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Figure 1: Learning a real-world policy from generated images. Left: we source structured image
prompts from an LLM, which are combined with a depth map and semantic masks to produce
diverse and on-policy visual data. Right: the policy is sufficiently robust to transfer to a variety of
challenging terrains in the real world, despite never having seen real data during training.

Abstract: Fast and accurate physics simulation is an essential component of robot

learning, where robots can explore failure scenarios that are difficult to produce in

the real world and learn from unlimited on-policy data. Yet, it remains challenging

to incorporate RGB-color perception into the sim-to-real pipeline that matches

the real world in its richness and realism. In this work, we train a robot dog in

simulation for visual parkour. We propose a way to use generative models to

synthesize diverse and physically accurate image sequences of the scene from the

robot’s ego-centric perspective. We present demonstrations of zero-shot transfer

to the RGB-only observations of the real world on a robot equipped with a low-

cost, off-the-shelf color camera. project website: https://lucidsim.github.io

1 Introduction

The success of a robot learning system depends largely on the realism and coverage of its training

data. Real-world data, though inherently realistic, is limited in its coverage over the diverse scenarios

a robot might encounter upon deployment. Real training data typically only includes a small number

of environments and is not a reliable source for failures that cause injury or harm. As our robot

improves throughout training, the data it needs to improve its skills further also evolves. Getting the

right data is critical for improving the robot’s performance, but in current practice, this is a manual

process that needs to be repeated from scratch for new scenes and new tasks.

The alternative is to train in simulations, where we can sample a greater diversity of environmental

conditions, and our robots can safely explore failure cases and learn directly from their own actions.

Despite substantial investment into simulated physics and rendering, our best efforts at achieving
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Figure 2: The LucidSim graphics pipeline. We use the same parameterized terrain geometry as [5].
We use MuJoCo to simulate the physics, and render semantic masks and the depth image that are
then fed into a ControlNet trained with MiDAS depth maps. The generated image is then combined
with the dense optical flow to generate short videos via Dreams In Motion (DIM, see Sec. 2).

realism retain a reality gap [1, 2, 3, 4]. This is because rendering a realistic image means making de-

tailed and realistic scene content. Trying to hand-craft such contents at scale to obtain the diversity

required by our robots for sim-to-real transfer is prohibitively expensive. Without diverse and high

quality scene content, robots trained in simulation are too brittle to transfer to the real world. There-

fore, how to match the real world in its infinite jest, and integrate color-perception into sim-to-real

learning, is a key challenge.

The purpose of this work is to develop a solution. We turn to generative models as a promising

new data source for robot learning and use visual parkour as a testbed, where a robot dog equipped

with a single color camera is tasked to scale tall obstacles at a fast speed. Our ultimate vision is to

train robots entirely in generated worlds. At the heart of this is finding ways to exert precise control

over the semantic composition and scene appearance to align with the simulated physics—while

maintaining the randomness critical for sim-to-real generalization.

Our method works as follows (Figure 2): we take a popular physics engine, MuJoCo [2], and render

the depth image and semantic masks at each frame, that together are used as input to a depth-

conditioned ControlNet. We then compute the ground-truth dense optical flow from the known scene

geometry and changes in the camera poses, and warp the initial generated frame for the following

six timesteps to produce a temporally consistent video sequence. On the learning side, we train the

visual policy in two stages: first, we optimize the policy to imitate expert behavior from rollouts

collected by a privileged teacher. The policy performs poorly after this pre-training step. The post-

training step involves collecting on-policy data from the visual policy itself, interleaved with learning

on all data aggregated so far. Repeating this step three times makes the visual policy significantly

more performant. This policy is sufficiently robust to transfer zero-shot to color observations in the

real world throughout our test scenes.

Our contributions are threefold: First, we provide a scalable recipe to translate compute into real-

world capabilities by producing geometrically and dynamically aligned visual data for robots. Sec-

ond, we propose an auto-prompting technique to significantly increase data diversity, which in prac-

tice also enables tailored data synthesis. Finally, we provide the first demonstration of a robust,

visual parkour policy trained entirely in simulation that has seen zero real-world data.

2 LucidSim: Generating Diverse Visual Data with Physics Guidance

We consider a sim-to-real setup, where the robot is trained in simulation and transferred to the

real world without further tuning. We have partial knowledge about the environments we intend to

deploy our robot in—perhaps a rough description or a reference image. Since this information is

incomplete, we rely on prior knowledge within generative models to fill the gap. We refer to this
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guided process as Prior-Assisted Domain Generation (PADG), that begins with an auto-prompting

technique critical for synthesizing diverse domains.

Sourcing diverse, structured prompts from LLM. We observed early on that repeatedly sam-

pling from the same prompt (Figure 4) tends to reproduce similar-looking images. To obtain diverse

images, we first generate batches of structured image prompts by prompting chatGPT with a “meta”

prompt that contains a title block, details of the request, and ends with a question asking for struc-

tured outputs in JSON (3). Our request includes particular weather, time of day, lighting conditions,

and cultural sites. It is impractical to edit the generated image prompts by hand. Instead, we tweak

the meta prompts by generating a small number of images, and iterate until they consistently pro-

duce reasonable images. Examples of diverse samples from the same meta-prompt, but different

image prompts, are shown on the bottom row of Figure 5.

Generating images with geometry and physics guidance. We augment a vanilla text-to-image

model [6] with additional semantic and geometric control that aligns it with simulated physics.

