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Abstract

Mechanistic interpretability aims to understand model behaviors in terms of specific,
interpretable features, often hypothesized to manifest as low-dimensional subspaces
of activations. Specifically, recent studies have explored subspace interventions
(such as activation patching) as a way to both manipulate model behavior and
attribute the features behind it to given subspaces. In this work, we demonstrate that
these two aims diverge, potentially leading to an illusory sense of interpretability.
Counterintuitively, even if a subspace intervention modifies end-to-end model
behavior in the desired way, this effect may be achieved by activating a dormant
parallel pathway leveraging a component that is causally disconnected from model
outputs. We demonstrate this phenomenon in a distilled mathematical example, in
two real-world domains (the indirect object identification task and factual recall),
and present evidence for its prevalence in practice. In the context of factual recall,
we further show a link to rank-1 fact editing, providing a mechanistic explanation
for previous work observing an inconsistency between fact editing performance and
fact localization. Finally, we remark on what a success case of subspace activation
patching looks like.

1 Introduction

The growing capabilities of large language models [Vaswani et al., 2017, Radford et al., 2019, Brown
et al., 2020, Wei et al., 2022, OpenAI, 2023] demand a deeper understanding of what they learn and
how they make predictions. This is the realm of machine learning interpretability [Lipton, 2016];
within it, mechanistic interpretability (MI) focuses on a rigorous low-level understanding of models
through the lens of task-specific algorithms, or ‘circuits’ [Olah et al., 2020, Wang et al., 2023, Olah,
2022, Vig et al., 2020], operating on concrete building blocks akin to variables in a computer program
[Olah, 2022, Geiger et al., 2023a]. A key issue in MI is defining and discovering these building
blocks. To this end, activation patching [Vig et al., 2020, Geiger et al., 2020] – which forces specific
activations to take on the value they would take on a different input and examines how this effects
model behavior – has been widely used as an interpretability tool for causally attributing behaviors to
specific model components (attention heads, MLP layers Wang et al. [2023], Heimersheim and Janiak,
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Meng et al. [2022a]) and, increasingly, to low-dimensional subspaces of components [Geiger et al.,
2023b, Wu et al., 2023, Nanda et al., 2023]. We refer the reader to Appendix C for a more detailed
discussion of related work. While such subspace interventions have promise for interpretability,
we show that they are prone to a kind of interpretability illusion. Specifically, instead of robustly
localizing a variable that is used by the model in a wide range of contexts, setting the value of a
subspace to that of another example can fabricate such a variable by activating a dormant pathway
in the model via exploiting a causally disconnected feature (Figure 1). Our contributions can be
summarized as follows.

Mathematical example. In Section 2, we con-
struct a distilled mathematical example of the il-
lusion.
Empirical realizations. In Section 3, we find a
realization of the illusion in the context of the indi-
rect object identification task [Wang et al., 2023],
where a 1-dimensional subspace of MLP activa-
tions found using DAS [Geiger et al., 2023b] can
seem to encode position information about names
in the sentence, despite this MLP layer having
significantly smaller contribution as a whole.
In Section 4 we also exhibit this phenomenon in
the setting of fact editing [Meng et al., 2022a].
We show that 1-dimensional activation patches
imply equivalent rank-1 model edits [Meng et al.,
2022a]. In particular, this shows that rank-1
model edits can also be achieved by creating a
new pathway in the model, without relying on the
presence of a fact in the weight being edited. This
suggests a mechanistic explanation for the obser-
vation of [Hase et al., 2023] that rank-1 model
editing works regardless of whether the fact is
present in the weights being edited.
Reasons to expect the illusion in general. In
Section 5, we end with arguments and evidence
for why this interpretability illusion ought to be
prevalent in real-world language models.
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Figure 1: The key mathematical phenomenon be-
hind the activation patching illusion. By setting
the projection of an example’s activation (green,
right) along a vector (red, top-right) to equal an-
other’s (green, left) projection, we obtain a vec-
tor orthogonal to both activations. This can give
counterintuitive results when the original and new
directions have fundamentally different roles in a
model’s computation.

2 A Conceptual View of the Illusion

Activation patching. Activation patching [Vig et al., 2020, Geiger et al., 2020, Wang et al., 2023,
Chan et al., 2022] is an interpretability technique that intervenes upon model components, forcing
them to take on values they would have taken if a different input were provided. For instance,
consider a model that has knowledge of the locations of famous landmarks, and completes e.g. the
sentence A = ‘The Eiffel Tower is in’ with ‘Paris’. How can we find which component of the model
is responsible for knowing that ‘Paris’ is the right completion?

Activation patching approaches this question by (i) running the model on A, (ii) storing the activation
of a chosen component C, and (iii) running the model on e.g. B = ‘The Colosseum is in’, but with
the activation of C taken from A. If we find that the model outputs ‘Paris’ instead of ‘Rome’ in step
(iii), this suggests that component C is important for the task of recalling the location of a landmark.

Subspace Activation Patching. The linear representation hypothesis (see Appendix C for back-
ground) proposes that linear subspaces of vectors will be the most interpretable model components.
To search for such subspaces, we can adopt a natural generalization of full component activation
patching which only patches the values of a subspace U (while leaving the projection on its orthogonal
complement U⊥ unchanged). This was proposed in Geiger et al. [2023b], and closely related variants
appear in Turner et al. [2023], Nanda et al. [2023], Lieberum et al. [2023].

For the purposes of exposition, we now restrict our discussion to activation patching of a 1-
dimensional subspace (i.e. a direction) represented by a unit vector v. We remark that the illusion
also applies to higher-dimensional subspaces (see Appendix E.1 for details). If actA,actB ∈ Rd are
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the activations of a model component C on examples A,B and pA = v⊤actA, pB = v⊤actB are
their projections along v, patching from A into B along v results in the patched activation

actpatched
B = actB + (pA − pB)v. (1)
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Figure 2: Schematic of the IOI circuit and key inter-
ventions. GPT2-Small predicts the correct name by
S-inhibition heads writing positional information to
the residual stream which is used by the name movers
to copy the non-duplicated name (green arrows). Lo-
cation of subspace interventions vresid and vMLP are
marked. Patching the illusory subspace vMLP adds a
new path (red) along the established one that is used
to flip positional information when patched.

