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Abstract

State-space models (SSMs) provide efficient al-
ternatives to attention with linear-time recurrence.
Mamba2, a recent SSM-based language model,
employs selective input gating and a multi-head
structure for parallel computation and strong per-
formance. However, its multi-head recurrence
operates independently without structured uti-
lization or analysis. In this work, we introduce
Hierarchical ADaptive filter bank for Efficient
SSMs (HADES), a GSP-inspired framework that
reinterprets Mamba2 as an adaptive filter bank
on a line graph. HADES features two filter types:
shared filters for global low-pass behavior and ex-
pert filters for local high-pass behavior, achieved
via structured bias on parameter ∆. HADES
matches baseline models, including Mamba2, on
key benchmark tasks while using only 58.9% of
the original parameters.

1. Introduction
Transformer architectures dominate sequence modeling in
tasks like text generation and machine translation, but their
quadratic complexity has driven the search for more efficient
alternatives (Gu et al., 2022; Yang et al., 2024b; Peng et al.,
2023; Sun et al., 2024). Mamba (Gu & Dao, 2023) and
Mamba2 (Dao & Gu, 2024) have shown that continuous-
time SSMs can match or exceed transformer performance.

Despite this success, Mamba2’s internal structure, partic-
ularly its multi-head recurrence, remains under-explored.
Prior studies have focused on enhancing long-context per-
formance through delta modulation (Ben-Kish et al., 2025;
Azizi et al., 2025; Ye et al., 2025). Another study (Wang
et al., 2025) identified issues like recency bias and infor-
mation bottlenecks in SSMs and proposed polarization as a
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solution. However, it remains unclear how individual heads
contribute to the model’s representation or if they exhibit
complementary dynamics.

To address this issue, we reinterpret Mamba2 within the
framework of Graph Signal Processing (GSP). Specifically,
we model the input sequence as a signal on a line graph,
where tokens serve as nodes and their temporal connections
form edges. In this view, each recurrent head in Mamba2
functions as a graph filter applied to this signal. This per-
spective naturally leads to a filter bank interpretation, where
individual heads can be understood as specialized filters,
each capturing distinct spectral characteristics of the input.

Building on this formulation, we further propose a hier-
archical filter bank model architecture, HADES, which al-
lows adaptive and efficient information flow. HADES or-
ganizes filters into two functional categories: (1) shared
filters, which perform globally consistent filtering across the
sequence, and (2) expert filters, which adapt their filtering
behavior on a per-token basis.

HADES demonstrates competitive performance across a
diverse set of benchmarks, including eight zero-shot com-
monsense reasoning tasks, two language modeling tasks,
and long-context retrieval, while utilizing only 58.9% of the
parameters compared to Mamba2. For interpretability, we
further examine HADES through spectrum analysis, demon-
strating how our filter bank approach affects the model’s
internal dynamics. By integrating principles from GSP into
sequence modeling, our method offers a scalable, hierarchi-
cal, and transparent filtering mechanism within SSMs.

2. Background
Our method, HADES, is based on a reinterpretation of struc-
tured sequence models from the perspective of Graph Sig-
nal Processing (GSP). We view the multi-head state-space
model (SSM) as a learnable graph filter bank, where each
head captures distinct frequency-selective dynamics. This
section outlines the necessary background to support this
perspective. Basic concepts and terminology for SSMs and
GSP are in Appendices A and B, forming the basis of the
notation adopted in this paper.
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(a) Mamba2 (b) HADES

Figure 1: Architectural Comparison between Mamba2 and HADES. Mamba2 applies all filters uniformly to every input
token, whereas HADES employs a routing mechanism that selects and activates filters conditioned on rt and ∆t.

