
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE HL-GAUSSIAN: A VALUE FUNCTION
LEARNING METHOD WITH DYNAMIC SUPPORT AD-
JUSTMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent research indicates that using cross-entropy (CE) loss for value function
learning surpasses traditional mean squared error (MSE) loss in performance and
scalability, with the HL-Gaussian method showing notably strong results. How-
ever, this method requires a pre-specified support for representing the categori-
cal distribution of the value function, and an inappropriately chosen interval for
the support may not match the time-varying value function, potentially impeding
the learning process. To address this issue, we theoretically establish that HL-
Gaussian inherently introduces a projection error during the learning of the value
function, which is dependent on the support interval. We further prove that an
ideal interval should be sufficiently broad to reduce truncation-induced projec-
tion errors, yet not so excessive as to counterproductively amplify them. Guided
by these findings, we introduce the Adaptive HL-Gaussian (AHL-Gaussian) ap-
proach. This approach starts with a confined support interval and dynamically ad-
justs its range by minimizing the projection error. This ensures that the interval’s
size stabilizes to adapt to the learning value functions without further expansion.
We integrate AHL-Gaussian into several classic value-based algorithms and evalu-
ate it on Atari 2600 games and Gym Mujoco. The results show that AHL-Gaussian
significantly outperforms the vanilla baselines and standard HL-Gaussian with a
static interval across the majority of tasks.

1 Introduction

Deep Reinforcement Learning (DRL) has achieved significant success across various practical ap-
plications (Badia et al., 2020; Shah et al., 2022; Fawzi et al., 2022; Degrave et al., 2022; OpenAI,
2022), among which value-based methods (Mnih et al., 2015; Silver et al., 2017) are the most widely
adopted frameworks. Within this framework, value functions are typically approximated using neu-
ral networks and learned to fit the Bellman targets. A common approach for this is to employ mean
squared error (MSE) as the regression objective (Mnih et al., 2015; Haarnoja et al., 2018; Fujimoto
et al., 2018a). Alternatively, a class of methods (Bellemare et al., 2017; Dabney et al., 2018) mod-
els the value function as a categorical distribution on a finite support, capturing its distributional
properties, and employs cross-entropy (CE) loss for learning as a classification objective. Recently,
Farebrother et al. (2024) reviewed three typical approaches within this paradigm and revealed that
using CE loss rather than MSE loss can significantly improve the training performance and exhibit
scaling law as model complexity increases. In particular, Farebrother et al. (2024) found that HL-
Gaussian (Imani & White, 2018), a specialized method among the three, which involves projecting
Bellman target scalar into a categorical distribution derived from Gaussian distribution, can produce
the most remarkable results. These empirical benefits have been attributed to several hypotheses, in-
cluding improved gradient stability (Ehsan Imani, 2024), better feature representation (Zhang et al.,
2023), implicit biases (Stewart et al., 2023), and greater resilience to noisy targets and non-stationary
environments (Farebrother et al., 2024).

However, HL-Gaussian and analogous approaches that represent value functions through categor-
ical distributions share a fundamental limitation: they necessitate a predetermined interval for the
support, [vmin, vmax], within which the value functions must be confined. Intuitively, the choice of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

10 100 1000 10000
Vmax

600

800

1000

1200

E
pi

so
di

c
R

et
ur

n

SpaceInvadersNoFrameskip-v4

10 100 1000 10000
Vmax

0

1000

2000

3000

E
pi

so
di

c
R

et
ur

n

Hopper-v2

10 100 1000 10000
Vmax

0

25000

50000

75000

100000

125000

E
pi

so
di

c
R

et
ur

n

HumanoidStandup-v2

(a) Histogram of episodic return

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

100

101

102

103

104

M
ea

n
of

 Q
-v

al
ue

HumanoidStandup-v2

Vmax=10
Vmax=100
Vmax=1000
Vmax=10000

(b) Learning curves of Q-values

Figure 1: Comparison of different interval magnitudes

the interval significantly impacts the training performance: on one hand, value function is used to
characterize the actual returns generated when a policy is executed in a task. However, an inappro-
priate interval can restrict the value function to an unreasonable range, making it difficult to capture
task-specific return information and thus affecting the final performance. As demonstrated in Fig-
ure 1(a), the magnitude of the optimal interval range varies across three distinct tasks, reflecting
the task-specific nature of the interval. On the other hand, the value function dynamically changes
and often exhibits numerical growth during the learning process. Consequently, a static and overly
narrow interval may fail to adapt to the temporal variability of the value function, thereby negatively
suppressing its upward trend. As depicted in Figure 1(b), the value functions, each induced by dif-
ferent intervals, all exhibit an upward trajectory. However, their ultimate convergence values are
significantly influenced by the range of the interval.

Therefore, for HL-Gaussian to be effective in RL and achieve widespread adoption, the current static
method of setting intervals, which relies on task-specific priors, is inadequate. A more promising
approach lies in developing a dynamic support adjustment mechanism that is both task-agnostic
and value-function-aware. This advancement would enable HL-Gaussian to reach its full potential
across a wide range of real-world applications.

In this study, we explore the influence of the support interval [vmin, vmax] on the learning of the value
function within the HL-Gaussian approach. Initially, we establish that HL-Gaussian introduces
a projection error during value function fitting, arising from the truncation of the Bellman target
within [vmin, vmax] and its discretization into categorical distributions. Subsequently, we demonstrate
the relationship between these two types of errors and [vmin, vmax]: when the Bellman target is within
[vmin, vmax] and away from the boundaries, the overall projection error is minimal. Otherwise, the
truncation error is substantial. Additionally, the projection error rises linearly with the expansion
of [vmin, vmax]. Therefore, we conclude that the ideal interval must be wide enough to minimize
truncation error but not so broad as to incur counterproductive projection error. Leveraging these
theoretical insights, we propose an approach that begins with a confined interval and dynamically
adjusts its range by optimizing the projection error. This method is task-agnostic and can adapt
the interval dynamically based on the learning value function. We term this approach Adaptive
HL-Gaussian (AHL-Gaussian).

We integrate AHL-Gaussian with several classic value-based algorithms, including DQN (Mnih
et al., 2015), SAC (Haarnoja et al., 2018), and TD3 (Fujimoto et al., 2018b), and apply it to tasks
with both discrete action spaces (Atari 2600 games) and continuous action spaces (Gym Mujoco).
The results consistently show that across the majority of tasks, AHL-Gaussian, without relying on
any prior knowledge of the tasks, greatly improves the performance of the original algorithms it
is applied to, as well as the HL-Gaussian method that is specially fine-tune for each task. This
performance is attributed to three key characteristics of AHL-Gaussian: (i) the universality of its
mechanism, which is both task-agnostic and value function-aware; (ii) the modularity that facili-
tates flexible integration as a plug-in within a variety of algorithms; and (iii) the insensitivity to its
remaining parameters associated with HL-Gaussian, thus enhancing robustness.

2 Preliminaries

Reinforcement Learning (RL). We consider the reinforcement learning (RL) problem where an
agent interacts with the environment by selecting an action at ∈ A in the current state st ∈ S.
Afterward, the agent receives a reward rt+1 ∈ R and transitions to the next state st+1 ∈ S according

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to the environment’s transition model P(·|st, at). The return is defined as the cumulative discounted
sum of rewards: Gt =

∑∞
k=0 γ

krt+k+1, where γ ∈ [0, 1) is the discount factor. The agent’s
objective is to learn a policy π : S → P(A) that maximizes the expected return. The action-value
function, Qπ(s, a) = Eπ [Gt | st = s, at = a], represents the expected return from taking action
a in state s and following policy π thereafter. The optimal action-value function is Q∗(s, a) =
Eπ∗ [Gt | st = s, at = a].

Q-learning and actor-critic methods are two widely used approaches within the value-based algo-
rithm framework. Q-learning directly learns the optimal action-value function Q∗, which satisfies
the optimal Bellman equation (1). On the other hand, actor-critic algorithms focus on learning the
action-value function Qπ corresponding to the current policy π, which satisfies the standard Bellman
equation (2).

Q∗(st, at) = rt+1 + γEst+1∼P(·|st,at) max
a′

Q∗(st+1, a
′) := (T ∗Q∗)(st, at). (1)

Qπ(st, at) = rt+1 + γEst+1∼P(·|st,at),at+1∼π(·|st+1
Qπ(st+1, at+1) := (T πQπ)(st, at). (2)

Let T̂ denote the approximation of either T ∗ or T π , depending on the specific algorithm. Q
function is typically learned by minimizing the temporal difference (TD) error between Q(st, at)

and the Bellman target T̂ Q(st, at) for all (st, at) in the replay buffer D, with a mean squared error
(MSE) as objective:

LMSE = ED

(
T̂ Q(st, at)−Q(st, at)

)2
.

Cross-entropy Loss in RL. Distributional RL methods (Bellemare et al., 2017; Dabney et al., 2018)
and recent work (Farebrother et al., 2024) propose representing value function as a categorical dis-
tribution and replacing MSE with cross-entropy (CE) loss in value function learning. Specifically,
Q(s, a) is represented as the expected value of a random variable Z(s, a), and Z(s, a) obeys a cate-
gorical distribution on a set of m discrete locations [z1, · · · , zm] within [vmin, vmax]. This distribution
is parameterized by the learned probabilities p̂i(st, at) corresponding to each location zi, which are
computed from logits li(st, at) via the softmax function. In summary:

Q(st, at) = E[Z(st, at)], p̂i(st, at) =
exp (li(st, at))∑m
j=1 exp (lj(st, at))

. (3)

It is essential that the Bellman target is also represented as a categorical distribution, supported at the
same locations. Let pi(st, at) denote the probability associated with zi, ensuring that the equation∑m

i=1 pi(st, at)zi =
(
T̂ Q

)
(st, at) holds true. Consequently, the CE loss for learning p̂i(st, at) is

defined as

LCE = ED

[
−

m∑
i=1

pi(st, at) log p̂i(st, at)

]
. (4)

HL-Gaussian in RL For constructing the target categorical distributions [p1(·), · · · , pm(·)],
Farebrother et al. (2024) reviews various strategies and identifies that HL-Gaussian (Imani &
White, 2018; Ehsan Imani, 2024) delivers the best performance. Specifically, assume the inter-
val [vmin, vmax] is uniformly divided into m bins, each with a width w, where the center of each bin
is zi. Consider a truncated Gaussian distribution with variance σ2, centered at the Bellman target
value µ =

(
T̂ Q

)
(st, at). The probability density function f(y) is given by:

f(y) =
1

Zσ
√
2π

e
− (y−µ))2

2σ2 , Z =
1

2

(
erf

(
vmax − µ)√

2σ

)
− erf

(
vmin − µ√

2σ

))
. (5)

Then, the probability assigned to each center zi is defined as:

pi(st, at) =
1

2Z

(
erf

(
zi +

w
2
− µ

√
2σ

)
− erf

(
zi − w

2
− µ

√
2σ

))
. (6)

The CE loss, which employs histogram densities derived from equation (6) as the target categorical
distribution, is referred to as HL-Gaussian. Indeed, HL-Gaussian demonstrates superior optimiza-
tion characteristics over traditional regression techniques. This assertion is corroborated by the re-
search of Ehsan Imani (2024), which reveals that the local Lipschitz constant, or the gradient norm
of HL-Gaussian, is significantly smaller than that of MSE at each iteration. Such a trait is highly
advantageous for the optimization process, as highlighted by Hardt et al. (2016).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 Method

3.1 Projection Error of HL-Gaussian

While HL-Gaussian exhibits desirable optimization traits, when projecting the Bellman target
T̂ Q(st, at) onto the support interval and representing it with a categorical distribution, a projec-
tion error is inevitably introduced. We define this as:

Evmin,vmax,m,σ(st, at) =

m∑
i=1

pi (st, at) zi −
(
T̂ Q

)
(st, at) . (7)

Proposition 3.1.
LMSE ≤ 4max(|vmin|, |vmax|)2LCE + EDE2

vmin,vmax,m,σ + C, (8)

where C is a constant independent of the learning functions [p̂1(·), · · · , p̂m(·)].
Given that the projection error Evmin,vmax,m,σ is insignificant for every (st, at) pair within D, Propo-
sition 3.1 posits that utilizing HL-Gaussian to minimize LCE is an effective strategy for optimizing
the traditional TD error LMSE. Furthermore, as highlighted by Ehsan Imani (2024), the CE loss
holds a theoretical edge over the MSE loss in the optimization process, facilitating a more efficient
path to the optimal solution with a reduced number of gradient steps—a concept supported by a
wealth of empirical data (Farebrother et al., 2024; Ehsan Imani, 2024). Consequently, the adoption
of LCE as the optimization objective is well-founded in both theoretical understanding and practical
results, which justifies our focus on LCE in this study.