Intuition for the illusion. When will the up-
date in Equation 1 change the model’s out-
put in the intended way? Intuitively, two
properties are necessary: v must be acti-
vated differently by the two prompts (oth-
erwise pA ≈ pB and the patch has no ef-
fect), and v must be causally connected to
the model’s outputs (otherwise, if e.g. v is in
the nullspace of downstream model compo-
nents, changing the activation along v won’t
change model predictions). A direction v
faithful to the model’s computation will si-
multaneously have these two properties.

The crux of the illusion is that v may ob-
tain each of the two properties from two
unrelated directions in activation space, as
shown in Figure 1. Specifically, we can form
v = vdisconnected+vdormant, where vdisconnected
distinguishes between the two prompts, but
is in the nullspace of all downstream model
components; and vdormant can in principle
steer the model in the way intended by the
patch, but is not activated differently by the
two prompts. By patching along the sum of
these directions, the variation in the discon-
nected part activates the dormant part, which
then achieves the causal effect.

Making the illusion concrete. We refer the
reader to Appendix E.3 for a formalization
of the concepts of ‘causally disconnected’
and ‘dormant’ subspaces, and to Appendix
E.4 for a concrete mathematical realization
of the illusion in a linear neural network with
a single hidden layer.

3 The Illusion in the Indirect Object Identification Task

In Wang et al. [2023], the authors analyze how the decoder-only transformer language model GPT-2
Small [Radford et al., 2019] performs the indirect object identification task. In this task, the model is
required to complete sentences of the form ‘When Mary and John went to the store, John gave a bottle
of milk to’ (with the intended completion in this case being ‘ Mary’). We refer to the repeated name
(John) as S (the subject) and the non-repeated name (Mary) as IO (the indirect object). Additional
details on the data distribution, model and task performance are given in Appendix F.1.

Wang et al. [2023] suggest the model uses the algorithm ‘Find the two names in the sentence, detect
the repeated name, and predict the non-repeated name’ to do this task. In particular, they find a set
of four heads in layers 7 and 8 – the S-Inhibition heads – that output the signal responsible for
not predicting the repeated name. The dominant part of this signal is of the form ‘Don’t attend to
the name in first/second position in the first sentence’ depending on where the S name appears (see
Appendix A in Wang et al. [2023] for details). This signal is added to the residual stream 1 at the last
token position, and is then picked up by another class of heads in layers 9, 10 and 11 – the Name

1We follow the conventions of Elhage et al. [2021] when describing internals of transformer models. The
residual stream at layer k is the sum of the output of all layers up to k − 1, and is the input into layer k.
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Figure 3: Projections of the output of the
MLP layer on the gradient direction vgrad
before (blue/orange) and after (green/red)
the activation patch along vMLP. Here,
‘ABB’/‘BAB’ denotes prompts where the
IO name comes first/second.

Patching
subspace

Frac. logit
diff lost

Interchange
accuracy

full MLP -8% 0.4%
vMLP 46.7% 4.7%
vMLP nullspace⊥ 13.5% 0.7%
vMLP nullspace 0% 0.5%
full residual stream 123.6% 55.3%
vresid 140.7% 75.3%
vresid nullspace⊥ 127.5% 63.6%
vresid nullspace 13.9% 0.9%
vgrad 111.5% 45.6%
vgrad nullspace⊥ 106.47% 41.1%
vgrad nullspace 2.2% 0.5%

Table 1: Effects of activation patching of full com-
ponents and 1-dimensional subspaces on the IOI
task: fractional logit difference lost (higher means
more successful patch; 0% means no change)
and interchange accuracy (fraction of predictions
flipped; higher means more successful patch).

Mover heads – which use it to shift attention to the IO name and copy it to the last token position, so
that it can be predicted (Figure 2).

3.1 Finding Subspaces Mediating Name Position Information

How, precisely, is the positional signal communicated? In particular, ‘don’t attend to the first/second
name’ is plausibly a binary feature represented by a 1-dimensional subspace. In this subsection, we
present methods to look for such a subspace.

Gradient of name mover attention scores. As shown in Wang et al. [2023], the three name mover
heads identified therein will attend to one of the names, and the model will predict whichever name is
attended to. The position feature matters mechanistically by determining whether they attend to IO
over S. This motivates us to consider the gradient vgrad of the difference of attention scores of these
heads on the S and IO names with respect to the residual stream after layer 8. This gradient is the
direction that maximally shifts attention between the two names (per unit ℓ2 norm), so we expect it to
be a strong mediator of the position signal. Implementation details are given in Appendix F.2.

Distributed alignment search. We can also directly optimize for a direction that mediates the
position signal. This is the approach taken by DAS [Geiger et al., 2023b]. In our context, DAS
optimizes for an activation subspace which, when activation patched from prompt B into prompt
A, makes the model behave as if the relative position of the IO and S names in the sentence is as
in prompt B. This approach is based purely on the model’s predictions, and does not make any
assumptions about its internal computations. We let vMLP and vresid be 1-dimensional subspaces
found by DAS in the layer 8 MLP activations and layer 8 residual stream output at the last token,
respectively (see Figure 2). These locations are chosen to be between the S-Inhibition and Name
Mover heads; however, Wang et al. [2023] did not find any significant contribution from the MLP
layer, making it a potential location for our illusion. Implementation details are given in Apendix F.

3.2 Demonstrating the Illusion for the vMLP Direction

We now show that patching the vMLP direction exhibits the illusion from Section 2. By contrast,
we revisit vgrad and vresid in Appendix D, where we show that both are representations of the name
position information that are highly faithful to the model’s computation.

Methodology. In this section, we perform all patches between examples that only differ in the
variable we want to localize in the model, i.e. the position of the S and IO names in the first sentence.
That is, we patch from e.g. ‘Then, Mary and John went to the store. John gave a book to’ into ‘Then,
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John and Mary went to the store. John gave a book to’, and vice-versa. Let xsource be the prompt we
take activations from and xbase the prompt we patch into. For each subspace/component activation
patch, we measure (1) the interchange accuracy (higher = more successful patch), which is the
fraction of patches for which the model predicts the S (i.e., wrong) name for the patched run; (2) the
fractional logit difference lost (higher = more successful patch), which is the average decrease in
the model’s confidence on the task (as measured by the difference between the logits of the IO and S
name) as a result of the patch, measured as a fraction of the logit difference on the clean run on xbase.
This is a soft counterpart of the 0-1 based accuracy metric.