SSMs as Graph Filters A one-dimensional token se-
quence can be naturally represented as a signal defined
on a line graph (i.e., a linearly connected graph), where each
token corresponds to a node and edges connect adjacent
tokens in the sequence. This perspective enables the appli-
cation of GSP tools to sequential data. In particular, the line
graph admits a natural notion of convolution, where filter-
ing operations over token sequences can be interpreted as
graph convolutions. This provides a principled foundation
for analyzing state-space models from a GSP perspective.
Specifically, the S4 model (cf. Eq. 10) can be viewed as
a LTI system operating on a line graph, where its kernel
acts as the convolutional filter. This interpretation allows
the SSM to be expressed as a graph convolution over the
input sequence, offering a unified framework that bridges
sequence modeling and GSP framework in Eq. 1:

y = x ∗K =

K∑
k=0

(CAkB)︸ ︷︷ ︸
hk

Skx (1)

In contrast, Mamba (cf. Eq. 11) can be interpreted as a
linear time-varying (LTV) system operating on a line graph.
Unlike an LTI system, which applies the same filter across
all nodes, Mamba applies distinct, input-dependent filters
at each node, enabling more flexible and adaptive sequence
modeling. This formulation can be written as:

yt =

K∑
k=0

(CtAt:t−kBt−k)︸ ︷︷ ︸
h
(t)
k

Skx, (2)

where At:t−k =
∏t

t−k Ai means cumulative product of At

from shift start index for k hops.

Multi-Head SSMs as Filter Banks Mamba2 employs
multiple parameterized state-space recurrences, one per
head, formulated as:

h
(i)
t = A
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t h

(i)
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(i)
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(i)
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(i)
t h

(i)
t , (3)

where i ∈ [M ] indexes the heads. This structure can be
interpreted as a filter bank, with each head i acting as a
distinct filter applied to the input signal xt.
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where A
(j)
i ∈ RN×N , B(j)

i ∈ RN×1,C
(j)
i ∈ R1×N are

parameters of SSM equations and M denotes the number
of filters. Likewise, we can interpret multi-head architec-
tures into graph filter bank. Detailed parameterizations of
Mamba2 are deferred to Appendix A.

Although Mamba2’s head-specific recurrence parameters
and time-varying coefficients enable diverse temporal and
spectral responses, it lacks explicit structural constraints
or functional differentiation among heads. This leads to an
unstructured, static filter bank that may struggle to capture
both global and local dynamics. To overcome this, we pro-
pose a structured, adaptive filter bank design that promotes
functional diversity across heads, enhancing the model’s
ability to capture both global and local sequence patterns.

3. Proposed Method
3.1. HADES: Hierarchical ADaptive filter bank for

Effieicnt SSMs

From the perspective of node-adaptive filtering, a key chal-
lenge lies in how to effectively select and combine diverse
filters. To enhance the structural expressivity of Mamba2
without compromising its efficiency, we propose HADES,
an adaptive filter bank architecture based on GSP principles.
Our approach decomposes the multi-head structure into two
complementary components: shared filters and expert fil-
ters. A router is employed to select the Top-Q expert filters,
where the expert scores are computed based on the spectral
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residual and the characteristics of the input sequence.

Fig. 1 illustrates how our method functions as a filter bank.
Fig. 1(a) shows the general Mamba2 architecture, where all
filters are always utilized regardless of context. In contrast,
the proposed method in Fig. 1(b), selects a subset of filters
to be used at each timestep t. Among them, the shared filters
are always applied, independent of the router’s selection.
In our method, from M filters of the general Mamba2 ar-
chitecture, H filters are selected at each timestep. These H
filters are composed of S shared filters and E expert filters,
which are dynamically chosen based on the routing mech-
anism. The final output is computed as a weighted linear
combination of the selected filter outputs.

Expert Filters To enable token-level adaptivity, we intro-
duce a router that assigns a subset of expert filters to each
token based on its frequency characteristics. Specifically,
for each token at time step t, we compute the spectral resid-
ual as rt = xt − µt, where µt is a running mean across
the sequence. The base delta parameter ∆t,base is concate-
nated with the residual rt, and the resulting vector is passed
through a linear projection to compute selection scores st
for the expert filters:

st = fe([∆t,base ∥ rt]), rt = xt − µt, (5)

where fe is a function that computes expert selection scores
based on both the base ∆t,base and the token’s spectral resid-
ual rt, and [· ∥ ·] denotes vector concatenation. The resulting
score vector st ∈ RE contains a scalar score for each of the
E expert filters. The Top-Q filters with the highest scores
are then selected and applied to the token. While expert fil-
ters are not explicitly assigned to specific frequency bands,
their distinct ∆ configurations induce varied update dynam-
ics, implicitly shaping their responses based on the token’s
frequency characteristics.

