
Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

DIRECTIONAL GRAPH NETWORKS

Dominique Beaini∗& Vincent Létourneau
InVivo AI
Montreal, QC, H2S 3H1, Canada
{dominique,vincent}@invivoai.com

William L. Hamilton
McGill University, MILA
Montreal, QC, H3A 0G4
wlh@cs.mcgill.ca

Saro Passaro∗ & Gabriele Corso & Pietro Liò
department of Computer Science and Technology
University of Cambridge
Cambridge, United Kingdom
{sp976,gc579,pl219}@cam.ac.uk

ABSTRACT

The lack of anisotropic kernels in graph neural networks (GNNs) strongly limits
their expressiveness, contributing to well-known issues such as over-smoothing.
To overcome this limitation, we propose the first globally consistent anisotropic
kernels for GNNs, allowing for graph convolutions that are defined according
to topologicaly-derived directional flows. First, by defining a vector field in the
graph, we develop a method of applying directional derivatives and smoothing by
projecting node-specific messages into the field. Then, we propose the use of the
Laplacian eigenvectors as such vector field. We show that the method generalizes
CNNs on an n-dimensional grid and is provably more discriminative than stan-
dard GNNs regarding the Weisfeiler-Lehman 1-WL test. We evaluate our method
on different standard benchmarks and see a relative error reduction of 8% on the
CIFAR10 graph dataset and 11% to 32% on the molecular ZINC dataset, and a
relative increase in precision of 1.6% on the MolPCBA dataset. An important
outcome of this work is that it enables graph networks to embed directions in an
unsupervised way, thus allowing a better representation of the anisotropic features
in different physical or biological problems.

1 INTRODUCTION

One of the most important distinctions between convolutional neural networks (CNNs) and graph
neural networks (GNNs) is that CNNs allow for any convolutional kernel, while most GNN methods
are limited to symmetric kernels (also called isotropic kernels in the literature) Kipf & Welling
(2016); Xu et al. (2018a); Gilmer et al. (2017). There are some implementation of asymmetric
kernels using gated mechanisms Bresson & Laurent (2017); Veličković et al. (2017), motif attention
Peng et al. (2019), edge features Gilmer et al. (2017) or by using the 3D structure of molecules for
message passing Klicpera et al. (2019).

However, to the best of our knowledge, there are currently no methods that allow asymmetric graph
kernels that are dependent on the full graph structure or on directional flows. They either depend on
local structures or local features. This is in opposition to images which exhibit canonical directions:
the horizontal and vertical axes.

We propose a novel idea for GNNs: use vector fields in the graph to define directions for the prop-
agation of information. Hence, the aggregation or message passing will be projected onto these
directions so that the contribution of each neighbouring node nv will be weighted by its alignment
with the vector fields at the receiving node nu. This enables our method to propagate information
via directional derivatives or smoothing of the features.

∗equal contribution

1

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

��

��

�� = ∇�� =

�� = ∇�� = ���
�

���
�

���
�

���
�

���
�

⋮
���

�

���
�

� � = concat

���� � �

���
� � �

���
� � �

⋮
���

� � �

���
� � �

� � = MLP � �

Graph

�

The a-directional
adjacency matrix �
is given as an input.
We then compute
the Laplacian matrix
�.

�: number of nodes

�: number of edges

The eigenvectors � of � are
computed and sorted such
that �� has the lowest non-
zero eigenvalue and �� has
the �-th lowest.

We compute the �-first
eigenvectors with a
complexity of � �� .

(e)(b) (c) (d) (f) (g)(a)

Pre-computed steps � ��

A graph with the node

features is given. � �

is the feature matrix
of the graph at the 0-
th GNN layer, of size
� × ��.

The aggregation

matrices ���,��
�,…,� are

taken from the pre-
computed steps.

Graph neural network steps � �� + ��

The gradient of � is a
function of the edges (a
matrix) such that
∇��� = �� − �� if the nodes

�, � are connected, or ∇��� =

0 otherwise.

If the graph has a known
direction, it can be encoded
as field �.

Each row �, : of the field � is
normalized by it’s �� norm.

���,: =
��,:

��.: �� + �

•��� is the directional smoothing matrix.

��� = ��

•��� is the directional derivative matrix.

��� �,: = ���,: − diag � ��:,�

� �,:

The aggregation matrices

���,��
�,…,� are used to aggregate

the features � � via the
matrix prodict ��. For ��� we
take the absolute value due to
the sign ambiguity of �.

� � is the column-
concatenation of all directional
and a-directional aggregations.

The complexity is � �� , or
� � if the aggregations are
parallelized.

This is the only step with
learned parameters.

Based on the GCN method,
each aggregation is followed
by a multi layer perceptron
(MLP) on all the features.

The MLP is applied on the

columns of � � , thus we
have a complexity of � �� .

• � � has �� columns

• � � has 2� + 1 ��

columns

• � � has �� columns

���
� ��,�

�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

��,�
�

� �

� → � + 1
� � → � ���

� � → � �

� � → � �

Next GNN
layer

max0-max
Node colormap

max0-max
Field matrix colormap

Input graph
Compute the first

� eigenvectors
Compute the

gradient
Create the aggregation

matrices �
Feature aggregation MLPInput graph

Figure 1: Overview of the steps required to aggregate messages in the direction of the eigenvectors.

We also explore using the gradients of the low-frequency eigenvectors of the Laplacian of the graph
φk, since they exhibit interesting properties Bronstein et al. (2017); Chung et al. (1997). In particu-
lar, they can be used to define optimal partitions of the nodes in a graph, to give a natural ordering
Levy (2006), and to find the dominant directions of the graph diffusion process Chung & Yau (2000).
Further, we show that they generalize the horizontal and vertical directional flows in a grid, allowing
them to guide the aggregation and mimic the asymmetric and directional kernels present in computer
vision. In fact, we demonstrate mathematically that our work generalizes CNNs by reproducing all
convolutional kernels of radius R in a n-dimensional grid.