Results. Metrics are shown in Table 1. In particular, we exhaustively confirm the mechanics of the
illusion are at play.

THE CAUSALLY DISCONNECTED COMPONENT OF vMLP DRIVES THE EFFECT: while patching
the vMLP direction has a significant effect on the logit difference lost (46.7%), this effect is greatly
diminished when we remove the component of vMLP in kerWout whose activations are (provably)
causally disconnected from model predictions (13.5%), or when we patch the entire MLP activation
(−8%, actually increasing confidence). By contrast, performing analogous ablations on vresid leads to
very similar numbers (140.7%/127.5%/123.6%; we refer the reader to Appendix D for details on
the vresid experiments). We note that the contribution of vMLP to model outputs is only through the
Wout matrix; in particular, a related way of looking at ablating the kerWout component of vMLP is
to instead activation-patch the subspace WoutvMLP in the output of the MLP layer (which obtains
similar results).

PATCHING vMLP ACTIVATES A DORMANT PATHWAY THROUGH THE MLP: in Figure 3, we plot
the projection of the MLP layer’s contribution to the residual stream on the gradient direction vgrad
before and after patching, in order to see how it contributes to the attention of name mover heads. We
observe that in the absence of intervention, the MLP output is weakly sensitive to the name position
information, whereas after the patch this changes significantly. Further validations of the illusion
are provided in Appendix F.5, where we show that the nullspace component of vMLP is substantial
and much more correlated with position information, and in Appendix F.6, where we show that we
can find a direction with these properties even if we replace the MLP weights with random matrices.
While the contribution of the vMLP patch to logit difference may appear relatively small, in Appendix
F.4 we argue that this is significant for a single component.

4 Factual Recall
In this section, we show that the interpretability illusion can also be exhibited for the factual recall
capability of language models, a much broader setting than the IOI task. We further show that
the illusory subspace implies an equivalent rank-one edit (in the sense of Meng et al. [2022a]) to
the weights that changes the recalled fact. This provides a simple mechanistic explanation for the
observation (see e.g. [Hase et al., 2023]) that fact editing seems to work even in layers where the fact
is supposedly not stored. Specifically, as we discuss in Section 5, we expect that in practice there will
be many MLP layers where the conditions of our illusion are met – and rank-one fact edits will exist
in all these MLP layers, regardless of whether they are responsible for recalling the fact being edited.

4.1 Finding Illusory 1-Dimensional Patches for Factual Recall

Given a fact expressed as a subject-relation-object triple (s, r, o) (e.g., s = ‘Eiffel Tower’, r =
‘is in’, o = ‘Paris’), we say that a model M recalls the fact (s, r, o) if M completes a prompt
expressing just the (s, r) pair (e.g., ‘The Eiffel Tower is in’) with o. Let us be given two facts (s, r, o)
and (s′, r, o′) for the same relation that a model recalls correctly, with corresponding factual prompts
A expressing (s, r) and B expressing (s′, r) (e.g., r = ‘is in’, A = ‘The Eiffel Tower is in’, B =
‘The Colosseum is in’). In this subsection, we patch from B into A, with the goal of changing the
model’s output from o to o′. Implementation details are given in Appendix H.1.

Results are shown in figure 4. We find a stronger version of the same qualitative phenomena as in the
IOI illusory direction: (i) the directions we find have a strong causal effect (successfully changing o
to o′), but (ii) this effect disappears when we ablate the component in the nullspace of Wout, and (iii)
patching the entire MLP activation instead has a negligible effect on the difference in logits between
the correct and incorrect objects. Further experiments confirming the illusion are in Appendix H.2.

4.2 1-Dimensional Fact Patches Imply Equivalent Rank-1 Fact Edits
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Next, we show that the existence of an ac-
tivation patch as in Subsection 4.1 implies
the existence of a different kind of interven-
tion with a similar effect: a rank-one model
edit to the weights of the MLP layer. Pro-
posed in Meng et al. [2022a], a rank-one
model edit updates the Wout weight of a sin-
gle MLP layer to W ′out = Wout + ab⊤ for
some a ∈ Rdresid ,b ∈ RdMLP .

In Meng et al. [2022a], the authors also pro-
pose a specific kind of rank-one model edit,
abbreviated ROME, whose goal is to make
a model that recalls the fact (s, r, o) recall
(s, r, o′) instead, while minimally modifying
the model otherwise. The edit takes a vec-
tor k ∈ RdMLP representing the subject (e.g.,
an average of its last-token MLP post-gelu
activations) and a vector v ∈ Rdresid which,
when output by the MLP layer, will cause
the model to predict the new object o′ for the
factual prompt (together with some other conditions); see Appendix H.3 for details.

Intuitively, a ‘fact patch’ as in Subsection 4.1 should have a corresponding rank-1 edit with the same
effect: the last subject token MLP activation uA for prompt A takes the role of k, and the patch
modifies the MLP’s output (making it v) to change the model’s output to o′. We make this intuition
formal in Appendix H.5, where we show that for each 1-dimensional activation patch in the post-gelu
activations of an MLP layer, there is a rank-1 model edit to Wout that results in the same change to
the MLP layer’s output at the token where we do the patching.

While this shows that the patch implies a rank-1 edit with the same behavior at the token being
patched, the rank-1 edit is applied permanently to the model, which means that it (unlike the activation
patch) applies to every token. Thus, it is not a priori obvious whether the rank-1 edit will still succeed
in making the model predict o′ instead of o. To this end, in Appendix H.6, we evaluate empirically
how using the rank-1 edit derived in Appendix H.5 instead of the activation patch changes model
predictions, and we find negligible differences.

5 Discussion and Conclusion
Do we expect this illusion to be prevalent? We only exhibit our illusion empirically in two settings,
IOI and factual recall, but we believe it is likely prevalent in practice. Specifically, we expect the
illusion to occur whenever we have an MLP M which is not used in the model’s computation on a
given task, but is between two components A and B which are used, and communicate through the
direction v via the skip connections of intervening layers. This structure has been frequently observed
in the mechanistic interpretability literature [Lieberum et al., 2023, Wang et al., 2023, Olsson et al.,
2022, Geva et al., 2021]: circuits contain components composing with each other separated by
multiple layers, and circuits have often been observed to be sparse, with most components (including
most MLP layers) not playing a significant role.