The residual rt is used not only for expert selection, but
also for modulating the delta value itself. Specifically, it
introduces a frequency-sensitive bias that adjusts ∆ in ac-
cordance with token-level frequency characteristics, spectral
bias:

∆t,HADES = Softplus(∆t,base + γ · fb([∆t,base ∥ rt])) (6)

where fb is a function that generates a content-aware adjust-
ment to ∆t,base based on the token’s residual rt, and γ is a
scaling hyperparameter that controls the strength of residual-
based modulation. We use a single-layer linear projection
for fe and fb in our implementation.

Shared Filters Shared filters are always applied without
additional bias, relying solely on the base ∆t,base and tar-
geting globally smooth components across the sequence.
Unlike expert filters, they don’t incorporate per-token mod-
ulation, naturally preserving low-frequency patterns while

attenuating high-frequency variations. This design, akin to
fixed low-pass filters in GCN models (Dong et al., 2021) and
structure-preserving averaging (Wu et al., 2022), ensures
spectral stability and mitigates over-adaptation.

3.2. Training Loss Terms

To ensure effective learning of the adaptive filter bank, it is
crucial that the model utilizes a diverse set of filters rather
than overfitting to a subset. We introduce a dual loss mecha-
nism that encourages balanced filter utilization during train-
ing. The final training objective combines two auxiliary
components:

L = Ltask+λ1 ·
Var(st)

(E[st])2 + ϵ︸ ︷︷ ︸
Lbalance

+λ2 ·Ei,j

[
(⟨ŷi, ŷj⟩ − δij)

2]︸ ︷︷ ︸
Ldiversity

, (7)

where Ltask is the primary task loss (cross-entropy loss
for language modeling), st = fe([∆t,base ∥ rt]) is the vec-
tor of selection scores for the E experts at time step t,
and ϵ is a small constant for numerical stability. ŷi de-
notes the ℓ2-normalized output of the i-th expert filter,
δij = 1 if i = j, 0 otherwise, and λ1, λ2 are hyperparame-
ters controlling the strength of the selection and diversity
losses respectively. Lbalance ensures balanced utilization of
all expert filters by penalizing high variance in selection
scores across experts. Specifically, it minimizes the squared
coefficient of variation of the selection scores, encourag-
ing uniform distribution among experts. Ldiversity promotes
functional diversity among the expert filters by minimizing
the similarity between their normalized outputs. This dual
loss mechanism ensures that the model effectively learns a
diverse set of filters, each specialized for different aspects
of the input sequence.

4. Empirical Studies
Setup Our experiments encompass a comprehensive
comparison of recent state-of-the-art architectures. We
evaluate against the following baselines: Linear Trans-
former (Katharopoulos et al., 2020), RetNet (Sun et al.,
2024), Mamba (Gu & Dao, 2023), Mamba2 (Dao & Gu,
2024), and DeltaNet (Yang et al., 2024b). We trained all
models using approximately 200B tokens from the Pile
dataset (Gao et al., 2020). Detailed settings for training and
evaluation are deferred to Appendix C.

Language Modeling and Commonsense Reasoning In
Table 1, we present the performance of each model across
multiple benchmarks, including language modeling per-
plexity and zero-shot accuracy on commonsense reasoning
benchmarks for models with 370M parameters. Even with
58.92% of parameters (218M), HADES demonstrates com-
parable performance to baselines including Linear Trans-
former, RetNet, Mamba, Mamba2, and DeltaNet.
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Table 1: Performance comparison on language modeling and zero-shot common-sense reasoning. The best results are in
bold, and the second-best results are underlined. Avg. denotes the average of (normalized) accuracies over 8 tasks.

Model Wiki. LMB. LMB. BoolQ Hella. Wino. ARC-e ARC-c PIQA OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc n ↑ 8 tasks ↑

Linear Transformer 45.43 73.93 24.06 61.50 28.20 51.30 42.05 21.76 60.55 27.60 39.63
RetNet 34.12 29.46 35.36 55.57 31.31 51.70 44.49 23.46 62.40 28.00 41.54
DeltaNet 33.25 26.82 35.75 54.07 31.40 49.96 44.11 22.18 63.60 29.60 41.96
Mamba1 47.51 85.53 22.43 62.17 28.71 50.67 42.09 22.35 60.72 26.60 39.73
Mamba2 31.34 24.38 36.46 53.88 32.62 50.83 45.29 24.15 63.44 26.40 41.63

