
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Disentangling Recognition and Decision Regrets
in Image-Based Reinforcement Learning

Anonymous authors
Paper under double-blind review

Keywords: image-based reinforcement learning, observational overfitting, over-specific
representations, under-specific representations, recognition regret, decision regret

Summary
In image-based reinforcement learning (RL), policies usually operate in two steps: first

extracting lower-dimensional features from raw images (the “recognition” step), and then
taking actions based on the extracted features (the “decision” step). Extracting features that
are spuriously correlated with performance or irrelevant for decision-making can lead to poor
generalization performance, known as observational overfitting in image-based RL. In such
cases, it can be hard to quantify how much of the error can be attributed to poor feature extraction
vs. poor decision-making. To disentangle the two sources of error, we introduce the notions of
recognition regret and decision regret. Using these notions, we characterize and disambiguate
the two distinct causes behind observational overfitting: over-specific representations, which
include features that are not needed for optimal decision-making (leading to high decision
regret), vs. under-specific representations, which only include a limited set of features that were
spuriously correlated with performance during training (leading to high recognition regret).
Finally, we provide illustrative examples of observational overfitting due to both over-specific
and under-specific representations in maze environments and the Atari game Pong.

Contribution(s)
1. We define recognition and decision regrets, which disentangle the regret induced by poor

recognition policies vs. poor decision policies.
Context: In image-based RL, most agents first extract features from images and then take
actions based on the extracted features. When an RL agent does not perform well (measured
by its regret), it is hard to tell whether this is due to a failure to extract features or a failure
to plan good actions. Our definitions break down overall regret into two components that
attribute it to one of these two failure modes.

2. By analyzing generalization performance through recognition and decision regrets, we
characterize over-specific and under-specific representations as two distinct modes of obser-
vational overfitting in image-based RL.
Context: Observational overfitting is a phenomenon in image-based RL that an agent learns
to rely on information in the image that does not actually constitute a part of the environment
state (like decorative elements in a video game) (Song et al., 2020). Using the notions of
recognition and decision regrets, we identify this phenomenon can occur in two distinct
forms: learning over-specific representations that include irrelevant features (not informative
of the actual state) vs. under-specific representations that only include spurious features
(correlated with the actual state but only during training, the correlations do not generalize).

3. We provide illustrative examples of observational overfitting due to both over-specific and
under-specific representations in maze environments as well as the Atari game Pong.
Context: These two environments contrast each other well in terms of their dimensionality,
and they are commonly considered when exploring generalization in RL (e.g. Sonar et al.,
2021; Taiga et al., 2023).

Disentangling Recognition and Decision Regrets in Image-Based Reinforcement Learning

Disentangling Recognition and Decision Regrets
in Image-Based Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

In image-based reinforcement learning (RL), policies usually operate in two steps: first1
extracting lower-dimensional features from raw images (the “recognition” step), and then2
taking actions based on the extracted features (the “decision” step). Extracting features3
that are spuriously correlated with performance or irrelevant for decision-making4
can lead to poor generalization performance, known as observational overfitting in5
image-based RL. In such cases, it can be hard to quantify how much of the error can6
be attributed to poor feature extraction vs. poor decision-making. To disentangle the7
two sources of error, we introduce the notions of recognition regret and decision regret.8
Using these notions, we characterize and disambiguate the two distinct causes behind9
observational overfitting: over-specific representations, which include features that are10
not needed for optimal decision-making (leading to high decision regret), vs. under-11
specific representations, which only include a limited set of features that were spuriously12
correlated with performance during training (leading to high recognition regret). Finally,13
we provide illustrative examples of observational overfitting due to both over-specific14
and under-specific representations in maze environments and the Atari game Pong.15

1 Introduction16

Observation
xt ∼ ω(st)

ρ′ ∈ ∆(Z)X

Encoder Representation
zt ∼ ρ′(xt)

π ∈ ∆(A)Z

Output Head

at

Action
at ∼ π(zt)

Agent

Figure 1: Block diagram of an agent consisting of a recognition
policy (encoder) followed by a decision policy (output head).

In image-based reinforcement learning17
(RL), it is common for agents to act in two18
steps by following two sub-policies one19
after another (e.g. the popular RL pack-20
age Stable Baselines3, Raffin et al., 2021):21
(i) First, a recognition policy generates22
representations of input images by extract-23
ing lower-dimensional features from high-24
dimensional pixels. (ii) Then, a decision25
policy generates actions based on those representations (see Figure 1). Naturally, if an agent acting in26
this way is performing poorly, this would be partly due to poor feature extraction and partly due to poor27
decision-making, in other words, partly because the recognition policy is suboptimal and partly be-28
cause the decision policy is suboptimal. Here, identifying which policy is the main source of error in an29
underperforming RL system can provide crucial information for debugging and improving that system.30
However, quantifying the individual contribution of each policy to the overall error can be challenging,31
especially when agents are trained in an end-to-end fashion and both policies are optimized jointly.32

Our goal in this paper is to disentangle these two potential sources of error, namely poor recognition33
vs. poor decision-making. As a motivating example of how such a distinction can play an important34
role in building RL systems, consider observational overfitting typically encountered in image-based35
RL (Song et al., 2020): Image-based policies often do not generalize well to unseen scenarios because36
they fail to extract critical features that need to be identified in images to be able to make good37

1

Under review for RLC 2025, to be published in RLJ 2025

decisions. Instead, they end up extracting either irrelevant features that should not matter when38
making decisions or spurious features that were mistakenly correlated with performance during39
training. As an example of irrelevant features, a self-driving car might encode in its representations40
the makes and models of other cars in the traffic although good driving does not require recognizing41
car makes and models, and consequently, might struggle when encountering a new car with a never-42
before-seen make and model. As an example of spurious features, a self-navigating robot might43
memorize landmarks in the background as cues for when to perform certain maneuvers rather than44
identifying actual obstacles, and consequently, might fail to navigate a new course when the same45
landmarks are no longer there. In order to avoid observational overfitting, we should be able to tell46
when a recognition policy fails to extract critical features over irrelevant or spurious features.47

We achieve our goal of disentangling the error induced by an agent’s recognition policy vs. their48
decision policy by introducing the notions of recognition regret and decision regret. Conventionally,49
regret measures the difference between an agent’s performance and the best possible performance of50
any agent. Our regret notions break this conventional definition into two parts: (i) First, relying on51
representations generated by a given recognition policy as input to decision policies, rather than the52
original images directly, might already reduce the best performance that can possibly be achieved by53
any decision policy—the difference is the recognition regret. (ii) Then, a given decision policy might54
still fall short of achieving the best possible performance of any decision policy—the difference is55
the decision regret. In other words, the recognition regret measures how much the representations of56
a given recognition policy bottlenecks the down-stream performance of decision policies while the57
decision regret measures how much potential performance is missed out by a given decision policy.58

Making use of our definitions, we characterize and disambiguate two distinct causes behind observa-59
tional overfitting: over-specificity or under-specificity of representations generated by recognition60
policies. Over-specific representations include “too many” features, often irrelevant ones in addition61
to critical ones. Since these representations still include the critical features, they do not necessarily62
limit the downstream performance of decision policies and hence do not incur much recognition63
regret. However, the presence of irrelevant features might cause decision policies to treat images with64
similar critical features as if they are unrelated when they do not share the same irrelevant features,65
which would lead to high decision regret. In contrast, under-specific representations include “too few”66
features, usually only capturing spurious indicators of performance during training. This might cause67
decision policies to treat unrelated images as if they are similar to each other just because they feature68
the same spurious indicators, which would lead to high recognition regret over decision regret.69

Contributions Our contributions are three-fold: First, in Section 3, we define recognition and70
decision regrets, which disentangle the regret induced by poor recognition policies vs. poor decision71
policies. Next, in Section 4, we apply these definitions to the problem setting of generalization in RL.72
Through recognition and decision regrets in terms of generalization performance, we characterize73
over-specific and under-specific representations as two distinct modes of observational overfitting in74
image-based RL. Finally, in Section 5, we provide illustrative examples of observational overfitting75
due to both over-specific and under-specific representations in maze environments as well as the Atari76
game Pong. These examples demonstrate that the notions of recognition and decision regrets can be77
powerful tools in articulating the cause of observational overfitting in image-based RL applications.78

2 Related Work79

Representations in Image-Based RL In RL, algorithms for training policies in the form of neural80
networks generally fall into one of two categories: action-value fitting methods such as Mnih et al.81
(2015) and policy gradient methods such as Mnih et al. (2016); Schulman et al. (2017). When these82
neural networks take images as input, one of the most common architectures used in practice is83
an encoder consisting of convolutional layers followed by either an action-value head if using an84
action-value fitting method (e.g. Mnih et al., 2015; Raffin et al., 2021), or followed by a policy head85
for generating actions and a value head for estimating values if using a policy gradient method (e.g.86
Cobbe et al., 2019; Raffin et al., 2021). With this type of architecture (an encoder followed by output87
heads), the intermediary output of the encoder can be viewed as a lower-dimensional representation88