Under a linear view of features, such a setup likely gives rise to a dormant direction vdormant with
causal effect. Picking an MLP hidden activation u ∈ RdMLP such that Woutu = v gives the causal
part, and is always possible as Wout is empirically full rank (see Appendix I.1). Furthermore, we
can choose vdormant = W+

outv; under the assumption that the MLP layer does not participate in the
task, the activation along this direction should not change as the activation along v changes in the
residual stream. On the other hand, u ∈ RdMLP will be correlated with v if projections of the hidden
activations gelu(Winxresid) on u ‘track well’ the projection of xresid on v. We find empirical evidence
for this in Appendix I.2, suggesting that vdisconnected will also exist.

Takeaways and recommendations. Optimization-based methods using subspace activation patching
can find both faithful (see Appendix D) and illusory features with respect to the model’s computation.
We recommend running such methods in activation bottlenecks such as the residual stream, as well
as using validations beyond end-to-end evaluation to ascertain the precise role of such features.
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[2023a], activation patching has been used to localize model components causally involved in various
behaviors, such as gender bias [Vig et al.], factual recall [Meng et al., 2022a], multiple choice
questions [Lieberum et al., 2023], arithmetic [Stolfo et al., 2023] and natural language reasoning
[Geiger et al., 2021, Wang et al., 2023, Geiger et al., 2023b, Wu et al., 2023], code [Heimersheim and
Janiak], and (in certain regimes) topic/sentiment/style of free-form natural language [Turner et al.,
2023].

Activation patching is an area of active research, and many recent works have extended the method,
with patching paths between components [Goldowsky-Dill et al., 2023], automating the finding
of sparse subgraphs [Conmy et al., 2023], fast approximations [Nanda, 2023], and automating the
verification of hypotheses [Chan et al., 2022]. In particular, pinpointing features to entire model
components is not the end of the story. A wide range of interpretability work [Mikolov et al., 2013,
Conneau et al., 2018, Tenney et al., 2019, Hewitt and Manning, 2019, Burns et al., 2022, Nanda et al.,
2023] suggests the linear representation hypothesis: models encode features as linear subspaces
of component activations that can be arbitrarily rotated with respect to the standard basis (due to
phenomena like superposition, polysemanticity [Arora et al., 2018, Elhage et al., 2022] and lack of
privileged bases [Smolensky, 1986, Elhage et al., 2021]).

Motivated by this, recent work such as Geiger et al. [2023b], Wu et al. [2023], Lieberum et al.
[2023] has generalized activation patching to operate only on linear subspaces of features rather
than patching entire components (heads, layers and neurons). Our work contributes to this research
direction by demonstrating both (i) a common illusion to avoid when looking for such subspaces and
(ii) a detailed case study of successfully localizing a binary feature to a 1-dimensional subspace.

Factual recall. A well-studied domain for discovering and intervening on learned representations
is the localization and editing of factual knowledge in language models [Geva et al., 2023, Meng
et al., 2022b, Wallat et al., 2020, Dai et al., 2022, Hernandez et al., 2023]. A work of particular note
is Meng et al. [2022a], which localizes and edits factual information with a rank-1 intervention on
model weights. However, recent work has shown that rank-1 editing can work even on weights where
the fact supposedly is not encoded [Hase et al., 2023], and that editing a single fact often fails to have
its expected common-sense effect on logically related downstream facts [Cohen et al., 2023, Zhong
et al., 2023].

We contribute to this line of work by showing a formal and empirical connection between activation
patching along 1-dimensional subspaces and rank-1 model editing. In particular, rank-1 model edits
can work by creating a dormant pathway of an MLP layer, regardless of whether the fact is stored
there. This provides a mechanistic explanation for the discrepancy observed in Hase et al. [2023].

Interpretability illusions. Despite the promise of interpretability, it is difficult to be rigorous and
easy to mislead yourself. A common theme in the field is identifying ways that techniques and prior
work may lead to misleading conclusions about of model behavior [Lipton, 2016]. In computer
vision, Adebayo et al. [2018] show that a popular at the time class of pixel attribution methods is
not sensitive to whether or not the model used to produce is has actually been trained or not. In
Geirhos et al. [2023], the authors show how a circuit can be hardcoded into a learned model so that it
fools interpretability methods; this bears some similarity to our illusion, especially its fact editing
counterpart. In natural language processing, Bolukbasi et al. [2021] show that interpreting single
neurons with maximum activating dataset examples may lead to conflicting results across datasets
due to subtle polysemanticity [Elhage et al., 2022].

D Finding and Validating a Faithful Direction Mediating Name Position in
the IOI Task

As a counterpoint to the illusion, in this section we demonstrate a success case for subspace activation
patching and DAS by revisiting the directions vgrad and vresid defined in Subsection 3.1, and arguing
they are faithful to the model’s computation to a high degree. Specifically, we subject these directions
to the same tests we used for the illusory direction vMLP and arrive at significantly different results.
Through this and additional validations, we demonstrate that these directions possess the necessary
and sufficient properties of a successful activation patch – being both correlated with input variation
and causal for the targeted behavior – in an irreducible way.

11



Ruling out the illusion. Let W name movers
Q ∈ R768×192 be the stacked query matrices of the name

mover heads. In Table 1, we show the fractional logit difference and interchange accuracy when
patching vresid and vgrad, as well as their components along kerW name movers

Q (denoted ‘nullspace’)
and its orthogonal complement (denoted ‘causal’, a proxy for the causally relevant subspace of
the residual stream). We observe that the non-nullspace metrics are broadly similar; in particular,
removing the causally disconnected component of vresid does not greatly diminish the effect of
the patch in terms of the logit difference metrics (as it does for vMLP). We also find that vresid is
predominantly in (kerW name movers

Q )⊥ (and so is vgrad, but this is to be expected).