HADES (Ours) 31.48 21.74 39.24 58.84 32.82 52.64 45.03 22.01 63.93 28.80 42.91
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Figure 2: Frequency spectrum analysis of filter outputs from 13th layer.
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(b) HADES

Figure 3: Passkey retrieval result of Mamba2 and HADES

Long Range Retrieval To evaluate the long-range mem-
ory capacity, we adopt the passkey retrieval task, where a
key-value pair is planted at various depth in a long sequence
and queried at the end. In Fig. 3, the results show that our
model significantly outperforms Mamba2, demonstrating
the effectiveness of our GSP-inspired adaptive filtering in
retaining distant dependencies.

Filter Spectrum Analysis We analyzed the spectral char-
acteristics of our model’s filters using Fourier transform
on layer 13 outputs from a sample sentence in the Pile
dataset (Fig.2). Shared filters (Fig.2(a)) exhibited consistent
low-pass behavior, emphasizing low-frequency components,
which aligns with their role in capturing global information.
In contrast, expert filters (Fig. 2(b)) showed a mix of low-
and high-frequency responses, reflecting their adaptive spe-
cialization for localized details. This distinction confirms
our model’s design: shared filters provide a stable context,
while expert filters adapt to fine-grained variations.

Effect of Spectral Bias We analyzed the impact of spec-
tral bias on expert filters. Fig. 2(c) shows that without
spectral bias (∆t), the filter outputs primarily capture low-
frequency information. In contrast, Fig. 2(b) reveals that
applying spectral bias (∆t,HADES) shifts the frequency distri-
bution upward, enhancing the model’s sensitivity to high-
frequency details. This effect is further quantified in Fig. 4
(cf. Appendix E), where the log-scale histogram of the dif-
ference between ∆t,HADES and ∆t across 38,000 tokens
shows predominantly positive values, indicating increased
delta values for high-frequency capture. Occasionally, neg-
ative values reduce delta, preserving global context. This
aligns with filter response in Fig. 2(b), where high frequency
behavior is emphasized. This adaptive mechanism allows
HADES to flexibly balance local and global information.

5. Conclusion
In this work, we present HADES, a hierarchical adaptive
filtering architecture for SSMs that bridges SSMs and GSP.
By reinterpreting Mamba2 as a GSP-inspired filter bank,
we separate shared and expert filters using delta modulation
and spectral residual bias. This design enables efficient,
frequency-adaptive filtering, achieving strong performance
in language modeling, commonsense reasoning, and long-
context tasks while using only 58.9% of the parameters of
baseline models like Mamba2.
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A. State Space Models (SSMs) and Mamba
State Space Models Structured state space models represent a new category of sequence models in deep learning, drawing
connections to RNNs, CNNs, and traditional state space models. These models are motivated by a specific continuous
system that processes a one-dimensional input sequence x ∈ RT into an output sequence y ∈ RT via an implicit latent state
h ∈ RT×N . Eq. 8 is a fundamental representation of organized SSMs.

h′(t) = Āh(t− 1) + B̄x(t)

y(t) = Ch(t) +Dx(t)
(8)

ht = Aht−1 +Bxt

yt = Cht +Dxt

(9)

where At ∈ RN×N , Bt ∈ RN×1, Ct ∈ R1×N . This continuous SSMs in Eq. 8 are discretized to Eq. 9 through fixed
formulas: A = fA(∆, Ā), B = fB(∆, B̄). For the remainder of this paper, we will omit the parameter D for exposition (or
equivalently, assume D = 0) because the term Dxt can be viewed as a skip connection and is easy to compute.

K = [CB,CAB, . . . ,CAkB]

y = x ∗K
(10)

In S4 (Gu et al., 2022), the authors refer to this formulation as linear time-invariant (LTI), meaning the system parameters
A,B,C do not change over time. The resulting sequence model can be computed either as a linear recurrence or as a global
convolution using the kernel K in Eq. 10.

