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Abstract

Accurately computing protein similarity is challenging due to the intricate interplay
between local substructures and the global structure within protein molecules.
Traditional metrics like TM-score often focus on aligning the global structures of
the proteins in a rather geometry-based algorithmic way, potentially overlooking
critical local-global relations and contextual comparisons. We introduce Embed-
SimScore, a novel self-supervised method that generates structural and contextual
embeddings by jointly considering both local substructures and global proteins’
structures. Utilizing contrastive language-structure pre-training (CLSP) and struc-
tural contrastive learning, EmbedSimScore captures comprehensive features across
different scales of protein structure. These embeddings provide a more precise and
holistic means of computing protein similarities, resulting in the identification of
intrinsic relations among proteins that traditional approaches overlook.

1 Introduction

Accurately computing protein similarities is a fundamental challenge in computational biology, with
significant implications for understanding protein function, evolution, and interactions. Traditional
metrics such as TM-score [1] focus primarily on global structural alignments, which may overlook
subtle yet critical local structural features and contextual information encoded in protein molecules.
These limitations hinder the ability to fully capture the multifaceted nature of protein similarities,
particularly when proteins share functional similarities despite low sequence or structural identity.

Recent advances in self-supervised learning have demonstrated the potential of deep learning models
to extract meaningful representations from large datasets without explicit labels [2, 3, 4], including
domains of biology[5, 6, 7]. In the context of proteins, self-supervised models have been employed
to learn from amino acid sequences [8] and structures [9], but often focus on either the global
structure or the sequence alone, without effectively integrating local structural nuances and contextual
information.
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In this work, we introduce EmbedSimScore, a novel self-supervised method designed to generate
structural and contextual embeddings for proteins by jointly considering local substructures, global
architecture, and sequence context. Our approach leverages a combination of techniques to enhance
the capture of protein similarities:

• Structural Alignment of Multiscale Subgraphs: We adapt the self-supervised knowledge
distillation framework introduced by DINO [10] for protein graphs to align representations
of local and global subgraphs, ensuring that local structural nuances contribute effectively to
the overall protein embedding.

• Incorporating Contextual Similarity via Language Models: By integrating embeddings
from pre-trained protein language model ESM [5], we enrich the structural embeddings
with contextual information derived from amino acid sequences, capturing functional and
evolutionary relationships that may not be apparent from structure alone.

• Contrastive Learning between Subgraphs: We employ contrastive learning to refine
local structural representations, encouraging the model to distinguish between similar and
dissimilar substructures across different proteins.

2 Methodology

Figure 1: Overall training process of EmbedSimScore. Three different aspects of structural-contextual
learning is employed: global-local context learning, structure-language model constrastive learning,
and structural contrastive learning.

In this section, we discuss the key components of EmbedSimScore (Figure 1). First, we present
the local and global structural alignment approach. Then, we focus on integrating contextual
information through structure-language model joint contrastive learning. Finally, we explain how
these components are combined into EmbedSimScore for comprehensive structure representation
learning.

2.1 Structural Representation Alignment

To capture both local and global structural features, we generate multiple views of each protein
graph G, inspired by the advances of DINO [10] in computer vision. We generate a Global View
Gglobal, representing the larger protein substructure, and a Local View Glocal, focusing on local
substructures. In this setting of knowledge distillation, the teacher network ft operates on the
global view, and the student network fs operates on both global and local views. Both networks
share the same architecture but have separate parameters. The student network is trained to align
its representations with those of the teacher network by minimizing the alignment loss Lalign =∑

vg∈Gglobal

∑
v∈Gglobal∪Glocal

vg ̸=v

−Pt
vg log(P

t
x), where Pt

g and Ps
g are the probability distribution of

the pseudo-labels for graph g produced by ft and fs respectively.

2.2 Integrating Contextual Similarity via Language Models

To incorporate contextual information from protein sequences, we utilize a pre-trained language
model M that generates sequence embeddings hS from the amino acid sequence S corresponding
to the protein graph G. The structural embeddings hG of the student network are aligned with
the sequence embeddings using a contrastive loss inspired by CLIP [11]. The loss is defined
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sim(·, ·) denotes the cosine similarity, and τ is a temperature parameter controlling the sharpness of
the distribution.

