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Abstract—Recent development in audio-driven talking face
generation strives for controlling facial features including facial
expression, head pose, eye blink, etc. as well as accurate lip-
synchronization and the ability to apply to arbitrary subjects.
Existing audio-visual models that can control facial features
require encoders that encode driving videos, which is both
computationally expensive and limited by the availability of such
driving videos. In this paper, we address this limitation and
aim to control facial features without encoding driving videos.
We propose a cascaded GAN-based audio-visual model, which
incorporates face mesh as an intermediate representation. Dif-
ferent from existing cascaded methods that use facial landmarks,
our method uses face mesh as a medium of informative facial
feature representation. To the best of our knowledge, this is
the first cascaded model that allows controllable talking face
generation via face mesh. We train our audio-visual model
with training samples of MEAD dataset. In the evaluation, we
benchmark our model in extensive experiments on MEAD and
LRW datasets. The results show our model outperforms existing
ones by generating high-fidelity audio-driven talking faces on
arbitrary subjects with realistic emotional expression patterns.

Index Terms—talking face generation, facial animation, con-
trollable generation

I. INTRODUCTION

Generating talking head videos is a challenging task and it
has a wide range of applications in entertainment, education,
healthcare, and communication industries. The main technical
issue is to generate realistic and expressive videos with high
fidelity and synchronized lip motions. Meanwhile, researchers
are paying more attention to the controllability of facial
features, i.e. being able to change specific semantics/motions
based on control signals. Controllable video generation can
boost the flexibility of product deployment and enhance user
experience by creating engaging talking heads [1], [2].

With the latest advancements in audio-driven talking face
generation [1], [3], [4], the controllability of facial features
(e.g. emotional expressions, head pose, eye blink) is achieved
while ensuring precise lip-synchronization and fidelity. Many
audio-driven models adopt an implicit control mechanism, i.e.
they disentangle the driving audio to control different aspects
of facial features [5]–[8]. This mechanism has shown some
success in controlling lip motion owing to the high correlation
between lip motion and the driving audio. However, it is less
effective to control other features (e.g. head pose and emotion)
because the correlation between these facial features and the
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audio is weak. Some works propose to generate talking head
videos with explicit control over eye blink [9], [10]. However,
eye blink is visible only within a minor facial area, so it has
little effect on user perception. In essence, audio-driven models
offer limited controllability over the aspects of facial features.

Another stream of works adopts driving videos to exert con-
trol over facial features, typically called face reenactment [1],
[3], [4]. These audio-visual models utilize encoders to process
driving videos to manipulate the facial features of the gener-
ated faces. These models are end-to-end trainable and allow
for explicit control, provided that they can effectively extract
disentangled information in the encoding process. However,
such a practice is constrained by the content of the available
driving videos, i.e. one needs to find suitable driving videos
to achieve the desired effect of control.

To alleviate this problem, we attempt to explicitly control
emotional expression in generated talking faces without encod-
ing driving videos (Fig. 1). We propose a new cascaded model
that leverages face landmarks as an intermediate representa-
tion, which serves to disentangle the face identity (appearance)
and the face dynamics (motion). Facial landmarks are 2D or
3D points to localize salient regions of a face. Depending
on the representation format, they range from sparse 2D
points (e.g. 68 points) [11] that capture key features, such
as face contours, eyes, eyebrows, nose, and mouth, to dense
representations such as 3DMM using as many as 53,000 ver-
tices [12]. With more condensed representation (as compared
to pixel-based images), facial landmarks are conducive to
controllable generation. This study adopts face mesh - a type
of face landmark with intermediate representation sparsity - to
represent facial features, aiming to strike a favorable trade-off
of data efficiency and informativeness.

A major challenge to face generation based on face mesh
is how to ensure temporal consistency with a sparse represen-
tation (as compared to pixel-based approaches). Failing to do
so leads to instability in generated videos. In this research,
we divide the task into two sub-tasks, namely, talking face
mesh generation and face mesh-to-face translation, which are
implemented in a cascaded manner (as shown in Fig. 2). In
the talking face mesh generation, we develop a face mesh
generator to generate face meshes according to control signals
(e.g. happy, sad, neutral) with the given face mesh of a refer-
ence identity and the driving audio (speech). Importantly, we
propose a face mesh alignment procedure to tackle the stability
issue. This is achieved by training the face mesh encoder and
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Fig. 1. Our audio-visual model generates realistic talking face videos of arbitrary faces on reference images with synchronized lips to audio and is capable of
controlling emotional expression with a given emotion label. Note that the generated videos of different faces are conditioned on the same audio clip. Results
with all the emotions can be found in our supplementary video.

generator to reconstruct target face meshes with an aligned
reference face mesh. In the face mesh-to-face translation, our
audio-visual model employs a conditional GAN to translate
talking face meshes into talking faces. It includes an encoder
decoder-based generator and a discriminator that are trained
adversarially. The generator takes as input the concatenated
embeddings of the generated face mesh and the reference
image of the target identity and generates a realistic face that
mimics the face mesh.