Importantly, since the residual stream activation where vresid and vgrad are patched is a full bottleneck
for the model’s computation, it is not possible for these directions to be causal but dormant (in the
sense of Section 2): there can be no earlier model component that activates this direction in a way
that avoids the patch via a skip connection (unlike for the vMLP direction). Indeed, in Figure 7 in
Appendix G we show that the vresid direction gets written to by the S-Inhibition heads, and in Figure
19 in Appendix J.2, we show they strongly discriminate between the ABB and BAB prompts.

Additional validations. In Appendix G, we further validate these directions’ faithfulness to the
computation of the IOI circuit from Wang et al. [2020] by finding the model components that write to
them and studying how they generalize on the pre-training distribution (OpenWebText); representative
samples annotated with attention scores are shown in Figures 10, 8, 9 in Appendix G.

E Additional Details for Section 2

E.1 The Illusion for Higher-Dimensional Subspaces

In the main text, we mostly discuss the illusion for activation patching of 1-dimensional subspaces
for ease of exposition. Here, we develop a more complete picture of the mechanics of the illusion for
higher-dimensional subspaces.

Let C be a model component taking values in Rd, and let U ⊂ Rd be a linear subspace. Let V be a
matrix whose columns form an orthonormal basis for U . If the C activations for examples A and B
are actA,actB ∈ Rd respectively, patching U from A into B gives the patched activation

actpatchedB = actB + V V ⊤(actA − actB) = (I − V V ⊤)actB + V V ⊤actA

For intuition, note that V V ⊤ is the orthogonal projection on U , so this formula says to replace the
orthogonal projection of actB on U with that of actA, and keep the rest of actB the same.

Generalizing the discussion from Section 2, for the illusion to occur for subspace S, we need S
to be sufficiently aligned with a causally disconnected subspace Vdisconnected that is correlated with
the feature being patched, and a dormant but causal subspace Vdormant which, when set to out of
distribution values, can achieve the wanted causal effect. For example, a particularly simple way in
which this could happen is if we let Vdisconnected, Vdormant be 1-dimensional subspaces (like in the setup
for the 1-dimensional illusion), and we form S by combining Vdisconnected + Vdormant with a number of
orthogonal directions that are approximately constant on the data with respect to the feature we are
patching. These extra directions effectively don’t matter for the patch (because they are cancelled by
the actA − actB term). Given a specific feature, it is likely that such weakly-activating directions
will exist in a high-dimensional activation space. Thus, if the 1-dimensional illusion exist, so will
higher-dimensional ones.

E.2 Illusory 1-Dimensional Patches are Approximately Equal Parts Causally Disconnected
and Dormant

In this subsection, we prove a quantitative corollary of the model of our illusion that suggests that
we should expect illusory patching directions to be of the form v = 1√

2
(vdisconnected + vdormant)

for unit vectors ∥vdisconnected∥2 = ∥vdormant∥2 = 1. In other words, we expect the best illusory
patches to be formed by combining a disconnected and illusory direction with equal coefficients, like
depicted in Figure 1:

Lemma E.1. Suppose we have two distributions of input prompts DA,DB . In the terminology
of Section 2, let vdisconnected ⊥ vdormant be unit vectors such that the subspace spanned by
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vdisconnected is a causally disconnected subspace, and the subspace spanned by vdormant is strongly
dormant, in the sense that the projections of the activations of all examples Dsource ∪ Dbase onto
vdormant are equal to some constant c.

Suppose we form v = vdisconnected cosα + vdormant sinα as a unit-norm linear combination of
the two directions. Then the magnitude of the expected change in projection along vdormant when
patching from xA ∼ DA into xB ∼ DB is maximized when α = π

4 , i.e. cosα = sinα = 1√
2

.

Proof. Recall that the patched activation from xA into xB along v is

actpatched
B = actB + (pA − pB)v (2)

where pA = v⊤actA, pB = v⊤actB are the projections of the two examples’ activations on v. The
change along vdormant is thus

v⊤dormant

(
actpatched

B − actB
)
= (pA − pB) sinα = (v⊤actA − v⊤actB) sinα

= v⊤disconnected(actA − actB) cosα sinα

where we used the assumption that v⊤dormantactA = v⊤disconnectedactB . Hence, the expected change
is

cosα sinα v⊤disconnectedEA∼DA,B∼DB
[actA − actB ] .

The function f(α) = cosα sinα for α ∈ [0, π/2] is maximized for α = π/4, concluding the
proof.

E.3 Formal definitions of disconnected and dormant subspaces

Let M : X → O be a machine learning model that on input x ∈ X outputs a vector y ∈ O of
probabilities over a set of output classes. Let D be a distribution over X , and C be a component of
M, such that for x ∼ D the hidden activation of C is a vector cx ∈ Rd. For a subspace UC ⊂ Rd, we
let ux be the orthogonal projection of cx onto UC . Finally, let MUC←uy (x) be the result of running
M with the input x and setting the orthogonal projection on the subspace UC to uy .

We say U is causally disconnected if MUC←u′(x) = M(x) for all u′ ∈ U . In other words, setting
the value of a causally disconnected subspace to any vector has no effect on model outputs. We
say U is dormant if MUC←uy (x) = M(x) with high probability over x, y ∼ D, but is not causally
disconnected. In other words, a dormant subspace is approximately causally disconnected on the data
distribution, but can have substantial causal effect if set to out of distribution values.

E.4 Concrete mathematical example of the illusion

For a distilled example of the illusion, consider a network A that takes in a real valued input x ∈ R,
computes a three dimensional hidden representation h = WT

1 x, and then a real valued output
y = WT

2 h. Define the weights to be W1 = [1 0 1] and W2 = [0 −2 1] and observe that the
network computes the identity function (see Figure 18 in Appendix J.1 for an illustration). While the
3rd hidden neuron clearly mediates this effect, surprisingly, patching the direction along the sum of
the first two neurons does as well, despite the fact that the 1st neuron is causally disconnected, and
the 2nd is dormant.