We further show that our directional graph network (DGN) model theoretically and empirically
allows for efficient message passing across distant communities, which reduces the well known
problem of over-smoothing, and aligns well with the need of independent aggregation rules Corso
et al. (2020). Finally, in Appendix E, we show how the underlying vector fields can be used to define
data augmentation techniques on graphs.

2 THEORETICAL DEVELOPMENT

2.1 VECTOR FIELDS IN A GRAPH

Based on a recent review from Bronstein et al. (2017), this section presents the ideas of differential
geometry applied to graphs, with the goal of finding proper definitions of scalar products, gradients
and directional derivatives.

Let G = (V,E) be a graph with V the set of vertices and E ⊂ V × V the set of edges. Define the
vector spaces L2(V) and L2(E) as the set of maps V → R and E → R with x,y ∈ L2(V) and
F ,H ∈ L2(E) and scalar products

〈x,y〉L2(V) :=
∑
i∈V

xiyi , 〈F ,H〉L2(E) :=
∑

(i,j)∈E

F(i,j)H(i,j) (1)

Think of E as the “tangent space” to V and of L2(E) as the set of “vector fields” on the space V
with each row Fi,: representing a vector at the i-th node. Define the pointwise scalar product as the
map L2(E)×L2(E)→ L2(V) taking 2 vector fields and returning their inner product at each point
of V , at the node i is defined by equation 2.

〈F ,H〉i :=
∑

j:(i,j)∈E

Fi,jHi,j (2)

2

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

In equation 3, we define the gradient ∇ as a mapping L2(V) → L2(E) and the divergence div as a
mapping L2(E)→ L2(V), thus leading to an analogue of the directional derivative in equation 4.

(∇x)(i,j) := x(j)− x(i) , (divF)i :=
∑

j:(i,j)∈E

F(i,j) (3)

Definition 1. The directional derivative of the function x on the graph G in the direction of the
vector field F̂ where each vector is of unit-norm is

DF̂x(i) := 〈∇x, F̂ 〉i =
∑

j:(i,j)∈E

(x(j)− x(i))F̂i,j (4)

2.2 DIRECTIONAL SMOOTHING AND DERIVATIVES

Next, we show how the vector field F is used to guide the graph aggregation by projecting the
incoming messages. Specifically, we define the weighted aggregation matrices Bav and Bdx that
allow to compute the directional smoothing and directional derivative of the node features.

The directional average matrixBav is the weighted aggregation matrix such that all weights are
positives and all rows have an L1-norm equal to 1, as shown in equation 5 and theorem 2.1, with a
proof in the appendix F.1.

Bav(F)i,: =
|Fi,:|

||Fi,:||L1 + ε
(5)

The variable ε is an arbitrarily small positive number used to avoid floating point errors. The aggre-
gator works by assigning a large weight to the elements in the forward or backward direction of the
field, while assigning a small weight to the other elements, with a total weight of 1.

Theorem 2.1 (Directional smoothing). The operation y = Bavx is the directional average of x, in
the sense that yu is the mean of xv , weighted by the direction and amplitude of F .

The directional derivative matrixBdx is defined in (6) and theorem 2.2, (proof in appendix F.2).

Bdx(F)i,: = F̂i,: − diag
(∑

j

F̂:,j

)
i,:

F̂i,: =

(
Fi,:

||Fi,:||L1 + ε

)
(6)

Theorem 2.2 (Directional derivative). Suppose F̂ have rows of unit L1 norm. The operation y =

Bdx(F̂)x is the centered directional derivative of x in the direction of F .

These aggregators are directional, interpretable and complementary, making them ideal choices for
GNNs. We discuss the choice of aggregators in more details in appendix B.

𝑭𝑣,𝑢3

𝑭𝑣,𝑢1
𝑭𝑣,𝑢2

Direc�onal smoothing aggrega�on 𝑩𝑎𝑣 𝑭 𝒙 Direc�onal deriva�ve aggrega�on 𝑩𝑑𝑥 𝑭 𝒙Graph features focused on the neighbourhood of 𝒏𝒗

𝑣: Features of the node receiving the message
𝑢1,2,3: Features of the neighbouring nodes
𝑭𝑣,𝑢 : Direc�onal vector field between the node 𝑣 and 𝑢

Weighted forward
deriva�ve with 𝑢1

Weighted backward
deriva�ve with 𝑢2

Weighted backward
deriva�ve with 𝑢3+ +

Sum of the absolute weights

Figure 2: Illustration of how the directional aggregation works at a node nv , with the arrows repre-
senting the direction and intensity of the field F .

2.3 GRADIENT OF THE EIGENVECTORS AS INTERPRETABLE VECTOR FIELDS

In this section we give theoretical support for the choice of gradients of the eigenfunctions of the
Laplacian (L = D − A) as sensible vectors along which to do directional message passing since
they are interpretable and allow to reduce the over-smoothing.

The problems of over-smoothing and over-squashing are critical issues in GNNs Alon & Yahav
(2020); Hamilton (2020). Over-smoothing results in representations tending to reach a mean-field

3

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

equilibrium Hamilton (2020). Over-squashing reflects the inability for GNNs to propagate informa-
tive signals between distant nodes Alon & Yahav (2020). Both problems are related to the fact that
the influence of one node’s input on the final representation of another node in a GNN is determined
by the likelihood of the two nodes co-occurring on a truncated random walk Xu et al. (2018b). We
show in theorem 2.3 (proved in appendix F.4) that by passing information in the direction of φ1,
the eigenvector associated to the lowest non-trivial frequency of Lnorm, DGNs can efficiently share
information between the farthest nodes of the graph, when using the K-walk distance (definition F.3)
to measure the difficulty of passing information. Thus, DGNs provide a natural way to address both
the over-smoothing and over-squashing problems: they can efficiently propagate messages between
distant nodes and in a direction that counteracts over-smoothing.

Theorem 2.3 (K-Gradient of low frequency eigenvectors). Let λi and φi be the eigenvalues and
eigenvectors of Lnorm of a connected graph and a, b = arg max1≤i,j≤n{dK(vi, vj)} be the nodes
that have highest K-walk distance. Let m = arg min1≤i≤n(φ1)i and M = arg max1≤i≤n(φ1)i,
then vm, vM appr. va, vb with order O(λ2 − λ1).