Using definitions from (Dao & Gu, 2024), we describe Mamba’s internal dynamics. Each vector is designated as a row
vector. Assuming that U = [u1, u2, ..., uT ]

T ∈ RT×d, that is, ui ∈ Rd, is a discrete time sequence of T tokens, the inner
equation for the t-th token of each head of the Mamba layer can be understood as follows:

ht = Atht−1 +Btxt ∈ RN×P , yt = Ctht ∈ RP

ot = Wo(Norm(yt ⊙Wzut)) ∈ Rd
(11)

where t is current time step, xt, yt ∈ RP are projected input representation and output hidden representations of t-th
token respectively, Norm denotes RMS normalization (Zhang & Sennrich, 2019), Wz ∈ RP×d, Wo ∈ Rd×P are trainable
parameters. Especially, in Mamba2, At is scalar-identity matrix, i.e. At = atI . We denote d for hidden representation
dimension, N for state size, P for dimension of each head, T for sequence length.

∆t,base = W∆ut + b∆ ∈ R, ∆t = Softplus(∆t,base) ∈ R (12)

By ∆, Mamba implements input-dependent selection mechanism. ∆ decides the discretization step size in Mamba, which is
used to formulate SSM parameters At,Bt. Detailed parameterization of At,Bt,Ct, xt are deferred to Appendix A.

Full Mamba2 Architecture Given an input sequence U = [u1, u2, ..., uT ]
⊤ ∈ RT×d, a Mamba2 block with d channels

is built on top of the S6 layer via the following formula, generating output sequence O = [o1, o2, ..., oT ]
⊤ ∈ RT×d:

ht = Atht−1 +Btxt ∈ RN×P , yt = Ctht ∈ RP (13)

ot = Wo(Norm(yt ⊙Wzut)) ∈ Rd (14)

where Wx,Wz ∈ Rd×P , Wo ∈ RP×d are trainable parameters. Each Mamba2 block consists of M heads, so that M×P = d
, which are computed in parallel, the result of which is summed together. We can specify how each matrices are created for
each head:

Āt = atI ∈ RN×N

at = exp(−∆texp(A)) ∈ R
Bt = ∆tB̄t ∈ RN×1

B̄t = σ(Conv(WBut)) ∈ RN×1

(15)

Ct = σ(Conv(WCut))
⊤ ∈ R1×N

∆t,base = W∆ut + b∆ ∈ R
∆t = Softplus(∆t,base) ∈ R
xt = σ(Conv(Wxut)) ∈ RP×1

(16)
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where WB ,WC ∈ RN×d, W∆ ∈ R1×d. σ denotes SiLU activation function and Conv(·) denotes a channel-wise one-
dimensional convolution. By ∆, Mamba2 implements input-dependent selection mechanism. At performs as decay-ratio as
it is cumulatively multiplied. DeciMamba (Ben-Kish et al., 2025) elaborates the condition of at. For computational stability,
∆ > 0 and A < 0 is guaranteed in original implementation. Therefore, we can conclude at ∈ (0, 1).

Using this Mamba2 block, we can derive layer-wise Mamba2 architecture with L layers as below. For initial input, input
sequence is I = [i0, i1, ..., iT ] ∈ RT where it ∈ [V ] and we have U (l−1) = [u

(l−1)
1 , u

(l−1)
2 , ...u

(l−1)
T ] as input sequence for

the l-th layer. O(l) = [o
(l)
1 , o

(l)
2 , ...o

(l)
T ] serves as output sequence of l-th Mamba2 layer Mamba(l), V denotes vocab size

and P ∈ RT×V denotes final logits.

U (0) = Embeddingin(I) ∈ RT×d (17)

O(l) = Mamba(l)(Norm[U (l−1)]) ∈ RT×d (18)

P = Embeddingout(Norm([O(L)]) ∈ RT×V (19)

Here, the output of the l-th layer is used as the input for the l + 1-th layer, i.e. O(l) = U (l).