Specifically, consider Figure 18. It should be obvious that the hidden unit H3 fully mediates the
information flow from input to output, and that H2 is dormant while H3 is disconnected. However, it
may be surprising that the linear subspace of H2 and H3 defined by the unit vector [ 1√

2
,− 1√

2
] also

fully mediates the information flow, despite it consisting of dormant and disconnected directions.
Activation patching on this subspace leverages the information stored in the disconnected subspace
in order to activate the dormant subspace by fixing it to an out of distribution value. In this way,
activation patching on a subspace can activate a ‘dormant parallel circuit’.
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F Additional Details for Section 3

F.1 Dataset, Model and Evaluation Details for the IOI Task

We use GPT2-Small for the IOI task, with a dataset that spans 216 single-token names, 144 single-
token objects and 75 single-token places, which are split 1 : 1 across a training and test set. Every
example in the data distribution includes (i) an initial clause introducing the indirect object (IO, here
‘Mary’) and the subject (S, here ‘John’), and (ii) a main clause that refers to the subject a second
time. Beyond that, the dataset varies in the two names, the initial clause content, and the main clause
content. Specifically, use three templates as shown below:

Then, [ ] and [ ] had a long and really crazy argument. Afterwards, [ ] said to
Then, [ ] and [ ] had lots of fun at the [place]. Afterwards, [ ] gave a [object] to

Then, [ ] and [ ] were working at the [place]. [ ] decided to give a [object] to

and we use the first two in training and the last in the test set. Thus, the test set relies on unseen
templates, names, objects and places. We used fewer templates than the IOI paper Wang et al. [2020]
in order to simplify tokenization (so that the token positions of our names always align), but our
results also hold with shifted templates like in the IOI paper.

On the test partition of this dataset, GPT2-Small achieves an accuracy of ≈ 91%. The average
difference of logits between the correct and incorrect name is ≈ 3.3, and the logit of the correct name
is greater than that of the incorrect name in ≈ 99% of examples. Note that, while the logit difference
is closely related to the model’s correctness, it being > 0 does not imply that the model makes the
correct prediction, because there could be a third token with a greater logit than both names.

F.2 Details for Computing the Gradient Direction vgrad

For a given example from the test distribution and a given name mover head, we compute the gradient
of the difference of attention scores from the final token position to the 3rd and 5th token in the
sentence (where the two name tokens always are in our data). We then average these gradients over a
large sample of the full test distribution and over the three name mover heads, and finally normalize
the resulting vector to have unit ℓ2 norm.

We note that there is a ‘closed form’ way to compute approximately the same quantity that requires
no optimization. Namely, for a single example we can collect the keys kS , kIO to the name mover
heads at the first two names in the sentence (the S and IO name). Then, for a single name mover
head with query matrix WQ, a maximally causal direction v in the residual stream at the last token
position after layer 8 will be one such that WQv is in the direction of kS − kIO, because the attention
score is simply the dot product between the keys and queries. We can use this to ‘backpropagate’
to v by multiplying with the pseudoinverse W+

Q . This is slightly complicated by the fact that we
have been ignoring layer normalization, which can be approximately accounted for by estimating the
scaling parameters (which tend to concentrate well) from the IOI data distribution. We note that this
approach leads to broadly similar results.

F.3 Training Details for DAS

To train DAS, we always sample examples from the training IOI distribution as described in Appendix
F. We sample equal amounts of pairs of base (which will be patched into) and source (where we take
the activation to patch in from) prompts where the two names are the same between the prompts, and
pairs of prompts where all four names are distinct. We optimize DAS to maximize the logit difference
between the name that should be predicted if the position information from the source example is
correct and the other name.

For training, we use a learned rotation matrix as in the original DAS paper [Geiger et al., 2023b],
parametrized with torch.nn.utils.parametrizations.orthogonal. We use the Adam
optimizer and minibatch training over a training set of several hundred patching pairs. We note that
results remain essentially the same when using a higher number of training examples.
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F.4 Discussion of the Magnitude of the Illusion

While the contribution of the vMLP patch to logit difference may appear relatively small, we note that
this is the result of patching a direction in a single model component at a single token position. Typical
circuits found in real models (including the IOI circuit from Wang et al. [2023]) are often composed
of multiple model components, each of which contribute. In particular, the position signal itself is
written to by 4 heads, and chiefly read by 3 other heads. As computation tends to be distributed,
when patching an individual component accuracy may be a misleading metric (eg patching 1 out of
3 heads is likely insufficient to change the output), and a fractional logit diff indicates a significant
contribution. By contrast, patching in the residual stream is a more potent intervention, because it can
affect all information accumulated in the model that is communicated to downstream components.

F.5 Analyzing the nullspace and rowspace components of vMLP

We note that vMLP decomposes as a causally disconnected and dormant component: we observe that
vMLP is roughly equal parts in kerWout and (kerWout)

⊥, as predicted by the model of the illusion
(see Appendix E.2). We also look at how sensitive the (normalized) components of vMLP in kerWout

and (kerWout)
⊥ are to the information of whether the first/second name is repeated in Figure 20 in

Appendix J.2, and find that, as expected, the causally disconnected component is significantly more
sensitive, further confirming the mechanics of the illusion are at play.

F.6 Random ablation of MLP weights

How certain are we that MLP8 doesn’t actually matter for the IOI task? While we find the IOI paper
analysis convincing, to make our results more robust to the possibility that it does matter, we also
design a further experiment.

Given our conceptual picture of the illusion, the computation performed by the MLP layer where we
find the illusory subspace does not matter as long as it propagates the correlational information about
the position feature from the residual stream to the hidden activations, and as long as the output matrix
Wout is full rank (also, see the discussion in 5). Thus, we expect that if we replace the MLP weights
by randomly chosen ones with the same statistics, we should still be able to exhibit the illusion.

Specifically, we randomly sampled MLP weights and biases such that the norm of the output
activations matches those of MLP8. As random MLPs might lead to nonsensical text generation, we
don’t replace the layer with the random weights, but rather train a subspace using DAS on the MLP
activations, and add the difference between the patched and unpatched output of the random MLP to
the real output of MLP8. This setup finds a subspace that reduces logit difference even more than the
vMLP direction.

This suggests that the existence of the vMLP subspace is less about what information MLP8 contains,
and more about where MLP8 is in the network.

G Additional Details for Section D

Which model components write to the vresid direction? To test how every attention head and MLP
contributes to the value of projections on vMLP, we sampled activations from head and MLP outputs
at the last token position of IOI prompts, and calculated their dot product with vresid (Figure 7). We
found that the dot products of most heads and MLPs was low, and that the S-inhibition heads were
the only heads whose dot product differed between different patterns ABB and BAB. This shows that
only the S-inhibition heads write to the vresid direction (as one would hope). Importantly, this test
separates vresid from the interpretability illusion vMLP . While patching vMLP8 also writes to vresid8
(i.e. vMLP8Wout ≈ vresid8), the MLP layer does not write this subspace on the IOI task (see Figure 3).
This further supports the observation that the vMLP patch activates a dormant pathway in the model.