2.4 GENERALIZATION OF THE CONVOLUTION ON A GRID

In this section we show that our method generalizes CNNs by allowing to define any radius-R
convolutional kernels in grid-shaped graphs. The radius-R kernel at node u is a convolutional kernel
that takes the weighted sum of all nodes v at a distance d(u, v) ≤ R.

Consider the lattice graph Γ of size N1 × ...×Nn where each vertices are connected to their direct
non-diagonal neighbour. We know from lemma F.2 that, for each dimension, there is an eigenvector
that is only a function of this specific dimension. Hence, the Laplacian eigenvectors of the grid can
play a role analogous to the axes in Euclidean space. With this knowledge, we show in theorem 2.4
(proven in F.10), that we can generalize all convolutional kernels in an n-dimensional grid.

Theorem 2.4 (Generalization radius-R convolutional kernel in a lattice). For an n-dimensional
lattice, any convolutional kernel of radius R can be realized by a linear combination of directional
aggregation matrices and their compositions.

2.5 COMPARISON WITH WEISFEILER-LEHMAN (WL) TEST

We also compare the expressiveness of the Directional Graph Networks with the classical WL graph
isomorphism test which is often used to classify the expressivity of graph neural networks (Xu et al.,
2018a). In theorem 2.5 (proven in appendix F.11) we show that DGNs are capable of distinguishing
pairs of graphs that the 1-WL test (and so ordinary GNNs) cannot differentiate.

Theorem 2.5 (Comparison with 1-WL test). DGNs using the mean aggregator, any directional
aggregator of the first Laplacian eigenvector and injective degree-scalers are strictly more powerful
than the 1-WL test.

3 RESULTS AND DISCUSSION

We use a variety of benchmarks proposed by Dwivedi et al. (2020) to test the empirical performance
of our proposed methods. We fine tuned it on the various datasets and we report its performance in
figure 3. We observe that DGN provides significant improvement across all benchmarks, highlight-
ing the importance of anisotropic kernels. Furthermore, in appendix D we provide a fair comparison
between the mean-aggregator baseline and models using directional aggregators.

4 CONCLUSION

The proposed DGN method allows to solve many problems of GNNs, including the lack of
anisotropy, the low expressiveness, the over-smoothing and over-squashing. For the first time in
graph networks, we generalize the directional properties of CNNs and their data augmentation ca-
pabilities. Based on an intuitive idea and backed by a set of strong theoretical and empirical results,
we believe this work will give rise to a new family of directional GNNs. Future work can focus on
the implementation of radius-R kernels and improving the choice of multiple orthogonal directions.

4

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

ZINC PATTERN CIFAR10 MolHIV MolPCBA

Model
No edge features Edge features No edge features No edge features Edge features No edge features All models

MAE MAE % acc % acc % acc % ROC-AUC % AP

GCN 0.469±0.002 65.880±0.074 54.46±0.10 76.06±0.97 * 20.20±0.24 *

GIN 0.408±0.008 85.590±0.011 53.28±3.70 75.58±1.40 * 22.66±0.28 *

GraphSage 0.410±0.005 50.516±0.001 66.08±0.24

GAT 0.463±0.002 75.824±1.823 65.48±0.33

MoNet 0.407±0.007 85.482±0.037 53.42±0.43

GatedGCN 0.422±0.006 0.363±0.009 84.480±0.122 69.19±0.28 69.37±0.48

PNA 0.320±0.032 0.188±0.004 86.567±0.075 70.46±0.44 70.47±0.72 79.05±1.32 * 28.38±0.35 *

DGN 0.219±0.010 0.168±0.003 86.680±0.034 72.70±0.54 72.84±0.42 79.70±0.97 28.85±0.30 *

Figure 3: Fine tuned results of the DGN model against other models from Dwivedi et al. (2020) and
Corso et al. (2020): GCN (Kipf & Welling, 2016), GIN (Xu et al., 2018a), GAT (Veličković et al.,
2017), MoNet (Monti et al., 2017), GatedGCN (Bresson & Laurent, 2017) and PNA (Corso et al.,
2020). Further details are provided in appendix D

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv:2006.05205 [cs, stat], 2020. URL http://arxiv.org/abs/2006.05205.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Ge-
ometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34
(4):18–42, 2017. ISSN 1053-5888, 1558-0792. doi: 10.1109/MSP.2017.2693418. URL
http://arxiv.org/abs/1611.08097.

Fan Chung and S.T.Yau. Discrete green’s functions, 2000.

Fan Chung and S. T. Yau. Discrete green’s functions. Journal of Combinatorial Theory, Series A,
91(1):191–214, 2000. ISSN 0097-3165. doi: 10.1006/jcta.2000.3094. URL http://www.
sciencedirect.com/science/article/pii/S0097316500930942.

F.R.K. Chung, F.C. Graham, CBMS Conference on Recent Advances in Spectral Graph Theory,
National Science Foundation (U.S.), American Mathematical Society, and Conference Board
of the Mathematical Sciences. Spectral Graph Theory. CBMS Regional Conference Se-
ries. Conference Board of the mathematical sciences, 1997. ISBN 9780821803158. URL
https://books.google.ca/books?id=4IK8DgAAQBAJ.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. arXiv preprint arXiv:2004.05718, 2020.

Vishwaraj Doshi and Do Young Eun. Fiedler vector approximation via interacting random walks.
arXiv:2002.00283 [math], 2000. doi: 10.1145/3379487. URL http://arxiv.org/abs/
2002.00283.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23:298–
305, 01 1973. doi: 10.21136/CMJ.1973.101168.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 1263–1272. JMLR. org, 2017.