Nonetheless, if the projection error Evmin,vmax,m,σ is significant, the TD error LMSE may remain
substantial even with LCE minimized, owing to the lingering impact of Evmin,vmax,m,σ . According
to the error propagation theory in Approximate Policy/Value Iteration (Farahmand et al., 2010),
the accumulation of one-step TD-errors can significantly impair the optimality of the final value
function, thereby leading to a suboptimal policy. Consequently, effectively reducing the projection
error is of paramount importance.

3.2 Relationship between Projection Error and Support Interval

In this section, we delve into the origins of the projection error and examine the interplay between
Evmin,vmax,m,σ and the interval [vmin, vmax]. This intrinsic connection will serve as the cornerstone
to create a mechanism that is both task-agnostic and value function-aware, designed to adjust the
support interval effectively.

We begin by introducing some notations. Given a Bellman target µ = T̂ Q (s, a), let m0 represent
the center of the bin that contains µ, and define δ := µ − m0

1. It is straightforwardly that 0 ≤
|δ| ≤ w

2 and the value will vary depending on the specific position of µ. Define Fµ,σ(x, y) as the
cumulative probability of the Gaussian distribution N (µ, σ2) on interval [x, y]. Further define:

h = ⌊
min

(
|vmax − µ|, |µ− vmin|

)
w

⌋, k = ⌊
max

(
|vmax − µ|, |µ− vmin|

)
w

⌋.

As illustrated in Figure 2, h represents the number of bins between µ and the closer boundary of
[vmin, vmax], while k represents the number of bins between µ and the farther boundary of [vmin, vmax].
Theorem 3.1. With the number of bins m fixed, let w = βσ, where β is a hyperparameter, and let
Z be as defined in (5). Then, for a wide ragne of β,

Ea,b,m,σ(s, a) = Ediscretization + Etruncation,

with

Ediscretization = δ ·
(
1{vmin≤µ<vmax}

F0,1(−βh, βh) + o(1)

2Z
− 1

)
,

(h+ 1)w
F0,1 (−β(k + 1),−β(h+ 1))

2Z
≤ |Etruncation| ≤ kw

F0,1 (−βk,−βh)

2Z
,

where o(1) represents a constant far less than 1.
1To keep the expression concise, we assume that bins also exist outside the interval [vmin, vmax].

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Remark 1. It is important to note that the assumption of fixed m and the setting of w = βσ aligns
with the configuration in Farebrother et al. (2024), ensuring that the number of non-zero elements in
the vector [p1(s, a), · · · , pm(s, a)] remains consistent. This stability preserves the representational
capacity throughout the process.

Theorem 3.1 posits that the projection error can be dissected into two components: truncation error
and discretization error. The truncation error materializes when the target is confined within the in-
terval [vmin, vmax], whereas the discretization error arises from employing the categorical distribution
to depict the Bellman target. The former has a direct linear relationship with w, and the latter mirrors
a linear association with δ, with the proportionality constants being exclusively derived from β, h, k.
Note that w signifies the interval span with a fixed number of bins m, thus, a pivotal insight is un-
veiled: the overall projection error ascends in direct proportion to the enlargement of the interval
span.

We will offer more refined estimates for each of the two errors.
Theorem 3.2. With the number of bins m fixed, let w = βσ, where β is a hyperparameter that can
be selected over a wide range. According to the relationship between µ and [vmin, vmax], we have :

(i) If µ ∈ (vmin, vmax),

|Ediscretization| = Cβ,1 ·
(
(heh

2

)−1 + o(1)
)
· |δ|, |Etruncation| = Cβ,m,2 · (heh

2

)−1 · w,

(ii) If µ ∈ (vmin, vmax) and h = 0, or if µ /∈ (vmin, vmax),
|Ediscretization| = |δ|, |Etruncation| ≥ Cβ,3(h+ 1)w,

where Cβ,1, Cβ,m,2 and Cβ,3 are constants dependent only on the hyperparameters and o(1) is a
constant far less than 1.

μ

hh

k

𝑚0𝑣min 𝑣max

μ

h

k

𝑚0𝑣max𝑣min

Figure 2: Illustrations of Case (i) and (ii)

Note that Theorem 3.2 confirms the idea that the
projection error increases linearly with w, consistent
with Theorem 3.1. Moreover, with w fixed, Theorem
3.2 further shows how the projection error varies as
µ changes, as illustrated in Figure 2. Specifically,
when µ is well within the interval [vmin, vmax] and
far from the boundaries (indicating a larger h in case
(i)), both types of errors decrease exponentially with
an increase in h, resulting in a minimal overall pro-
jection error. On the other hand, as µ approaches the boundaries or falls outside [vmin, vmax] (indi-
cating case (ii)), the discretization error stays at |δ| while the truncation error becomes predominant,
growing linearly with h, and thus significantly increasing the overall projection error compared to
the initial case.

Building upon the insights from both Theorem 3.1 and 3.2, we summarize our key finding as follows.

Key Finding : (i) Given the fixed interval [vmin, vmax], the projection error remains minimal
if µ is positioned within [vmin, vmax] and is sufficiently distant from either boundary. In
contrast, the projection error increases markedly if µ nears either boundary of [vmin, vmax]
or if µ lies outside this interval. (ii) As the interval range [vmin, vmax] widens, the projection
error increases linearly.

3.3 Adaptive HL-Gaussian Method

Proposition 3.1 emphasizes the importance of reducing projection error. Furthermore, the key find-
ing from the previous section suggests that an ideal support interval should be broad enough to
encompass all Bellman targets comfortably within it, thereby reducing truncation error, yet not so
excessive as to induce counterproductive projection error. This inspires us to develop a dynamic
interval adjustment mechanism by optimizing the projection error.

Specifically, we introduce a learnable variable ξ, and let [−ξ, ξ] represent the current support in-
terval. This interval yields a dynamic bin width wξ = 2ξ/m. Besides, let σξ = αwξ with

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the ratio α = 1/β being a fixed hyperparameter. For any (s, a), we project its correspond-
ing target µ = T̂Q(s, a) onto the categorical distribution of discrete locations [z1,ξ, · · · , zm,ξ],
where zi,ξ is the center of each bin associated with [−ξ, ξ]. This yields the projected target value∑m

i=1 pi,ξ(s, a)zi,ξ, where pi,ξ(s, a) is computed by

pi,ξ(s, a) =
1

2Zξ

(
erf

(
zi,ξ +

wξ

2
− µ

√
2σξ

)
− erf

(
zi,ξ −

wξ

2
− µ

√
2σξ

))
(9)

Zξ =
1

2

(
erf

(
ξ − µ√
2σξ

)
− erf

(
−ξ − µ√

2σξ

))
.

We use the projection error Lprojection(ξ) to measure whether current interval [−ξ, ξ] is suitable or
not to project all the Bellman targets in D and minimize Lprojection(ξ) to obtain an appropriate ξ:

min
ξ

Lprojection(ξ) := ED

(
m∑
i=1

pi,ξ(st, at)zi,ξ −
(
T̂ Q

)
(st, at)

)2

. (10)

HL-Gaussian with dynamic support interval adjustment is defined as Adaptive HL-Gaussian (AHL-
Gaussian). The procedure for updating the value function once can be outlined in Algorithm 1.

Algorithm 1 Value Function Update with AHL-Gaussian

Fix hyperparameters β, m. The parameterized logits function is [lθ1, · · · , lθm] and [lθ̄1, · · · , lθ̄m]. The
bound is ξ.

1: Sample a random minibatch B of transitions from replay memory D;
2: for i = 1 to |B| do
3: For transition (si, ai, ri, si+1), calculate [p̂1,ξ(si, ai), · · · , p̂m,ξ(si, ai)] through (3);
4: For transition (si, ai, ri, si+1), calculate Q-values Qθ̄(si+1, a

′) through (3), where a′ is sam-
pled from greedy policy or current π according to the underlying algorithm;

5: Calculate the Bellman target value yi = ri + γQθ̄(si+1, a
′);

6: Project yi into categorical distribution [p1,ξ(si+1, a
′), · · · , pm,ξ(si+1, a

′)] through (9);
7: end for
8: Calculate LCE on B by (4) and perform a gradient descent step to update θ;
9: Calculate Lprojection(ξ) on B by (10) and perform a gradient descent step to update ξ.

In practice, for tasks where the value function undergoes large changes, we suggest adding a bias
term to the interval calculations, which results in the shifted interval [−ξ + vmean, ξ + vmean], where
vmean is the mean of the current Q-values. This ensures that the center of the interval moves in sync
with the value function, thus effectively preventing the interval from becoming overly broad.

This dynamic interval adjustment mechanism does not requires any prior knowledge of the task
at hand, and can automatically calibrate the interval to suit the learning value function: starting
from an initially constrained interval, when the Bellman targets dynamically increases and exceeds
the boundaries of the interval, the resulting projection error will drive an increase in ξ. Conversely,
when the Bellman targets stabilizes, ξ will also converges at a state that is sufficient to encompass all
Bellman targets without the impetus to continue expanding. At this point, the interval has achieved
a balance that is neither too large nor too small. Additionally, this method involves optimizing just
a single variable, making it computationally efficient and resulting in minimal extra computational
cost.