First, we replace the text prompt for the image with pairs of prompts and semantic masks

that each correspond to a type of asset (Figure 2). In the stairs scene, for instance, we spec-

ify the material and texture of the steps inside a coarse silhouette via text. To make the im-

ages geometrically consistent, we take an off-the-shelf ControlNet [7] trained on monocular
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Figure 6: A 6.5× speed
up in video generation.

depth estimates from MiDAS [8]. The conditioning depth image is com-

puted by inverting the z-buffer and normalizing it within each image. It

is important to adjust the control strength to avoid losing image details

(discussed in depth in Section 4.6). Our scene geometry is simple terrain

sourced from prior work [5, 9, 10] that optionally includes side walls. We

avoid randomizing the terrain geometry to focus our analysis on visual

diversity.

To produce short videos, we developed Dreams In Motion (DIM),

which warps a generated image into subsequent frames using the ground-

truth optical flow computed from the scene geometry and the change in

Figure 5: LucidSim image samples from the stairs environment. Top row: images generated from
different prompts produced by the same meta prompt; bottom row: different meta prompts.
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the camera perspective between two the frames (see Figure 2). The resulting image stack con-

tains timing information critical for parkour. Generation speed is also important. DIM significantly

improves the rendering speed (Figure 6) because computing the flow and applying the warping is

significantly faster than generating images.

3 Learning Robust Real-world Visual Policy from On-Policy Supervision

Our training procedure has two phases: a pre-training phase that bootstraps the visual policy by

imitating a privileged expert that has direct access to a height map, trained via RL following the

procedure in [5]. We collect rollouts from the expert and its imperfect earlier checkpoints, and

query the expert for action labels to supervise the visual policy. The visual policy performs poorly

after pre-training, but it makes sufficiently reasonable decisions for collecting on-policy data in the

second, post-training phase (Figure 7). We follow DAgger [11] and combine the on-policy rollouts

with the teacher rollouts from the previous step. We collect action labels from the expert teacher

and run seventy epochs of gradient descent with the Adam optimizer [12] under a cosine learning

rate schedule. We repeat the DAgger iteration three times. This second stage is responsible for the

majority of the final performance, approaching expert-level.

A simple transformer policy. We present a simple transformer architecture that reduces the number

of moving parts for working with multi-modal inputs (Figure 8). Prior work in quadruped parkour

uses a composite architecture that first processes the depth image into a compact latent vector using

a ConvNet, followed by a recurrent backbone [5]. We use a five-layer transformer backbone with the

multi-query attention (MQA [13]). The input camera feed is diced into small patches and processed

in parallel by a convolution layer. We then stack these tokens together with a linear embedding of

the proprioceptive observation of the same time step. We repeat this for all timesteps and add a

learnable embedding at the token level. We find that for RGB images, it is helpful also to include a

batch normalization layer before the convolution. We compute the action output via an additional

class token (cls) stacked at the end of the input sequence, followed by a ReLU latent layer and a

linear projection.
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Visual Policy

Expert Labeler

Frame Stack
action

generate

Visual Policy

Expert Data

Figure 7: Pre-training: Expert rollouts are labeled offline
using LucidSim’s graphics pipeline. Post-Training in Sim:
Data is collected on-policy with the visual policy, super-
vised by action labels from the expert.
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Figure 8: We treat proprioceptive ob-
servations and image patches as to-
kens, plus an additional class (cls) to-
ken for the action output.

This five-layer transformer policy can process seven input frames while maintaining a 50 Hz frame

rate when running on the Nvidia AGX Orin. This memory span is rather short (140 ms). Common

ways to speed up LLM inference do not apply due to the use of a rolling input window. This is a key

bottleneck that affects skills that require a longer memory. For instance, the robot needs a memory

span closer to 400 ms in order to jump over wide gaps.

4 Results

We consider the following tasks: tracking a soccer ball (chase-soccer); tracking an orange traffic

cone (chase-cone), climbing over hurdles (hurdle); and traversing stairs featuring various material
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Figure 9: Rendered views of a subset of environments used for evaluation. Each scene is modeled
using 3D Gaussian Splatting. The first-person view from the robot’s perspective is highly realistic.

types (stairs). We evaluated the performance of our learned controller in both the real world and on

a small set of real-world scenes modeled in simulation using 3D Gaussian Splatting [14], a recent

graphics technique for building complex and photo-realistic environments transferred from the real-

world. Examples of these benchmark environments are shown in Figure 9.

In chasing tasks, we randomly sampled locations for the target objects within the robot’s camera

frustum. For hurdle and stairs, we manually placed orange cones to visually indicate the waypoints.

Each task was evaluated in three replica scenes with 50 trials each, randomizing both the starting

pose and waypoint location offsets. We report the following metrics in Table 1 and 6: fraction

of goals reached (FGR) computed via the ratio
goals reached

goals total
, and normalized forward displacement

towards the final goal, computed via xdist. =
xreached

distance to goal
.

We consider the following baselines: an expert policy that requires privileged terrain data (the ora-

cle); a depth student policy trained using the identical pipeline; an RGB student policy trained using

classical domain randomization over textures, and our method, LucidSim, trained with generated

frame stacks using DIM. We also provide the simulated performance of the Extreme Parkour [5]

depth policy for calibration, which is trained on a magnitude more data. Details on the distinction

between the depth baselines can be found in Section 4.4.