2

Disentangling Recognition and Decision Regrets in Image-Based Reinforcement Learning

of the input images. While a lot of previous work has focused on learning “better” representations for89
various purposes (e.g. Sonar et al., 2021; Raileanu & Fergus, 2021; Dabney et al., 2021; Agarwal90
et al., 2021; Stooke et al., 2021; Zhang et al., 2022; Eysenbach et al., 2022), our focus in this paper is91
to quantify the quality of an encoder’s representations as far as its contribution to the end performance92
is concerned. We capture the performance loss due to a poor encoder (i.e. a poor recognition policy)93
through recognition regret. Meanwhile, any additional losses that might be incurred by the subsequent94
action-value/policy/value heads (i.e. the decision policies) are captured through decision regret.95

Others have also asked what constitutes a “good” representation in RL: According to Bellemare96
et al. (2019); Le Lan et al. (2022), representations should be sufficient in approximating the value97
of all stationary policies. Meanwhile, Ghosh & Bellemare (2020); Wang et al. (2024) survey different98
representation learning schemes and evaluate a variety of properties such as stability/robustness,99
capacity, and redundancy. Different from all this work, we consider the representations extracted by100
a recognition policy not in isolation but in relation to a specific decision policies, which may have101
been trained jointly with the recognition policy or subsequently (i.e. recognition regret w.r.t. decision102
regret). According to our work, representations should not only limit performance (cf. recognition103
regret) but also facilitate the training of high-performing decision policies (cf. decision regret).104
Under-specific representations fail at the former while over-specific representations fail at the latter.105

Generalization in RL & Observational Overfitting Training policies that generalize beyond106
their particular training conditions remain a significant challenge in RL (Zhang et al., 2018a; Packer107
et al., 2018; Nichol et al., 2018). This is partly because policies may overfit due to a multitude of108
confounded factors that can be hard to disambiguate from each other. For instance, some of these109
factors may include the characteristics of the training environment like whether it is deterministic or110
not (Bellemare et al., 2013; Pinto et al., 2017; Rajeswaran et al., 2017; Machado et al., 2018), the111
method of exploration during training like how many initial states are sampled (Zhang et al., 2018a;b),112
or even the hyper-parameters of the training algorithms like the discount factor γ (Jiang et al., 2015).113

We focus our attention on observational overfitting specifically as characterized by (Song et al.,114
2020) because of its close relationship to learned representations in image-based RL. This particular115
type of overfitting occurs in cases where different environments are all semantically the same with116
the same state spaces and the same transition dynamics but generate different images/observations.117
For instance, a game might have the same underlying game mechanics in all of its levels but each118
level might have its own unique art style (e.g. the popular generalization benchmarks Nichol et al.,119
2018; Cobbe et al., 2019). In such cases, if a policy fails to learn representations that accurately120
identify the shared states between different environments, and instead extracts features that are merely121
cosmetic and differ from one environment to another, then that policy might fail to generalize to122
new environments that have unseen observation dynamics (Sonar et al., 2021). In this paper, we123
go one step beyond Song et al. (2020) and describe two distinct modes of observational overfitting:124
due to over-specificity, where the policy successfully extracts the true state but also features that are125
irrelevant to transition dynamics, and due to under-specificity, where the policy fails to extract the126
true state in the first place and ends up relying on spurious features that do not generalize.127

3 Defining Recognition and Decision Regrets128

In this section, we give formal definitions of decision regret and recognition regret. We also aim129
to provide an intuitive understanding of these definitions through a worked example in Section 3.1130
and empirical examples in Section 3.2. Later in Section 4, we will apply these two concepts to131
the problem of generalization and describe two potential causes behind observational overfitting:132
over-specific vs. under-specific representations. Finally in Section 5, we will provide illustrative133
examples of both these causes in action.134

Environments Consider partially-observable environments: ε = (σ, τ, ω, r) with state space S,135
action space A, and observation space X , where σ ∈ ∆(S) is the initial state distribution, τ ∈136
∆(S)S×A is the transition dynamics, ω ∈ ∆(X)S is the observation dynamics, and r ∈ ∆(R)S137
is the reward dynamics. Beginning from an initial state s1 ∼ σ, at each time step t ∈ {1, 2, . . .},138

3

Under review for RLC 2025, to be published in RLJ 2025

the environment emits an observation xt ∼ ω(st) based on the current state, gives out a reward139
rt ∼ r(st), and finally transitions into a new state st+1 ∼ τ(st, at) based on the actions of an agent.140

Recognition & Decision Policies For some representation space Z, we denote with ρ ∈ ∆(Z)Z×X141
recognition policies and with π ∈ ∆(A)Z decision policies. Beginning from an initial representation142
z0 ∈ Z, an agent following these policies first generates an updated representation zt ∼ ρ(zt−1, xt)143
based on the most recent observation according to the recognition policy and then takes an action144
at ∼ π(zt) based on the updated representation according to the decision policy. For agents with145
no memory, the recognition policy would be a function of the most recent observation only (i.e. an146
encoder) such that zt ∼ ρ(zt−1, xt)

.
= ρ′(xt) where ρ′ ∈ ∆(Z)X . Given a pair of recognition and147

decision policies (ρ0, π0) and a discount factor γ ∈ (0, 1), their (discounted) value in environment ε is148

Vε(ρ0, π0) = Eε,ρ0,π0

[∑
tγ

trt
]

(1)

Recognition & Decision Regrets Having defined value, we can now quantify the suboptimality of149
a given policy (ρ0, π0) in environment ε through its regret, which is simply the gap between its value150
and the optimal value V ∗

ε (i.e. how much of the attainable value is missed out by the given policy):151

Rε(ρ0, π0)
.
= V ∗

ε − Vε(ρ0, π0)
.
= maxρ,π Vε(ρ, π)− Vε(ρ0, π0) (2)

We decompose this regret into two parts, recognition regret and decision regret respectively:152

Rrec
ε (ρ0)

.
= maxρ,π Vε(ρ, π)−maxπ Vε(ρ0, π) (3)

Rdec
ε (ρ0, π0)

.
= maxπ Vε(ρ0, π)− Vε(ρ0, π0) (4)

such that R = Rrec + Rdec. Intuitively, the recognition regret measures how much ρ0 alone limits153
the value attainable by subsequent decision policies. While generally, the value can be as high as154
the optimal value V ∗ = maxρ,π V (ρ, π), when conditioned on ρ0 specifically, it becomes bounded155
by maxπ V (ρ0, π) ≤ V ∗ (and the difference is defined as Rrec). Meanwhile, the decision regret156
measures how much of the value still attainable after conditioning on ρ0 is missed out by π0.157
Although the value can still be as high as maxπ V (ρ0, π) under ρ0, pairing ρ0 with π0 leads only158
to a value of V (ρ0, π0) (and the difference is defined as Rdec).159

3.1 A Worked Example160

s=0 r=0, x= z=0

s=1 r=0, x= z=1

s=2 r=1, x= z=2

a=0

a=1a=0

a=1a=0

a=1

Figure 2: States (left), observations (center), and rep-
resentations (right) for our 3-state example at t=14.