4 Experimental Evaluation

In this section, we undertake an empirical analysis to explore several critical questions: (i) Is the
projection error introduced by AHL-Gaussian consistent with the behavioral patterns our theory
anticipates? (ii) Can AHL-Gaussian be seamlessly incorporated into conventional value-based algo-
rithms to enhance performance? (iii) Is it possible to realize the essence of AHL-Gaussian without
resorting to learning-based approaches? (iv) How resilient is AHL-Gaussian in the face of variations
in other hyperparameters associated with HL-Gaussian?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.1 Observation Study of Projection Error

Consider the interval [−500, 500]. Figure 3(a) demonstrates how the projection error varies as the
Bellman target µ shifts. It is evident that the error exhibits two distinct patterns based on µ’s relative
position to the interval. The error is minimal when µ is comfortably within [−500, 500]. However,
the error climbs as µ nears the interval’s boundaries. Once µ exceeds the interval, the error increases
linearly with the distance from the boundaries. This aligns perfectly with our primary finding (i),
indicating that a sufficiently large support interval should be chosen to cover the majority of targets.

As we progress, we examine the patterns of projection error across a range of ξ value. Figure 3 (b)
illustrates the error curves for instances when µ shifts within a tighter interval [−2σξ, 2σξ], a subset
of [−ξ, ξ]. Here, the projection error exhibits periodic fluctuations that align with the characteristics
of δ. Moreover, as ξ increases, the peaks of the projection error also increase in a linear fashion.
Figure 3 (c) shows the scenario where µ shits within [−1.3ξ, 1.3ξ]. Similarly, the peak error values
for each curve rise linearly with ξ. These empirical findings consistently support the conclusion that,
in both scenarios, the error peaks climb linearly with ξ, thus confirming our key discovery (ii).

-600 -400 -200 0 200 400 600
0

20

40

60

80

100

Pr
oj

ec
tio

n
Er

ro
r

(a)

100 0 100
0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Pr
oj

ec
tio

n
Er

ro
r

(b)

4000 3000 2000 1000 0 1000 2000 3000 4000

0

200

400

600

800

1000

Pr
oj

ec
tio

n
Er

ro
r

= 500
= 1000
= 1500
= 2000
= 2500
= 3000

(c)

Figure 3: Panel (a) presents the projection error curve, varying with µ while keeping ξ constant.
Panels (b) and (c) illustrate the projection error curves across a range of ξ values, under conditions
where µ is either within or exceeds the limits of [−ξ, ξ], respectively.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

600

800

1000

1200

E
pi

so
di

c
R

et
ur

n

AsteroidsNoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

2000

4000

6000

E
pi

so
di

c
R

et
ur

n

SeaquestNoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

500

1000

1500

E
pi

so
di

c
R

et
ur

n

EnduroNoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

1000

2000

3000

4000

E
pi

so
di

c
R

et
ur

n

FrostbiteNoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

2500

5000

7500

10000

12500

15000

E
pi

so
di

c
R

et
ur

n

GopherNoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

200

400

600

E
pi

so
di

c
R

et
ur

n

AmidarNoFrameskip-v4

DQN w/ AHL-Gaussian DQN w/ HL-Gaussian DQN C51DQN

Figure 4: Performance of DQN with AHL-Gaussian.

4.2 Performance of AHL-Gaussian

Integration with Q-learning Method. We first assess the efficacy of AHL-Gaussian by integrat-
ing it with DQN (Mnih et al., 2015) and evaluate its performance on Atari 2600 games (Mnih et al.,
2013). The baselines compared include the standard DQN, DQN with the conventional HL-Gaussian
using a default interval of [−10, 10], and the representative distributional RL method C51 (Belle-
mare et al., 2017). As depicted in Figure 4, DQN integrated with AHL-Gaussian excels in five out

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5
Time Steps 1e6

0

2000

4000

6000

8000

Ep
iso

di
c

Re
tu

rn

Ant-v2

0 1 2 3 4 5
Time Steps 1e6

0

5000

10000

15000

Ep
iso

di
c

Re
tu

rn

HalfCheetah-v2

0 1 2 3 4 5
Time Steps 1e6

0

2000

4000

6000

Ep
iso

di
c

Re
tu

rn

Humanoid-v2

0 1 2 3 4 5
Time Steps 1e6

100000

200000

300000

400000

Ep
iso

di
c

Re
tu

rn

HumanoidStandup-v2

0 1 2 3 4 5
Time Steps 1e6

25

50

75

100

125

150

Ep
iso

di
c

Re
tu

rn

Swimmer-v2

0 1 2 3 4 5
Time Steps 1e6

0

2000

4000

6000

Ep
iso

di
c

Re
tu

rn

Walker2d-v2

SAC w/ AHL-Gaussian SAC w/ ft-HL-Gaussian SAC

Figure 5: Performance of SAC with AHL-Gaussian.

0 1 2 3 4 5
Time Steps 1e6

2000

4000

6000

8000

Ep
iso

di
c

Re
tu

rn

Ant-v2

0 1 2 3 4 5
Time Steps 1e6

0

5000

10000

15000

Ep
iso

di
c

Re
tu

rn

HalfCheetah-v2

0 1 2 3 4 5
Time Steps 1e6

0

2000

4000

6000

8000

Ep
iso

di
c

Re
tu

rn

Humanoid-v2

0 1 2 3 4 5
Time Steps 1e6

50000

100000

150000

200000

250000

Ep
iso

di
c

Re
tu

rn

HumanoidStandup-v2

0 1 2 3 4 5
Time Steps 1e6

0

50

100

150

Ep
iso

di
c

Re
tu

rn

Swimmer-v2

0 1 2 3 4 5
Time Steps 1e6

0

2000

4000

6000

Ep
iso

di
c

Re
tu

rn

Walker2d-v2

TD3 w/ AHL-Gaussian TD3 w/ ft-HL-Gaussian TD3

Figure 6: Performance of TD3 with AHL-Gaussian.

of six tasks, achieving significant improvements in four of them. In contrast, HL-Gaussian has re-
sulted in reduced performance for certain tasks, demonstrating that the default static interval does
indeed negatively affect the training process. This observation further validates the superiority of
our dynamically adjusted mechanism.

Integration with Actor-Critic Method. Moreover, we have also incorporated AHL-Gaussian into
the typical actor-critic algorithms SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018b), and
evaluated their performance in the Gym MuJoCo environments (Todorov et al., 2012). Our baselines
include not only the original SAC and TD3 but also a specially fine-tuned version of HL-Gaussian,
with a customized support interval for each task, denoted as ft-HL-Gaussian. This fine-tuning was
essential due to the substantial differences in return scales across various MuJoCo tasks, which made
identifying a universal interval that could perform optimally across all tasks difficult.

Figures 5 and 6 demonstrate that across nearly all tested tasks, the algorithm enhanced with AHL-
Gaussian surpasses both the conventional algorithms and those augmented with ft-HL-Gaussian.
Moreover, in over half of these tasks, the performance advantage is substantial. In line with the
previous integration with DQN, HL-Gaussian results in a performance decline in certain tasks, high-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

lighting the difficulty of manually adjusting the optimal interval and the challenge a static interval
faces in accommodating the fluctuations of the value function. This reaffirms the distinct advantages
of AHL-Gaussian, which is both task-agnostic and value function-aware.

4.3 Comparative Study of AHL-Gaussian and Non-learning-based Strategies

In this section, we explore the possibility of implementing AHL-Gaussian without relying on learn-
ing mechanisms. A naive strategy would be to set ξ as the maximum value of all current Bellman
targets, multiplied by a coefficient η. This approach, while straightforward, aims to dynamically
adapt the interval in response to fluctuations in the value function. However, as shown in Fig-
ure 7, for both Ant-v2 and Hopper-v2 tasks, setting η to 1 results in a constrained interval range,
which in turn, triggers substantial projection errors and inferior performance. Upon increasing η
to 1.1, we observe a significant improvement in Ant-v2’s performance, suggesting that η correlates
well with the escalating trend of the value function. Conversely, on Hopper-v2, this adjustment
causes an unwarranted surge in the value function, leading to significant projection errors and sub-
par performance again. This observation implies that the coefficient η, being a hyperparameter, is
inherently task-specific and thus lacks the universal applicability that AHL-Gaussian offers across
various tasks.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

2000

4000

6000

Ep
iso

di
c

Re
tu

rn

Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

250

500

750

1000

1250

V
m

ax

Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

200

400

M
ea

n
of

 Q
-v

al
ue

Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

10 9

10 7

10 5

10 3

10 1

101

Pr
oj

ec
tio

n
Er

ro
r

Ant-v2

(a) Ant

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

1000

2000

3000
Ep

iso
di

c
Re

tu
rn

Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

102

103

104

105

106

107

V
m

ax

Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

2

4

6

M
ea

n
of

 Q
-v

al
ue

1e6 Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

10 8

10 5

10 2

101

Pr
oj

ec
tio

n
Er

ro
r

Hopper-v2

(b) Hopper

SAC w/ AHL-Gaussian 1.0 * Max Target as Vmax 1.1 * Max Target as Vmax

Figure 7: Comparison of AHL-Gaussian to a Non-learning-based Method.

4.4 Robustness of AHL-Gaussian

In this section, we assess the robustness of AHL-Gaussian with respect to other involved hyperpa-
rameters. Complete experimental results are deferred in the Appendix.

Number of Bins (m). We analyzed how AHL-Gaussian performs with different values of m, rang-
ing from [11, 31, 51, 71, 91]. Figure 8 shows that AHL-Gaussian generally holds up well regardless
of m, but there is a slight dip in performance on a few tasks when m is set too low. Given these
findings, we picked the value of m = 51, which provides a good balance of performance and compu-
tational efficiency. This choice also aligns with the recommendations from Bellemare et al. (2017);
Farebrother et al. (2024).

Ratio of bin width to variance (α). We analyzed how AHL-Gaussian performs with different
values of α, ranging from [0.5, 0.75, 1.5, 2.0, 3.0]. Overall, AHL-Gaussian maintains reliable per-
formance regardless of the α value, with only occasional performance drops on a few tasks for
specific α choices. This aligns well with our theoretical findings, which show that Theorems 3.1
and 3.2 are valid across a wide spectrum of α values. We have settled on α = 1.5 as the algorithm’s
hyperparameter, a choice that works well for the majority of the tasks.

Interval update frequency. To determine how the frequency of interval updates affects perfor-
mance, we conducted a series of experiments with varying ratios of interval update frequency to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

value function update frequency, as illustrated in Figure 10. The results indicate that AHL-Gaussian
is quite resilient to changes in these ratios. This resilience is a practical advantage, as it allows
AHL-Gaussian to maintain its performance while conserving computational resources.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

100

200

300

E
pi

so
di

c
R

et
ur

n

BreakoutNoFrameskip-v4

(a) Breakout-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

500

1000

1500

E
pi

so
di

c
R

et
ur

n

EnduroNoFrameskip-v4

(b) Enduro-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

2000

4000

6000

Ep
iso

di
c

Re
tu

rn

Ant-v2

(c) Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

5000

10000

Ep
iso

di
c

Re
tu

rn

HalfCheetah-v2

(d) HalfCheetah-v2

binnum=91 binnum=71 binnum=51 binnum=31 binnum=11

Figure 8: Ablation for the number of bins m.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

100

200

300

E
pi

so
di

c
R

et
ur

n

BreakoutNoFrameskip-v4

(a) Breakout-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

500

1000

1500

E
pi

so
di

c
R

et
ur

n

EnduroNoFrameskip-v4

(b) Enduro-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

2000

4000

6000

Ep
iso

di
c

Re
tu

rn

Ant-v2

(c) Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

5000

10000

Ep
iso

di
c

Re
tu

rn

HalfCheetah-v2

(d) HalfCheetah-v2

ratio=3 ratio=2 ratio=1.5 ratio=0.75 ratio=0.5

Figure 9: Ablation for the ratio of width to variance.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

100

200

300

E
pi

so
di

c
R

et
ur

n

BreakoutNoFrameskip-v4

(a) Breakout-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

500

1000

1500

E
pi

so
di

c
R

et
ur

n

EnduroNoFrameskip-v4

(b) Enduro-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

2000

4000

6000

Ep
iso

di
c

Re
tu

rn

Ant-v2

(c) Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

5000

10000
Ep

iso
di

c
Re

tu
rn

HalfCheetah-v2

(d) HalfCheetah-v2

freq=1:5 freq=1:4 freq=1:3 freq=1:2 freq=1:1

Figure 10: Ablation for the interval update frequency.

