of W, and then compute the average
attention scores over the first T1,;, audio frames and W ,;, label positions.

Figure 6: Attention plots illustrating the patterns learned by self-attention and cross-attention blocks
across all layers of a standard Transformer decoder in a hybrid CTC/attention ASR system. The
plot consists of two rows, one for self-attention and another for cross-attention and six columns,
corresponding to the six decoder layers (ordered left to right). Brighter colors indicate higher attention

weights. These visualizations are generated by aggregating attention scores over 250 utterances using
the decoder of a model trained on the Librispeech 960h dataset.

E Detailed Results on LibriSpeech 960h

Table[§]presents the complete results on Librispeech 960h dataset, with inference conducted on both
CPU and GPU. A condensed version of these results is provided in Table[2] As outlined in Sectiond.2}
with CPU based inference, BLOCKDECODER achieves a nearly 2.5x speedup over the strongest
baselines. However, in the case of GPU-based inference, the RTF values for BLOCKDECODER and the
baseline are nearly identical. Through detailed profiling, we found that the majority of GPU inference
time is spent on bookkeeping operations performed by the toolkit to support beam search, while
the actual decoder forward passes contribute only a small fraction to the total inference time. Since

24



modifying the entire inference pipeline of the toolkit is both cumbersome and beyond the scope of this
work, we additionally report the average total FLOPs (Floating Point Operations) and the mean decoder
forward time incurred solely by the decoder during beam search. This offers a more focused assessment
of the decoder’s computational efficiency. As shown in Table[§] our proposed BLOCKDECODER
reduces the FLOPs and the decoder forward time by approximately 60% compared to the baseline
across both CPU and GPU-based inference.

Table 8: Comparison of the performance (WER %) of our system against other architectures on the full
Librispeech dataset. Here, DFT stands for "Decoder Forward Time".

Params Common Metrics CPU Inference GPU Inference
Vethod M | Gan' _otert “intrrory Ry NGRS L mE MRS
Transducer
Transformer [21] 139 24 5.6 - - -
ContextNet [[14] 112.7 2.1 4.6 - - -
Conformer (M) [4 30.7 23 5.0 - - -
Conformer (L) [4] 118.8 2.1 4.3 - - -
CTC
QuartzNet (L) [35] 19 39 11.3 - - -
Hybrid CTC+Attention
Transformer [36] 270 29 7.0 - - -
Conformer [37 116.2 29 7.0 - - -
Conformer (L) [6. 147.8 2.2 4.7 - - -
Branchformer [5 116.2 2.4 5.5 - - -
Branchformer (L) [6] 146.7 2.2 4.8 - - -
E-Branchformer [6] 148.9 2.1 4.5 - - -
Our baselines (Hybrid)
E-Branchformer
— w/ Transformer Decoder 148.9 2.1 4.6 3.08 ‘ 7.73 53.24 ‘ 0.338 0.232
Our work (Hybrid)
— w/BLOCKDECODER | 146.8 2.1 44 L1370 | 298260 1602 330 | 0306(~1.1x) 015150

F Implementation Details

The hyper-parameters used in all our experiments are reported in Table[9]
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Table 9: A detailed summary of the configurations used for every dataset mentioned in our experiments.

Hyper-parameters 10 Oll;lbrlspeecg 6On Tedlium?2 Aishell Commonvoice | SLURP
Frontend
window length 400 512 400 512 400 512
hop length 160 160 160 128 160 128
SpecAug
time warp window 5 5 5 5 5 5
num of freq masks 2 2 2 2 2 2
freq mask width 0,27) 0,27) 0,27) 0,27) (0,30) (0, 30)
num of time masks 5 10 5 10 2 2
time mask width (0,0.057)  (0,0.05T") | (0,0.057) | (0,0.05T) (0, 40) (0, 40)
Architecture
feature size (d) 256 512 256 256 256 512
attention heads (h) 4 8 4 4 4 8
num of encoder layers (Ng) 12 17 12 12 12 12
encoder hidden size (dyiggen 1024 1024 1024 1024 2048 1024
depth-wise conv kernel 31 31 31 31 31 31
num of decoder layers (V) 6 6 6 6 6 6
decoder hidden size (d,°%,.n) 2048 2048 2048 2048 2048 2048
Training

epochs 70 80 50 60 50 60
learning rate 2e-3 2e-3 2e-3 le-3 1.0 le-3
warmup steps 15k 40k 15k 35k 25k 35k
weight decay le-6 le-6 le-6 le-6 le-6 le-6
Gradient Accum steps 4 4 2 1 1 1
dropout rate 0.1 0.1 0.1 0.1 0.1 0.1
ctc weight () 0.3 0.3 0.3 0.3 0.3 0.3
label smoothing weight 0.1 0.1 0.1 0.1 0.1 0.1
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