4.1 Learning from Generated Images Out-Performs Domain Randomization

In our simulated evaluations, we observed that LucidSim outperformed classical domain random-

ization [15] in almost all evaluations, as seen in Tables 1 and 6. The domain randomization baseline

was able to climb stairs quite effectively in simulation, likely due to the repetitive gait that was in-

duced after recognizing the first step. However, it struggled to perform on hurdles, where the timing

of the jump was critical. The depth student suffered from subtle but common sim-to-real gaps in the

3D scene. For instance, the oracle policy struggled in one of the stairs environments (Marble) due

to the presence of a railing, which it had never seen before in its training environment. We found

that the LucidSim policy was less affected by it. Similar phenomena also affected the depth student,
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Figure 10: On-policy supervision significantly boosts performance. Each data point represents a new
DAgger step. Increasing the number of DAgger iterations improves performance on the simulated
benchmark environments. Evaluation includes 50 unrolls on three environment instances for each
task. Gray dotted line indicates the performance of the expert teacher.
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which was distracted by features such as chairs, walls, and railings in the benchmark environment.

Past work used aggressive clipping to mitigate this type of sim-to-real gap, which we elaborate on

in Section 4.4.

Table 1: Success Rate (Fraction of Goals Reached) In Real-to-Sim Benchmark Environments.

Chase-Cone Chase-Soccer Hurdle Stairs

Method Obs. Space Lawn Lab Urban Lawn Lab Urban Lawn Lab Urban Bricks Concrete Marble

Previleged Expert state+terrain 98.6 96.2 97.9 98.6 96.2 97.9 95.8 100.0 99.0 97.0 100.0 73.4

Extreme Parkour [5] clipped depth – – – – – – 82.3 84.0 98.5 97.0 93.5 86.0
Depth depth 80.7 80.7 80.7 80.7 84.7 80.0 78.3 56.0 54.0 93.0 86.0 72.9
Depth clipped depth 98.7 87.3 98.7 98.7 92.7 98.7 70.7 83.7 84.7 94.0 85.0 85.4

Domain Rand. color 81.9 50.4 66.7 97.3 76.7 78.0 56.5 52.5 44.0 95.5 81.5 71.7
LucidSim color 96.7 84.0 98.0 88.7 90.7 94.7 90.7 93.5 96.5 87.0 81.0 83.7

4.2 Transfer Zero-shot to The Real World

Experiment setup: We deployed LucidSim on a Unitree Go1 equipped with a budget RGB webcam

and ran inference on the Jetson AGX Orin. Each task was evaluated in multiple scenes, and we

recorded whether the robot reached the target object (chase) or successfully traversed the obstacle.

Task Trials LucidSim Domain Rand. Depth

cone 20 100.0% 70.0% 80.0%

soccer 20 85.0% 35.0% 65.0%

dark hurdle 15 86.7% 26.7% 86.7%

light hurdles 15 73.3% 40.0% 80.0%

stairs 10 100.0% 50.0% 100.0%

Figure 11: We measured the success rate of the Lu-
cidSim, Domain Rand., and Depth student in a variety
of real-world scenarios. Each task was evaluated over
multiple environments, diverse in appearance.

We compare LucidSim to Domain Ran-

domization (DR) and present the results

in Figure 11. In the chasing tasks, we

observed that Domain Rand. was able

to identify color well (orange cones), but

struggled with recognizing the patterns of

the soccer ball. On the other hand, Lu-

cidSim was not only able to recognize the

classic black and white soccer ball, but

also generalized to different colored soc-

cer balls due to the rich diversity of the

generated data it had seen before. For hurdles and stairs, Domain Rand. failed to consistently

recognize the obstacle in front of it, often resulting in a head-on collision, while LucidSim was able

to consistently anticipate the obstacle and successfully traverse it. We additionally evaluated the

clipped depth baseline and show that LucidSim achieves comparable results.

4.3 Learning On-Policy Out-Performs Naı̈vely Scaling Expert Data

We compare learning from on-policy data against naı̈vely scaling expert data collection in Figure 12.

The performance gain from training on additional expert-only data saturated quickly. In both do-

mains, on-policy learning through DAgger was necessary for producing a sufficiently robust policy.

The discrepancy was especially apparent on hurdles, where the student struggled to make any mean-

ingful progress through the terrain. We observe the benefit of DAgger with both LucidSim and the

domain randomization baseline in Figure 10, with LucidSim reaching a higher overall performance.

4.4 Depth-Only Policy Overfits to Training Geometry

Besides Extreme Parkour [5], we consider two depth policies, both trained identically to LucidSim,

but with different depth inputs. The first (row three in Tables 1 and 6) receives depth up to a far clip

of 5m and shares the same 120◦ FoV as the color methods. The second (row four in Tables 1 and 6,

indicated by the clipped depth observation space) receives depth clipped to 2m, as in [5]. We also

reduce the FoV and set a near clip of 0.28m to agree with the properties of the Realsense camera. In

our simulated evaluation (Tables 1 and 6), we observed that the policy trained with unclipped depth

overfits to the minimal and simple geometry of the training scenes, getting thrown off by distractors

in the background of the evaluation scenes. The depth policies with limited vision did not suffer as

much from the diversity in the test scenes and achieved significantly higher performance.
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Figure 12: We compare learning on policy against naı̈ve
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Figure 13: Warped images (blue)
increase speed without degrading
policy performance.

We interpret this as a failure mode for training on depth—without limiting the vision of the depth

policy, the diversity in the test scenes confuses the student. LucidSim is less susceptible to this, as it

adds diversity to the policy’s experience by hallucinating the background. Although limiting vision

is beneficial here for parkour tasks, there is no general way to know which part of the visual input

to censor for which task, and coming up with effective censoring strategies currently requires hand

design. In particular, if the task required tracking more distant objects, then the 2m clip would be

inappropriate.