The contributions can be summarized in three-fold. (1) The
proposed model generates audio-driven realistic talking head
videos that can control emotional expression explicitly without
encoding driving reference videos. (2) The proposed model is
the first cascaded model that incorporates face meshes into
two orchestrated sub-tasks. To the best of our knowledge, this
is the first cascaded model that can control facial features
(i.e. emotional expression) other than lip motion. (3) With
the evaluations on two well-known datasets (MEAD [13] and
LRW [14]), we show that our model generates realistic talking
head videos with explicit control of emotional expressions.

II. RELATED WORK

According to the source of lip motion, talking head gen-
eration can be broadly classified into two categories: (1)
text-driven and (2) audio-driven. Text-driven talking head
generation methods [15], [16] are usually based on phonemes,
which are the unit of sound structure extracted from the
given text. Audio-driven talking head generation methods
usually process audio as spectrogram [1], [3], [17]–[19] or
acoustic features [20]–[23]. One of the well-known audio-
driven talking face generation models is Wav2Lip [24] which
utilizes a powerful Lip sync expert. Some studies [1], [2],
[25]–[27] utilize both the driving text and the driving audio.
For example, [25] aims to build language robust talking
face generation by using audio and phonemes. TalkLip [28]
focuses on reading intelligibility and employs a lip-reading
expert that transcribes videos to text to improve generated lip

motions. Recently, DiffTalk [23] and Diffused Heads [29] have
employed diffusion models for audio-driven face generation.

Regarding the controllability of facial features such as head
pose [3], [30], emotion [22], eye blink, or a combination
of them [1], [2], [4], [18], [31], existing methods usually
use driving videos along with the driving audio. Some of
the approaches utilize single-driving video to control a single
feature other than lip motion. PC-AVS [3] is the first approach
that uses driving video to control the pose of the generated
talking head. EAMM [22] can generate realistic emotion-
aware talking heads based on reference images, driving audio,
and driving videos. AVFR-GAN [18] reenacts a reference im-
age based on driving audio and video to control facial features.
StyleTalk [2] generates style-controllable talking faces with
a driving video that depicts the styles. Some works utilize
more than one driving video and focus on the disentanglement
of facial features to achieve fine control over multiple facial
features. For example, GC-AVT [4] generates audio-driven
talking face videos with controllable expressions and head
poses with driving videos. PD-FGC [1] controls facial features
with the disentanglement of lip motions, eye gaze and blink,
head pose, and emotional expression.

In view of the computational complexity of controlling
facial features through encoding driving videos, some studies
propose controlling facial features without driving videos.
However, they either control features by inferring from driving
audio or exhibit limited control power on facial features [5]–
[10]. In [5], head poses are inferred from the given audio to
achieve personalized head poses. In addition to head pose,
FACIAL [6] also generates realistic eye blinks by learning
implicit facial features from driving audio along with lip
motion. In [7], a cascaded method is proposed to disentangle
audio as content and emotion, whereby emotional expressions
are controlled by the disentangled emotion features. In [8],
an end-to-end trainable model is built to control emotional
expression by using driving audio.



Similar to our model, some works [2], [7], [9], [10], [16],
[27], [32]–[34] incorporate facial landmarks as an intermediate
medium. For example, MakeItTalk [32] is a landmark-based
model that predicts facial landmarks from driven audio and
then translates predicted landmarks to face images. Canonical
landmarks are used as an intermediate representation, so as to
generate talking head videos with spontaneous eye blinks [10].
SadTalker [9] generates eye-blink controllable talking head
videos via a cascaded model based on 3DMM and a 3D-
aware face renderer. Existing landmark-based models usually
have two limitations: (1) they are often applied to the faces of
specific persons [16], [27], and (2) they show limited power
in controlling facial features [16], [27], [32]. For example,
although [9], [10] can control eye blink as one of the other
facial features explicitly, eye blink is a minor facial motion
that is visible on only a small portion of the face. Hence, it
does not affect other parts of the generated faces and is not
related to lip motion. In comparison, our face-landmark-based
model is capable of generating videos of an arbitrary face and
exerting effective control over emotional expression.