To illustrate our definitions, we consider the sim-161
ple 3-state environment with S = {0, 1, 2} shown162
in Figure 2. Only state 2 produces a reward so the163
optimal policy takes action 1 in states 0 and 1, and164
action 0 in state 2, since this ensures we achieve165
reward 1 in half of the time steps. If the initial166
state is 0, the optimal value in this environment is167
given by v0 in the equations v0 = γv1, v1 = γv2,168
v2 = 1 + γv1, that is V ∗ = γ2 + γ4 + · · · ,169
which equals 4.263 when the discount factor is170
γ = 0.9. The observation space X is a union of171
image spaces ∪i∈S,t∈{1,2,...}Iit, where Iit is a set of noisy representations of the number i, with a172
clear black representation of the time t in the top right corner. The colors of the integers in I0t, I1t, I2t173
are red, green, blue respectively. When st = i, observation xt is an image in Iit selected randomly.174

The Recognition Policy The recognition policy ρ is a function of the most recent observation only175
and is defined by a mapping ρ′(x) from each image x to the representation space Z = {0, 1, 2} (hence176
Z = S). The optimal recognition policy “should” recognize the depiction of st in the image (and177
ignore the time in the top right corner). However, the noise in the images means that I0t, I1t, I2t are178
hard to distinguish and so consider a suboptimal policy ρ′0 defined for some error parameter δ. When179
st = i, with probability 1− δ, ρ′0(xt) = i (i.e. the recognition policy is correct), and with probability180
δ, ρ′0(xt) is uniformly distributed across Z (i.e. the recognition policy makes an arbitrary choice).181

4

Disentangling Recognition and Decision Regrets in Image-Based Reinforcement Learning

When δ is small, the optimal decision policy is still to take action 1 in states 0 and 1, and action 0182
in state 2 (since we always want to get to state 2 as soon as possible). However, with probability δ,183
ρ′0(xt) is a random element from Z due to incorrect recognition, and when that happens the action184
is 1 with probability 2/3 and 0 with probability 1/3. The value in the environment is now given185
by v0 in the equations v0 = γv0(δ/3) + γv1(1 − δ/3), v1 = γv0(δ/3) + γv2(1 − δ/3), v2 =186
1 + γv0(2δ/3) + γv1(1 − 2δ/3). When γ = 0.9 and δ = 0.1, the solution to these equations is187
(v0, v1, v2) = (3.992, 4.451, 4.978) hence the recognition regret Rrec(ρ0) = 4.263−3.992 = 0.271.188

The Decision Policy Suppose we now couple this suboptimal recognition policy with a δ-optimal189
decision policy π0, meaning one that based on the state recognition takes the optimal action with190
probability 1 − δ and a random action with probability δ. If we combine the recognition and191
decision errors, if the true state is 0 then π0 takes the wrong action 0 with probability δ/3 + δ/2,192
if the true state is 1 then π0 takes the wrong action 0 with probability δ/3 + δ/2, and if the193
true state is 2 then π0 takes the wrong action 1 with probability 2δ/3 + δ/2. The value in the194
environment is now given by v0 in the equations v0 = γv0(δ/3 + δ/2) + γv1(1 − δ/3 − δ/2),195
v1 = γv0(δ/3 + δ/2) + γv2(1− δ/3 + δ/2), v2 = 1 + γv0(2δ/3 + δ/2) + γv1(1− 2δ/3− δ/2).196
When γ = 0.9 and δ = 0.1, the solution to these equations is (v0, v1, v2) = (3.680, 4.126, 4.666)197
hence the decision regret Rdec(ρ0, π0) = 3.992− 3.680 = 0.312.198

3.2 Empirical Examples199

To illustrate our definitions further, we also provide empirical examples where we intentionally200
construct suboptimal decision policies and suboptimal recognition policies and highlight how the201
values of Rrec and Rdec differ between the two scenarios we construct.202

Setup We consider two image-based environments: Minigrid, which is a maze environment where203
the agent needs to navigate around walls to reach some target (Chevalier-Boisvert et al., 2023), and204
Pong, which is an Atari game where the agent aims to score points against a computer opponent205
(Towers et al., 2023). In both environments, we consider policies with the same type of architecture,206
where the recognition policy, z = ρCNN(x), is given by a convolutional neural network (CNN) and207
the decision policy, a ∼ πMLP(z), is given by a multi-layer perceptron (MLP), and we train these208
policies using the PPO algorithm (Schulman et al., 2017) from the skrl package (Serrano-Muñoz209
et al., 2023). When presenting results, we shift and scale rewards so that the regret is at most one.210
Details regarding the setup can be found in the supplementary material.211

Suboptimal Decision Policies We construct agents with suboptimal decision policies by restricting212
them to occasionally take random actions. First, we modify the network πMLP, denoting with π̃ the213
resulting decision policy, such that214

a ∼ π̃(z) =
{

Uniform(A) with probability p

πMLP(z) with probability 1−p
(5)

where p ∈ [0, 1] is the probability of taking a forced random action and Uniform(A) is the uniform215
distribution over A. Then, we train the weights of the two networks, ρCNN and πMLP, as usual via PPO.216

In this scenario, the occasional random actions would inevitably induce some regret R(ρCNN, π̃).217
However, maximizing the rewards when actions are not forced to be taken randomly would still require218
finding a near-optimal ρCNN and πMLP since non-random actions are still generated by ρCNN ◦ πMLP.219
Therefore, we would expect that V (ρCNN, πMLP) ≈ V ∗ and πMLP ≈ argmaxπ V (ρCNN, π), and220
hence, Rrec(ρCNN) = V ∗ −maxπ V (ρCNN, π) ≈ 0. In other words, the occasional random actions221
should not induce much recognition regret but rather induce decision regret.222

Figure 3 confirms this intuition, where we plot R, Rrec, Rdec of (ρCNN, π̃) for varying p on the left-side223
panels. Indeed, an increasing probability of random actions leads to increasing regret as well which224
is predominantly decision regret in both Minigrid and Pong. In these panels, plotting Rrec and Rdec225
requires estimating maxπ V (ρCNN, π), which we achieve by fixing the weights of ρCNN, setting p = 0226
to remove any restrictions on πMLP so that π̃ = πMLP, and re-training the weights of πMLP.227

5

Under review for RLC 2025, to be published in RLJ 2025

0.1 0.2 0.3 0.4 0.5
Random Action Probability

0.0

0.1

0.2

0.3

0.4 R
Rrec

Rdec

0.1 0.2 0.3 0.4 0.5
Observation Masking Probability

0.0

0.1

0.2

0.3

0.4 R
Rrec

Rdec

(a) Minigrid

0.1 0.2 0.3 0.4 0.5
Random Action Probability

0.0

0.2

0.4

0.6

0.8
R
Rrec

Rdec

0.1 0.2 0.3 0.4 0.5
Observation Masking Probability

0.0

0.2

0.4

0.6

0.8
R
Rrec

Rdec

(b) Pong

Figure 3: Recognition and Decision Regrets under Randomized Actions and Masked Observations. Both
scenarios lead to regret. For random actions, it is mostly decision regret, indicating: Even when forced to
occasionally take random actions, agents still learn useful representations of their environment (to be able to op-
timize their non-random actions). For masked observations, it is recognition regret, indicating: Partially masked
observations fundamentally limit the agent’s ability to optimize their actions regardless of their decision policy.

Suboptimal Recognition Policies We construct agents with suboptimal recognition policies by228
randomly masking parts of the images/observations before feeding them forward to an optimal229
agent. First, we train the weights of ρCNN and πMLP without any modifications. Then, letting230
X = RW×H×C be the space of W -by-H images with C channels, we modify the (pre-trained)231
network ρCNN, denoting with ρ̃ the resulting recognition policy, such that232

z = ρ̃(x) = ρCNN(x⊙m), mijk =
{
0 w/ prob. p

1 w/ prob. 1−p
(6)

where p ∈ (0, 1) is the probablity of masking an individual pixel-channel, m ∈ {0, 1}W×H×C is a233
randomly sampled masking vector, and ⊙ denotes element-wise multiplication.234

In this scenario, the partially masked observations would induce some regret R(ρ̃, πCNN) as before.235
However this time, we would expect most of that regret to be recognition regret since switching from236
ρCNN to ρ̃ would limit the performance of all decision policies π not just πCNN specifically.237

Again, Figure 3 confirms this intuition, where we plot R, Rrec, Rdec of (ρ̃, πMLP) for varying p on the238
right-side panels: An increasing masking probability leads to increasing regret that is predominantly239
recognition regret in both Minigrid and Pong. Just like before, plotting Rrec and Rdec in these panels240
requires estimating maxπ V (ρ̃, π), which we achieve by fixing the weights of ρCNN and the value of241
p so that the recognition policy ρ̃ is completely fixed, and then retraining the weights of πMLP.242

4 Practical Application:243

Generalization in terms of Recognition and Decision Regrets244

In practice, it is not always possible to directly measure the decision, recognition, or overall regret245
of policies as these metrics require knowing optimal policies under various constraints. Often, our246
goal is to find such optimal policies in the first place. For instance, estimating maxπ V (ρ0, π) would247
require us to optimize a decision policy given a recognition policy. Suppose we happen to have a248
method to do so with the result being π̂∗ ≈ argmaxπ V (ρ0, π). Then, we can estimate the decision249
regret as Rdec ≈ V (ρ0, π̂

∗)− V (ρ0, π0), which is indeed what we did in our empirical examples in250
Section 3.2. But in a practical application, the decision policy we are interested in analyzing, which251
we have been denoting as π0, would most likely be the same policy as π̂∗ in the first place, rendering252
our estimate meaningless as it would be equal to zero identically.253

However, when measuring generalization performance, that is the performance of policies optimized254
in some training environment but evaluated in some other test environment, then it can be possible255
to estimate recognition and decision regrets in a meaningful way (essentially by computing regret256
via policies optimized in the test environment to analyze policies that are optimized in the training257
environment). In this section, we develop this idea as a practical application of our definitions in258
Section 3. First, we introduce the notion of generalization regret to quantify how much performance259
is missed out in the test environment due to suboptimal generalization from the training environment.260
Then, similar to our approach in the previous section, we decompose generalization regret into261

6

Disentangling Recognition and Decision Regrets in Image-Based Reinforcement Learning

recognition and decision components. These two components allow us to characterize over-specific262
vs. under-specific representations, which we exemplify later in Section 5.263

Generalization Regret Instead of a single environment ε, we now consider two different envi-264
ronments: a training environment εtrain and a test environment εtest, which we denote together as265
E = (εtrain, εtest). For instance, if we are interested in observational overfitting, these two environments266
might differ in terms of their observation dynamics ω (but not τ). Moreover, suppose that we are given267
a learning algorithm L for training policies such that L(ε) .