4.5 Understanding the Speed and Performance of Dreams in Motion (DIM)

Image generation is a bottleneck in our pipeline. DIM greatly accelerates each policy unroll, while

also providing dynamically-consistent frame stacks by trading off diversity. We study how the stu-

dent’s performance is affected by generating every frame independently, as opposed to warping

batches of images with DIM. We consider the Hurdle domain as it is the most challenging. As illus-

trated by Figure 13, the performance was similar, yet DIM was able to achieve the same results in a

fraction of the time (Figure 6).

4.6 Strong Conditioning Decrease Diversity and Image Details

There exists a trade-off between the accuracy of the geometry versus the richness of the details in

the generated images. When the conditioning strength is too low, the image deviates from the scene

geometry (left, Figure 14). When it is too strong, the image loses the diversity and rich details (right

side of Figure 14) and becomes highly reduced due to over-constraints.

(a) No Depth Conditioning (b) Low Depth Conditioning (c) Depth Conditioned (d) Too Much Conditioning

Figure 14: Stronger geometric control reduces the level of detail. As we increase the control strength
from left to right, the geometry becomes better aligned with the depth map. However, this comes at
the cost of reducing the amount of details in the image. Prompts in Appendix A.7.

5 Related Work

Generative AI for task-creation and world-building. LucidSim is part of a growing line of work

in robot learning that uses generative AI systems to automatically design parts of the learning setup,
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including the task specification [16, 17], and the reward function [18]. This is distinct from work

that augments real-world data with image in-painting [19, 20], or style transfer [21]. Works that

learn action-conditioned video generation models [22, 23] are also being considered as a potential

source of unlimited data [24, 25, 26]. In general, however, it is challenging for video models to learn

accurate physics [27]. LucidSim’s hybrid approach aligns with a growing trend in frontier video

generation models that use physics-based image manipulation for guidance, followed by generative

in-painting [28].

Robot parkour. Recent work in agile locomotion uses deep reinforcement learning and supervised

distillation in simulated environments to achieve impressive levels of agility in quadrupeds [5, 29,

9] and humanoid robots [30]. These methods all rely on depth images as input. In contrast, our

work does not depend on depth and uses the color image from a low-cost, off-the-shelf webcam

instead. We choose visual parkour because a blind teacher can not accomplish this task [31]. To our

knowledge, LucidSim is the first reported result of visual parkour using a color camera and the first

that is trained entirely in simulation with generated images.

Robot learning from demonstrations. Recent work in robot learning leverages low-cost hardware

and expressive new policy classes borrowed from language modeling and image generation to pro-

duce increasingly capable visuomotor controllers [32, 33, 34]. More recent work further lowers the

barrier-to-scale by removing the robot, retaining just the end effector [35, 36, 37]. The remaining

cost is dominated by the need to visit and set up physical scenes and the human effort in tailoring

data collection to the evolving robot. In contrast, LucidSim aims to move data collection from the

physical world into software.

Real-to-sim and learning from digital twins. New techniques [38, 14] in computer graphics have

made it easy to build high-fidelity digital twins in sim. Efforts in drone-racing [39], autonomous-

driving [40], and humanoid soccer [41] take advantage of this to produce robust but highly spe-

cialized controllers. In contrast, we employ these techniques for evaluation only, where targeted

assessment via a few high-quality digital scans can be highly effective.

6 Conclusion

We present a technique to synthesize unlimited, geometrically, and dynamically correct, multi-frame

image stacks for robot learning. We also provide the first empirical demonstration of a visual parkour

policy on a quadruped robot trained entirely using generated data. Although preliminary, we con-

sider these results a promising proof-of-concept that points towards a more common-place usage of

generative AI in producing learning data for difficult robotic tasks.

Key Assumptions and Limitations. Enforcing the geometry through conditioning degrades the

richness of the generated images (Section 4.6). A way to apply loose control [42] would be helpful.

We also made terrain randomization outside the scope of this work and opted to use simple hand-

designed geometries inherited from prior work [43, 44, 10]. Ultimately, we believe the 3D assets

and the scene layout will also be generated autonomously [43, 44], where AI models amplify human

creativity and effort.

Acknowledgments

This work was partially supported by a Packard Fellowship and a Sloan Research Fellowship to P.I.,

by ONR MURI grant N00014-22-1-2740, by Amazon.com Services LLC Award #2D-06310236,

and by the Defence Science and Technology Agency, Singapore. This work was also partially sup-

ported by ONR grant N00014-19-1-2571 (Neuroautonomy MURI) and by the MIT Lincoln Lab-

oratory. G.Y. was partially supported by the National Science Foundation Institute for Artificial

Intelligence and Fundamental Interactions (IAIFI) under the Cooperative Agreement PHY-2019786.

8

 https://iaifi.org
 https://iaifi.org


References

[1] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martı́n-Martı́n, C. Wang, G. Levine,

M. Lingelbach, J. Sun, M. Anvari, M. Hwang, M. Sharma, A. Aydin, D. Bansal, S. Hunter,

K.-Y. Kim, A. Lou, C. R. Matthews, I. Villa-Renteria, J. H. Tang, C. Tang, F. Xia, S. Savarese,

H. Gweon, K. Liu, J. Wu, and L. Fei-Fei. Behavior-1k: A benchmark for embodied ai with

1,000 everyday activities and realistic simulation. In K. Liu, D. Kulic, and J. Ichnowski,

editors, Proceedings of The 6th Conference on Robot Learning, volume 205 of Proceedings of

Machine Learning Research, pages 80–93. PMLR, 14–18 Dec 2023.