William L. Hamilton. Graph Representation Learning. Morgan and Claypool, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

5

http://arxiv.org/abs/2006.05205
http://arxiv.org/abs/1611.08097
http://www.sciencedirect.com/science/article/pii/S0097316500930942
http://www.sciencedirect.com/science/article/pii/S0097316500930942
https://books.google.ca/books?id=4IK8DgAAQBAJ
http://arxiv.org/abs/2002.00283
http://arxiv.org/abs/2002.00283

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Md Amirul Islam, Sen Jia, and Neil D. B. Bruce. How much position information do convolutional
neural networks encode? arXiv:2001.08248 [cs], 2020. URL http://arxiv.org/abs/
2001.08248.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. arXiv:1802.04364 [cs, stat], 2018. URL http://arxiv.org/
abs/1802.04364.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. ICLR2020, 2019. URL https://openreview.net/forum?id=
B1eWbxStPH.

Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization
in graph neural networks. In Advances in Neural Information Processing Systems, pp. 4204–4214,
2019.

Risi Kondor, Hy Truong Son, Horace Pan, Brandon Anderson, and Shubhendu Trivedi. Covariant
compositional networks for learning graphs. arXiv preprint arXiv:1801.02144, 2018.

Alex Krizhevsky, 2009.

Cornelius Lanczos. An iteration method for the solution of the eigenvalue problem of linear differ-
ential and integral operators. United States Governm. Press Office Los Angeles, CA, 1950.

B. Levy. Laplace-beltrami eigenfunctions towards an algorithm that ”understands” geometry. In
IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), pp. 13–13,
2006. doi: 10.1109/SMI.2006.21.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902, 2018.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–
5124, 2017.

Hao Peng, Jianxin Li, Qiran Gong, Senzhang Wang, Yuanxing Ning, and Philip S. Yu. Graph
convolutional neural networks via motif-based attention. arXiv:1811.08270 [cs], 2019. URL
http://arxiv.org/abs/1811.08270.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
Conference on Machine Learning, pp. 5453–5462, 2018b.

6

http://arxiv.org/abs/2001.08248
http://arxiv.org/abs/2001.08248
http://arxiv.org/abs/1802.04364
http://arxiv.org/abs/1802.04364
https://openreview.net/forum?id=B1eWbxStPH
https://openreview.net/forum?id=B1eWbxStPH
http://arxiv.org/abs/1811.08270

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

A APPENDIX - INTUITIVE OVERVIEW

One of the biggest limitations of current GNN methods compared to CNNs is the inability to do
message passing in a specific direction such as the horizontal one in a grid graph. In fact, it is
difficult to define directions or coordinates based solely on the shape of the graph.

The lack of directions strongly limits the discriminative abilities of GNNs to understand local struc-
tures and simple feature transformations. Most GNNs are invariant to the permutation of the neigh-
bours’ features, so the nodes’ received signal is not influenced by swapping the features of 2 neigh-
bours. Therefore, several layers in a deep network will be employed to understand these simple
changes instead of being used for higher level features, thus over-squashing the message sent be-
tween 2 distant nodes Alon & Yahav (2020).

In this work, one of the main contribution is the realisation that low frequency eigenvectors of the
Laplacian can overcome this limitation by providing a variety of intuitive directional flows. As a first
example, taking a grid-shaped graph of sizeN×M with N

2 < M < N , we find that the eigenvector
associated to the smallest non-zero eigenvalue increases in the direction of the width N and the
second one increases in the direction of the height M . This property generalizes to n-dimensional
grids and motivated the use of gradients of eigenvectors as preferred directions for general graphs.

We validated this intuition by looking at the flow of the gradient of the eigenvectors for a vari-
ety of graphs, as shown in figure 4. For example, in the Minnesota map, the first 3 non-constant
eigenvectors produce logical directions, namely South/North, suburb/city, and West/East.

Another important contribution also noted in figure 4 is the ability to define any kind of direction
based on a prior knowledge of the problem. Hence, instead of relying on eigenvectors to find direc-
tions in a map, we can simply use the cardinal directions or the rush-hour traffic flow.

Figure 4: Possible directional flows in different types of graphs. The node coloring is a potential
map and the edges represent the gradient of the potential with the arrows in the direction of the
flow. The first 3 columns present the arcosine of the normalized eigenvectors (acos φ̂) as node
coloring, and their gradients represented as edge intensity. The last column presents examples of
inductive bias introduced in the choice of direction. (a) The eigenvectors 1 and 2 are the horizontal
and vertical flows of the grid. (b) The eigenvectors 1 and 2 are the flow in the longest and second
longest directions. (c) The eigenvectors 1, 2 and 3 flow respectively in the South-North, suburbs to
city center and West-East directions. We ignore φ0 since it is constant and has no direction.

B APPENDIX - CHOICES OF DIRECTIONAL AGGREGATORS

This appendix helps understand the choice of Bav and Bdx in section 2.2 and presents different
directional aggregators that can be used as an alternative to the ones proposed.

A simple alternative to the directional smoothing and directional derivative operator is to simply
take the forward/backward values according to the underlying positive/negative parts of the field
F , since it can effectively replicate them. However, there are many advantage of using Bav,dx.

7

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

First, one can decide to use either of them and still have an interpretable aggregation with half
the parameters. Then, we also notice that Bav,dx regularize the parameter by forcing the network
to take both forward and backward neighbours into account at each time, and avoids one of the
neighbours becoming too important. Lastly, they are robust to a change of sign of the eigenvectors
since Bav is sign invariant and Bdx will only change the sign of the results, which is not the case
for forward/backward aggregations.

B.1 RETRIEVING THE MEAN AND LAPLACIAN AGGREGATIONS

It is interesting to note that we can recover simple aggregators from the aggregation matrices
Bav(F) and Bdx(F). Let F be a vector field such that all edges are equally weighted Fij = ±C
for all edges (i, j). Then, the aggregatorBav is equivalent to a mean aggregation:

Bav(F)x = D−1Ax

Under the condition Fij = C, the differential aggregator is equivalent to a Laplacian operator L
normalized using the degreeD

Bdx(CA)x = D−1(A−D)x = −D−1Lx

B.2 GLOBAL FIELD NORMALIZATION

The proposed aggregators are defined with a row-wise normalized field

F̂i,: =
Fi,:

||Fi,:||LP

meaning that all the vectors are of unit-norm and the aggregation/message passing is done only
according to the direction of the vectors, not their amplitude. However, it is also possible to do a
global normalization of the field F by taking a a matrix-norm instead of a vector-norm. Doing so
will modulate the aggregation by the amplitude of the field at each node. One need to be careful
since a global normalization might be very sensible to the number of nodes in the graph.