5 Conclusion and Future Work

In this paper, we concentrate on value function learning methods that leverage HL-Gaussian. We
demonstrate that a misalignment between the support interval and the value function can result in
substantial projection errors, which in turn can compromise the optimality of the resulting policy.
Our analysis further reveals that an ideal interval should be sufficiently broad to reduce truncation-
induced projection errors, yet not so extensive as to paradoxically amplify them. Motivated by these
findings, we introduce AHL-Gaussian, a novel dynamic interval adjustment mechanism designed
to align with the dynamic evolution of the value function. Empirical results indicate that AHL-
Gaussian is compatible with a range of algorithms and can consistently boost performance across
both discrete and continuous control tasks.

In our future work, we intend to broaden the application of the AHL-Gaussian approach to encom-
pass more complex tasks. Furthermore, we aim to integrate it with a range of other distributional
RL methods. We are also committed to investigating the adherence of AHL-Gaussian to a scaling
law as the model’s complexity increases.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
A. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, Z. Guo, and C. Blundell. Agent57:

Outperforming the atari human benchmark. In ICML, volume 119, pp. 507–517, 2020.

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Diego
Tbout, Andreas Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional de-
terministic policy gradients. In Proceedings of the 6th International Conference on Learning
Representations (ICLR), 2018.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning (ICML),
volume 70, pp. 449–458, 2017.

Richard L. Burden and J. Douglas Faires. Numerical Analysis. Brooks/Cole, 9 edition, 2010.

Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 32, 2018.

J. Degrave, F. Felici, J. Buchli, M. Neunert, B. D. Tracey, F. Carpanese, T. Ewalds, R. Hafner,
A. Abdolmaleki, D. de Las Casas, C. Donner, L. Fritz, C. Galperti, A. Huber, J. Keeling, M. Tsim-
poukelli, J. Kay, A. Merle, J. Moret, S. Noury, F. Pesamosca, D. Pfau, O. Sauter, C. Sommariva,
S. Coda, B. Duval, A. Fasoli, P. Kohli, K. Kavukcuoglu, D. Hassabis, and M. A. Riedmiller.
Magnetic control of tokamak plasmas through deep reinforcement learning. Nature, 602(7897):
414–419, 2022.

Dmitrii Kharlapenko Denis Tarasov, Kirill Brilliantov. Is value functions estimation with classifica-
tion plug-and-play for offline reinforcement learning? arXiv preprint arXiv:2406.06309, 2024.

Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distributional
soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors. IEEE
Transactions on Neural Networks and Learning Systems, 33(11):6584–6598, 2022. doi: 10.1109/
TNNLS.2021.3082568.

Sophie Scholnick-Hughes et al. Ehsan Imani, Kevin Luedemann. Investigating the histogram loss
in regression. arXiv preprint arXiv:2402.13425, 2024.

Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approximate
policy and value iteration. Advances in neural information processing systems, 23, 2010.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taı̈ga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training
value functions via classification for scalable deep rl. arXiv preprint arXiv:2403.03950, 2024.

A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes, M. Barekatain, A. Novikov, F. J. R.
Ruiz, J. Schrittwieser, G. Swirszcz, D. Silver, D. Hassabis, and P. Kohli. Discovering faster matrix
multiplication algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022.

S. Fujimoto, H. v. Hoof, and D. Meger. Addressing function approximation error in actor-critic
methods. In ICML, volume 80, pp. 1582–1591, 2018a.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018b.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In ICML, pp. 1856–1865, 2018.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ehsan Imani and Martha White. Improving regression performance with distributional losses. In
Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 2157–2166.
PMLR, 10–15 Jul 2018. URL https://proceedings.mlr.press/v80/imani18a.
html.

Brahma S. Pavse Josiah P. Hanna and Abhinav Narayan Harish. Replacing implicit regression with
classification in policy gradient reinforcement learning. In Finding the Frame: An RLC Workshop
for Examining Conceptual Frameworks, 2024. URL https://openreview.net/forum?
id=dHhkY5YAqu.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2023.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. A.
Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, et al. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

OpenAI. Chatgpt: Optimizing language models for dialogue, 2022. URL https://openai.
com/blog/chatgpt/.

Mark Rowland, Robert Dadashi, Rémi Munos, Marc G. Bellemare, and Will Dabney. Statistics
and samples in distributional reinforcement learning. In Proceedings of the 36th International
Conference on Machine Learning (ICML), volume 97, pp. 5528–5536, 2019.

Mark Rowland, Yunhao Tang, Clare Lyle, Rémi Munos, Marc G. Bellemare, and Will Dabney. The
statistical benefits of quantile temporal-difference learning for value estimation. In Proceedings
of the International Conference on Machine Learning (ICML), 2023.

D. Shah, B. Osinski, B. Ichter, and S. Levine. Lm-nav: Robotic navigation with large pre-trained
models of language, vision, and action. arXiv preprint, arXiv:2207.04429, 2022.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Lawrence Stewart, Francis Bach, Quentin Berthet, and Jean-Philippe Vert. Regression as classifi-
cation: Influence of task formulation on neural network features. In International Conference on
Artificial Intelligence and Statistics, pp. 11563–11582. PMLR, 2023.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Kaiwen Wang, Kevin Zhou, Runzhe Wu, Nathan Kallus, and Wen Sun. The benefits of being dis-
tributional: Small-loss bounds for reinforcement learning. In Proceedings of Neural Information
Processing Systems (NeurIPS), 2023.

Bin Zhao-Junchi Yan Xiu Li Xuelong Li Yang Zhang, Chenjia Bai. Decentralized transform-
ers with centralized aggregation are sample-efficient multi-agent world models. arXiv preprint
arXiv:2406.15836, 2024.

S Zhang, L Yang, MB Mi, X Zheng, and A Yao. Improving deep regression with ordinal entropy.
arxiv. arXiv preprint arXiv:2301.08915, 2023.

12

https://proceedings.mlr.press/v80/imani18a.html
https://proceedings.mlr.press/v80/imani18a.html
https://openreview.net/forum?id=dHhkY5YAqu
https://openreview.net/forum?id=dHhkY5YAqu
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A Related Work

Distributional RL Distributional Reinforcement Learning (Distributional RL) marks a key ad-
vancement in reinforcement learning by modeling the distribution of returns instead of the expected
return. The C51 algorithm (Bellemare et al., 2017) models the value function using a categorical
distribution instead of a scalar and adopts cross entropy loss to learn the value function, yielding im-
proved performance, especially in stochastic environments. Following this, QR-DQN (Dabney et al.,
2018) introduces a quantile-based approximation, learning specific quantiles via the quantile Huber
loss, thereby offering finer control over the distribution tails. DERL (Rowland et al., 2019) further
advances DRL with expectile regression, enabling the modeling of conditional value at risk (CVaR),
which is particularly advantageous for risk-averse applications. On the theoretical front, Wang et al.
(2023) provides small-loss bounds for distributional RL, offering stronger convergence guarantees,
while Rowland et al. (2023) extends QR-DQN through quantile temporal-difference learning, show-
ing its statistical benefits in environments with skewed or heavy-tailed rewards. Distributional RL
has also been extended to continuous action spaces through the D4PG (Barth-Maron et al., 2018)
and DSAC (Duan et al., 2022), and also demonstrates the scalability and generalization in offline
Q-learning across diverse multi-task data (Kumar et al., 2023). The advantage of quantization in
distributional RL are also discussed (Bellemare et al., 2017) that it can better handle approxima-
tion errors, reduce chattering caused by policy updates, and mitigate state aliasing, thus improving
training stability. Additionally, the distribution itself provides a rich set of predictions, allowing the
agent to learn from multiple predictions rather than solely focusing on an expected value. Moreover,
the distributional perspective introduces a more natural inductive bias framework for reinforcement
learning, enabling the imposition of assumptions on the domain or the learning problem itself.

Our proposed AHL-Gaussian method falls within the realm of distributional RL. Yet, it distinguishes
itself from the methods previously discussed by employing HL-Gaussian to project the Bellman tar-
get’s value onto a discrete distribution when crafting the categorical distribution of the Bellman
target. Building upon the existing limitations of HL-Gaussian, we have further introduced a mecha-
nism for dynamic interval adjustment, which significantly differentiates AHL-Gaussian from current
distributional RL methods.

HL-Gaussian in RL HL-Gaussian is a specialized learning method that utilizes the cross-entropy
loss and constructs a target categorical distribution derived from Gaussian histogram densities. Ini-
tially proposed for regression tasks by Imani & White (2018) and Ehsan Imani (2024), it was found
to primarily enhance optimization processes. Farebrother et al. (2024) later applied HL-Gaussian to
reinforcement learning (RL), demonstrating significant improvements in training performance and
a beneficial scaling effect as the model complexity increases. This pioneering work spurred further
exploration. Denis Tarasov (2024) investigated HL-Gaussian in offline RL settings, finding it ca-
pable of delivering state-of-the-art results, albeit with occasional fluctuations. Josiah P. Hanna &
Harish (2024) applied it to stochastic policy gradient RL, achieving enhanced data efficiency and
stability, particularly in continuous control scenarios. Additionally, Yang Zhang (2024) successfully
adapted a discrete regression method akin to HL-Gaussian for multi-agent systems.

While these studies have straightforwardly integrated HL-Gaussian with existing RL methods, they
overlook a critical aspect of RL algorithms: the target function for fitting is in constant flux. Conse-
quently, a static support interval is inadequate for fully realizing HL-Gaussian’s potential in RL. To
surmount this challenge, we introduced a dynamic interval adjustment mechanism, which we have
both theoretically and empirically proven to be effective and universally applicable.