[2] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control. In

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–

5033. IEEE, 2012. doi:10.1109/IROS.2012.6386109.

[3] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H. Wang, L. Yi,

A. X. Chang, L. J. Guibas, and H. Su. SAPIEN: A simulated part-based interactive environ-

ment. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June

2020.

[4] S. Tao, F. Xiang, A. Shukla, Y. Qin, X. Hinrichsen, X. Yuan, C. Bao, X. Lin, Y. Liu, T. kai

Chan, Y. Gao, X. Li, T. Mu, N. Xiao, A. Gurha, Z. Huang, R. Calandra, R. Chen, S. Luo,

and H. Su. Maniskill3: Gpu parallelized robotics simulation and rendering for generalizable

embodied ai. arXiv preprint arXiv:2410.00425, 2024.

[5] X. Cheng, K. Shi, A. Agarwal, and D. Pathak. Extreme parkour with legged robots. arXiv

preprint arXiv:2309.14341, 2023.

[6] S. AI. Sdxl turbo, 2024. URL https://stability.ai.

[7] L. Zhang, A. Rao, and M. Agrawala. Adding conditional control to text-to-image diffusion

models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

3836–3847, 2023.

[8] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun. Towards robust monocular

depth estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE transactions on

pattern analysis and machine intelligence, 44(3):1623–1637, 2020.

[9] D. Hoeller, N. Rudin, D. V. Sako, and M. Hutter. Anymal parkour: Learning agile

navigation for quadrupedal robots. Science Robotics, 9, 2023. URL https://api.

semanticscholar.org/CorpusID:259261813.

[10] R. Yang, G. Yang, and X. Wang. Neural volumetric memory for visual locomotion control.

In Conference on Computer Vision and Pattern Recognition 2023, 2023. URL https://

openreview.net/forum?id=JYyWCcmwDS.

[11] S. Ross, G. J. Gordon, and J. A. Bagnell. A reduction of imitation learning and structured

prediction to no-regret online learning. In International Conference on Artificial Intelligence

and Statistics, 2010.

[12] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980,

2014.

[13] N. M. Shazeer. Fast transformer decoding: One write-head is all you need. ArXiv,

abs/1911.02150, 2019. URL https://api.semanticscholar.org/CorpusID:

207880429.

[14] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time

radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023. URL https:

//repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

9

http://dx.doi.org/10.1109/IROS.2012.6386109
https://stability.ai
https://api.semanticscholar.org/CorpusID:259261813
https://api.semanticscholar.org/CorpusID:259261813
https://openreview.net/forum?id=JYyWCcmwDS
https://openreview.net/forum?id=JYyWCcmwDS
https://api.semanticscholar.org/CorpusID:207880429
https://api.semanticscholar.org/CorpusID:207880429
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


[15] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization

for transferring deep neural networks from simulation to the real world, 2017.

[16] L. Wang, Y. Ling, Z. Yuan, M. Shridhar, C. Bao, Y. Qin, B. Wang, H. Xu, and X. Wang.

Gensim: Generating robotic simulation tasks via large language models. Proceedings of the

International Conference on Learning Representations (ICLR), 2023.

[17] A. M. Y. L. W. Z. H. X. L. W. Pu Hua, Minghuan Liu. Gensim2: Scaling robot data generation

with multi-modal and reasoning llms. In Conference on Robot Learning, 2024.

[18] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and

A. Anandkumar. Eureka: Human-level reward design via coding large language models. arXiv

preprint arXiv: Arxiv-2310.12931, 2023.

[19] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh, C. Tan, M, Dee, J. Per-

alta, B. Ichter, K. Hausman, and F. Xia. Scaling Robot Learning with semantically imagined

experience. arXiv.org, 2023.

[20] Z. Chen, Z. Mandi, H. Bharadhwaj, M. Sharma, S. Song, A. Gupta, and V. Kumar. Seman-

tically controllable augmentations for generalizable robot learning. ArXiv, abs/2409.00951,

2024. URL https://api.semanticscholar.org/CorpusID:272367778.

[21] W. Xu, N. Souly, and P. P. Brahma. Reliability of gan generated data to train and validate

perception systems for autonomous vehicles. In Proceedings of the ieee/cvf winter conference

on applications of computer vision, pages 171–180, 2021.

[22] C. Finn, I. J. Goodfellow, and S. Levine. Unsupervised learning for physical interac-

tion through video prediction. ArXiv, abs/1605.07157, 2016. URL https://api.

semanticscholar.org/CorpusID:2659157.

[23] C. Finn and S. Levine. Deep visual foresight for planning robot motion. 2017 IEEE In-

ternational Conference on Robotics and Automation (ICRA), pages 2786–2793, 2016. URL

https://api.semanticscholar.org/CorpusID:2780699.

[24] W. AI. Introducing gaia-1: A cutting-edge generative ai model for autonomy, 2023. URL

https://wayve.ai/thinking/introducing-gaia1/. Accessed: 2024-10-15.

[25] W. AI. Scaling gaia-1: 9-billion parameter generative world model for autonomous driving,

2023. URL https://wayve.ai/thinking/scaling-gaia-1/. Accessed: 2024-

10-15.

[26] X. Technologies. 1x world model, 2023. URL https://www.1x.tech/discover/

1x-world-model. Accessed: 2024-10-15.

[27] OpenAI. Video generation models as world simulators, February 2024. URL https://

openai.com/index/video-generation-models-as-world-simulators/.

Accessed: 2024-10-15.

[28] Pika.art. Pika.art: Video on command, 2024. URL https://pika.art/home. Accessed:

2024-10-15.

[29] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot parkour

learning. In Conference on Robot Learning (CoRL), 2023.