= (Lρ(ε),Lπ(ε)) ≈ argmaxρ,π Vε(ρ, π)268
and Lπ(ε|ρ0) ≈ argmaxπ Vε(ρ0, π). Then, the generalization performance of policies trained in εtrain269
via L but tested in εtest is given by Vεtest(L(εtrain)). Similar to regret in Section 3, we can consider this270
performance relative to the best possible test performance, which we call the generalization regret:271

GRE(L) = V ∗
εtest − Vεtest(L(εtrain)) (7)

Estimating this metric still requires knowing the optimal test policy argmaxρ,π Vεtest(ρ, π). However,272
unlike the case with regular regret, we can now obtain a meaningful estimate of GR by using policies273
L(εtest) trained directly in the test environment as a proxy for the optimal test policy (since these274
policies are now distinctly different from the policies L(εtrain) trained originally). This results in275
the following estimation of the generalization regret:276

ĜRE(L) = Vεtest(L(εtest))− Vεtest(L(εtrain)) (8)

which measures how much the test performance could have been improved if it were to be possible277
to train policies directly in the test environment. Notice the subtle difference between this and GR:278
The latter measures how much of the test performance is missed out by training policies only in the279
training environment. When the policies trained in the training environment are already generalizable280
to the test environment, that is when GR = 0, for sensible algorithms L, ĜR should also be zero,281
meaning no performance gain should be possible by re-training policies in the test environment.282

Relationship with Generalization Error Notably, the generalization regret is closely related to283
the generalization error as previously defined by Zhang et al. (2018a):284

GEE(L) = Vεtrain(L(εtrain))− Vεtest(L(εtrain)) (9)

which measures how much performance is retained when the policies trained in the training environ-285
ment are rolled out in the test environment. Both definitions are ultimately concerned with the same286
generalization performance given by Vεtest(L(εtrain)). The difference is that, while GE measures this287
performance relative to the training performance achieved in the training environment, ĜR measures288
it relative to the training performance that could have been achieved in the test environment. However,289
our definition ĜR, being a type of regret, lends itself to the same decomposition as in Section 3 into290
recognition and decision components, which is not immediately possible with GE.291

Recognition & Decision Generalization Regrets Similar to Section 3, consider the intermediary292
case when only the decision policy has access to the test environment and the test value that would293
have been achieved then, which can be written as294

Vεtest(ρ = Lρ(ε
train) , π = Lπ(ε

test|Lρ(ε
train))) (10)

Then, we decompose ĜR with respect to this intermediary value as follows:295

ĜRrec
E (L) = Vεtest(L(εtest))− (10) (11)

ĜRdec
E (L) = (10) − Vεtest(L(εtrain)) (12)

Intuitively, ĜRdec is the hypothetical performance that could be gained from re-training Lπ(ε
train)296

directly in the test environment, and ĜRrec is the further performance gain of re-training Lρ(ε
train) in297

addition to Lπ(ε
train) (note that ĜR = ĜRrec + ĜRdec is the total gain). A worked example, similar298

to the one in Section 3.1, can be found in the supplementary material.299

7

Under review for RLC 2025, to be published in RLJ 2025

Overfitting Finally, we are ready to characterize overfitting as well as different modes of overfitting300
using all the metrics we have defined so far, namely R, ĜR, ĜRrec, and ĜRdec: We say that policies301
ρ0, π0 = L(εtrain) have overfitted if the generalization regret GRE(L) = Rεtest(L(εtrain)) is high302
despite a relatively low training regret Rεtrain(L(εtrain)). This is said to be a case of observational303
overfitting if the training and test environments share the same dynamics except for their observation304
dynamics such that εtrain = (σ, τ, ωtrain, r) and εtest = (σ, τ, ωtest, r). When overfitting occurs,305

• We say that representations generated by the recognition policy ρ0 are under-specific if ĜRrec306
is high but ĜRdec is relatively low. Intuitively, under-specific representations include “too few”307
features which do not contain enough information to perform the task at hand (for instance, a308
blind recognition policy that outputs the same representation for all observations, ρ′(xt) = ∅, or309
an overfitted recognition policy that only learned to extract spurious features). This limits the310
performance of all decision policies, leading to high ĜRrec.311

• We say that representations generated by the recognition policy ρ0 are over-specific if ĜRdec is high312
but ĜRrec is relatively low. Intuitively, over-specific representations include “too many” features313
which still contain enough information to perform the task at hand but also contain irrelevant314
information, for instance if the recognition policy has underfitted. This does not necessarily limit315
the performance that can be achieved by subsequent decision policies, leading to low ĜRrec, but it316
may cause a decision policy to take different actions in situations that are semantically the same (i.e.317
the same state st) just because the irrelevant information differs (i.e. different representations zt),318
leading to high ĜRdec. Here, it is the decision policy that has overfitted, due to the over-specific319
representations generated by an underfitted recognition policy.320

5 Illustrative Examples321

In this section, we give concrete examples of observational overfitting due to both under-specific322
representations and over-specific representations in two image-based environments: Minigrid in323
Section 5.1, which is a collection of maze environments, and the Atari game Pong in Section 5.2.324
These environments contrast each other well in terms of their scale.1 Minigrid outputs 7-by-7 images325
with three channels corresponding to object types, object states, and color identifiers. Meanwhile,326
Pong, after some post-processing, outputs 164-by-82 images that are grayscale and we stack the four327
most recent images to account for memoryless agents. In addition to these examples, we also highlight328
model selection as a potential use case of analyzing the specificity of representations in Section 5.3.329

(a) Training Configurations

(b) Test Configurations

Figure 4: Possible Maze Configurations.
The agent is the red triangle, and the goal
is the green square. For training, the key-
door color is determined based on the
door location, but for testing, the key-
door color is always gray (making it both
an irrelevant and a spurious feature).

As in Section 3.2, we train agents using the PPO algorithm. In330
all our experiments, the agents consist of a CNN that acts as331
the recognition policy followed by an MLP that acts as the de-332
cision policy (and followed by another parallel MLP that acts333
as the value head for the PPO algorithm). Details regarding334
the training setup can be found in the supplementary material.335

5.1 Examples in Maze Environments336

Setup We consider simple mazes given on a 3-by-3 grid,337
where the agent needs to navigate to some goal square. We con-338
sider different maze configurations, but in each configuration,339
the goal is separated from the agent by a locked door, and to be340
able to reach the goal, the agent needs to first pick up a key and341
unlock the door. With uniform probability, the door can either342
be at (i) the North-end, (ii) the Center, or (iii) the South-end of343
the parting wall between the goal and the agent (see Figure 4).344

1Besides the scale contrast, these environments are commonly considered when exploring generalization in RL (e.g. Sonar
et al., 2021; Taiga et al., 2023). Moreover, they offer organically-generated images whereas the literature on observational
overfitting tends to rely mostly on synthetically-generated images, including Song et al. (2020), which introduced the concept.

8

Disentangling Recognition and Decision Regrets in Image-Based Reinforcement Learning

Table 1: All agents incur almost zero regret during training but only HideColors generalizes well to the test
environment. Identity fails to generalize because its representations are sensitive to irrelevant features (notice the
low similarity between the representations of mazes with the same door location but different key-door colors,
especially between the unseen gray color and the others). This is characterized by high ĜRdec (over-specificity).
HideDoor fails to generalize because its recognition policy has “overfitted” to extracting spurious indicators of
optimal action trajectories (i.e. the key-door color). This is characterized by high ĜRrec (under-specificity).

Agent Pre-Filter Performance
Representation Similarity

All By Color By Door Loc.