B.3 CENTER-BALANCED AGGREGATORS

A problem arises in the aggregators Bdx and Bav proposed in equations 5 and 6 when there is
an imbalance between the positive and negative terms of F±. In that case, one of the directions
overtakes the other in terms of associated weights.

An alternative is also to normalize the forward and backward directions separately, to avoid having
either the backward or forward direction dominating the message.

Bav−center(F)i,: =
F ′+i,: + F ′−i,:

||F ′+i,j + F ′−i,j ||L1

, F ′±i,: =
|F±i,: |

||F±i,: ||L1 + ε
(7)

The same idea can be applied to the derivative aggregator equation 8 where the positive and negative
parts of the field F± are normalized separately to allow to project both the forward and backward
messages into a vector field of unit-norm. F+ is the out-going field at each node and is used for the
forward direction, while F− is the in-going field used for the backward direction. By averaging the
forward and backward derivatives, the proposed matrix Bdx-center represents the centered derivative
matrix.

Bdx-center(F)i,: = F ′i,: − diag

∑
j

F ′:,j

i,:

, F ′i,: =
1

2

 F+
i,:

||F+
i,:||L1 + ε︸ ︷︷ ︸

forward field

+
F−i,:

||F−i,: ||L1 + ε︸ ︷︷ ︸
backward field

 (8)

8

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

B.4 HARDENING THE AGGREGATORS

The aggregation matrices that we proposed, mainly Bdx and Bav depend on a smooth vector field
F . At any given node, the aggregation will take a weighted sum of the neighbours in relation to the
direction of F . Hence, if the field Fv at a node v is diagonal in the sense that it gives a non-zero
weight to many neighbours, then the aggregator will compute a weighted average of the neighbours.

Although there are clearly good reasons to have this weighted-average behaviour, it is not necessarily
desired in every problem. For example, if we want to move a single node across the graph, this
behaviour will smooth the node at every step. Instead, we propose below to soften and harden the
aggregations by forcing the field into making a decision on the direction it takes.

Soft hardening the aggregation is possible by using a softmax with a temperature T on each row
to obtain the field Fsofthard.

(Fsofthard)i,: = sign(Fi,:)softmax(T |Fi,:|) (9)

Hardening the aggregation is possible by using an infinite temperature, which changes the soft-
max functions into argmax. In this specific case, the node with the highest component of the field
will be copied, while all other nodes will be ignored.

(Fhard)i,: = sign(Fi,:)argmax(|Fi,:|) (10)

An alternative to the aggregators above is to take the softmin/argmin of the negative part and the
softmax/argmax of the positive part.

B.5 FORWARD AND BACKWARD COPY

The aggregation matrices Bav and Bdx have the nice property that if the field is flipped (change of
sign), the aggregation gives the same result, except for the sign of Bdx. However, there are cases
where we want to propagate information in the forward direction of the field, without smoothing it
with the backward direction. In this case, we can define the strictly forward and strictly backward
fields below, and use them directly with the aggregation matrices.

Fforward = F+ , Fbackward = F− (11)

Further, we can use the hardened fields in order to define a forward copy and backward copy, which
will simply copy the node in the direction of the highest field component.

Fforward copy = F+
hard , Fbackward copy = F−hard (12)

B.6 PHANTOM ZERO-PADDING

Some recent work in computer vision have shown the importance of zero-padding to improve CNNs
by allowing the network to understand it’s position relative to the border Islam et al. (2020). In
contrast, using boundary conditions or reflection padding makes the network completely blind to
positional information. In this section, we show that we can mimic the zero-padding in the direction
of the field F for both aggregation matricesBav andBdx.

Starting with theBav matrix, in the case of a missing neighbour in the forward/backward direction,
the matrix will compensate by adding more weights to the other direction, due to the denominator
which performs a normalization. Instead, we would need the matrix to consider both directions
separately so that a missing direction would result in zero padding. Hence, we define Bav,0pad

below, where either the F+ or F− will be 0 on a boundary with strictly in-going/out-going field.

(Bav,0pad)i,: =
1

2

(
|F+
i,:|

||F+
i,:||L1 + ε

+
|F−i,: |

||F−i,: ||L1 + ε

)
(13)

9

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Following the same argument, we define Bdx,0pad below, where either the forward or backward
term are ignored. The diagonal term is also removed at the boundary so that the result is a center
derivative equal to the subtraction of forward term with the 0-term on the back (or vice-versa),
instead of a forward derivative.

Bdx−0pad(F)i,: =

F ′+i,: if

∑
j F
′−
i,j = 0

F ′−i,: if
∑
j F
′+
i,j = 0

1
2

(
F ′+i,: + F ′−i,: − diag

(∑
j F
′+
:,j + F ′−:,j

)
i,:

)
, otherwise

F ′+i,: =
F+
i,:

||F+
i,:||L1 + ε

F ′−i,: =
F−i,:

||F−i,: ||L1 + ε

(14)

B.7 EXTENDING THE RADIUS OF THE AGGREGATION KERNEL

Having aggregation kernels for neighbours of distance 2 or 3 is important to improve the expres-
siveness of GNNs, their ability to understand patterns, and to reduce the number of layers required.
However, the lack of directions in GNNs strongly limits the radius of the kernels since, given a graph
of regular degree d, a mean/sum aggregation at a radius-R will result in a heavy over-squashing of
dR messages. Using the directional fields, we can enumerate different paths, thus assigning a differ-
ent weight for different R-distant neighbours. This method avoids the over-squashing, but empirical
results are left for future work.

We aim at providing a general radius-R kernelBR that assigns different weights to different subsets
of nodes nu at a distance R from the center node nv .