B. Graph Signal Processing (GSP)
Graph Signals and Filtering Graph Signal Processing (GSP) provides tools for analyzing and processing data defined
over graph structures. In GSP, a signal is defined as a vector x ∈ RN , where each element is associated with a node in a
graph of N nodes. One of the core operations in GSP is graph filtering, which can be viewed as a form of graph convolution.
This operation emphasizes or suppresses specific frequency components of the signal based on the graph topology. Given a
shift operator S ∈ RN×N—typically chosen as the adjacency matrix or the (normalized) graph Laplacian—a linear graph
filter G is often defined as a polynomial in S:

y = Gx =

K∑
k=0

hkS
kx, (20)

where x is the input graph signal, hk are the filter coefficients (also called filter taps), and K is the filter order. This
convolution operation aggregates information from neighboring nodes up to K hops away, as determined by powers of
the shift operator. This filtering can also be interpreted as a linear time-invariant (LTI) system on graphs, where the filter
coefficients hk determine the system’s impulse response under the graph structure. This system-theoretic view enables a
conceptual connection to structured sequence models such as SSMs, which we explore in the following sections.

Graph Filter Banks A graph filter bank applies multiple filters to a graph signal and combines their outputs to form a
unified representation. Given a graph signal x ∈ RN and a graph shift operator S ∈ RN×N , the filter bank output can be
expressed as:

y = Φ

({
y(i)

}M

i=1

)
= Φ

{
K∑

k=0

h
(i)
k Skx

}M

i=1

 , (21)

where h(i)
k are the coefficients of the i-th filter, K is the filter order, M is the number of filters in the bank, and Φ(·) denotes

the aggregation function over the filter outputs (e.g., concatenation, summation, or projection). This general form enables
the system to capture diverse frequency characteristics of the graph signal through multiple learned filters.

Our method adopts this perspective to reinterpret the multi-head SSM as a learnable graph filter bank, where each head
corresponds to a distinct frequency response. While our model does not explicitly compute the graph spectrum, this filter
bank perspective serves as a conceptual tool for understanding the role of the learned dynamic filters.

C. Experimental Setup
C.1. Training Details

We adopt all baseline implementations from flash-linear-attention (Yang & Zhang, 2024). For fair comparison,
all models are trained under identical conditions with 370M parameters exculding readout head on 200B tokens from the
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Pile dataset (Gao et al., 2020). We use the AdamW optimizer with a peak learning rate of 48e-4, weight decay of 0.1,
β ∈ [0.9, 0.95] following Mamba2, and gradient clipping of 1.0. The learning rate follows a cosine annealing schedule
with a warm-up phase of 375M tokens and a batch size of 222 tokens (# sequences × sequence length) and the number
of training steps as 47,042 (# tokens / # tokens in one batch) steps. All models employ the GPT-NeoX tokenizer with
a vocabulary size of 50,277. For sequence modeling, we set the training length to 2K tokens. Our experiments were
conducted on a computing server equipped with an AMD EPYC 9654 CPU (2 sockets, 192 cores, 384 threads, 1.5–3.7
GHz, L3 cache 768 MiB) and four NVIDIA A100 80GB PCIe GPUs with CUDA version 12.4. For our model, we used
hyperparameter set of H = 16, S = 8, λ1 = 1e− 3, λ2 = 1e− 3, γ = 25e− 2. Our implementation is publicly available
at https://github.com/yehjin-shin/HADES.

C.2. Evaluation

Following prior works (Gu & Dao, 2023; Yang et al., 2024a), we evaluate our method against five baseline models across
two evaluation categories: WikiText (Wiki.) perplexity and zero-shot commonsense reasoning tasks. The commonsense
tasks include LAMBADA (LMB.; (Paperno et al., 2016)), PIQA (Bisk et al., 2019), HellaSwag (Hella.; (Zellers et al.,
2019)), WinoGrande (Wino.; (Sakaguchi et al., 2019)), ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al., 2018),
BoolQ (Clark et al., 2019), and OpenbookQA (OBQA.; (Mihaylov et al., 2018)).

We measure perplexity (ppl) on WikiText and LAMBADA, normalized accuracy(acc n) on HellaSwag and ARC-challenge,
and standard accuracy (acc) on the remaining tasks (as normalized accuracy provides higher scores for most models on these
tasks). Avg. denotes the averaged result of the accuracies and normalized accuracies of eight tasks together. All evaluations
are conducted using lm-evaluation-harness (Liang et al., 2023). We provide details of the evaluation tasks below.

• WikiText (Merity et al., 2017): A dataset consisting of high-quality, clean text extracted from Wikipedia articles,
commonly used to evaluate language modeling tasks by measuring a model’s ability to predict and generate coherent
and fluent text.