Identity
(Over-Specific)

R = 0.002 (0.003)
ĜR = 0.911 (0.171)

ĜRrec = 0.264 (0.388)
ĜRdec = 0.647 (0.365)

N
- G

re
y

N
- R

ed
N

- G
re

en
N

- B
lu

e
C

- G
re

y
C

- R
ed

C
- G

re
en

C
- B

lu
e

S
- G

re
y

S
- R

ed
S

- G
re

en
S

- B
lu

e

Grey - N
Red - N

Green - N
Blue - N
Grey - C
Red - C

Green - C
Blue - C
Grey - S
Red - S

Green - S
Blue - S 1.0

0.8

0.6

0.4

0.2

0.0
Grey Red Green Blue

Gr
ey

Re
d

Gr
ee

n
Bl

ue

1.0

0.8

0.6

0.4

0.2

0.0
North Center South

No
rth

Ce
nt

er
So

ut
h

1.0

0.8

0.6

0.4

0.2

0.0

HideColors
(Ideal)

R = 0.000 (0.000)
ĜR = 0.000 (0.000)

ĜRrec = 0.000 (0.000)
ĜRdec = 0.000 (0.000)

N
- G

re
y

N
- R

ed
N

- G
re

en
N

- B
lu

e
C

- G
re

y
C

- R
ed

C
- G

re
en

C
- B

lu
e

S
- G

re
y

S
- R

ed
S

- G
re

en
S

- B
lu

e

Grey - N
Red - N

Green - N
Blue - N
Grey - C
Red - C

Green - C
Blue - C
Grey - S
Red - S

Green - S
Blue - S 1.0

0.8

0.6

0.4

0.2

0.0
Grey Red Green Blue

Gr
ey

Re
d

Gr
ee

n
Bl

ue

1.0

0.8

0.6

0.4

0.2

0.0
North Center South

No
rth

Ce
nt

er
So

ut
h

1.0

0.8

0.6

0.4

0.2

0.0

HideDoor
(Under-Specific)

R = 0.070 (0.126)
ĜR = 0.837 (0.157)

ĜRrec = 0.607 (0.227)
ĜRdec = 0.230 (0.217)

N
- G

re
y

N
- R

ed
N

- G
re

en
N

- B
lu

e
C

- G
re

y
C

- R
ed

C
- G

re
en

C
- B

lu
e

S
- G

re
y

S
- R

ed
S

- G
re

en
S

- B
lu

e

Grey - N
Red - N

Green - N
Blue - N
Grey - C
Red - C

Green - C
Blue - C
Grey - S
Red - S

Green - S
Blue - S 1.0

0.8

0.6

0.4

0.2

0.0
Grey Red Green Blue

Gr
ey

Re
d

Gr
ee

n
Bl

ue

1.0

0.8

0.6

0.4

0.2

0.0
North Center South

No
rth

Ce
nt

er
So

ut
h

1.0

0.8

0.6

0.4

0.2

0.0

To be able to create agents with over-specified or under-specified representations, our training and345
testing environments need to have irrelevant and spurious features. As the irrelevant feature, we346
introduce color: For the maze configurations in the training environment, the key-door pair is one of347
three colors: Red, Green, or Blue. In the test environment, the key-door pair is always Gray, which is348
never is never seen during training. These colors are purely visual and they have no impact on how349
the environment functions, making them an irrelevant feature to the completion of the maze. We350
turn the key-door color into a spurious feature as well by making it correlated with the door location351
during training: The north door is always red, the center door is always green, and the south door is352
always blue in the training configurations. Therefore, knowing the key-door color alone is enough to353
be able to complete mazes by memorizing the solution to the maze corresponding to each color—but354
only during training (since the key-door color is always gray during testing).355

Agents We construct different agents by applying different pre-filters to input images as part of356
the recognition policy before feeding them forward to the same network architecture. This technique357
allows us to freely control the properties of an agent’s recognition policy and illustrate cases of358
over-specific vs. under-specific representations. We primarily consider three agents/pre-filters (see359
the corresponding column in Table 1, results for additional agents can be found in the supplementary360
material): (i) Identity makes no modifications to the input image. This means the key-door color is361
preserved as an irrelevant feature, making Identity susceptible to learning over-specific representations.362
(ii) HideDoor hides the location of the true door by placing false doors in the maze but in the same363
color as the original door. This means HideDoor can only rely on the key-door color as a spurious364
feature to navigate during training, which may lead to learning under-specific representations.365
(iii) HideColors re-colors the key and the door as gray, the same color as the keys and the door in366
the test environment. This should make HideColors easily generalizable to the test environment.367

Results Table 1 shows the regret and the generalization regret of each agent. All agents incur almost368
zero regret during training but only HideColors generalizes well to the test environment. Identity has a369
higher ĜRdec than ĜRrec indicating that its representations are over-specific. This is evidenced by the370
dis-similarity of its representations across different maze configurations. The similarity matrices in371
Table 1 plot the average Euclidean distance between the representations encountered while solving one372
maze vs. another: The closer the representations of two mazes are, the more similar the agent “thinks”373
those two mazes are to each other. Representations being similar predominantly on the diagonal374

9

Under review for RLC 2025, to be published in RLJ 2025

Table 2: All agents incur almost zero regret during training. However, NoCounter fails to generalize to different
distractions because of its over-specific representations that include irrelevant features extracted from distractions.
Meanwhile, JustCounter fails to generalize to unseen initial states because of its under-specific representations
that only include the frame count as a feature, which is a spurious feature since the game is deterministic.

Agent Pre-Filter Training
Performance

Generalization Performance

Unseen Initial States
(cf. Zhang et al., 2018a)

Different Distractions
(cf. Song et al., 2020)

Identity
R = 0.001

(0.002)

ĜR = 0.655 (0.117)
ĜRrec = 0.003 (0.003)
ĜRdec = 0.652 (0.119)

ĜR = 0.699 (0.353)
ĜRrec = 0.002 (0.002)
ĜRdec = 0.696 (0.354)

NoCounter
R = 0.001

(0.002)

(Generalizes)
ĜR = 0.001 (0.002)

ĜRrec = 0.000 (0.000)
ĜRdec = 0.001 (0.002)

(Over-Specific)
ĜR = 0.642 (0.263)

ĜRrec = 0.001 (0.002)
ĜRdec = 0.641 (0.262)

JustGameField
R = 0.006

(0.008)

(Generalizes)
ĜR = 0.001 (0.002)

ĜRrec = 0.001 (0.002)
ĜRdec = 0.000 (0.001)

(Generalizes)
ĜR = 0.006 (0.008)

ĜRrec = 0.001 (0.001)
ĜRdec = 0.005 (0.008)

JustCounter
R = 0.023

(0.015)

(Under-Specific)
ĜR = 0.954 (0.006)

ĜRrec = 0.737 (0.152)
ĜRdec = 0.217 (0.156)

(Generalizes)
ĜR = 0.023 (0.015)

ĜRrec = 0.002 (0.003)
ĜRdec = 0.021 (0.016)

indicates that Identity regard all mazes to be largely independent of each other (even more so with Gray375
mazes as they are unseen during training). In contrast, HideColors appropriately regards all mazes376
with the same door location as exactly the same maze regardless of the key-door color, which is ideal.377
Meanwhile, HideDoor has a higher ĜRrec than ĜRdec indicating that its representations are under-378
specific (looking at the similarity matrices, it only differentiates between mazes with different colors).379

5.2 Examples in the Atari Game Pong380

Setup We consider a deterministic version of Pong and modify the game so that it is reset as soon as381
the first point is scored. Similar to Minigrid, creating agents with over/under-specific representations382
requires us to introduce irrelevant and spurious features to the game. As the spurious features, we add383
a frame counter on the top of the game field in the shape of a progress bar (see Identity in Table 2).384
Since the game is completely deterministic, it should be possible to play the game successfully based385
only on this counter, making it a spurious feature correlated with the optimal action trajectories.386
However, such a strategy should not generalize to a new initial state (as in the framework of Zhang387
et al., 2018a). In our experiments, we will vary the initial state by taking a random number of null388
actions at the start of the game without actually increasing the frame counter.389

As the irrelevant features, we generate synthetic images and concatenate them with the original390
images from the game. We refer to these synthetic images as distractions. They are generated via391
deterministic functions of the game state and hence contain exactly the same information as the392
original game screen. Whenever the game is reset, we pick one of two possible generating functions393
at random, making distractions analogous to decorative elements in other games that change from one394
level to another (as in the framework of Song et al., 2020). Agents that focus on distractions rather395
than the proper game field should not generalize to a different set of distractions. In our experiments,396
we will vary the set of two possible generating functions from training to test time.397

Agents Similar to before, we construct different agents via different pre-filters (see the correspond-398
ing column in Table 2): (i) Identity makes no modifications to the input image. (ii) NoCounter hides399
the frame counter keeping the distractions. This should leave the agent susceptible to learning over-400
specific representations that include irrelevant features extracted from distractions. (iii) JustCounter401

10

Disentangling Recognition and Decision Regrets in Image-Based Reinforcement Learning

hides everything but the game counter. This should leave the agent susceptible to learning under-402
specific representations that only include a spurious feature, the frame count. (iv) JustGameField403
hides both the frame counter (spurious) and any distractions (irrelevant), which is ideal.404

Results Table 2 shows the regret and the generalization regret, both for generalization to unseen405
initial states and different distractions. All agents incur almost zero regret during training. However,406
NoCounter does not generalize to different distractions. This is because the representations learned by407
NoCounter are over-specific (high ĜRdec over ĜRrec). Meanwhile, JustCounter does not generalize408
to unseen initial states. This is because the representations learned by JustCounter are under-specific409
(high ĜRrec over ĜRdec).410

5.3 Use Case: Model Selection411

20 22 24 26

Number of Latent Channels

0.0

0.2

0.4

0.6

0.8

1.0

R
GR

20 22 24 26

Number of Latent Channels

0.0

0.2

0.4

0.6

0.8

1.0
GRrec

GRdec

Figure 5: Regret and Generalization Regrets of Identity
in Maze Environments. Reducing the number of latent
channels prevents over-specific representations and lowers
ĜRdec. However, this also results in the recognition policy
overfitting to the key-door color, ultimately leading to no
improvements in terms of the overall generalization regret.