B Proofs

B.1 Proof of Proposition 3.1

Lemma B.1 (Ehsan Imani (2024)). Assuming that a data point µ’s target distribution is pµ. Let
an m-dimensional vector hx be a model’s prediction distribution and has supports bounded by the

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

range [a, b], then(
Epµ [z]− Ehx [z(x)]

)2 ≤ 4max(|a|, |b|)2 min

(
1

2
DKL (pµ||hx) , 1− e−DKL(pµ||hx)

)

Proof of Proposition 3.1. Given a state-action pair (s, a) in D, let x := (s, a) and its Q-value
Q(x) be the expectation of random variable z(x), where z(x) obeys the categorical distribution
hx. So Q(s, a) = Ehx

[z(x)] and hx is actually the model’s prediction [p̂1(s, a), · · · , p̂m(s, a)]
in AHL-Gaussian. Further denote the target distribution pµ as the categorical distribution
[p1(s, a), · · · , pm(s, a)] induced by projection function (6). Since hx has supports in the range
[vmin, vmax], we can apply Lemma B.1 to obtain that

[Q(s, a)− (T̂ Q)(s, a)]2

=[Q(s, a)−
m∑
i=1

pi(s, a)zi +

m∑
i=1

pi(s, a)zi − (T̂ Q)(s, a)]2

≤ [Q(s, a)−
m∑
i=1

pi(s, a)zi]
2 + E2

vmin,vmax,m,σ(s, a)

=
(
Ehx

[z(x)]− Epµ
[z]
)2

+ E2
vmin,vmax,m,σ

≤ 4max(|vmin|, |vmax|)2
(
1

2
DKL (pµ||hx)

)
+ E2

vmin,vmax,m,σ(s, a)

= 2max(|vmin|, |vmax|)2 (HL(pµ, hx)−H(pµ)) + E2
vmin,vmax,m,σ(s, a).

Because H(pµ) only depends on pµ which is independent of the learned variable x, the aim is to
minimize the first term: the cross-entropy between pµ and hx, we have

[Q(s, a)− (T Q)(s, a)]2 ≤ 2max(|vmin|, |vmax|)2 (HL(pµ, hx)) + E2
vmin,vmax,m,σ(s, a) + C.

(11)

By taking average in D, Proposition 3.1 can be derived straightforwardly.

B.2 Proofs of Theorem 3.1 and Theorem 3.2

Lemma B.2 (Burden & Faires (2010)). Assuming there are n equally spaced bins on the interval
[bl, br], we use the sum of the function values at the midpoints of each bin multiplied by the bin width
to approximate the integral

∫ br
bl

g(x)dx. Then the approximation error is:

En =
(br − bl)

3

24n2
g′′(ξ), (12)

where ξ ∈ [bl, br].

Lemma B.3.

2

h∑
i=1

β

(
f0,1((i−

1

2
)β)

)
= F0,1(−βh, βh) + o(1). (13)

Proof. For the interval [(i− 1)β, iβ], we apply Lemma B.2 on this interval with n = 1, then∫ iβ

(i−1)β

f0,1(x)dx = β · f0,1((i−
1

2
)β) + Ei,β

= β · f0,1((i+
1

2
)β) +

β3

24
f ′′
0,1(ξβ,i) (14)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

where ξβ,i ∈ [(i− 1)β, iβ]. Therefore,

F0,1(−βh, βh) = 2

h∑
i=1

∫ iβ

(i−1)β

f0,1(x)dx

= 2

h∑
i=1

(
f0,1((i−

1

2
)β) +

β3

24
f ′′
0,1(ξβ,i)

)

= 2

h∑
i=1

β

(
f0,1((i−

1

2
)β)

)
+

h∑
i=1

β3

12
f ′′
0,1(ξβ,i) (15)

In particular, given that β = 1,

F0,1(−h, h) = 2

h∑
i=1

(
f0,1((i−

1

2
))

)
+

h∑
i=1

1

12
f ′′
0,1(ξ1,i).

Note that f ′′
0,1(x) = x2−1√

2π
e

−x2

2 , which is o(1) on (4,∞). Besides, f ′′
0,1(x) is upper bounded on

[0, 4], thus we further define Ci =
maxx∈[(i−1)β,iβ] f

′′
0,1(x)

f ′′
0,1(ξ1,i)

for i ∈ [1, 4]. This implies that

h∑
i=1

β3

24
f ′′
0,1(ξβ,i) =

4∑
i=1

β3

24
f ′′
0,1(ξβ,i) + o(1)

≤
4∑

i=1

β3

24
max

x∈[(i−1)β,iβ]
f ′′
0,1(x) + o(1)

≤
4∑

i=1

β3

24
Cif

′′
0,1(ξ1,i) + o(1)

≤ C

(
4∑

i=1

β3

24
f ′′
0,1(ξ1,i)

)
+ o(1). (16)

It can be empirically verified that
(∑4

i=1
β3

24 f
′′
0,1(ξ1,i)

)
is a constant and its value is o(1), thus

Lemma B.3 holds true directly for a wide range of β.

Proof of Theorem 3.1.] We follow the notation defined in Theorem 2. Note that each bin center zj
corresponds to an mi := m0 + iw. We also denote the range of bin i as Si = [mi − w

2 ,mi +
w
2).

According to the relationship between µ and [vmin, vmax], there are two cases to be considered: (i)
vmin < µ < vmax and (ii) µ ≥ vmax or µ ≤ vmin. We will assume that µ is closer to vmax without loss
of generality and discuss the following two cases separately.

• Case (i) vmin < µ < vmax.
At this situation, h ≥ 0. We first consider the case of h ≥ 1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Since vmax is closer to µ, it is directly that h = ⌊ vmax−µ
w ⌋, k = ⌊µ−vmin

w ⌋, and k ≥ h ≥ 1. Besides,
vmax ∈ Sh, and vmin ∈ S−k.

Evmin,vmax,m,σ =

m∑
j=1

zipi − µ

=
1

Fµ,σ(vmin, vmax)

h∑
i=−k

mi

∫
Si

f(z)dz − µ

=
1

Fµ,σ(vmin, vmax)

h∑
i=−k

(m0 + iw)

∫
Si

f(z)dz − µ

=
1

Fµ,σ(vmin, vmax)
m0

h∑
i=−k

∫
Si

f(z)dz +
1

Fµ,σ(vmin, vmax)
w

h∑
i=−k

i

∫
Si

f(z)dz − µ.

(17)

Recall that intervals Si are disjoint and
⋃h

i=−k Si = [vmin, vmax]. So the series in the first term
becomes Fµ,σ(vmin, jinvmax). Therefore

(17) = (m0 − µ) +
1

Fµ,σ(vmin, vmax)
w

(−1∑
i=−k

i

∫
Si

f(z)dz +

h∑
i=1

i

∫
Si

f(z)dz

)

=− δ +
1

Fµ,σ(vmin, vmax)
w

(−1∑
i=−k

iFµ,σ

(
m0 + iw − w

2
,m0 + iw +

w

2

))

+

h∑
i=1

iFµ,σ

(
m0 + iw − w

2
,m0 + iw +

w

2

)
=

1

Fµ,σ(vmin, vmax)
w

(
k∑

i=1

(−i)Fµ,σ

(
m0 − iw − w

2
,m0 − iw +

w

2

))
(
−δ +

h∑
i=1

iFµ,σ

(
m0 + iw − w

2
,m0 + iw +

w

2

))

=

(
−δ +

1

Fµ,σ(vmin, vmax)
w

h∑
i=1

i
(
Fµ,σ

(
m0 + iw − w

2
,m0 + iw +

w

2

)
− Fµ,σ

(
m0 − iw − w

2
,m0 − iw +

w

2

)))

+

(
1

Fµ,σ(vmin, vmax)
w

k∑
i=h+1

(
−Fµ,σ

(
m0 − iw − w

2
,m0 − iw +

w

2

)))
(18)

:= Ediscretization + Etruncation. (19)

Due to the symmetry of Gaussian distribution, Fµ,σ(vmin, vmax) = Fµ,σ(2µ− vmax, 2µ− vmin). We
define ai := iw − w

2 and bi := iw + w
2 , and the second series in (18) becomes

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

h∑
i=1

i (Fµ,σ (m0 + ai,m0 + bi)− Fµ,σ (m0 − bi,m0 − ai))

=

h∑
i=1

i (Fµ,σ (m0 + ai,m0 + bi)− Fµ,σ (2µ−m0 + ai, 2µ−m0 + bi))

=

h∑
i=1

i (Fµ,σ (µ− δ + ai, µ− δ + bi)− Fµ,σ (µ+ δ + ai, µ+ δ + bi))

=

h∑
i=1

i (Φµ (µ− δ + bi)− Φµ (µ− δ + ai) + Φµ (µ+ δ + ai)− Φµ (µ+ δ + bi))

=

h∑
i=1

i (−Fµ,σ (µ+ bi − δ, µ+ bi + δ) + Fµ,σ (µ+ ai − δ, µ+ ai + δ))

= −
h∑

i=1

iFµ,σ (µ+ bi − δ, µ+ bi + δ) +

h∑
i=1

iFµ,σ (µ+ ai − δ, µ+ ai + δ) (20)

Since iw + w
2 = (i+ 1)w − w

2 , we can replace bi by ai+1 and have

(20) = −
h∑

i=1

iFµ,σ (µ+ ai+1 − δ, µ+ ai+1 + δ) +

h∑
i=1

iFµ,σ (µ+ ai − δ, µ+ ai + δ)

= −
h∑

i=2

(i− 1)Fµ,σ (µ+ ai − δ, µ+ ai + δ) +

h∑
i=1

iFµ,σ (µ+ ai − δ, µ+ ai + δ)

=

h∑
i=2

Fµ,σ (µ+ ai − δ, µ+ ai + δ) + Fµ,σ (µ+ a1 − δ, µ+ a1 + δ)

=

h∑
i=1

Fµ,σ (µ+ ai − δ, µ+ ai + δ) =

h∑
i=1

F0,σ (ai − δ, ai + δ)

=

h∑
i=1

F0,σ

(
iw − w

2
− δ, iw − w

2
+ δ
)

Given that |δ| ≤ w
2 = β

2σ, then |δ|
σ ≤ 1 for β ≤ 2, thus we can use the first-order Taylor approxi-

mation with
h∑

i=1

F0,σ

(
iw − w

2
− δ, iw − w

2
+ δ
)
= 2δ

h∑
i=1

f0,σ(iw − w/2) + o(1)

So the second term in (18) becomes

δ · 1

Fµ,σ(vmin, vmax)

(
2w

h∑
i=1

f0,σ(iw − w/2) + o(1)

)

= δ · 1

Fµ,σ(vmin, vmax)

(
2β

h∑
i=1

f0,1(iβ − β/2) + o(1)

)

= δ · 1

2Z
(F0,1(−βh, βh) + o(1)) . (21)

where (21) comes from Lemma B.3.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Now we bound the third series in (18) as follows:
k∑

i=h+1

(−iw)Fµ,σ

(
m0 − iw − w

2
,m0 − iw +

w

2

)
≤ −(h+ 1)wFµ,σ

(
m0 − kw − w

2
,m0 − (h+ 1)w +

w

2

)
≤ −(h+ 1)wFµ,σ

(
µ+ δ − kw − w

2
, µ+ δ − (h+ 1)w +

w

2

)
= −(h+ 1)wF0,σ

(
δ − kw − w

2
, δ − (h+ 1)w +

w

2

)
≤ −(h+ 1)wF0,σ (−(k + 1)w,−(h+ 1)w)

= −(h+ 1)wF0,1 (−β(k + 1),−β(h+ 1)) . (22)
Similarly,

k∑
i=h+1

(−iw)Fµ,σ

(
m0 − iw − w

2
,m0 − iw +

w

2

)
≥ −kwFµ,σ

(
m0 − kw − w

2
,m0 − (h+ 1)w +

w

2

)
= −kwFµ,σ

(
µ+ δ − kw − w

2
, µ+ δ − (h+ 1)w +

w

2

)
= −kwF0,σ

(
δ − kw − w

2
, δ − (h+ 1)w +

w

2

)
≥ −kwF0,σ (−kw,−hw)

= −kwF0,1 (−βk,−βh) . (23)

Combining (21), (22) and (23), we can obtain that

Ediscretization = δ ·
(
F0,1(−βh, βh) + o(1)

2Z
− 1

)
,

− kw
F0,1 (−βk,−βh)

2Z
≤ Etruncation ≤ −(h+ 1)w

F0,1 (−β(k + 1),−β(h+ 1))

2Z
. (24)

This constitutes the conclusion corresponding to case (i) in Lemma (3.1).