[30] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot

parkour learning. In Conference on Robot Learning, 2023. URL https://api.

semanticscholar.org/CorpusID:261696935.

10

https://api.semanticscholar.org/CorpusID:272367778
https://api.semanticscholar.org/CorpusID:2659157
https://api.semanticscholar.org/CorpusID:2659157
https://api.semanticscholar.org/CorpusID:2780699
https://wayve.ai/thinking/introducing-gaia1/
https://wayve.ai/thinking/scaling-gaia-1/
https://www.1x.tech/discover/1x-world-model
https://www.1x.tech/discover/1x-world-model
https://openai.com/index/video-generation-models-as-world-simulators/
https://openai.com/index/video-generation-models-as-world-simulators/
https://pika.art/home
https://api.semanticscholar.org/CorpusID:261696935
https://api.semanticscholar.org/CorpusID:261696935


[31] A. Loquercio, A. Kumar, and J. Malik. Learning visual locomotion with cross-modal supervi-

sion. 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 7295–

7302, 2022. URL https://api.semanticscholar.org/CorpusID:253384528.

[32] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:

Visuomotor policy learning via action diffusion. arXiv preprint arXiv:2303.04137, 2023.

[33] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning Fine-Grained Bimanual Manipulation

with Low-Cost Hardware. Apr. 2023.

[34] Z. Fu, T. Z. Zhao, and C. Finn. Mobile ALOHA: Learning Bimanual Mobile Manipulation

with Low-Cost Whole-Body Teleoperation. Jan. 2024.

[35] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal

Manipulation Interface: In-The-Wild Robot Teaching Without In-The-Wild Robots. Feb. 2024.

[36] J. Wang, S. Dasari, M. K. Srirama, S. Tulsiani, and A. Gupta. Manipulate by seeing: Creating

manipulation controllers from pre-trained representations. 2023.

[37] N. M. M. Shafiullah, A. Rai, H. Etukuru, Y. Liu, I. Misra, S. Chintala, and L. Pinto. On bringing

robots home. ArXiv, abs/2311.16098, 2023. URL https://api.semanticscholar.

org/CorpusID:265455972.

[38] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. NeRF:

Representing Scenes as Neural Radiance Fields for View Synthesis. Commun. ACM, 65(1):

99–106, Jan. 2022.

[39] M. Adamkiewicz, T. Chen, A. Caccavale, R. Gardner, P. Culbertson, J. Bohg, and M. Schwa-

ger. Vision-only robot navigation in a neural radiance world. IEEE Robotics and Automa-

tion Letters, PP:1–1, 2021. URL https://api.semanticscholar.org/CorpusID:

238253331.

[40] Z. Yang, Y. Chen, J. Wang, S. Manivasagam, W.-C. Ma, A. J. Yang, and R. Urtasun.

Unisim: A neural closed-loop sensor simulator. 2023 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1389–1399, 2023. URL https://api.

semanticscholar.org/CorpusID:260438489.

[41] A. Byravan, J. Humplik, L. Hasenclever, A. Brussee, F. Nori, T. Haarnoja, B. Moran, S. Bohez,

F. Sadeghi, B. Vujatovic, and N. Heess. Nerf2real: Sim2real transfer of vision-guided bipedal

motion skills using neural radiance fields, 2022.

[42] S. F. Bhat, N. Mitra, and P. Wonka. Loosecontrol: Lifting controlnet for generalized depth

conditioning. In ACM SIGGRAPH 2024 Conference Papers, SIGGRAPH ’24, New York,

NY, USA, 2024. Association for Computing Machinery. ISBN 9798400705250. doi:10.1145/

3641519.3657525. URL https://doi.org/10.1145/3641519.3657525.

[43] L. Höllein, A. Cao, A. Owens, J. Johnson, and M. Nießner. Text2room: Extracting textured

3d meshes from 2d text-to-image models. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), pages 7909–7920, October 2023.

[44] Z. Chen, G. Wang, and Z. Liu. Scenedreamer: Unbounded 3d scene generation from 2d image

collections. IEEE Transactions on Pattern Analysis & Machine Intelligence, 45(12):15562–

15576, dec 2023. ISSN 1939-3539. doi:10.1109/TPAMI.2023.3321857.

[45] Comfyanonymous. Comfyui, 2023. URL https://github.com/comfyanonymous/

ComfyUI. GitHub repository.

[46] S. Luo, Y. Tan, L. Huang, J. Li, and H. Zhao. Latent consistency models: Synthesizing high-

resolution images with few-step inference. In International Conference on Learning Represen-

tations (ICLR), 2024. URL https://openreview.net/forum?id=duBCwjb68o.

11

https://api.semanticscholar.org/CorpusID:253384528
https://api.semanticscholar.org/CorpusID:265455972
https://api.semanticscholar.org/CorpusID:265455972
https://api.semanticscholar.org/CorpusID:238253331
https://api.semanticscholar.org/CorpusID:238253331
https://api.semanticscholar.org/CorpusID:260438489
https://api.semanticscholar.org/CorpusID:260438489
http://dx.doi.org/10.1145/3641519.3657525
http://dx.doi.org/10.1145/3641519.3657525
https://doi.org/10.1145/3641519.3657525
http://dx.doi.org/10.1109/TPAMI.2023.3321857
https://github.com/comfyanonymous/ComfyUI
https://github.com/comfyanonymous/ComfyUI
https://openreview.net/forum?id=duBCwjb68o


[47] G. Yang. Zaku task queue: A fast, scalable task queue for machine learning workloads,

2024. URL https://zaku.readthedocs.io/en/latest/. Light-weight, scalable

task queue for machine learning workloads. Accessed: 2024-10-15.