III. APPROACH

Fig. 2 shows the overview of our audio-visual model that
generates realistic talking face videos of an arbitrary subject
with lips synchronized to the audio. Our model is capable of
controlling emotional expression explicitly. By incorporating
face mesh, we design a cascaded model consisting of two sub-
tasks: face mesh generation and face mesh-to-face translation.
In the face mesh generation, our model includes two encoders
to encode audio clips and the reference face meshes and a
generator to generate face meshes according to the conditioned
control signals. In the face mesh-to-face translation, our model
employs a GAN with a generator and a discriminator.

A. Disentanglement

As mentioned earlier, we aim to disentangle the facial
features without requiring video encoders as much as possible,
so as to alleviate the need of driving video at the inference
time. In so doing, we leverage the facial landmarks to disen-
tangle the face identity (appearance) and the face dynamics
(motion). Motions related to the emotional expression and the
lip motion are disentangled by training the face mesh generator
to reconstruct face meshes conditioned on the emotion label
and the latent vector of audio.

Since the space of emotional expression is well-defined,
controlling the expression with the emotion label is suit-
able and straightforward. Our model employs the categorical
model, which describes emotions with a set of emotion labels
(e.g. happy, surprised, sad, etc.). For lip motion control, we
employ an audio encoder to learn the space of lip motion and
audio and compute latent vectors for the driven audio.

B. Talking Face Mesh Generation

Public datasets usually do not provide face mesh informa-
tion. To address this issue, we resort to an off-the-shelf model,
called CVZone, to extract face mesh information. The facial

landmark model consists of 468 3D points. It should be noted
that our method is agnostic to the face mesh extraction model.

For the talking face mesh generation, our model employs
two encoders and a generator. Encoders compute latent vectors
for the driven audio and the given reference face meshes. The
encoded latent vectors are concatenated with the emotion label
of the target expression. Then, the concatenated control signals
are given to the generator as a condition to synthesize face
meshes that depict the given control signals.

The audio encoder is trained to compute latent vectors for
the driven audio. We leverage the audio encoder proposed
in [3]. First, the raw audios are converted into spectrograms
in 2D time-frequency space. Next, they are given to the audio
encoder as input to build the space of the audio spectogram
and lip motion of face meshes.

A major challenge to talking face generation via face mesh
is how to ensure stability, which refers to generating faces
with temporal consistency. Inspired by SadTalker [9] whıch
tackles instability by ExpNet to generate intermediate repre-
sentation based on 3DMM, we train our model to generate
blocks of c consecutive frames. While the model is capable
of generating temporarily consistent c frames, we observe
instability between blocks of frames. To mitigate this issue, we
propose an additional alignment step whereby the reference
face mesh is aligned with the first target face mesh of the
c consistent frames with the homography. Next, it is given
to the face mesh encoder to compute a latent vector that
guides the generator to generate face meshes that maintain
inter-block consistency. At the inference time, the alignment
is not necessary since the face mesh of the reference image is
given directly and the generated face meshes are expected to be
aligned to the face mesh of the reference image. In addition to
the instability between blocks of consistent frames, face mesh
alignment improves the controllability of lips and expression
as it disentangles the head pose motion and the facial motions
related to expression and lips. It is further explored in the
following sub-section and Section IV-C with an ablation study.

C. Talking Face Generation

For the talking face generation, our model employs a condi-
tional image-to-image translation GAN similar to [32] with a
generator and a discriminator. The generator takes face meshes
as a condition and it is concatenated with the reference frame.
A GAN model is trained to generate target frames and trick the
discriminator by generating realistic frames. The discriminator
is trained to distinguish real and generated frames. Hence, the
generator and the discriminator are trained adversarially.

At inference time, the generator translates the generated face
mesh and generates a face with the appearance of the identity
on the given reference frame. Thus, the generated face is a
variant of the given identity that mimics the generated mesh.

D. Training

N training video clips with K-frame videos, {V1 =
{I(1,1), ..., I(1,K)}, ..., VN = {I(N,1), ..., I(N,K)}} are ac-
companied by audio {A1 = {a(1,1), ..., a(1,K)}, ..., AN =
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Fig. 2. Overview of the proposed model. At the inference time, the model generates the face mesh conditioned on the face mesh of the reference image,
driving audio, and the target emotion label, and then the generated face mesh and the reference image are given to the face generator as conditions to generate
the face that mimics the generated face mesh.