Next we make similar analysis to the case of h = 0.

Ea,b,m,σ =

m∑
j=1

zipi − µ

=
1

Fµ,σ(vmin, vmax)

0∑
i=−k

mi

∫
Si

f(z)dz − µ =
1

Fµ,σ(vmin, vmax)

0∑
i=−k

(m0 + iw)

∫
Si

f(z)dz − µ

=
1

Fµ,σ(vmin, vmax)
m0

0∑
i=−k

∫
Si

f(z)dz +
1

Fµ,σ(vmin, vmax)
w

−1∑
i=−k

i

∫
Si

f(z)dz − µ

= −δ +
1

Fµ,σ(vmin, vmax)
w

−1∑
i=−k

i

∫
Si

f(z)dz. (25)

Then

Ediscretization = −δ = δ ·
(
F0,1(−βh, βh)

2Z
− 1 + o(1)

)
, (26)

Besides,

−kw
F0,1 (−βk, 0)

2Z
≤ 1

Fµ,σ(vmin, vmax)
w

−1∑
i=−k

i

∫
Si

f(z)dz ≤ −w
F0,1 (−β(k + 1),−β)

2Z
|h=0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

This is still equivalent to (24) when h = 0.

Combining case of h ≥ 1 and case h = 0, we obtain the conclusion corresponding to case (i) in
Theorem (3.1).

• Case (ii) µ ≥ vmax .

Ea,b,m,σ =

m∑
j=1

zipi − µ

=
1

Fµ,σ(vmin, vmax)

−h∑
i=−k

mi

∫
Si

f(z)dz − µ =
1

Fµ,σ(vmin, vmax)

−h∑
i=−k

(m0 + iw)

∫
Si

f(z)dz − µ

=
1

Fµ,σ(vmin, vmax)
m0

−h∑
i=−k

∫
Si

f(z)dz +
1

Fµ,σ(vmin, vmax)
w

−h∑
i=−k

i

∫
Si

f(z)dz − µ

= (m0 − µ) +
1

Fµ,σ(vmin, vmax)
w

−h∑
i=−k

i

∫
Si

f(z)dz

= −δ +
1

Fµ,σ(vmin, vmax)
w

−h∑
i=−k

i

∫
Si

f(z)dz. (27)

Repeating the previous reasoning, we can obtain that

Ediscretization = −δ, (28)

and

−kw
F0,1 (−βk,−βh)

2Z
≤ Etruncation ≤ −(h+ 1)w

F0,1 (−β(k + 1),−β(h+ 1))

2Z
. (29)

This yields the conclusion corresponding to case (ii) in Theorem (3.1).

Proof of Theorem 3.2. Now we consider the two cases in Theorem 3.2 separately.

Case (i). If µ ∈ (vmin, vmax) and h ≥ 1, for the discretization error, the linear coefficient of δ is(
F0,1(−βh,βh)

2Z − 1 + o(1)
)

. Considering the fact that

F0,1(−βh, βh) = 1− 2Φ(−βh) = 1− 2
1

βh
√
π
e−

(βh)2

2 + o(1), (30)

and

2Z = F0,1(−βk, βh) = 1− Φ(−βk)− Φ(−βh)

= 1− 1

βh
√
π
e−

(βh)2

2 − 1

βk
√
π
e−

(βk)2

2 + o(1), (31)

then

F0,1(−βh, βh)

2Z
− 1 + o(1)

≤
(
1− 2

1

βh
√
π
e−

(βh)2

2 + o(1)

)
/

(
1− 1

βh
√
π
e−

(βh)2

2 + o(1)

)
− 1 + o(1)

=
1

βh
√
π
e−

(βh)2

2 + o(1)

= Cβ,1 ·
1

h
e−h2

+ o(1), (32)

(32) yields the linear coefficient of δ in case (i).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We further consider the truncation error,

Etruncation ≤ kw
F0,1(−βk,−βh)

2Z
≤ kwΦ(−βh)/2 ≈ kw

1

βh
√
2π

e−(βh)2/2

≤ mw
1

βh
√
2π

e−(βh)2/2 = Cβ,m,2 ·
1

h
e−h2 · w, (33)

thus (33) yields the truncation error in case (i).

Case (ii). If µ ∈ (vmin, vmax) and h = 0, or µ /∈ (vmin, vmax), we have Ediscretization = −δ directly. At
this time

|Etruncation| ≥ (h+ 1)w
F0,1 (−β(k + 1),−β(h+ 1))

2Z

≥ (h+ 1)w
F0,1 (−β(k + 1),−β)

F0,1 (−β(k + 1), β)

≥ (h+ 1)w
F0,1 (−∞,−β)

F0,1 (−∞, β)

= Cβ(h+ 1)w, (34)

where Cβ =
F0,1(−∞,−β)
F0,1(−∞,β) .

Combining case (i) and (ii) yields Theorem 3.2.

B.3 Error Propagation of HL-Gaussian

Approximation Policy Iteration (API) is a popular iterative paradigm to find an approximate solution
to the optimal value function Q∗. SAC and TD3 can be regared within this framework. It starts
from a policy π0, and then approximately evaluates that policy π0, i.e. it finds a Q0 that satisfies
T π0Q0 ≈ Q0. Afterwards, it performs a policy improvement step, which is to calculate the greedy
policy with respect to (w.r.t.) the most recent action-value function, to get a new policy π1. The
policy iteration algorithm continues by approximately evaluating the newly obtained policy π1 to get
Q1 and repeating the whole process again, generating a sequence of policies and their corresponding
approximate action-value functions Q0 → π1 → Q1 → π2 · · · .

Similarly, we can build API for the setting that value functions are learned by HL-Gaussian. Specif-
ically, it also starts from a policy π0, and then approximately evaluates that policy π0, i.e. it finds
a categorical distribution p̂(0) that satisfies the Bellman equation Ep(0) [z] ≈ Ep̂(0) [z], where p(0)

comes from projecting T π0Ep̂(0) [z] on m discrete locations through equation (6). Afterwards, it
performs a policy improvement step, which is to calculate the greedy policy with respect to (w.r.t.)
the most recent action-value function, to get a new policy π1. The policy iteration algorithm contin-
ues by approximately evaluating the newly obtained policy π1 to get p̂(1) and repeating the whole
process again, generating a sequence of policies and their corresponding approximate action-value
functions p̂(0) → π1 → p̂(1) → π2 · · · .
Theorem B.1 ((Error Propagation for AHL-Gaussian)). Let K be a positive integer and ν be some
distribution on S × A. Then, for any sequence of functions {p̂(k)}(0 ≤ k < K), the following
inequalities hold with a high probability:

∥Ep̂∗ [z]−QπK∥2,ν ≤ 2γ

(1− γ)2

(
Cvmin,vmax,rmax,P,δ,ν · C1/2

ν max
0≤k<K

εk + γ
K
2 −1rmax

)
, (35)

where we use QπK to represent the true value function of πK , rmax is an upper bound reward, ρ is
the initial distribution, d(·)

dν
represents the density ratio of two distributions. Cvmin,vmax,rmax,P,δ,ν is

a constant dependent on vmin, vmax, rmax,P, δ, ν,

Cp,ν = (1− γ)2
∑
k≥1

kγk−1 sup
π1,...,πk

∥∥∥∥d(ρPπ1 · · ·Pπk)

dν

∥∥∥∥
∞

.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

and

εk = E(s,a)∼ν

[
DKL(p̂

(k)(s, a), p(k)(s, a)) + E(k),2
vmin,vmax,m,σ +

1

D(s, a)

]
, (36)

with D(s, a) being the number of (s, a) pairs in replay buffer.

This result implies that the uniform-over-all iterations upper bound max0≤k<K εk is the quantity
that determines the performance loss. Next, we analyze each term in εk:

• The last term represents the approximation error caused by using transitions from the replay
buffer to approximate the true transition model of the MDP. This error is unavoidable but
will asymptotically approach 0 as the replay buffer grows.

• The first term corresponds to the KL-divergence term that HL-Gaussian aims to optimize.
As long as sufficient gradient descent steps are performed during the policy evaluation
process for each πi, this term will become sufficiently small.

• Thus, only the second term, the projection error, remains unaddressed by the existing HL-
Gaussian method. Its presence will clearly have a negative impact on the final performance,
so our AHL-Gaussian further optimize E(k),2

vmin,vmax,m,σ to keep the whole max0≤k<K εk
small enough.

Before we provide the proof outline for Theorem B.1, we cite a lemma for standard API as follows:
Lemma B.4 ((Error Propagation for API Farahmand et al. (2010))). Let p ≥ 1 be a real and K be a
positive integer. Then, for any sequence of functions {Q(k)}(0 ≤ k < K),and their corresponding
Bellman residuals εk = Qk − TπQk, the following inequalities hold:

∥Q∗ −QπK∥p,ν ≤ 2γ

(1− γ)2

(
C1/p

p,ν max
0≤k<K

∥ηk∥p,ν + γ
K
p −1rmax

)
,

where rmax is an upper bound on the magnitude of the expected reward function, ηk is the bellman
error Qk(s, a)− T πkQk(s, a) and

Cp,ν = (1− γ)2
∑
m≥1

mγm−1 sup
π1,...,πm

∥∥∥∥d(ρPπ1 · · ·Pπm)

dν

∥∥∥∥
∞

.

Proof Outline of Theorem B.1. Now we analyze the Bellman error ηk as follows:

|ηk(s, a)| = |Qk(s, a)− T πkQk(s, a)|
= |Qk(s, a)− T̂ πkQk(s, a) + T̂ πkQk(s, a)− T πkQk(s, a)|
≤ |Qk(s, a)− T̂ πkQk(s, a)|+ |T̂ πkQk(s, a)− T πkQk(s, a)| (37)

From Proposition 3.1, the first term is upper bounded by

|Qk(s, a)− T̂ πkQk(s, a)|2 ≤ 2max(vmin, vmax)
2DKL (p̂(s, a), p(s, a)) + E(k),2

vmin,vmax,m,σ, (38)

where we use (p̂(s, a) and p(s, a) to represent the categorical distribution [p̂1(s, a), · · · , p̂m(s, a)]
and [p1(s, a), · · · , pm(s, a)], respectively.

The second term comes from using interaction transitions to approximate the true MDP and it is
proved in Kumar et al. (2020) that with probability 1− δ,

|T̂ πkQk(s, a)− T πkQk(s, a)| ≤
Cδ,rmax,P√
D(s, a)

, (39)

where Cδ,rmax,P is a constant dependent on δ, rmax and the MDP P , and D(s, a) is the number of
s− a pairs in replay buffer.