[48] Y. Zhu, J. Wong, A. Mandlekar, R. Martı́n-Martı́n, A. Joshi, S. Nasiriany, and Y. Zhu. robo-

suite: A modular simulation framework and benchmark for robot learning. In arXiv preprint

arXiv:2009.12293, 2020.

[49] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. Pixelwise view selection for

unstructured multi-view stereo. In European Conference on Computer Vision (ECCV), 2016.

[50] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016.

[51] M. Turkulainen, X. Ren, I. Melekhov, O. Seiskari, E. Rahtu, and J. Kannala. Dn-splatter:

Depth and normal priors for gaussian splatting and meshing, 2024.

[52] M. Tancik, E. Weber, E. Ng, R. Li, B. Yi, J. Kerr, T. Wang, A. Kristoffersen, J. Austin,

K. Salahi, A. Ahuja, D. McAllister, and A. Kanazawa. Nerfstudio: A modular framework

for neural radiance field development. In ACM SIGGRAPH 2023 Conference Proceedings,

SIGGRAPH ’23, 2023.

12

https://zaku.readthedocs.io/en/latest/


Appendix

A.1 Generative Workflow

We developed our image generation workflows with ComfyUI [45], a popular software tool with

a graphical user interface that facilitates rapid prototyping. Figure A15 contains a screenshot of

the stairs scene. The supplementary material includes a copy of the Python implementation of this

workflow that we use in production to generate images for this paper.

Figure A15: Generative workflow. This example is for the stair scene.

A key feature of this workflow is Area Composition, where we use semantic masks to limit the

cross-attention with a text prompt to specific regions. The base generative model, Stable Diffusion

XL Turbo [6], when used in combination with the LCM sampler [46], is very fast and can generate

reasonable images with a single diffusion step. Image quality improves with more diffusion steps,

up to eight or ten, beyond which it starts to degrade. We run six diffusion steps in production to

balance between speed and image quality.

A.2 System Design Strategies for Scaling Image Generation

Image generation contributes the bulk of each experiment’s wall-clock time. We accelerate data

generation by distributing trajectory sampling and image generation to parallel workers. We set up

two Zaku task queues [47]. The first one is responsible for dispatching unroll requests for each

trajectory to the trajectory sampling workers. The image generation node is called “dream-weaver,”

or weaver in short. The second Zaku task queue is responsible for dispatching image rendering

requests to these weaver workers. We present an overview of the system design in Figure A16.

The system design is different between the pre-training phase using expert unrolls, and the on-policy

learning step that samples from the visual policy. In the pre-training phase (see Figure A16 a), we

render images after each rollout. The unroll workers upload the semantic masks, optical flow, and

depth image to the weaver queue, which triggers the weaver workers to generate and upload the

requested image to a centralized data server.

In the on-policy learning phase, we need to sample actions from the visual policy, which requires im-

age observations as input. We implemented pub-sub and remote procedural calls (RPC) in Zaku (see

documentation), backed by a redis replica set. At the start of each flow stack (of seven frames), the

unroll worker dispatches a request for the first frame to the weaver RPC queue. Once the generated
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Figure A16: System Architecture. Left: collecting unroll data from the expert teacher does not
require generating the images online. We populate the weaver queue once after collecting a batch
of teacher unroll, and the weaver workers upload the generated and downsized images to the ml-
logger service. Right: collecting unroll from the visual policy required building remote-procedural
call (RPC) into the task queue. The unroll buffer is a centralized ml-logger server that stores and
serves the unroll data for the learning step.

frame has been returned it is used as input to the visual policy. During the subsequent six timesteps,

the unroll worker computes the optical flow and uses to warp the initial frame into those following

frames. This process restarts after six steps, with a new weaver RPC request.

A.3 Domain Randomization Baseline

Our domain randomization pipeline [15] is adapted from Robosuite [48]. We randomize the appear-

ance of the terrain by sampling textures (solid, checker, noisy, gradient), color, and material

Hurdle Stairs Chase Soccer Chase Cones

Figure A17: Sample images from the Domain Randomization baseline. Textures, colors, material
properties, and lights are randomized every seven steps. We do not randomize the cone so that the
policy can learn to use it as a landmark. This makes it a fair comparison to LucidSim.
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properties (reflectance, shininess, specular). We also randomize the lighting parameters of each light

in the scene. Just as with LucidSim, we sample a new appearance every seven frames. Figure A17

includes samples of the rendered image from the domain randomization baseline on all four domains.

A.4 Training Details

The expert teacher is trained according to the procedure described in [5]. We reproduce the reward

used during training in Table 2; the PPO training parameter in Table 3; and the domain randomiza-

tion in Table 4.

For imitation learning (both phases), we use the same training hyper-parameters presented in Table 5.

In the pre-training phase, we sampled the teacher trajectories from a mixture of expert teachers of

multiple random seeds and their intermediate checkpoints. The action labels used to supervise the

visual policy were always computed by the expert teacher.