Generalization beyond the IOI distribution. We also investigate how the subspace generalizes. We
sample prompts from OpenWebText-10k and look at those with particularly high and low activations
in vsinhib. Representative examples are shown in Figure 8 together with the name movers attention
at the position of interest, how the probability changes after subspace ablation, and how the name
movers attention changes.
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Stability of found solution. Finally, we note that solutions found by DAS in the residual stream are
stable, including when trained on a subset of S-inhibition heads (see Figure 5).

Figure 5: Cosine Similarity between learned position subspaces in the S-inhibition heads is high even
when using only a subset of S-inhibition heads for training
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Figure 6: The IOI position subspace activates at words that predict a repeated name. S-inhibition
subspace activations for different IOI prompts per position

H Additional details for Section 4

H.1 Training Details for Fact Patching (Section 4.1)

We patch from the last token of s′ in B to the last token of s in A (prior work has shown that the fact
is retrieved on s [Geva et al., 2023]), and we again use DAS Geiger et al. [2023b] to optimize for
a direction that maximizes the logit difference between o′ and o. We use a selection of examples
from the COUNTERFACT dataset [Meng et al., 2022a] and use GPT-2 XL (1.5B parameters) for
experiments.

We use the first 1000 examples from the COUNTERFACT dataset [Meng et al., 2022a]. We filter the
facts which GPT2-XL correctly recalls. Out of the remaining facts, for each relation we form all pairs
of distinct facts, and we sample 5 such pairs from each relation with at least 5 facts. This results in a
collection of 40 facts spanning 8 different relations.
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Figure 7: S-Inhibition heads but not MLP8 write to the position subspace in the residual stream that
is causally connected to the name movers on the IOI task

H.2 Additional fact patching experiments

In figure 11, we show the distribution of the fractional logit difference metric (see Subsection 3.1 for
a definition) when patching between facts as described in Subsection 4.1. Like in the related Figure 4,
we observe that, while patching along the directions found by DAS achieves strongly negative values
(indicating that the facts are very often successfully changed by the patch), the interventions that
replace the entire MLP layer or only the causally relevant component of the DAS directions have no
such effect.

Next, we observe that the nullspace component of the patching direction is the one similar to the
variation in the inputs (difference of last-token activations at the two subjects). Specifically, in Figure
12, we plot the (absolute value of the) cosine similarity between the difference in activations for
the two last subject tokens, and the nullspace component of the DAS direction. We note that this
similarity is consistently significantly high (note that it can be at most 1, which would indicate perfect
alignment).

Finally, we observe that the nullspace component of the patching direction is a non-trivial part of the
direction in Figure 13, where we plot the distribution of the ℓ2 norm of this component.

H.3 ROME implementation details

ROME takes as input a vector k ∈ RdMLP representing the subject (e.g. an average of last-token
representations of the subject) and a vector v ∈ Rdresid which, when output by the MLP layer, will
cause the model to predict a new object for the factual prompt, but at the same time won’t change
other facts about the subject. ROME modifies the MLP weight by setting W ′out = Wout + ab⊤,
where a ∈ Rdresid ,b ∈ RdMLP are chosen so that W ′outk = v, and the MLP’s output is otherwise
minimally changed. Without loss of generality, the first condition implies that a = v − Woutk
and b⊤k = 1; the second condition is then modeled by minimizing the variance of b⊤x when
x ∼ N (0,Σ) for an empirical estimate Σ ∈ RdMLP×dMLP of the covariance of MLP activations (see
Lemma H.1 in Appendix H for details and a proof).

H.4 ROME as an Optimization Problem

We now review the ROME method from Meng et al. [2022a] and show how it can be characterized as
the solution of a simple optimization problem. Following the terminology of 4.2, let us have an MLP
layer with an output projection Wout, a key vector k ∈ RdMLP and a value vector v ∈ Rdresid .

In Meng et al. [2022a], equation 2, the formula for the rank-1 update to Wout is given by

W ′out = Wout + (v −Woutk)
k⊤Σ−1

k⊤Σ−1k
(3)

where Σ is an empirical estimate of the uncentered covariance of the pre-Wout activations. We derive
the following equivalent characterization of this solution (which may be of independent interest):
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Lemma H.1. Given a matrix Wout ∈ Rdresid×dMLP , a key vector k ∈ RdMLP and a value vector v ∈
Rdresid , let Σ ≻ 0,Σ ∈ RdMLP×dMLP be a positive definite matrix (specifically, the uncentered empirical
covariance), and let x ∼ N (0,Σ) be a normally distributed random vector with zero mean and
covariance Σ. Then, the ROME weight update is W ′out = Wout + ab⊤ where a ∈ Rdresid ,b ∈ RdMLP

solve the optimization problem

min
a,b

trace(Covx [W
′
outx−Woutx]) subject to W ′outk = v.

In other words, the ROME update is the update that causes Wout to output v on input k, and
minimizes the total variance of the extra contribution of the update in the output of the MLP layer
under the assumption that the pre-Wout activations are normally distributed with covariance Σ2.

Proof. Using Ex[xx
⊤] = Σ and the cyclic property of the trace, we see that

trace(Covx [W
′
outx−Woutx]) = ∥a∥22b⊤Σb

We must have ab⊤k = v−Wk, so without loss of generality we can rescale a,b so that a = v−Wk.
Then, we want to solve the problem

min
b

b⊤Σb subject to b⊤k = 1

which we can solve using Lagrange multipliers. The Lagrangian is

L(b, λ) = 1

2
b⊤Σb− λb⊤k

and the derivative w.r.t. b is Σb− λk = 0, which tells us that b is in the direction of Σ−1k. Then
the constraint b⊤k = 1 forces the constant of proportionality, and we arrive at b = k⊤Σ−1

k⊤Σ−1k

H.5 Connection between 1-dimensional activation patching and model editing

Lemma H.2. Given prompts A and B, two token positions tA, tB , and an MLP layer with output
projection weight Wout ∈ Rdresid×dMLP , let uA, uB ∈ RdMLP be the respective (post-nonlinearity)
activations at these token positions in this layer. If v is a direction in the activation space of the MLP
layer, then there exists a ROME edit W ′out = Wout + ab⊤ such that the activation patch from uB

into uA along v and the edit result in equal outputs of the MLP layer at token tA when run on prompt
A. Moreover, the ROME edit is given by

a =
(
(uB − uA)

⊤v
)
Woutv and any b that satisfies b⊤uA = 1.