First, we decompose the matrix B(F) into positive and negative parts B±(F) representing the
forward and backward steps aggregation in the field F .

B(F) = B+(F)−B−(F) (15)

Thus, defining B±fb(F)i,: =
F±
i,:

||Fi,:||Lp , we can find different aggregation matrices by using different
combinations of walks of radius R. First demonstrated for a grid in theorem 2.4, we generalize it in
equation 16 for any graph G.

Definition 2 (General radius R n-directional kernel). Let Sn be the group of permutations over n
elements with a set of directional fields Fi.

BR :=
∑

V={v1,v2,...,vn}∈Nn
||V ||L1≤R, −R≤vi≤R︸ ︷︷ ︸

Any choice of walk V with at mostR steps
using all combinations of v1, v2, ..., vn

∑
σ∈Sn︸︷︷︸
optional

permutations

aV

N∏
j=1

(B
sgn(vσ(j))

fb (Fσ(j)))
|vσ(j)|

︸ ︷︷ ︸
Aggregator following the steps V , permuted by Sn

(16)

In this equation, n is the number of directional fields and R is the desired radius. V represents
all the choices of walk {v1, v2, ..., vn} in the direction of the fields {F1,F2, ...,Fn}. For example,
V = {3, 1, 0,−2} has a radius R = 6, with 3 steps forward of F1, 1 step forward of F2, and 2 steps
backward of F4. The sign of eachB±fb is dependant to the sign of vσ(j), and the power |vσ(j)| is the
number of aggregation steps in the directional field Fσ(j). The full equation is thus the combination
of all possible choices of paths across the set of fields Fi, with all possible permutations. Note that
we are restricting the sum to vi having only a possible sign; although matrices don’t commute, we
avoid choosing different signs since it will likely self-intersect a lower radius walk. The permutations
σ are required since, for example, the path up→ left is different (in a general graph) than the path
left→ up.

This matrix BR has a total of
∑R
r=0(2n)r = (2n)R+1−1

2n−1 parameters, with a high redundancy
since some permutations might be very similar, e.g. for a grid graph we have that up → left is

10

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

identical to left → up. Hence, we can replace the permutation Sn by a reverse ordering, mean-
ing that

∏N
j Bj = BN ...B2B1. Doing so does not perfectly generalize the radius-R kernel for

all graphs, but it generalizes it on a grid and significantly reduces the number of parameters to∑R
r=0

∑min(n,r)
l=1 2r

(
n
l

)(
r−1
l−1
)
.

C APPENDIX - IMPLEMENTATION DETAILS

C.1 BENCHMARKS AND DATASETS

We use a variety of benchmarks proposed by Dwivedi et al. (2020) and Hu et al. (2020) to test the
empirical performance of our proposed methods. In particular, to have a wide variety of graphs and
tasks we chose:

1. ZINC, a graph regression dataset from molecular chemistry. The task is to predict a score
that is a subtraction of computed properties logP − SA, with logP being the computed
octanol-water partition coefficient, and SA being the synthetic accessibility score (Jin et al.,
2018).

2. CIFAR10, a graph classification dataset from computer vision (Krizhevsky, 2009). The
task is to classify the images into 10 different classes, with a total of 5000 training image
per class and 1000 test image per class. Each image has 32× 32 pixels, but the pixels have
been clustered into a graph of ∼ 100 super-pixels. Each super-pixel becomes a node in
an almost grid-shaped graph, with 8 edges per node. The clustering uses the code from
Knyazev et al. (2019), and results in a different number of super-pixels per graph.

3. PATTERN, a node classification synthetic benchmark generated with Stochastic Block
Models, which are widely used to model communities in social networks. The task is
to classify the nodes into 2 communities and it tests the fundamental ability of recognizing
specific predetermined subgraphs.

4. MolHIV, a graph classification benchmark from molecular chemistry. The task is to predict
whether a molecule inhibits HIV virus replication or not. The molecules in the training, val-
idation and test sets are divided using a scaffold splitting procedure that splits the molecules
based on their two-dimensional structural frameworks.

5. MolPCBA, a graph classification benchmark from molecular chemistry. It consists of mea-
sured biological activities of small molecules generated by high-throughput screening. The
dataset consists of a total of 437,929 molecules divided using a scaffold slitting procedure
and a set of 128 properties to predict for each.

For the results in figure 5, our goal is to provide a fair comparison to demonstrate the capacity of our
proposed aggregators. Therefore, we compare the various methods on both types of architectures
using the same hyperparameters tuned in previous works (Corso et al., 2020) for similar networks.
The models vary exclusively in the aggregation method and the width of the architectures to keep
a set parameter budget. Following the indication of the benchmarks’ authors, we averaged the
performances of the models on 4 runs with different initialization seeds for the benchmarks from
Dwivedi et al. (2020) (ZINC, PATTERN and CIFAR10) and 10 runs for the ones from Hu et al.
(2020) (MolHIV and MolPCBA1).

For the results in figure 3, we took the fine tuned results of other models from the corresponding
public leaderboards by Dwivedi et al. (2020) and Hu et al. (2020). For the DGN results we fine
tuned the model taking the lowest validation loss across runs with the following hyperparameters
(you can also find the fine tuned commands in the documentation of the code repository):

1. ZINC: weight decay ∈ {1 · 10−5, 10−6, 3 · 10−7}, aggregators ∈ {(mean, avg1),
(mean, dx1), (mean, av1, dx1), (mean,min,max, av1), (mean,min,max, dx1)}

2. CIFAR10: weight decay ∈ {3 · 10−6}, dropout ∈ {0.1, 0.3}, aggrega-
tors ∈ {(mean, av1, av2), (mean, dx1, dx2), (mean, dx1, dx2, av1, av2),
(mean,max,min, dx1, dx2), (mean,max,min, av1, av2)}

1For MolPCBA, due to the computational cost of running models in the large dataset and the relatively low
variance, we only used 1 run for the results in figure 5, but 10 runs in those for figure 3