Putting (38), (39) and Lemma B.3 togather we can obtain Theorem B.1.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C Experimental Details

In this section, we will provide a detailed introduction to the experimental details of combining
AHL-Gaussian with different algorithms. We integrated AHL-Gaussian with Q-learning method
DQN (Mnih et al., 2015), SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018b), respectively.

DQN with AHL-Gaussian. In order to assess the influence of AHL-Gaussian within the DQN
framework, we have chosen the original DQN, the traditional distributional approach C51, and
the standard HL-Gaussian as our benchmarks. Our testing is conducted using the Atari 2600
game environment. To guarantee an equitable evaluation, the implementations of all algorithms
are grounded in the codebase provided by the repository at https://github.com/DLR-RM/
stable-baselines3. Additionally, we have ensured that the shared hyperparameters across
these algorithms remain uniform. The hyperparameters for our algorithm are detailed in Tables 1
and 2.

Table 1: Hyperparameters of DQN with AHL-Gaussian

Name of Hyperparameter Value
number of bins m 51
ratio wξ/σξ 1.5

AHL-Gaussian initial ξ 3
learning rate 1e-3
Interval Update Frequency 1:1
total timesteps 1e+7
buffer size 100000
learning rate 1e-4

DQN batch size 32
γ 0.99
exploration initial epsilon 1.0
exploration final epsilon 0.01

Table 2: Architecture of Q Network

Layer Type Input Dim Output Dim Kernel Size Stride Activation
1 Conv2d observation dim 32 8x8 4 ReLU
2 Conv2d 32 64 4x4 2 ReLU
3 Conv2d 64 64 3x3 1 ReLU
4 Flatten - - - - -
5 Linear flatten dim action dim - - ReLU

Note: the observation dim and the action dim are the observation and action space of certain
Atari environment. For example, the observation and action space of the SpaceInvaders are Box(0,
255, (210, 160, 3), uint8) and Discrete(6), respectively.

SAC with AHL-Gaussian. In order to assess the impact of incorporating AHL-Gaussian into
SAC algorithm, we have chosen the standard SAC and a version of SAC with a fine-tuned HL-
Gaussian as our comparisons. Our experiments are conducted within the Gym MuJoCo simu-
lation environment. To guarantee an equitable comparison, the implementation of all the algo-
rithms adheres to the same codebase, which can be found at https://github.com/pranz24/
pytorch-soft-actor-critic. Additionally, we have ensured that the shared hyperparam-
eters across these algorithms remain uniform. The hyperparameters specific to our approach are
detailed in Tables 3.

TD3 with AHL-Gaussian. To evaluate the impact of integrating AHL-Gaussian into the TD3
algorithm, we have also chosen the vanilla TD3 and a version of TD3 enhanced with a finetuned HL-
Gaussian as our comparing approaches. Our evaluation is also conducted within the Gym MuJoCo
environment. In terms of a balanced comparison, we have implemented all algorithms using the
codebase provided by TD3’s original author, which can be found at https://github.com/

22

https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
https://github.com/sfujim/TD3

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameters of SAC with AHL-Gaussian

Name of Hyperparameter Value
the number of bins m 51
ratio wξ/σξ α 1.5

AHL-Gaussian initial ξ 10
learning rate 1e-3
Interval Update Frequency 1:1
total timesteps 5e+6
buffer size 1000000
learning rate 3e-4
batch size 256
γ 0.99

SAC target update interval 1000
automatic entropy tuning True
number of hidden layers in critic 2
hidden dim of critic 256
number of hidden layers in actor 2
hidden dim of actor 256

sfujim/TD3. We have also ensured uniformity in the hyperparameters across these algorithms.
The hyperparameters specific to our approach are delineated in Tables 4.

Table 4: Hyperparameters of TD3 with AHL-Gaussian

Name of Hyperparameter Value
the number of bins m 51
ratio wξ/σξ α 1.5

AHL-Gaussian initial ξ 10
learning rate 1e-3
Interval Update Frequency 1:1
total timesteps 5e+6
buffer size 1000000
learning rate 3e-4
batch size 256
γ 0.99
std of Gaussian exploration noise 0.1

TD3 target network update rate 0.005
noise added to target policy during critic update 0.2
range to clip target policy noise 0.5
frequency of delayed policy updates 2
number of hidden layers in critic 2
hidden dim of critic 256
number of hidden layers in actor 2
hidden dim of actor 256

Interval Fine-tuning for HL-Gaussian. To ensure that the baseline HL-Gaussian performs opti-
mally and to conduct a more equitable comparison, we’ve adopted a fine-tuning strategy. This is
because an ill-considered range for [vmin, vmax] can significantly impair the effectiveness of HL-
Gaussian. Our approach begins with running the original algorithms, SAC and TD3, on a desig-
nated task to ascertain the value function’s settled value, vfinal. Subsequently, we experiment with
HL-Gaussian using ξ values from the potential candidates: [0.5vfinal, 0.75vfinal, vfinal, 1.5vfinal, 2vfinal].
We then identify the most effective ξ from this selection to utilize as our chosen parameter.

23

https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
https://github.com/sfujim/TD3
https://github.com/sfujim/TD3

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D Supplementary Experimental Results

Complete results for the ablation study are shown in Figure 11-Figrue 13.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

100

200

300

E
pi

so
di

c
R

et
ur

n
BreakoutNoFrameskip-v4

(a) Breakout NoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

500

1000

1500

E
pi

so
di

c
R

et
ur

n

EnduroNoFrameskip-v4

(b) Enduro NoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

2000

4000

6000

Ep
iso

di
c

Re
tu

rn

Ant-v2

(c) Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

5000

10000

Ep
iso

di
c

Re
tu

rn

HalfCheetah-v2

(d) HalfCheetah-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

1000

2000

3000

Ep
iso

di
c

Re
tu

rn
Hopper-v2

(e) Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

2000

4000

Ep
iso

di
c

Re
tu

rn

Walker2d-v2

(f) Walker2d-v2

binnum=91 binnum=71 binnum=51 binnum=31 binnum=11

Figure 11: Ablation for the number of bins m.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

100

200

300

E
pi

so
di

c
R

et
ur

n

BreakoutNoFrameskip-v4

(a) Breakout NoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

500

1000

1500

E
pi

so
di

c
R

et
ur

n

EnduroNoFrameskip-v4

(b) Enduro NoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

2000

4000

6000

Ep
iso

di
c

Re
tu

rn

Ant-v2

(c) Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

5000

10000

Ep
iso

di
c

Re
tu

rn

HalfCheetah-v2

(d) HalfCheetah-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

1000

2000

3000

Ep
iso

di
c

Re
tu

rn

Hopper-v2

(e) Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

2000

4000

Ep
iso

di
c

Re
tu

rn

Walker2d-v2

(f) Walker2d-v2

ratio=3 ratio=2 ratio=1.5 ratio=0.75 ratio=0.5

Figure 12: Ablation for the ratio of width to variance

E Training Curves of ξ and Projection Error

To further analyze the learning process of AHL-Gaussian, we plot the support interval bound ξ
and the projection error (as defined in equation 10) corresponding to the main performance curves

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

100

200

300

E
pi

so
di

c
R

et
ur

n

BreakoutNoFrameskip-v4

(a) Breakout NoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×107

0

500

1000

1500

E
pi

so
di

c
R

et
ur

n

EnduroNoFrameskip-v4

(b) Enduro NoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

2000

4000

6000

Ep
iso

di
c

Re
tu

rn

Ant-v2

(c) Ant-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

5000

10000

Ep
iso

di
c

Re
tu

rn

HalfCheetah-v2

(d) HalfCheetah-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

1000

2000

3000

4000

Ep
iso

di
c

Re
tu

rn

Hopper-v2

(e) Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

2000

4000

6000

Ep
iso

di
c

Re
tu

rn

Walker2d-v2

(f) Walker2d-v2

freq=1:5 freq=1:4 freq=1:3 freq=1:2 freq=1:1

Figure 13: Ablation for the interval update frequency.

presented in Section 4.2. Specifically, Figures 14, 15, and 16 illustrate the results for DQN (Figure
4), SAC (Figure 5), and TD3 (Figure 6), respectively.

It can be observed that, in almost all tasks, the projection error exhibits a steep increase during the
early stages. This is primarily due to the small initial interval range and the mismatch with the
rapid growth of the value function in the early stages. As training progresses, the projection error
gradually decreases to a sufficiently small value, indicating that the support interval ξ effectively
encompasses the value function.

Regarding the support interval bound ξ, it converges to a fixed value in most Atari tasks. However,
in some Mujoco tasks, ξ continues to show an upward trend even at 5M steps, particularly in Hu-
manoidStandup and Humanoid. Interestingly, the scores for these two tasks also exhibit an upward
trend, suggesting that as training progresses, the overall performance is likely to continue improving.

F Comparison with Other Non-learning Approaches

In this section, we incorporate three non-learning methods to adaptively adjust the support interval
and compare them with our AHL-Gaussian. This is particularly relevant in MuJoCo, where each
task has distinct reward magnitudes and ranges.

Method 1: The interval bound ξ is set as the maximum value of all current Bellman targets, multi-
plied by a larger coefficient η = 2, as discussed in Section 4.3.

From Figure 17, it is evident that this approach performs comparably to AHL-Gaussian on certain
tasks. However, it exhibits significant shortcomings in tasks such as Swimmer and Humanoid-
Standup. Specifically, the target values in the Swimmer task fluctuate drastically, making this
”overly sensitive” adjustment method unable to converge to a reasonable interval, which severely
impacts training performance.

Method 2: The support interval is set to [rmin

1−γ ,
rmax

1−γ], where rmin and rmax are observed during
training.

As shown in Figure 18, this method also demonstrates significant disadvantages in tasks such as
Swimmer and HumanoidStandup. This is because it relies on discovering effective rewards during

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

4

6

8

10

AsteroidsNoFrameskip-v4

Asteroids - ξ

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

0

2

4

6

Pr
oj

ec
tio

n
Lo

ss

1e 10 AsteroidsNoFrameskip-v4

Asteroids - Eproj

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

5

10

15

20

SeaquestNoFrameskip-v4

Seaquest - ξ

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

1

0

1

2

3

4

Pr
oj

ec
tio

n
Lo

ss

1e 8 SeaquestNoFrameskip-v4

Seaquest - Eproj

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

5

10

15

20

25
EnduroNoFrameskip-v4

Enduro - ξ

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

0.0

0.5

1.0

1.5

Pr
oj

ec
tio

n
Lo

ss

1e 6 EnduroNoFrameskip-v4

Enduro - Eproj

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

0

20

40

60

FrostbiteNoFrameskip-v4

Frostbite4 - ξ

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

0.000

0.025

0.050

0.075

0.100

Pr
oj

ec
tio

n
Lo

ss

FrostbiteNoFrameskip-v4

Frostbite - Eproj

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

5

10

15

GopherNoFrameskip-v4

Gopher - ξ

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

0.00

0.25

0.50

0.75

1.00

Pr
oj

ec
tio

n
Lo

ss

1e 8 GopherNoFrameskip-v4

Gopher - Eproj

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

2.5

5.0

7.5

10.0

12.5

15.0

AmidarNoFrameskip-v4

Amidar - ξ

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e7

0.0

0.5

1.0

1.5

2.0

Pr
oj

ec
tio

n
Lo

ss

1e 6 AmidarNoFrameskip-v4

Amidar - Eproj

DQN w/ AHL-Gaussian

Figure 14: Projection error Eproj and ξ in DQN.

training, rendering it unsuitable for tasks with highly fluctuating reward signals or those that are
challenging to explore.