• LAMBADA (Paperno et al., 2016): A text completion task that measures a model’s ability to predict the final word
of a passage, requiring comprehension of the context, commonsense reasoning, as well as the ability to generate text
coherently.

• PIQA (Bisk et al., 2019): A physical commonsense reasoning task focused on selecting the most plausible solution to
everyday scenarios.

• HellaSwag (Zellers et al., 2019): A multiple-choice task that evaluates a model’s ability to select the most coherent
continuation of a given situation based on commonsense and narrative reasoning.

• WinoGrande (Sakaguchi et al., 2019): An expanded version of the Winograd Schema Challenge: a pronoun resolution
task designed to test commonsense reasoning by identifying which noun a pronoun refers to in a given sentence.

• OpenbookQA (Mihaylov et al., 2018): A multiple-choice question answering task designed to test a model’s under-
standing of elementary-level science facts and its ability to apply this knowledge to novel scenarios requiring reasoning
and inference.

• ARC-easy (Clark et al., 2018): A subset of the AI2 Reasoning Challenge focusing on questions that require basic
scientific and commonsense knowledge.

• ARC-challenge (Clark et al., 2018): A more difficult subset of the AI2 Reasoning Challenge that tests advanced
reasoning and deep understanding of scientific and commonsense knowledge.

• BoolQ (Clark et al., 2019): A yes/no question answering dataset with 15,942 examples, derived from Google search
queries, paired with Wikipedia passages.

Passkey Retrieval For the passkey retrieval task, we adopt the task formulation from (Chen et al., 2024). The evaluation is
conducted across context lengths from 1K to 16K, with the target digit hidden at depths of 0% to 100% with the gap of 10%
of each of these sequences. Assuming that each correct retrieval receives a score of 1 and each incorrect retrieval receives a
score of 0, we compute the retrieval score as count out of 10, across all the depths overall context lengths. We did not apply
any fine-tuning with longer sequences. We structure the prompt for the passkey retrieval task into four distinct components:
task description, passkey, query, and dummy text.
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D. Ablation Studies
In this subsection, we report the result of ablation studies. We test variations of our model with same evaluation setting
in Appendix C.2. In Table 2, our ablation studies demonstrate both the robustness and tunability of our model. We first
ablate on two auxiliary losses: Ldiversity and Lbalance. As shown in Table 2, the best performance is achieved when both
losses are applied together. Interestingly, the absence of Lbalance results in a performance drop, which can be attributed to
the filter selection becoming overly concentrated on a few filters. This imbalance hinders the training of expert filters that
are rarely selected, preventing them from effectively learning the underlying dynamics when they are eventually chosen.
We also evaluate the impact of different filter configurations. Table 2 shows that the best performance is achieved when
both filter types are combined. Using only shared filters outperforms using only expert filters, as shared filters consistently
capture global low-frequency information, while expert filters adaptively capturing low and high frequency information.
This complementary behavior makes their combination essential for optimal performance.

Table 2: Full result for Ablation Studies. Avg. denotes the averaged result of the accuracies and normalized accuracies of
eight tasks together.

Methods Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c BoolQ OBQA. Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc ↑ acc ↑ acc n ↑ 8 tasks ↑

HADES (Ours) 31.48 21.74 39.24 63.93 32.82 52.64 45.03 22.01 58.84 28.80 42.91

w/o Lbalance 34.73 26.84 36.77 62.68 30.96 50.75 43.22 22.70 59.27 26.20 41.57
w/o Ldiversity 33.83 27.40 36.04 62.46 31.48 51.38 44.87 22.61 59.94 28.40 42.15

Only Shared Filters 34.55 27.64 35.75 62.40 31.39 52.88 44.23 24.23 60.83 26.00 42.21
Only Expert Filters 36.34 30.12 34.89 61.53 30.30 52.41 44.49 22.70 58.29 28.80 41.68

E. Effect of Spectral Bias
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Figure 4: Histogram of ∆t,HADES −∆t

We further explore the impact of spectral bias on expert filters. Specif-
ically, Fig. 2(c) shows the frequency spectrum of the output generated
by using the original delta without spectral bias, ∆t. In contrast,
Fig. 2(b) illustrates the effect of applying spectral bias to expert filters,
∆t,HADES, where a clear upward shift in frequency distribution is ob-
served. This shift indicates that the delta values are tuned to capture
higher-frequency details, enabling the model to learn finer-grained
information. Fig. 4 presents a log-scale histogram of the difference
between ∆t,HADES and ∆t, calculated over 25 randomly sampled sen-
tences from the Pile dataset, totaling approximately 38,000 tokens.
Throughout our analysis, we observe that the spectral residual bias is
generally positive, which encourages larger Delta values and enables
the model to effectively capture high-frequency information. Occa-
sionally, the bias becomes negative, reducing the step size for certain
tokens and allowing the model to better capture global context. This
adaptive mechanism allows HADES to flexibly balance the extraction of local and global information, adjusting to the needs
of each token in context.