11

https://anonymous.4open.science/r/DGN/

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

3. PATTERN: weight decay ∈ {0, 10−8}, architecture ∈ {simple, complex}, aggregators
∈ {(mean, av1), (mean, dx1), (mean, av1, dx1)}

4. MolHIV: aggregators ∈ {(mean, dx1), (mean, av1), (mean, dx1, av1),
(mean,max, dx1), (mean,max, dx1, av1), (mean,max,min, av1, dx1)}, dropout
∈ {0.1, 0.3, 0.5}, L ∈ {4, 6}

5. for MolPCBA, given we did not start from any previously tuned architecture, we
performed a line search with the following hyperparameters: mix of aggregators
∈ {mean,max,min, sum, dx1, dx2, av1, av2}, dropout ∈ {0.1, 0.2, 0.3, 0.4}, L ∈
{4, 6, 8}, weight decay ∈ {10−7, 10−6, 3 · 10−6, 10−5, 3 · 10−5}, batch size ∈
{128.512.2048, 3072}, learning rate ∈ {10−2, 10−3, 5 · 10−4, 2 · 10−4}, learning rate
patience ∈ {4, 6, 8}, learning rate reduce factor ∈ {0.5, 0.8}, architecture type ∈
{simple, complex, towers}, edge features dimension ∈ {0, 8, 16, 32}

In CIFAR10 it is impossible to numerically compute a deterministic vector field with eigenvectors
due to the multiplicity of λ1 being greater than 1. This is caused by the symmetry of the square
image, and is extremely rare in real-world graphs. Therefore, we used as underlying vector field
the gradient of the coordinates of the image. Note that these directions are provided in the nodes’
features in the dataset and available to all models, that they are co-linear to the eigenvectors of the
grid as per lemma F.2, and that they mimic the inductive bias in CNNs.

C.2 IMPLEMENTATION AND COMPUTATIONAL COMPLEXITY

Unlike several more expressive graph networks (Kondor et al., 2018; Maron et al., 2018), our method
does not require a computational complexity superlinear with the size of the graph. The calculation
of the first k eigenvectors during pretraining, done using Lanczos method (Lanczos, 1950) and the
sparse module of Scipy, has a time complexity of O(Ek) where E is the number of edges. During
training the complexity is equivalent to a m-aggregator GNN O(Em) (Corso et al., 2020) for the
aggregation and O(Nm) for the MLP.

To all the architectures we added residual connections (He et al., 2016), batch normalization (Ioffe
& Szegedy, 2015) and graph size normalization (Dwivedi et al., 2020).

For some of the datasets with non-regular graphs, we combine the various aggregators with loga-
rithmic degree-scalers as in Corso et al. (2020).

An important thing to note is that, for dynamic graphs, the eigenvectors need to be re-computed
dynamically with the changing edges. Fortunately, there are random walk based algorithms that can
estimate φ1 quickly, especially for small changes to the graph (Doshi & Eun, 2000). In the current
empirical results, we do not work with dynamic graphs.

C.3 RUNNING TIME

The precomputation of the first four eigenvectors for all the graphs in the datasets takes 38s for
ZINC, 96s for PATTERN and 120s for MolHIV on CPU. Table 1 shows the average running time
on GPU for all the various model from figure 5. On average, the epoch running time is 15% slower
for the DGN compared to the mean aggregation, but a faster convergence for DGN means that the
total training time is on average 2% faster for DGN.

C.4 EIGENVECTOR MULTIPLICITY

The possibility to define equivariant directions using the low-frequency Laplacian eigenvectors is
subject to the uniqueness of those vectors. When the dimension of the eigenspaces associated with
the lowest eigenvalues is 1, the eigenvectors are defined up to a constant factor. We propose the
use of unit vector normalization and an absolute value to eliminate the scale and sign ambiguity.
When the dimension of those eigenspaces is greater than 1, it is not possible to define equivariant
directions using the eigenvectors.

Fortunately, it is very rare for the Laplacian matrix to have repeated eigenvalues in real-world
datasets. We validate this claim by looking at ZINC and PATTERN datasets where we found no

12

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Table 1: Average running time for the non-fine tuned models from figure 5. Each entry represents
average time per epoch / average total training time. For the first four datasets, each of the models
has a parameter budget ∼ 100k and was run on a Tesla T4 (15GB GPU). The avg increase row is
the average of the relative running time of all rows compared to the mean row, with a negative value
meaning a faster running time.

ZINC PATTERN
Aggregators Simple Complex Complex-E Simple Complex

mean 3.29s/1505s 3.58s/1584s 3.56s/1654s 153.1s/10154s 117.8s/9031s
mean dx1 3.86s/1122s 3.77s/1278s 4.22s/1371s 144.9s/8109s 127.2s/8417s

mean dx1 dx2 4.23s/1360s 4.55s/1560s 4.63s/1680s 153.3s/8057s 167.9s/9326s
mean av1 3.68s/1297s 3.84s/1398s 3.92s/1272s 128.0s/8680s 88.1s/7456s

mean av1 av2 3.95s/1432s 4.03s/1596s 4.07s/1721s 134.2s/8115s 170.4s/11114s
mean dx1 av1 3.89s/1079s 4.09s/1242s 4.58s/1510s 118.6s/6221s 144.2s/9112s
avg increase +19%/-16% +13%/-11% +20%/-9% -11%/-23% +18%/+1%

CIFAR10 MolHIV MolPCBA
Aggregators Simple Complex Simple Complex Complex-E

mean 83.6s/10526s 78.7s/10900s 11.4s/2189s 279s/30128s 356s/38126s
mean dx1 12.6s/2348s 304s/34129s 461s/43419s

mean dx1 dx2 98.4s/8405s 100.9s/5191s 14.1s/2345s 314s/36581s 334s/38363s
mean av1 12.2s/2177s 297s/30316s 436s/54545s

mean av1 av2 117.1s/12834s 89.5s/14481s 13.9s/2150s 315s/42297s 333s/36641s
mean dx1 av1 14.0s/2070s 326s/37523s 461s/59109s
avg increase +29%/+1% +21%/-10% +17%/+1% +12%/+20% +14%/+22%

graphs with repeated Fiedler vector and only one graph out of 26k with multiplicity of the second
eigenvector greater than 1.