Analyzing the recognition and decision gener-412
alization regrets of RL models can help make413
informed decisions about how to improve gen-414
eralization. If generalization performance is415
poor due to over-specific representations, we416
may switch to an algorithm that is capable417
of learning invariances within the observation418
space (e.g. Sonar et al., 2021). Conversely, if419
our representations are under-specific, we may420
introduce additional loss terms to encourage421
the model to extract task-critical features.422

As a concrete example, we consider one of423
the simplest adjustments to make to the model424
architecture: changing the representation dimensionality. We consider Identity from the examples in425
maze environments, whose recognition policy outputs a latent representation with 26 = 64 channels.426
Observing that Identity has a high ĜRdec relative to ĜRrec, we conclude that generalization fails due to427
over-specific representations. To discourage the model from extracting irrelevant features, we decide428
to reduce the number of latent channels. We can see in Figure 5 that our intervention is successful in429
lowering ĜRdec, but the model then ends up overfitting to spurious features like the key-door color430
instead, resulting in high ĜRrec and no overall improvement in terms of the generalization regret. Now431
that we know our setting suffers both from irrelevant and spurious features, we can start investigating432
alternative ways to address either one of these problematic features, adopting an appropriate number433
of latent channels to the issue we target. For instance, we can also see in Figure 5 that the increase in434
ĜRrec is rather marginal until the number of latent channels is reduced to 24 = 16. We can set this as435
our new representation size, knowing it is sufficiently large to capture all task-critical information,436
and decide to address the issue of irrelevant features first.437

6 Conclusion438

In this paper, we introduced the notions of recognition and decision regrets, which we used to analyze439
the generalization performance of RL agents. Through illustrative examples, we demonstrated how440
these regret metrics can characterize under-specific and over-specific representations, offering a441
more nuanced perspective on observational overfitting in image-based RL. We highlighted how such442
characterization could be helpful in systematically improving the generalization performance of RL443
models. Future research should focus on identifying specific strategies that one can follow when an444
RL model fails to generalize due to over-specific vs. under-specific representations.445

References446

Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive447
behavioral similarity embeddings for generalization in reinforcement learning. In International448
Conference on Learning Representations, 2021.449

11

Under review for RLC 2025, to be published in RLJ 2025

Marc Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel Castro, Nicolas450
Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A geometric perspective on optimal451
representations for reinforcement learning. In Conference on Neural Information Processing452
Systems, 2019.453

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-454
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:455
253–279, 2013.456

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem457
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & Miniworld: Modular &458
customizable reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831,459
2023.460

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization461
in reinforcement learning. In International Conference on Machine Learning, pp. 1282–1289,462
2019.463

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G Bellemare, and464
David Silver. The value-improvement path: Towards better representations for reinforcement465
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.466

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning467
as goal-conditioned reinforcement learning. In Conference on Neural Information Processing468
Systems, 2022.469

Dibya Ghosh and Marc G Bellemare. Representations for stable off-policy reinforcement learning.470
In International Conference on Machine Learning, 2020.471

Nan Jiang, Alex Kulesza, Satinder Singh, and Richard Lewis. The dependence of effective planning472
horizon on model accuracy. In Proceedings of the 2015 international conference on autonomous473
agents and multiagent systems, pp. 1181–1189, 2015.474

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G Bellemare. On475
the generalization of representations in reinforcement learning. In International Conference on476
Artificial Intelligence and Statistics, 2022.477

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael478
Bowling. Revisiting the arcade learning environment: Evaluation protocols and open problems for479
general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.480

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,481
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control482
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.483

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim484
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement485
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.486

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A487
new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.488

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.489
Assessing generalization in deep reinforcement learning. arXiv preprint arXiv:1810.12282, 2018.490

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-491
ment learning. In International Conference on Machine Learning, pp. 2817–2826, 2017.492

12

Disentangling Recognition and Decision Regrets in Image-Based Reinforcement Learning

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah493
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of494
Machine Learning Research, 22(268):1–8, 2021.495

Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforcement496
learning. In International Conference on Machine Learning, 2021.497

Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade. Towards gen-498
eralization and simplicity in continuous control. Neural Information Processing Systems, 30,499
2017.500

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy501
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.502

Antonio Serrano-Muñoz, Dimitrios Chrysostomou, Simon Bøgh, and Nestor Arana-Arexolaleiba.503
skrl: Modular and flexible library for reinforcement learning. Journal of Machine Learning504
Research, 24, 2023.505

Anoopkumar Sonar, Vincent Pacelli, and Anirudha Majumdar. Invariant policy optimization: Towards506
stronger generalization in reinforcement learning. In Learning for Dynamics and Control, 2021.507

Xingyou Song, Yiding Jiang, Stephen Tu, Yilun Du, and Behnam Neyshabur. Observational overfitting508
in reinforcement learning. In International Conference on Learning Representations, 2020.509

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning510
from reinforcement learning. In International Conference on Machine Learning, 2021.511

Adrien Ali Taiga, Rishabh Agarwal, Jesse Farebrother, Aaron Courville, and Marc G Bellemare.512
Investigating multi-task pretraining and generalization in reinforcement learning. In International513
Conference on Learning Representations, 2023.514

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,515
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea516
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,517
March 2023. URL https://zenodo.org/record/8127025.518

Han Wang, Erfan Miahi, Martha White, Marlos C Machado, Zaheer Abbas, Raksha Kumaraswamy,519
Vincent Liu, and Adam White. Investigating the properties of neural network representations in520
reinforcement learning. Artificial Intelligence, 330:104100, 2024.521

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in522
continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018a.523

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep524
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018b.525

Xuezhou Zhang, Yuda Song, Masatoshi Uehara, Mengdi Wang, Alekh Agarwal, and Wen Sun.526
Efficient reinforcement learning in block MDPs: A model-free representation learning approach.527
In International Conference on Machine Learning, 2022.528

13

https://zenodo.org/record/8127025

Under review for RLC 2025, to be published in RLJ 2025

Supplementary Materials529

The following content was not necessarily subject to peer review.530
531

A A Worked Example for Generalization532

We now show how these definitions apply to our first worked example. The training environment533
εtrain is exactly same as the original environment depicted in Figure 2. The test environment εtest534
differs in two ways. First, we modify the observation space X to a new space Xgray where the figures535
in the images are converted from red/green/blue to grayscale, as illustrated in Figure 6. Second, we536
start the environment from state 0 instead of state 1. The optimal decision policy π∗ (i.e. the best537
action in each state) is the same in εtest as in εtrain, but due to the change in initial state the value538
is now V ∗

εtest = γ + γ3 + . . . , which equals 4.737 when γ = 0.9. Note that a recognition policy539
ρ0 can achieve optimal performance in the training environment, i.e. maxπ Vεtrain(ρ0, π) = V ∗

εtrain ,540
whenever st = i implies π′

0(xt) = i for xt ∈ X . However, different recognition policies satisfying541
that condition may have differing behavior in the test environment (i.e. for xt ∈ Xgray).542

Figure 6: Modified observation space Xgray (at time step t = 14).