{a(N,1), ..., a(N,K)}} that is processed into spectogram. Video
clips depict the head videos of different subjects with different
emotions. The annotation of training video clips is extended
by extracting face mesh m(n,k) for each frame. The goal is
to generate any target face mesh mt

(n,k) and any target frame
It(n,k) that depicts the talking head of target identity st with
driving target audio at(n,k) and the target emotion label et.

The face mesh generation model is conditioned on a
randomly selected reference face mesh mr

(n,k) where n ∈
[1, ..., N ] and k ∈ [1, ...,K]. mr

(n,k) is a randomly selected
face mesh of the same subject st with an arbitrary emotion. So,
the target audio and the target emotion label can be different
from the audio and emotion label of the reference face mesh as
it is selected randomly from a set that consists of every video
clip of the same subject. Hence, the face mesh generator is
trained to generate lip motions and expressions that are not
identical to those in the given reference face mesh.

Since reference face meshes are selected randomly, they
are not temporally consistent with the target face mesh and
there exists an arbitrary head pose motion (possibly undesired)
along with the facial motion. So, giving the reference face
mesh directly leads to instability in the generated talking face
video and confuses the face mesh generator as it consists of
head pose motion and facial motion. To solve this problem,
reference face meshes are aligned by wrapping the reference
face mesh with computed homography between the reference
and the target face mesh.

During the training, the model is trained to reconstruct every
available face mesh with aligned reference face meshes. So,
the reconstruction loss (Equation 1) is the main leading loss.
Audio encoder (Ea), face mesh encoder (Em), and the face
mesh generator (Gm) are trained to minimize the following
Mean Squared Error (MSE) as reconstruction loss:

Lrec
m = ∥mt

(n,k) −mg
(n,k)∥2, (1)

where mt
(n,k) denotes the target face mesh. For a set of the

inputs (the target face mesh mt
(n,k), driving audio at(n,k),

emotion label et), mg
(n,k) denotes the generated face mesh

and formulated as follows:

mg
(n,k) = Gm(Ea(a

t
(n,k)), Em(ω(mr

(n,k))), e
t), (2)

where ω is a wrapping operation. The wrapping operation is
omitted at test time and inference time.

The talking face generator (Gf ) is conditioned on a target
face mesh (mt

(n,k)) and trained to translate reference frame
(Ir

(n,k̂)
) to target frame (It(n,k)). Note that although mt

(n,k)

is a set of 2D points in the talking face mesh generation, it
denotes a binary image that represents the same face mesh in
the talking face generation. Ir

(n,k̂)
(where k̂ ∈ [1, ...,K]) is a

randomly selected frame from the same video clip as the target
frame, considering that the outfit and the hairstyle of subjects
might vary from video clip to video clip. k̂ is selected as 1
at test time. Similar to face mesh generation, a reconstruction
loss is computed based on the target frame (It(n,k)) and the
generated frame (Ig(n,k)), which consists of two components:
(i) MSE loss (ii) L1 norm based on VGG features [35].

Lrec
f = ∥It(n,k) − Ig(n,k)∥2 + ∥ϕ(It(n,k))− ϕ(Ig(n,k))∥1, (3)

where ϕ denotes concatenated features of pretrained VGG19
network. Since the training of the talking face mesh generation
and the face mesh-to-face translation are independent. The
generated frame is formulated as follows:

Ig(n,k) = Gf (I
r
(n,k̂)

,mt
(n,k)). (4)

At inference time, mt
(n,k) is replaced by mg

(n,k).
In addition to reconstruction loss, the talking face generator

is also trained with an adversarial loss, computed based on
the discriminator’s ability to distinguish real and generated
frames. Least squared adversarial loss is used for adversarial
training and the generator is trained to optimize the following
to generate indistinguishable frames from real frames:

Ladv
G = (D(Ig(n,k)))

2. (5)



Hence, the full objective function of the generator consists
of the reconstruction loss and the adversarial loss and is
formulated as follows:

LG = λrecLrec
f + λadvLadv

G , (6)

where λrec and λadv balance the loss functions with default
values 100.0 and 1.0, respectively.