Method 3: This method utilizes prior knowledge of each task by normalizing rewards as r
rmax

,
resulting in values within the range [−1, 1]. Consequently, the Bellman target is constrained to
[−1
1−γ ,

1
1−γ]. With this approach, the support interval is fixed at [− 1

1−γ ,
1

1−γ].

Figure 19 shows that this method performs significantly worse than AHL-Gaussian across multiple
tasks. This is likely because directly setting the support interval to 1/(1 − γ) causes unnecessarily
large projection errors during the early stages of training, when the received reward values are rela-
tively small compared to the interval range. This negatively affects training performance. Moreover,
obtaining a reliable prior estimate of the maximum reward is challenging in practice.

In summary, while these non-learning-based approaches achieve good performance on certain tasks,
they have inherent limitations that make them unsuitable for a wide range of tasks. In contrast, our
approach offers a more general and formal framework.

G Results on DM-Control

We also combined AHL-Gaussian with TD3 and conducted experiments on the more complex and
sophisticated control tasks, Finger-Spin and Fish-Swim, in the DM Control suite, shown in Figure
20. The experimental results again demonstrate the advantages of AHL-Gaussian.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5
Time Steps 1e6

500

1000

1500

Ant-v2

Ant - ξ

0 1 2 3 4 5
Time Steps 1e6

0

10

20

30

40

Pr
oj

ec
tio

n
Lo

ss

Ant-v2

Ant - Eproj

0 1 2 3 4 5
Time Steps 1e6

0

1000

2000

3000

4000
HalfCheetah-v2

HalfCheetah - ξ

0 1 2 3 4 5
Time Steps 1e6

0

2

4

Pr
oj

ec
tio

n
Lo

ss

HalfCheetah-v2

HC - Eproj

0 1 2 3 4 5
Time Steps 1e6

250

500

750

1000

1250

Humanoid-v2

Humanoid - ξ

0 1 2 3 4 5
Time Steps 1e6

0

1000

2000

3000

4000

Pr
oj

ec
tio

n
Lo

ss

Humanoid-v2

Humanoid - Eproj

0 1 2 3 4 5
Time Steps 1e6

10000

20000

30000

40000

50000

60000 HumanoidStandup-v2

HumanoidStandup - ξ

0 1 2 3 4 5
Time Steps 1e6

0

5000

10000

15000

Pr
oj

ec
tio

n
Lo

ss

HumanoidStandup-v2

HS - Eproj

0 1 2 3 4 5
Time Steps 1e6

40

60

80

100

Swimmer-v2

Swimmer - ξ

0 1 2 3 4 5
Time Steps 1e6

2

0

2

4

6

Pr
oj

ec
tio

n
Lo

ss

1e 8 Swimmer-v2

Swimmer - Eproj

0 1 2 3 4 5
Time Steps 1e6

500

750

1000

1250

1500
Walker2d-v2

Walker2d - ξ

0 1 2 3 4 5
Time Steps 1e6

0

1000

2000

3000

Pr
oj

ec
tio

n
Lo

ss

Walker2d-v2

Walker2d - Eproj

SAC w/ AHL-Gaussian

Figure 15: Projection error Eproj and ξ in SAC.

H Atari Results with Longer Horizon

On the Atari tasks, we further extended the training horizon to observe the algorithm’s performance.
As shown in Figure 21, AHL-Gaussian significantly outperforms C51 across these three tasks. Ad-
ditionally, Figure 22 illustrates the training curves of ξ in AHL-Gaussian, revealing that ξ steadily
increases and converges to task-specific values.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5
Time Steps 1e6

0

500

1000

1500

2000

Ant-v2

Ant - ξ

0 1 2 3 4 5
Time Steps 1e6

0

20

40

60

80

Pr
oj

ec
tio

n
Lo

ss

Ant-v2

Ant - Eproj

0 1 2 3 4 5
Time Steps 1e6

0

500

1000

1500

2000

2500
HalfCheetah-v2

HalfCheetah - ξ

0 1 2 3 4 5
Time Steps 1e6

0.0

0.5

1.0

1.5

2.0

Pr
oj

ec
tio

n
Lo

ss

HalfCheetah-v2

HC - Eproj

0 1 2 3 4 5
Time Steps 1e6

0

200

400

600

800

1000
Humanoid-v2

Humanoid - ξ

0 1 2 3 4 5
Time Steps 1e6

0

2000

4000

6000

8000

10000
Pr

oj
ec

tio
n

Lo
ss

Humanoid-v2

Humanoid - Eproj

0 1 2 3 4 5
Time Steps 1e6

0

5000

10000

15000

20000

HumanoidStandup-v2

HumanoidStandup - ξ

0 1 2 3 4 5
Time Steps 1e6

0

1000

2000

Pr
oj

ec
tio

n
Lo

ss

HumanoidStandup-v2

HS - Eproj

0 1 2 3 4 5
Time Steps 1e6

10

20

30

40

50

60
Swimmer-v2

Swimmer - ξ

0 1 2 3 4 5
Time Steps 1e6

0.000

0.002

0.004

Pr
oj

ec
tio

n
Lo

ss

Swimmer-v2

Swimmer - Eproj

0 1 2 3 4 5
Time Steps 1e6

200

400

600

800

Walker2d-v2

Walker2d - ξ

0 1 2 3 4 5
Time Steps 1e6

0

50

100

150

Pr
oj

ec
tio

n
Lo

ss

Walker2d-v2

Walker2d - Eproj

TD3 w/ AHL-Gaussian

Figure 16: Projection error Eproj and ξ in TD3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

2000

4000

6000

8000

Ep
iso

di
c

Re
tu

rn

Ant-v2

2.0 * Max Target as Vmax
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

5000

10000

15000

Ep
iso

di
c

Re
tu

rn

Halfcheetah-v2

2.0 * Max Target as Vmax
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

2000

4000

6000

8000

Ep
iso

di
c

Re
tu

rn

Humanoid-v2

2.0 * Max Target as Vmax
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

50000

100000

150000

200000

Ep
iso

di
c

Re
tu

rn

Humanoidstandup-v2

2.0 * Max Target as Vmax
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

50

100

150

Ep
iso

di
c

Re
tu

rn

Swimmer-v2

2.0 * Max Target as Vmax
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

1000

2000

3000

4000

5000

6000

Ep
iso

di
c

Re
tu

rn

Walker2d-v2

2.0 * Max Target as Vmax
AHL-Gaussian

Figure 17: Performance Comparison between AHL-Gaussian and the non-learning-based method 1,
where the interval bound ξ is the maximum value of all current Bellman targets, multiplied by 2.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

2000

4000

6000

8000

Ep
iso

di
c

Re
tu

rn

Ant-v2

non-Learning Baseline
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

5000

10000

15000

Ep
iso

di
c

Re
tu

rn

Halfcheetah-v2

non-Learning Baseline
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

2000

4000

6000

8000

Ep
iso

di
c

Re
tu

rn

Humanoid-v2

non-Learning Baseline
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

50000

100000

150000

200000

Ep
iso

di
c

Re
tu

rn

Humanoidstandup-v2

non-Learning Baseline
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

50

100

150

Ep
iso

di
c

Re
tu

rn

Swimmer-v2

non-Learning Baseline
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

1000

2000

3000

4000

5000

6000

Ep
iso

di
c

Re
tu

rn

Walker2d-v2

non-Learning Baseline
AHL-Gaussian

Figure 18: Performance Comparison between AHL-Gaussian and the non-learning-based method 2,
where we set the support interval to [rmin

1−γ ,
rmax

1−γ], where rmin, rmax are observed during training.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

2000

4000

6000

8000

Ep
iso

di
c

Re
tu

rn

Ant-v2

non-Learning Baseline
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

5000

10000

15000

Ep
iso

di
c

Re
tu

rn

Halfcheetah-v2

non-Learning Baseline
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

2000

4000

6000

8000

Ep
iso

di
c

Re
tu

rn

Humanoid-v2

non-Learning Baseline
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

50000

100000

150000

200000

Ep
iso

di
c

Re
tu

rn

Humanoidstandup-v2

non-Learning Baseline
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

50

100

150

Ep
iso

di
c

Re
tu

rn

Swimmer-v2

non-Learning Baseline
AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

0

1000

2000

3000

4000

5000

6000

Ep
iso

di
c

Re
tu

rn

Walker2d-v2

non-Learning Baseline
AHL-Gaussian

Figure 19: Performance Comparison between AHL-Gaussian and the non-learning-based method 3,
where the reward is normalized and the support interval is fixed at [−100, 100].

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps 1e6

0

200

400

600

800

1000

Ep
iso

di
c

Re
tu

rn

DMControl-Finger-Spin

TD3 w/ ft-HL-Gaussian
TD3
TD3 w/ AHL-Gaussian

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time Steps 1e6

100

200

300

400

500

600

Ep
iso

di
c

Re
tu

rn

DMControl-Fish-Swim

TD3 w/ ft-HL-Gaussian
TD3
TD3 w/ AHL-Gaussian

Figure 20: TD3 with AHL-Gaussian on DM Control Suite

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps ×108

400

600

800

1000

1200

E
pi

so
di

c
R

et
ur

n

AsteroidsNoFrameskip-v4

Asteroids

0 2 4 6
Time Steps ×107

0

2000

4000

6000

8000

E
pi

so
di

c
R

et
ur

n

SeaquestNoFrameskip-v4

Seaquest

0 2 4 6 8
Time Steps ×107

0

5000

10000

15000

20000

25000

30000

E
pi

so
di

c
R

et
ur

n

GopherNoFrameskip-v4

Gopher

DQN w/ AHL-Gaussian C51DQN

Figure 21: performance of AHL-Gaussian and C51 with a longer training horizon.

0 2 4 6 8
Time Steps ×107

8

9

10

11

ξ

AsteroidsNoFrameskip-v4

Asteroids

0 1 2 3 4 5
Time Steps ×107

5

10

15

20

ξ

SeaquestNoFrameskip-v4

Seaquest

0 1 2 3 4
Time Steps ×107

5

10

15

20

ξ

GopherNoFrameskip-v4

Gopher

Figure 22: Training curves of ξ with a longer training horizon.

30

	Introduction
	Preliminaries
	Method
	Projection Error of HL-Gaussian
	Relationship between Projection Error and Support Interval
	Adaptive HL-Gaussian Method

	Experimental Evaluation
	Observation Study of Projection Error
	Performance of AHL-Gaussian
	Comparative Study of AHL-Gaussian and Non-learning-based Strategies
	Robustness of AHL-Gaussian

	Conclusion and Future Work
	Related Work
	Proofs
	Proof of Proposition 3.1
	Proofs of Theorem 3.1 and Theorem 3.2
	Error Propagation of HL-Gaussian

	Experimental Details
	Supplementary Experimental Results
	Training Curves of and Projection Error
	Comparison with Other Non-learning Approaches
	Results on DM-Control
	Atari Results with Longer Horizon