Example of Under-Specific Recognition Policy Suppose that ρ′0(·) makes its decision based on543
whether there are any red, green, or blue pixels in the image, and makes a random decision otherwise.544
In other words, for the test environment the recognition policy does not given any useful information545
about the state (since the observation is grayscale). Intuitively, this is why it is deemed under-specified546
but we now show that it matches the definition of the term that we gave previously.547

If we apply the decision policy that was optimal for εtest then effectively in all states we take548
action 0 with probability 1/3 and action 1 with probability 2/3 (since the representation state zt549
is independent from st). The value in the environment for these policies is given by v1 in the550
equations v0 = γv0(1/3) + γv1(2/3), v1 = γv0(1/3) + γv2(2/3), v2 = 1+ γv0(2/3) + γv1(1/3).551
When γ = 0.9, the solution to these equations is (v0, v1, v2) = (2.022, 2.360, 2.921) hence the552
generalization regret:553

GR = maxρ,πVεtest(ρ, π)− Vεtest(argmax πVεtrain(ρ0, π)) = 4.737− 2.360 = 2.377 (13)

Note that for this simple case, since we can calculate optimal policy in εtest exactly, there is no554
difference between GR and the empirical generalization regret ĜR and so we will only focus on the555
former in this section.556

Since the generalization regret is high, it is simple to obtain zero regret in εtrain, and the only557
difference between εtest and εtrain is in the observation dynamics, this situation matches our definition558
of observational overfitting. We now decompose the generalization regret GR into its components559
GRrec and GRdec. When the recognition policy ρ0 is used, the optimal decision policy for the test560
environment argmax πVεtest(ρ0, π) is simply the optimal decision policy that is not aware of the state.561
It is not hard to verify that this decision policy always takes action 1 and so max πVεtest(ρ0, π) =562
γ + γ4 + . . . , which equals 2.989 when γ = 0.9. Hence,563

GRrec = Vεtest(argmax ρ,πVεtest(ρ, π))− Vεtest(ρ0, argmax πVεtest(ρ0, π))

= 4.737− 2.989

= 1.748 (14)

14

Disentangling Recognition and Decision Regrets in Image-Based Reinforcement Learning

GRdec = Vεtest(ρ0, argmax πVεtest(ρ0, π))− Vεtest(ρ0, argmax πVεtrain(ρ0, π))

= 2.989− 2.360

= 0.629 (15)

Since the majority of the regret comes from GRrec, this matches our definition of the recognition564
policy ρ0 being under-specified. This is intuitive since by focusing on the colors, the recognition565
policy ρ0 does not recognize the salient feature of the observation state in εtest (i.e. whether the566
number in the image is 0, 1 or 2).567

Example of Over-Specific Recognition Policy We now consider a different recognition policy568
ρ1 that focuses on the timestamp in the top-right corner of each image in Figure 2. In particular569
the representation state is defined by ρ′1(xt) = 0 if t = 0, otherwise ρ′1(xt) = 1 if t is odd and570
ρ′1(xt) = 2 if t is even. This allows us to obtain the optimal reward in εtrain since if we apply the571
optimal decision policy (that takes action 1 in states 0, 1 and action 0 in state 1), then we will follow572
the optimal trajectory and st = ρ′1(xt) at all times t. Note that in this optimal trajectory the action573
sequence is 1, 1, 0, 1, 0, 1, . . .574

However, if we move to the test environment εtest, and apply the same recognition and decision575
policies, we will follow the exact same action sequence 1, 1, 0, 1, 0, 1, . . . since the recognition policy576
is only looking at the timestamp. However, due to the change in initial state, this is not optimal in εtest.577
In particular, the state sequence becomes 1, 2, 0, 0, 1, 0, 1, 0, . . ., i.e. we remain in a loop between578
states 0, 1 rather than the states 1, 2 where we want to be to receive the reward. The value of this579
sequence is γ = 0.9. Hence the generalization regret:580

GR = maxρ,πVεtest(ρ, π)− Vεtest(argmax πVεtrain(ρ0, π)) = 4.737− 0.900 = 3.837 (16)

However, there is clearly another decision policy that still obtains the optimal reward in εtest even with581
the recognition policy ρ1. We just need to take action 1 when ρ′1(xt) = 0, action 0 when ρ′1(xt) = 1,582
and action 1 when ρ′1(xt) = 2. (It can be checked that this leads to the optimal action sequence583
1, 0, 1, 0, . . .) Hence,584

GRrec = Vεtest(argmax ρ,πVεtest(ρ, π))− Vεtest(ρ1, argmax πVεtest(ρ1, π))

= 4.737− 4.737

= 0 (17)

GRdec = Vεtest(ρ1, argmax πVεtest(ρ1, π))− Vεtest(ρ1, argmax πVεtrain(ρ1, π))

= 4.737− 0.900

= 3.837 (18)

In this case all of the generalization regret is concentrated on the decision regret, and so this matches585
our definition of the recognition policy ρ1 being over-specified. This is intuitive since by focusing on586
the timestamp, the recognition policy ρ1 is basing its decision on a feature that is specific to a single587
image, rather than the number in the image which is common to a whole image class.588

B Extended Results for Maze Environments589

In addition to three agent in Section 5.1, we consider two more agent with more extreme properties:590
(iv) Blind combines both HideDoor and HideColors, resulting in extremely under-specific representa-591
tions. (v) HideDoor encodes each object-color combination as its own distinct token in a one-hot592
encoding scheme. Since object types, states, and colors are no longer encoded in separate channels,593
OneHot makes it much harder to learn recognition policies that ignore color, resulting in extremely594
over-specific representations.595

An extended version of Table 1 with these two additional agents is given in Table 3. Notably,596
the diagonal in the similarity matrices of Identity is even more pronounced for OneHot. This597

15

Under review for RLC 2025, to be published in RLJ 2025

Table 3: Extended results for Minigrid in Section 5.2.

Agent Pre-Filter Performance
Representation Similarity

All By Color By Door Location

OneHot
(Extremely
Over-Specific)

[N/A]

R = 0.002 (0.003)
ĜR = 0.968 (0.059)

ĜRrec = 0.536 (0.342)
ĜRdec = 0.432 (0.297)

N
- G

re
y

N
- R

ed
N

- G
re

en
N

- B
lu

e
C

- G
re

y
C

- R
ed

C
- G

re
en

C
- B

lu
e

S
- G

re
y

S
- R

ed
S

- G
re

en
S

- B
lu

e

Grey - N
Red - N

Green - N
Blue - N
Grey - C
Red - C

Green - C
Blue - C
Grey - S
Red - S

Green - S
Blue - S 1.0

0.8

0.6

0.4

0.2

0.0
Grey Red Green Blue

Gr
ey

Re
d

Gr
ee

n
Bl

ue

1.0

0.8

0.6

0.4

0.2

0.0
North Center South

No
rth

Ce
nt

er
So

ut
h

1.0

0.8

0.6

0.4

0.2

0.0

Identity
(Over-Specific)

R = 0.002 (0.003)
ĜR = 0.911 (0.171)

ĜRrec = 0.264 (0.388)
ĜRdec = 0.647 (0.365)

N
- G

re
y

N
- R

ed
N

- G
re

en
N

- B
lu

e
C

- G
re

y
C

- R
ed

C
- G

re
en

C
- B

lu
e

S
- G

re
y

S
- R

ed
S

- G
re

en
S

- B
lu

e

Grey - N
Red - N

Green - N
Blue - N
Grey - C
Red - C

Green - C
Blue - C
Grey - S
Red - S

Green - S
Blue - S 1.0

0.8

0.6

0.4

0.2

0.0
Grey Red Green Blue

Gr
ey

Re
d

Gr
ee

n
Bl

ue

1.0

0.8

0.6

0.4

0.2

0.0
North Center South

No
rth

Ce
nt

er
So

ut
h

1.0

0.8

0.6

0.4

0.2

0.0

HideColors
(Ideal)

R = 0.000 (0.000)
ĜR = 0.000 (0.000)

ĜRrec = 0.000 (0.000)
ĜRdec = 0.000 (0.000)

N
- G

re
y

N
- R

ed
N

- G
re

en
N

- B
lu

e
C

- G
re

y
C

- R
ed

C
- G

re
en

C
- B

lu
e

S
- G

re
y

S
- R

ed
S

- G
re

en
S

- B
lu

e

Grey - N
Red - N

Green - N
Blue - N
Grey - C
Red - C

Green - C
Blue - C
Grey - S
Red - S

Green - S
Blue - S 1.0

0.8

0.6

0.4

0.2

0.0
Grey Red Green Blue

Gr
ey

Re
d

Gr
ee

n
Bl

ue

1.0

0.8

0.6

0.4

0.2

0.0
North Center South

No
rth

Ce
nt

er
So

ut
h

1.0

0.8

0.6

0.4

0.2

0.0

HideDoor
(Under-Specific)

R = 0.070 (0.126)
ĜR = 0.837 (0.157)

ĜRrec = 0.607 (0.227)
ĜRdec = 0.230 (0.217)