The discriminator (D) is trained to optimize the following
adversarial loss to distinguish real and generated frames:

Ladv
D =

1

2

[
D(It(n,k)))

2 + (D(Ig(n,k))− 1)2
]
. (7)

E. Implementation Details

The talking face mesh generation (face mesh encoder, audio
encoder, and face mesh generator) and the face mesh-to-face
translation are trained independently, but this does not harm
our model’s ability to work end-to-end fashion at inference
time. During training, all networks are trained from scratch
with Adam optimizer for 500k iterations with batch size of
16, learning rate of 0.0002, β1 = 0.5, β2 = 0.999.

The face mesh generator is trained to generate 8 consecutive
frames i.e. the default value of c is selected as 8 experimen-
tally. Based on experiments, we found that 8 is an optimal
number for generating stable face mesh videos. Unlike the
face mesh generator, the face generator is trained to generate
faces frame-by-frame.

IV. EXPERIMENTS

We conduct experiments to compare our method with state-
of-the-art methods including MakeItTalk [32], PC-AVS [3],
PD-FGC [1], and SadTalker [9]. Their results are produced
by using their publicly available pretrained models. In the
evaluation, models are used to reconstruct test videos with
driving audio and the first frame as the reference image. In
addition, PC-AVS and PD-FGC are fed with ground truth
test videos as they require driving videos, which gives them
an extra advantage. In contrast, our model only requires the
ground truth emotion label.

Datasets We train our model on multi-view emotional
audio-visual dataset (MEAD) and evaluate it on both
MEAD and lip reading in the wild (LRW) datasets. MEAD
dataset [13] consists of high-quality audio-visual recordings
of subjects speaking with 8 different emotions at 3 intensity
levels. The dataset includes videos of more than 40 different
actors, and we randomly select 6 subjects for evaluation. We
use the highest intensity levels of emotions in the training of
our model and the evaluation of models. LRW dataset [14]
consists of 1,000 utterances of 500 different words with
videos that last about 1 second. This dataset has no emotion
annotation. Thus, we use its testing set for evaluation only by
giving neutral as the emotion label.

A. Qualitative Results

Figures 3 and 4 compares our method with MakeItTalk [32],
PC-AVS [3], PD-FGC [1], and SadTalker [9] on the test
set of MEAD [13] and LRW [14] datasets, respectively. In
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Fig. 3. Qualitative comparison on MEAD dataset [13]

addition to the generated results, the ground truth is also
provided for comparing lip shape and identity. As shown in
Figures 3 and 4, our method generates better talking faces
than benchmark methods, with results closer to ground truth in
terms of lip synchronization, identity preservation, and image
quality. MakeItTalk’s results have lower image quality. PC-
AVS and PD-FGC cannot preserve the given identity well.
SadTalker suffers from a lack of lip synchronization.

B. Quantitative Results

Metrics we evaluate our method in terms of both video
quality and lip synchronization based on 5 metrics that are
widely used in recent works. For video quality, structural
similarity index (SSIM) [36] and peak signal-to-noise ratio
(PSNR) are used. Both SSIM and PSNR measure the simi-
larity between real and generated frames. SSIM compares the
outcome based on image patches whereas PSNR is a pixel-
wise metric. For lip synchronization, the confidence score
of SyncNet (Conf.) [14], facial landmark distance [37] on
the mouth (Lmdm) and the whole face (Lmd) are used.
SyncNet measures the accuracy of mouth shape with driving
audio. Facial landmark distances (Lmdm, Lmd) are computed
between the facial landmarks detected on the ground truth and
generated frames. Note that although our method generates
face mesh, the generated face meshes are not used for the
computation of Lmdm and Lmd. Instead, facial landmarks are
detected on the generated talking face videos separately.

Tables I and II show the results of our model and benchmark
models on the test sets of MEAD and LRW datasets, respec-
tively. Our model has the best scores in most metrics (except
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Fig. 4. Qualitative comparison on LRW [14]

Method Video Quality Lip Synchronization
SSIM ↑ PSNR ↑ Conf. ↑ Lmdm ↓ Lmd ↓

MakeItTalk 0.537 18.061 0.469 0.803 0.549
PC-AVS 0.586 22.659 0.677 0.982 0.727
PD-FGC 0.357 16.693 0.833 1.176 1.314
SadTalker 0.501 17.414 0.448 0.826 1.768
Ours 0.798 28.370 0.596 0.747 0.397