Table 2: Expert Reward Terms

Term Symbol Scale

parkour velocity tracking [5] min(⟨v, d̂w⟩, vcmd) 1.5

yaw tracking exp{−|ωz − ωcmd
z |} 0.5

z velocity v2z -1.0

roll-pitch velocity |ωxy|
2 -0.05

base orientation 1flat|g
proj
xy |

2 -1.0

hip position |qhip − q0
hip|

2 -0.5
collision 1collision -10.0

action rate |at − at−1|
2 -0.1

joint accelerations |q̈|2 -2.5e-7

delta joint torques |τt − τt−1|
2 -1.0e-7

joint torques |τ |2 -1e-05

joint error |q − q0|2 -0.04

foot vertical contact [5]
∑

i
1
(i)
vertical contact -1.0

foot clearance [5]
∑

i
1
(i)
edge contact -1.0

Table 3: Expert Training Parameters

Hyperparameter Value

value loss coefficient 1.0
clip range 0.2

entropy coef 0.01
learning rate 2e-4

# minibatches per epoch 4
# epochs per rollout 5

# timesteps per rollout 24
discount factor 0.99
GAE parameter 0.95
max grad norm 1.0

optimizer Adam

joint stiffness 20
joint damping 0.5

Table 4: Expert Randomization Parameters

Term Min Max Unit

friction range 0.6 2.0 -
added mass 0.0 3.0 kg
Body Center of Mass -0.20 0.20 m
push velocity (vx, vy) 0.0 0.5 m/s
Motor Strength 80 120 %
Forward Velocity Command (vx) 0.3 0.8 m/s

Table 5: Behavior Cloning Parameters

Hyperparameter Value

max. timesteps per rollout 600

rollouts per DAgger Iteration 1000

learning rate 5e-4

timesteps 70

optimizer Adam

weight decay 5e-4

momentum 0.9

dropout 0.1

A.5 Real-to-Sim Evaluation Environments

Figure A18 provides an overview of our process for constructing the evaluation environments. For

each task, we select a few scenes that differ in appearance (e.g. red bricks, pavement, grass, indoors).

We report the results from three different scenes on each task in Tables 1 and 6. We capture ≈ 500

images for each scene, and extract the resulting collision mesh from Polycam. For appearance, we

run COLMAP [49, 50] to obtain camera pose estimates, and reconstruct the scene using 3D Gaussian

Splatting (3DGS) [14, 51, 52].
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(d) Align 3DGS and mesh in vuer (c) Add waypoints and assets

(e) 3DGS and mesh are aligned

(c) 3D Gaussian Splatting

(b) 3D Mesh

(a) Scan the scene

Figure A18: Process for making the benchmark environments. (a-c) Scan the scene to collect the
3D mesh and the 3D Gaussian Splats. (d-e) These two are initially unaligned, so we manually scale
and align them. (f) add the markers for the waypoints.

Figure A19: Learning Visual Parkour from Generated Images. Top to bottom: (1,2) robot climbing stairs. (3)
robot climbing hurdles on a stone ground (4) on a grassy courtyard. Notice the different box color. For more
experiment videos, visit https://lucidsim.github.io

We use our custom viewer to align the collision mesh with the gaussian splat. For the hurdle and

stairs scenes, we manually label 3-5 waypoints along the course that appear as orange traffic cones.

We use the collision mesh as the terrain, and the 3DGS render as visual observation to the robot.

For objects that are not present in the initial scan (i.e., soccer ball, traffic cones), we apply the mask

rendered by the physics engine to insert them into the robot’s ego view.

A.6 Prompt Used in Figure 4

Foreground prompt : “Cool, gray slabs of granite that are flecked with darker mineral deposits.

The polished finish is unmarred but faintly glistening under the ambient light, revealing a durable,

ancient presence.”

Background prompt : “An ancient alley lined with tea houses and small, quaint shops, each dis-

playing traditional ornaments and calligraphy. The walls are adorned with ivy and red paper deco-

rations, while overhead, strings of lanterns sway gently in the breeze.”
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A.7 Prompts Used in Figure 14

Hurdle scene “Sunny Afternoon”

foreground : “A ceramic box with colorful, intricate patterns.”

background : “The sun illuminates a somewhat unkempt lawn dotted with dry patches. Gravel

paths crisscross the grass, leading to sunlit, red-brick buildings with large, gleaming windows.”

Stairs scene “Cemented Courtyard Pathway”

foreground : “Composed of a myriad of small, smooth pebbles incorporated within, creating a

uniquely textured appearance. Discoloration and cracks reflect its rich history of countless treaders.”

background ”: “Walls of natural stone, varying from reds to yellows, provide a strikingly authentic

atmosphere. Wrought iron railings draped with climbing roses frame the scene. The melody of a

nearby street musician overlays the hum of quiet conversations, while the occasional cyclist clacks

down the cobbled thoroughfare.”

A.8 X-Displacement

We report the corresponding X-Displacement metric for Table 1 in this section for completeness.

Table 6: X-Displacement In Real-to-Sim Benchmark Environments.

Chase-Cone Chase-Soccer Hurdle Stairs

Method Obs. Space Lawn Lab Urban Lawn Lab Urban Lawn Lab Urban Bricks Concrete Marble

Privileged Expert state+terrain 99.6 99.1 98.7 99.6 99.1 98.7 96.3 100.0 99.0 97.2 100.0 76.0

Extreme Parkour [5] clipped depth – – – – – – 85.9 88.8 98.8 96.6 95.5 83.2
Depth depth 95.8 93.6 93.8 95.0 92.9 92.9 80.7 70.4 59.1 93.5 88.8 76.5
Depth clipped depth 99.9 94.7 99.8 99.8 97.9 99.9 75.4 88.5 89.5 94.0 88.7 86.1

Domain Rand. color 91.6 81.2 84.9 99.3 89.2 89.5 66.6 61.6 57.1 95.4 85.1 76.5
LucidSim color 99.5 92.7 99.7 92.3 96.8 98.0 92.6 94.0 97.8 88.8 85.6 83.6
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