N
- G

re
y

N
- R

ed
N

- G
re

en
N

- B
lu

e
C

- G
re

y
C

- R
ed

C
- G

re
en

C
- B

lu
e

S
- G

re
y

S
- R

ed
S

- G
re

en
S

- B
lu

e

Grey - N
Red - N

Green - N
Blue - N
Grey - C
Red - C

Green - C
Blue - C
Grey - S
Red - S

Green - S
Blue - S 1.0

0.8

0.6

0.4

0.2

0.0
Grey Red Green Blue

Gr
ey

Re
d

Gr
ee

n
Bl

ue

1.0

0.8

0.6

0.4

0.2

0.0
North Center South

No
rth

Ce
nt

er
So

ut
h

1.0

0.8

0.6

0.4

0.2

0.0

Blind
(Extremely
Under-Specific)

R = 0.279 (0.121)
ĜR = 0.279 (0.121)

ĜRrec = 0.256 (0.101)
ĜRdec = 0.023 (0.028)

N
- G

re
y

N
- R

ed
N

- G
re

en
N

- B
lu

e
C

- G
re

y
C

- R
ed

C
- G

re
en

C
- B

lu
e

S
- G

re
y

S
- R

ed
S

- G
re

en
S

- B
lu

e

Grey - N
Red - N

Green - N
Blue - N
Grey - C
Red - C

Green - C
Blue - C
Grey - S
Red - S

Green - S
Blue - S 1.0

0.8

0.6

0.4

0.2

0.0
Grey Red Green Blue

Gr
ey

Re
d

Gr
ee

n
Bl

ue
1.0

0.8

0.6

0.4

0.2

0.0
North Center South

No
rth

Ce
nt

er
So

ut
h

1.0

0.8

0.6

0.4

0.2

0.0

indicates that OneHot considers each maze in isolation without relating any features between different598
configurations, even more so than Identity. Meanwhile, Blind incurs a high regret even during training599
as it receives practically no information to base its actions on.600

C Details of the Experiments601

We used a host machine with a 12-core AMD Ryzen 9 7900X CPU and two Nvidia RTXA5000602
(Ampere) GPUs running Red Hat Enterprise Linux 9 to spin up Ubuntu 22.04 LTS machines for603
training, allocating 32 GB RAM, 2 vCPUs and 1 RTXA5000 GPU per virtual machine. Using one604
virtual machine, the training for all experiments have taken approximately five days.605

C.1 Experiments in Section 3.2606

Minigrid The recognition policy ρCNN is a sequence of: a convolutional layer of channel size 16607
and kernel size 2 with ReLU activations, a maximum pooling layer of kernel size 2, a convolutional608
layer of channel size 32 and kernel size 2 with ReLU activations, and a convolutional layer of channel609
size 64 and kernel size 2 with ReLU activations. The decision policy πMLP is a fully-connected610
network with a hidden layer of size 64 and tanh activations. The PPO algorithm requires a value head611
in addition to the decision policy / action head; we let the value head copy the architecture of the612
decision policy and share the same recognition policy / encoder with the decision policy.613

We consider the “MiniGrid-SimpleCrossingS11N5-v0” environment within the Minigrid614
package (Chevalier-Boisvert et al., 2023). Agents are trained in 64 parallel environments for 100,000615
total time steps. We use the default hyper-parameters for the PPO algorithm in the skrl package616
(Serrano-Muñoz et al., 2023), except we collect 4096 total transitions in between each policy update,617
set the entropy loss scale as 0.01 and the value loss scale as 0.5, and activate the running standard618

16

Disentangling Recognition and Decision Regrets in Image-Based Reinforcement Learning

scalers for input images and output values. Agents are evaluated by rolling out 1024 full episodes.619
We repeat all our experiments five times to obtain 1-sigma error bars.620

Pong The recognition policy ρCNN is a sequence of: a convolutional layer of channel size 32, kernel621
size 8, and stride length 4 with ReLU activations, a convolutional layer of channel size 64, kernel622
size 4, and stride length 2 with ReLU activations, a convolutional layer of channel size 64, kernel623
size 3, and stride length 1 with ReLU activations, and a fully-connected layer of size 512 with ReLU624
activations (known as the “NatureCNN” Mnih et al., 2015). The decision policy πMLP is a fully-625
connected network with two hidden layers of size 64 and tanh activations. The PPO algorithm requires626
a value head in addition to the decision policy / action head; we let the value head copy the architecture627
of the decision policy and share the same recognition policy / encoder with the decision policy.628

We consider the “ALE/Pong-v5” environment within the gymnasium package (Towers et al., 2023).629
Normally, the game outputs 160-by-240 full-color images. We crop and down-sample the game field630
to reduce these to 80-by-80 images, and also average all color channels to obtain grayscale images.631
Finally, we stack the four most recent images to account for memoryless agents. Agents are again632
trained in 64 parallel environments for 100,000 total time steps. We use the default hyper-parameters633
for the PPO algorithm in the skrl package, except we collect 4096 total transitions in between each634
policy update, set the entropy loss scale as 0.01 and the value loss scale as 0.5, and activate the635
running standard scalers for input images and output values as well as the KL adaptive learning rate636
scheduler. Agents are evaluated by rolling out 256 full episodes. We repeat all our experiments five637
times to obtain 1-sigma error bars.638

C.2 Experiments in Section 5.1639

We consider the same policy architecture as in Appendix C.1 given for Minigrid. However this time,640
we consider the custom maze configurations given in Figure 4. Agents are trained in 64 parallel641
environments for 50,000 total time steps. We use the default hyper-parameters for the PPO algorithm642
in the skrl package2, except we collect 4096 total transitions in between each policy update, set the643
entropy loss scale as 0.01 and the value loss scale as 0.5, and activate the running standard scalers for644
output values. Agents are evaluated by rolling out 1024 full episodes. We repeat all our experiments645
five times to obtain 1-sigma error bars.646

C.3 Experiments in Section 5.2647

We consider the same policy architecture as in Appendix C.1 given for Pong. However this time, we648
consider a modified version of “ALE/Pong-v5”. First, we set the repeated action probability as 0649
to make the game deterministic and we reset the game as soon as the first point is scored to keep the650
episode lengths short. In order to obtain unseen initial states, we take between 1 and 21 null actions651
(inclusive, picked uniformly at random), where taking no null action corresponds to the initial state652
that is seen during training.653

Images outputted by the game are processed as in Appendix C.1 to obtain 80-by-80 images. We654
extend these to 82-by-82 images by adding a black border at the top and at the two sides. Then, we655
add a frame counter at the top in the form of a progress bar: When the game is on the n-th frame, the656
first n pixels of the top two pixel rows are set to white (otherwise they are left black). We generate657
82-by-82 images as distractions and concatenate these with the original image to obtain the final658
images that are then fed forward to the agents. The generating function for these distractions is as659
such (similar to Song et al., 2020): We start with the four-dimensional game state (consisting of the660
xy-coordinates of the ball and the y-coordinates of the paddles). We then pass this matrix through661
a neural network consisting of a fully-connected layer that brings the dimensions up to a 7-by-7662
matrix followed by three transposed convolutions of kernel sizes 3, 4, 8 and stride lengths 1, 2, 4663

2The number of learning epochs during each update is 8, the number of minibatches during each learning epoch is 2, the
discount factor (γ) is 0.99, the coefficient λ used for generalized advantage estimation is 0.95, the learning rate is 0.001
(an Adam optimizer is used), the clipping coefficient for the norm of the gradients is 0.5, and the clipping coefficient for
computing the clipped surrogate objective is 0.2.

17

Under review for RLC 2025, to be published in RLJ 2025

respectively (we do not apply any activation functions, mimicking Song et al., 2020). As we have664
already described in Section 5.2, we randomly pick from one of two generating functions at the start665
of each episode. We obtain different functions to pick from through different initializations of the666
network of transposed convolutions. Crucially, in order to not lose the information contained within667
the original game state, we initialize the layers within these networks with orthogonal weights.668

Finally, agents are trained in 64 parallel environments for 50,000 total time steps. We use the default669
hyper-parameters for the PPO algorithm in the skrl package, except we collect 4096 total transitions670
in between each policy update, set the entropy loss scale as 0.01 and the value loss scale as 0.5, and671
activate the running standard scalers for input images and output values as well as the KL adaptive672
learning rate scheduler. Agents are evaluated by rolling out 256 full episodes. We repeat all our673
experiments five times to obtain 1-sigma error bars.674

C.4 Experiments in Section 5.3675

We consider the same setup as in Section 5.1. Only difference is that we vary the channel size of the676
last convolutional layer. During these experiments, especially for models with very small channel677
sizes, PPO tends to output unstable solutions. To account for the increased variation, we repeat all678
our experiments ten times instead of five to obtain 1-sigma error bars.679

18