TABLE I
COMPARISON OF OUR MODEL WITH MAKEITTALK [32], PC-AVS [3],

PD-FGC [1], AND SADTALKER [9] ON MEAD [13] DATASET

for Conf.) with large margins in both datasets. Better SSIM,
PSNR, Lmdm, and Lmd show that our model is capable of
generating talking face videos with higher quality in terms of
video quality and lip synchronization. Specifically, our model
achieves the best scores on Lmdm and Lmd, which means
that our model can generate lip motions closer to the ground
truth than benchmark models and it can generate realistic
lip motions that are synchronized with the driving audio.
Meanwhile, our method did not achieve the highest confidence
score. This is because the confidence score of SyncNet is very
sensitive to the audio, which may lead to a better score with

Method Video Quality Lip Synchronization
SSIM ↑ PSNR ↑ Conf. ↑ Lmdm ↓ Lmd ↓

MakeItTalk 0.425 18.608 1.316 0.654 0.573
PC-AVS 0.409 19.571 1.551 0.619 0.676
PD-FGC 0.216 14.518 1.698 0.843 1.502
SadTalker 0.279 15.301 1.199 0.667 0.957
Ours 0.615 20.987 1.199 0.450 0.365

TABLE II
COMPARISON OF OUR MODEL WITH MAKEITTALK [32], PC-AVS [3],

PD-FGC [1], AND SADTALKER [9] ON LRW [14] DATASET
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Fig. 5. Comparison of generated talking face videos of our full model with
the ablation model. Note that the results are shown by zooming faces to show
the details better.

unrealistic lip motions as discussed in [9]. In fact, it is argued
that the confidence score of SyncNet need not be indicative
of true lip-sync quality when a model outperforms ground
truth’s SyncNet score [19]. In our case, the SyncNet scores of
ground truth are 0.620 and 1.503 in MEAD and LRW datasets,
respectively, which are close to our model’s score.

C. Ablation Study

In the ablation study, we evaluate the effectiveness of
the face mesh alignment with homography in training. The
ablation model’s face mesh generator is trained by omitting
the face mesh alignment.

Method Video Quality Lip Synchronization
SSIM ↑ PSNR ↑ Conf. ↑ Lmdm ↓ Lmd ↓

M
E

A
D

w/o align. 0.731 26.832 0.454 0.788 0.473
Full Model 0.798 28.370 0.596 0.747 0.397
w/o align. 0.551 19.412 1.091 0.716 0.545

L
R

W

Full Model 0.615 20.987 1.199 0.450 0.365
TABLE III

ABLATION STUDY FOR THE FACE MESH ALIGNMENT WITH HOMOGRAPHY.

Fig. 5 illustrates the generated face meshes and faces with
the full model and the ablation model (w/o align.) with the
ground truth on the test set of MEAD and LRW datasets.
Although the desired lip motions (target lip motions on ground
truth) are changing, the ablation model generates face meshes
with the same lip motion. On the other hand, the full model is
capable of generating lip motions similar to the ground truth.
Moreover, Table III compares scores of the full model and
the ablation model. Apparently, the full model achieves better
scores than the ablation model in all metrics, indicating that
face mesh alignment during training is effective. The main
reason is that the face mesh alignment facilitates disentangle-
ment of head pose motion and facial motion (motion related



to expression and lips), which in turn helps the model learn
facial motions. In comparison, non-aligned input face meshes
confuse the face mesh generator as it consists of the head
pose motion and the facial motion together. Hence, the face
mesh generator cannot relate the given inputs (audio and the
emotion label) with the head pose motion.

V. CONCLUSION

In this paper, we propose a novel cascaded audio-visual
model that can generate audio-driven talking faces with high fi-
delity on arbitrary subjects with realistic emotional expression
patterns. Our model incorporates face mesh as an intermediate
representation, which is the first to explicitly control facial
features using this medium of representation. Unlike existing
methods, our method allows controllable talking face gener-
ation without encoding driving videos. The results show that
our model outperforms existing models in generating audio-
driven talking faces. Notably, our model generates realistic
video from a single reference image and driving audio and
can control emotional expression without driving videos. One
limitation of our model is that it does not model the head pose
to control it explicitly. This limitation can be improved by
modeling head pose changes. Similarly, we leave it as future
work to use face mesh to control other features such as eye
blink, head pose, and gaze direction.

Ethical Considerations Our model improves the flexibility
of talking face generation as it enables controlling emotional
expression without driving videos in the synthesis of realistic
talking face videos. Although the main goal is to synthesize
virtual avatars, it can be misused to synthesize harmful content
that we do not condone. We also hope our method leads to
progress in the forgery detection area to identify synthesized
content to prevent harmful usage.
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