2.3 Contrastive Learning Between Subgraphs

To improve local structural representation learning, we apply contrastive learning between the
augmented views of local subgraphs. For each protein, we create two augmented versions (check
Appendix A.3 for details on augmentation) of a local subgraph, resulting in embeddings h(i,1) and

h(i,2). The contrastive loss is defined as Lcontrast = −
∑N

i=1 log
exp(sim(h(i,1),h(i,2))/τ)∑2N

k=1 ⊮[k ̸=i] exp(sim(h(i,1),h(k))/τ)
.

2.4 Overall Objective

The total loss function combines the above components: L = Lalign +λcontextLcontext +λcontrastLcontrast,
where λcontext, and λcontrast are hyperparameters (check Appendix A.4 for details on hyperparameter
selection) that balance the contributions of each loss term. With this combined approach, we train
a graph neural network (GNN) backbone with five layers of GVP [12] on 48k proteins curated
from protein data bank(PDB) [13] and their respective language model features generated using
ESM-2[5] 650M model for 300 epochs. This backbone can embed any protein sequence, enabling
the computation of structural and contextual relationships between proteins by comparing their
EmbedSimScore embeddings.

3 Results

In this section, we discuss our findings on proteins’ structural and contextual similarity calculation
on a representative set with 50 protein molecules for whom we extract their 3d structure from the
corresponding PDB file. This selection of protein structures is diverse across different protein families.

Figure 2: The heatmap in figure (a) represents similarity as shown by TM-score, and the one in figure
(b) represents similarity scores as predicted by EmbedSimScore

In Figure 2 (a), we plot the TM-score between each pair of protein molecules in our representative
set. A score less than 0.2 has been discarded as means that the similarities are rather random [14].
In Figure 2 (b), we have plotted the embedding similarity between each pair of protein embedding
generated by EmbedSimScore. From the figure, we see that 24 protein pairs that are identified as
similar by TM-score metrics are all identified by EmbedSimScore embedding as similar. However,
EmbedSimScore captures another seven proteins that are structurally and contextually similar as
calculated from their embedding similarity (similarity score > 0.98).

In Table 3, we show the 3D structural configurations of each pair of proteins that are identified
as similar by EmbedSimScore, but not captured with TM-score. We see that, most of them have
local structural similarity (similar folding structure in subgraphs), even though the overall global
conformations may vary. Note that, we did not compare the structural configuration of 6F3D-6F3G
pair, as they are the different conformation of the same protein molecule.
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Score Type 6F3D -
6F3G

6UYM -
8TRS

6UYM -
6XKQ

6UYM -
8ATH

6XKQ -
8ATH

6F3D -
6THW

6SP1 -
7K2F

TM Score 0.011 0.024 0.003 0.010 0.003 0.005 0.059
Normalized Embedding Similarity 0.997 0.982 0.991 0.981 0.980 0.998 0.998

Table 1: Comparison of TM and Embedding Similarity Scores for 3D Structure of PDB Pairs

PDB ID Pair 3D Configuration (Protein 1) 3D Configuration (Protein 2)

6SP1 - 7K2F

6UYM - 8TRS

6UYM - 6XKQ

6UYM - 8ATH

6XKQ - 8ATH

6F3D - 6THW

Table 2: PDB pairs and their respective conformations

4 Conclusion

We presented EmbedSimScore, a self-supervised approach that enhances protein similarity computa-
tion by considering both local substructures and global protein features. Using structural alignment,
contrastive learning, and language model integration, EmbedSimScore generates embeddings that
capture relationships between proteins, often overlooked by traditional metrics like TM-score. Em-
bedSimScore sets a promising direction for advancing protein similarity analysis. Notably, aligning
two proteins through their local substructure opens up new possibilities for various tasks, including
protein engineering with specific functions (e.g., designing enzymes that catalyze novel reactions),
drug discovery (e.g., identifying proteins with similar binding pockets for new therapeutic targets),
and more, offering a powerful tool for targeted applications in these fields.

4



References
[1] Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein

structure template quality. Proteins: Structure, Function, and Bioinformatics, 57(4):702–710,
2004.

[2] Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[3] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. arXiv:2111.06377, 2021.

[4] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 9729–9738, 2020.