F. Related Works
Graph Signal Processing in Language Modeling Recent work has explored interpreting Transformer architectures
through GSP. In this view, the self-attention mechanism functions as a graph filter, where the attention matrix acts as a learned
adjacency matrix, with tokens as nodes and attention weights defining edges. GFSA (Choi et al., 2024) explicitly models
self-attention as a graph filter on a fully connected graph, while ContraNorm (Guo et al., 2023) treats it as a normalized
adjacency matrix, connecting it to Graph Neural Networks. The Anti-Oversmoothing framework (Wang et al., 2022) further
characterizes self-attention as a low-pass filter, highlighting its smoothing effect in the spectral domain. However, unlike

11



Graph Signal Processing Meets Mamba2: Adaptive Filter Bank via Delta Modulation

Transformers, which rely on a fully connected graph structure, SSMs operate in a fundamentally different way. Their
sequential, unidirectional nature is best captured by a line graph, where information flows along a structured path, reflecting
their recurrent design. This insight motivates our GSP-based filter bank approach for Mamba2, a recent SSM-based language
model.

Adaptive Filtering Recent methods have improved multi-head attention efficiency by dynamically selecting or weighting
attention heads. Mixture of Attention Heads (MoA) (Zhang et al., 2022) treats each head as an independent expert, with a
router dynamically selecting a subset of K heads per token, enhancing efficiency by focusing on the most relevant heads.
Interpreted through a GSP lens, MoA functions as adaptive filtering, where tokens selectively activate the most suitable
filters (heads). Building on this, Mixture-of-Heads Attention (MoH) (Jin et al., 2024) further advances this approach by
using a router to assign weights to all heads, rather than selecting a subset. This allows each token to receive a weighted
combination of all head outputs, offering greater flexibility. Unlike MoA, which treats heads independently, MoH uses
a shared set of heads with adaptive weights, providing a more direct form of adaptive filtering where filter weights are
continuously adjusted.

Modulation of SSMs Mamba’s recursive state update leads to information loss as context length increases, a problem
noted in various studies. DeciMamba (Ben-Kish et al., 2025) addresses this by measuring information loss using Effective
Receptive Field (ERF) and removing less important tokens with low ∆ values. MambaExtend (Azizi et al., 2025) improves
on this by offering a training-free scaling method, adjusting ∆ values directly to enhance long-context performance.
LongMamba (Ye et al., 2025) further refines this by separating global and local channels, using token filtering in global
channels to improve memory efficiency and extend the receptive field. Another work tries to emphasize polarization of A,
thereby allowing SSMs to capture vanishing influence of earlier tokens in long sequences (Wang et al., 2025).

G. Limitation and Future Works
While this study introduces a novel perspective on Mamba2 by reinterpreting it as a filter bank through the lens of GSP and
proposes a new design methodology, there are some limitations. First, our experiments are limited to a single model size due
to lack of resource. As a result, we have not yet explored the behavior of our approach across various model scales. In future
work, we plan to conduct scaling experiments to better understand the generalizability of our method across different model
sizes. Second, although our design is inspired by GSP principles, we have not explicitly enforced spectral properties within
the model. Instead, we adopt an implicit design approach, where spectral characteristics are indirectly encouraged with
slight modification of biases. Explicitly enforcing spectral properties could lead to overly rigid behavior, which may hinder
model performance. Our current approach aims to maintain flexibility while subtly guiding the model toward desirable
spectral behavior. For future work, we aim to conduct a theoretical analysis of the advantages of explicit spectral design and
explore new methods for biasing and filter selection that directly leverage these properties. Such an investigation could lead
to more robust and interpretable state-space models.
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