Choosing b = Σ−1uA

uT
AΣ−1uA

minimizes the change to the model (in the sense of Meng et al. [2022a]) over
all such rank-1 edits.

Proof. The activation after patching from B into A along v is u′A = uA + ((uB − uA)
⊤v)v, which

means that the change in the output of the MLP layer at this token will be

Woutu
′
A −WoutuA = ((uB − uA)

⊤v)Woutv

The change introduced by a fact edit at this token is

W ′outuA −WoutuA = ab⊤uA =
(
b⊤uA

) (
(uB − uA)

⊤v
)
Woutv

and the two are equal because b⊤uA = 1.

To find the b that minimizes the change to the model, we minimize the variance of b⊤x when
x ∼ N (0,Σ) subject to b⊤uA = 1. The variance is equal to b⊤Σb, so we have a constrained (convex)
minimization problem

min
1

2
b⊤Σb subject to b⊤uA = 1

2Note that in practice Wout may be singular or poorly conditioned, because the layer normalization encour-
ages features to sum to zero, which could to some extent also persist after a non-linearity. If this is the case, all
our results apply with Σ+ instead of Σ−1
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The rest of the proof is the same as in Lemma H.1. Namely, we can solve this optimization problem
using Lagrange multiplies. The Lagrangian is

L(b, λ) = 1

2
b⊤Σb− λb⊤uA

and the derivative w.r.t. b is Σb− λuA = 0, which tells us that b is in the direction of Σ−1uA. Then
the constraint b⊤uA = 1 forces the constant of proportionality.

H.6 Additional experiments comparing fact patching and rank-1 editing

In Figure 14, we plot the distributions of the logit difference between the correct object for a fact
and the object we are trying to substitute when patching the 1-dimensional subspaces found by DAS,
and performing the equivalent rank-1 weight edit according to Lemma H.2. We observe that the two
metrics quite closely track each other, indicating that the additional effects of using a weight edit (as
opposed to only intervening at a single token) are negligible.

Similarly, in Figure 15, we show the success rate of the the two methods in terms of making the
model output the object of the fact we are patching from. Again, we observe that they quite closely
track each other.

I Why Do We Expect the Illusion to be Prevalent in Practice?

I.1 MLP weights are full-rank matrices

In figure 16, we plot the 100 smallest singular values of the MLP weights in GPT2-Small for all 12
layers. We observe that they the vast majority are bounded well away from 0. This confirms that both
MLP weights are full-rank transformations.

I.2 Features in the residual stream propagate to hidden MLP activations

Intuition. Suppose we have two classes of examples that are linearly separable in the residual stream.
The transformation from the residual stream to the hidden MLP activations is a linear map followed
by a nonlinearity, specifically x 7→ gelu(Winx). As we observed in I.1, the Win matrix is full-rank,
meaning that all the information linearly present in x will also be so in Winx. Even better, since Win

maps x from a dresid-dimensional space to a dMLP = 4dresid-dimensional space, this should intuitively
make it much easier to linearly separate the points, because in a higher-dimensional space there
are many more linear separators. On the other hand, the non-linearity has an opposite effect: by
compressing the space of activations, it makes it harder for points to be separable. So it is a priori
unclear which intuition is decisive.

Empirical validation. However, it turns out that empirically this is not such a problem. To test this, we
run the model GPT2-Small on random samples from its data distribution (we used OpenWebText-10k),
and extract 2000 activations of an MLP-layer after the non-linearity. We train a linear regression with
ℓ2-regularization to recover the dot product of the residual stream immediately before the MLP-layer
of interest and a randomly chosen direction. We repeat this experiment with different random vectors
and for each layer. We observe that all regressions are better than chance and explain a significant
amount of variance on the held-out test set (R2 = 0.71 ± 0.17,MSE = 0.31 ± 0.18, p < 0.005).
Results are shown in Figure 17 (right) (every marker corresponds to one regression model using a
different random direction).

The position information in the IOI task is really a binary feature, so we are also interested in whether
binary information in general is linearly recoverable from the MLP activations. To test this, we
sample activations from the model run on randomly-sampled prompts. This time however, we add or
subtract a multiple of a random direction v to the residual stream activation u, and calculate the MLP
activations using this new residual stream vector u′:

u′ = u+ y × z × ∥u∥2 × v

where y ∈ {−1, 1} is uniformly random, z is a scaling factor we manipulate, and v is a randomly
chosen direction of unit norm. For each classifier, we randomly sample a direction v that we either
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add or subtract (using y) from the residual stream. The classifier is trained to predict y. We rescale v
to match the average norm of a residual vector and then scale it with a small scalar z.

Then, a logistic classifier is trained on 1600 samples. Again, we repeat this experiment for different v
and z, and for each layer. We observe that the classifier works quite well across layers even with very
small values of z (still, accuracy drops for z = 0.0001). Results are shown in Figure 17 (right), and
Table 2.

Table 2: Mean Accuracy for Different Values of z
z Mean Accuracy

0.0001 0.69
0.001 0.83
0.01 0.87
0.1 0.996

J Supplementary Figures

J.1 Additional Figures for Section 2

J.2 Additional Figures for Section 3
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Figure 17: Recovering residual stream features linearly from hidden MLP activations: classification
(left) and regression (right).
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H1 := x
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(a) The network A that computes the iden-
tity function. The hidden unit H3 stores the
value of the input and passes this to the out-
put, while the unit H2 is dormant and H1 is
disconnected. However, the linear subspace
of H1 and H3 defined by the unit vector
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] fully mediates the information

flow from input to output just like the unit
H3.
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Figure 18: Diagrams of small linear networks illustrating a concrete instantiation of the interpretability
illusion, alongside a subspace faithful to a model’s computation.
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