[5] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos
Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
protein sequences at the scale of evolution enable accurate structure prediction. BioRxiv,
2022:500902, 2022.

[6] Walid Ahmad, Elana Simon, Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar.
Chemberta-2: Towards chemical foundation models. arXiv preprint arXiv:2209.01712, 2022.

[7] Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-
2: Efficient foundation model and benchmark for multi-species genome. arXiv preprint
arXiv:2306.15006, 2023.

[8] Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Peter Chen, John Canny, Pieter
Abbeel, and Yun Song. Evaluating protein transfer learning with tape. Advances in neural
information processing systems, 32, 2019.

[9] Pablo Gainza, Freyr Sverrisson, Frederico Monti, Emanuele Rodola, Davide Boscaini,
Michael M Bronstein, and Bruno E Correia. Deciphering interaction fingerprints from protein
molecular surfaces using geometric deep learning. Nature Methods, 17(2):184–192, 2020.

[10] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 9650–9660, 2021.

[11] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PMLR, 2021.

[12] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron
Dror. Learning from protein structure with geometric vector perceptrons. In International
Conference on Learning Representations, 2020.

[13] Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge
Weissig, Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research,
28(1):235–242, 2000.

[14] Jinrui Xu and Yang Zhang. How significant is a protein structure similarity with tm-score= 0.5?
Bioinformatics, 26(7):889–895, 2010.

[15] Janani Durairaj, Andrew M Waterhouse, Toomas Mets, Tetiana Brodiazhenko, Minhal Abdullah,
Gabriel Studer, Gerardo Tauriello, Mehmet Akdel, Antonina Andreeva, Alex Bateman, et al.
Uncovering new families and folds in the natural protein universe. Nature, 622(7983):646–653,
2023.

[16] Mesih Kilinc, Kejue Jia, and Robert L Jernigan. Improved global protein homolog detection
with major gains in function identification. Proceedings of the National Academy of Sciences,
120(9):e2211823120, 2023.

5



[17] Lorenzo Pantolini, Gabriel Studer, Joana Pereira, Janani Durairaj, Gerardo Tauriello, and Torsten
Schwede. Embedding-based alignment: combining protein language models with dynamic
programming alignment to detect structural similarities in the twilight-zone. Bioinformatics,
40(1):btad786, 2024.

[18] Irina Ponamareva, Antonina Andreeva, Maxwell L Bileschi, Lucy Colwell, and Alex Bateman.
Investigation of protein family relationships with deep learning. Bioinformatics Advances,
4(1):vbae132, 2024.

[19] Janani Durairaj, Andrew M Waterhouse, Toomas Mets, Tetiana Brodiazhenko, Minhal Abdullah,
Gabriel Studer, Mehmet Akdel, Antonina Andreeva, Alex Bateman, Tanel Tenson, et al. What
is hidden in the darkness? deep-learning assisted large-scale protein family curation uncovers
novel protein families and folds. bioRxiv, pages 2023–03, 2023.
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A Appendix

A.1 Related Works

Structural and contextual similarity searching in macromolecules such as proteins is essential in
bioinformatics and computational biology, particularly in uncovering new protein families and
structural folds. Various techniques have been developed to navigate the natural protein universe, with
recent advancements leveraging genomic context information, deep learning, and homology searches
to predict protein functions and detect structural similarities. Here, we outline recent advancements
and provide some insights into protein similarity matching.

One innovative approach involves the integration of genomic context information, which leverages
remote homology searches on genomic neighbors to guide function prediction. Deep learning-based
tools [15] are used for structure-guided function prediction, making it possible to reveal new families
and folds in protein data. Sequence similarity searches are widely used to detect homologs, with
traditional scoring methods like pairwise sequence alignment serving as a foundation [16].

A newer technique, embedding-based alignment (EBA), has been introduced to capture structural
similarities in protein sequences. This method generates embedding-based alignments and has proven
effective in identifying similarities in structure even when high sequence similarity is lacking [17].
Furthermore, deep learning models [18] have shown promising results in evaluating protein family
relationships, employing benchmarks based on structure similarity, such as TM-align scores, to assess
these relationships.

A combination of sequence, structure, and genomic context similarities is being used to reveal hidden
insights in large-scale protein data. Researchers can identify less obvious structural features in protein
sequences by employing deep learning-based function prediction methods [19]. Additionally, spatial
index-driven protein structure alignment tools like GTalign [20] have emerged as robust methods for
evaluating structural similarity using TM scores, a measure independent of protein length ratios.

Homology search methods also play a pivotal role in generating scores indicative of similarity between
query proteins and known proteins. Such scores, including TM scores, provide insights into the
structural similarity of protein structures, helping further research in protein structure prediction [21].
Deep generative models have additionally been developed to uncover distant structural similarities,
emphasizing the significance of granularity in viewing protein structural similarities [22].

The use of metrics like the TM score to assess protein structure similarity remains a focal point in this
field. Research continues to evolve as data types such as structure similarity, homology, and sequence
length are integrated to improve predictive models [23]. Techniques like Position-specific Scoring
Matrix (PSSM) are commonly employed in protein tertiary structure prediction, capturing amino acid
preferences at each sequence position [24].

A.2 TM-score for Protein Similarity Matching

The Template Modeling (TM) score is a widely used metric for evaluating structural similarity
between protein structures by aligning their Cα (alpha carbon) atoms. Unlike RMSD (Root Mean
Square Deviation), the TM-score is independent of protein size and emphasizes overall topology
rather than local structural variations. The TM-score ranges between 0 and 1, where higher scores
indicate greater structural similarity.

The TM-score between two protein structures X and Y , each with L aligned residues, is defined as:

TM-score = max

 1

Ltarget

L∑
i=1

1

1 +
(

di

d0(Ltarget)

)2


where,

• di is the distance between the i-th aligned Cα atoms of structures X and Y ,
• Ltarget is the length of the target protein (often the shorter of the two structures),
• d0(Ltarget) is a scaling factor given by:

d0(Ltarget) = 1.24 3
√
Ltarget − 15− 1.8.

7



A.2.1 Understanding TM-score values

The TM-score has an established interpretive range:

• TM-score > 0.5: High structural similarity. Structures are likely to share the same fold.
• 0.2 < TM-score ≤ 0.5: Moderate similarity. Structures may have some common motifs but

differ in global topology.
• TM-score ≤ 0.2: Low similarity, indicating likely unrelated structures with different folds.

A.3 Augmentation Techniques for Local Subgraph Embeddings

To enhance local structural representation learning, we create augmented views of each protein’s local
and global subgraphs. Let us consider a subgraph(G) of a given protein graph G. These augmentations
introduce subtle variations that encourage the model to focus on invariant structural features. The
following augmentation techniques are used:

• Random Rotation: Apply a random rotation R ∈ SO(3) (where SO(3) denotes the 3D
rotation group) uniformly to all nodes in G. The coordinates of each node v in the rotated
graph G′ become x′

v = R · xv . This transformation ensures that the learned representation
is invariant to the orientation of G in 3D space.

• Random Gaussian Noise Addition: Add random Gaussian noise nv ∼ N (0, σ2I) with
small variance σ2 to the coordinates of each node v. The perturbed position x′

v for each
node v is given by x′

v = xv + nv . This augmentation models minor structural fluctuations
in the protein subgraph and enhances robustness to spatial variability.

• Random Flipping: Independently flip each coordinate axis with probability p by applying
a transformation matrix F ∈ {I, diag(−1, 1, 1), diag(1,−1, 1), diag(1, 1,−1)} to all nodes
in G. After flipping, each node v has new coordinates x′

v = F · xv. This transformation
introduces symmetry by reflecting G along different axes, promoting invariance to mirroring
operations.

These transformations ensure that the learned representations capture essential local structural
properties while maintaining invariance to minor spatial and topological variations.

A.4 Choosing Values for Coefficients of Loss Terms

In our overall objective function L we had three components Lalign, Lcontext, and Lcontrast. In the loss
function, the latter two terms are multiplied by constant factors λcontext, and λcontrast respectively. The
purpose of these two constant terms was to control the contribution of those two loss components to
the overall learning process. We wanted the contrastive components of the loss function to improve
the learning without completely taking over as the major loss components from the alignment portion.
In our experiments we varied the values of λcontext, and λcontrast between 0.1 and 0.5 at a 0.1 interval.
We have found that 0.1 works best for both the loss components for best representation learning.
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