When facing a graph that presents repeated Laplacian eigenvalues, we propose to randomly shuffle,
during training time, different eigenvectors randomly sampled in the eigenspace. This technique
will act as a data augmentation of the graph during training time allowing the network to train with
multiple directions at the same time.

D APPENDIX - RESULTS

In section 2.2 we provide a comparison between popular models and DGN. We fine-tuned the mod-
els with a parameter budget ∼ 100k using the low-frequency Laplacian eigenvectors to define the
directions, except for CIFAR10 that uses the coordinates of the image. In ZINC we used aggregators
{mean, dx1, max, min}, in PATTERN {mean, dx1, av1} and in CIFAR10 {mean, dx1, dx2, max}.
Additionally we provide a fair comparison between the mean-aggregator baseline and models using
directional aggregators as well as empirical results for the proposed augmentation.

D.1 DIRECTIONAL AGGREGATION

We present in figure 3 a fair comparison of various aggregation strategies using the same parameter
budget and hyperparameters. We see a consistent boost in the performance for simple, complex
and complex with edges models using directional aggregators compared to the mean-aggregator
baseline. For brevity, we denote dxi and avi as the directional derivative Bi

dx and smoothing Bi
av

aggregators.

In particular, we see a significant improvement on ZINC using the derivative aggregator. We believe
this is due to the capacity to move efficiently messages across opposite parts of the molecule and to
better understand the role of atom pairs. Further, the thesis that DGNs can bridge the gap between
CNNs and GNNs is supported by the clear improvements on CIFAR10 over the baselines.

13

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

ZINC PATTERN CIFAR10 MolHIV MolPCBA

Aggregators
Simple Complex Complex-E Simple Complex Simple Complex Simple Complex Complex-E

MAE MAE MAE % acc % acc % acc % acc % ROC-AUC % AP % AP

mean 0.316 0.353 0.262 80.77 83.34 55.9 62.8 75.1 26.04 26.38

mean pos1 0.349 0.332 0.297 80.76 83.74 75.8 26.97 27.50

mean pos1 pos2 0.344 0.330 0.284 84.51 81.25 76.1 26.03 25.65

mean dx1 0.296 0.233 0.191 84.22 83.44 78.0 26.79 27.91

mean dx1 dx2 0.337 0.271 0.205 81.61 86.62 52.9 69.8 76.5 27.16 26.55

mean av1 0.317 0.332 0.276 84.54 83.21 78.4 25.97 26.66

mean av1 av2 0.367 0.332 0.260 85.12 85.38 60.6 65.1 77.1 25.61 26.67

mean dx1 av1 0.290 0.245 0.192 85.17 86.68 79.0 26.40 27.47

Best

Worst

Figure 5: Test set results using a parameter budget of 100k, with the same hyperparameters as Corso
et al. (2020). The low-frequency Laplacian eigenvectors are used to define the directions, except for
CIFAR10 that uses the coordinates of the image.

With our theoretical analysis in mind, we expected to perform well on PATTERN since the flow of
the first eigenvectors are meaningful directions in a stochastic block model and passing messages
using those directions allows the network to efficiently detect the two communities. The results
match our expectations, outperforming all the previous models.

E APPENDIX - DATA AUGMENTATION

E.1 DEFINITION

Another important result is that the directions in the graph allow to replicate some of the most
common data augmentation techniques used in computer vision, namely reflection and rotation.
The main difference is that, instead of modifying the image, the proposed transformation is applied
on the vector field defining the aggregation kernel.

Definition 3 (Reflection of the vector field). For a vector field F , the reflected field is −F .

Let F1,F2 be vector field in a graph. Let α be the angle between the vector fields such that
〈F1,F2〉 = ‖F1‖‖F2‖ cos(α). The vector field F⊥2 is the component of F2 perpendicular to F1:

(F⊥2)i,: =
(F2 − 〈F1,F2〉F1)i,:
||F2 − 〈F1,F2〉F1||i,:

(17)

Definition 4 (Rotation of the vector fields). For F1 and F2 non-colinear vector fields, their rotation
by the angle θ in the plane formed by {F1,F2} is

F ′1 = F1 cos θ + F⊥2 sin θ , F ′2 = F1 cos(θ + α) + F⊥2 sin(θ + α) (18)

E.2 RESULTS

To evaluate the effectiveness of the proposed augmentation, we trained the models on a reduced
version of the CIFAR10 dataset. The results in figure 6 show clearly a higher expressive power of
the dx aggregator, enabling it to fit well the training data. For a small dataset, this comes at the cost
of overfitting and reduced performance on the test set. However, we observe that randomly rotating
the kernels counteract the overfitting and allows the model to better generalize.

14

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

0° 2° 5° 10° 20° 45°
Rotation angle

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Rotation Training
mean
dx
av

0° 2° 5° 10° 20° 45°
Rotation angle

0.48

0.50

0.52

Rotation Test

mean
dx
av

0% 1% 5% 10% 20% 40%
Percentage distortion

0.6

0.7

0.8

0.9
Distortion Training

mean
dx
av

0% 1% 5% 10% 20% 40%
Percentage distortion

0.48

0.50

0.52

Distortion Test

mean
dx
av

Figure 6: Accuracy of the various models using the complex architecture and trained on 10%
of the CIFAR10 training set (4.5k images) with various ranges of rotation angles. An angle of x
corresponds to a rotation of the kernel of a random angle sampled uniformly in (−x◦, x◦) using
definition 4 with F1,2 being the gradient of the horizontal/vertical coordinates. The mean baseline
model is not affected by the augmentation since it does not use the underlining vector field.

F APPENDIX - MATHEMATICAL PROOFS

F.1 PROOF FOR THEOREM 2.1 (DIRECTIONAL SMOOTHING)

The operation y = Bavx is the directional average of x, in the sense that yu is the mean of xv ,
weighted by the direction and amplitude of F .

Proof. This should be a simple proof, that if we want a weighted average of our neighbours, we
simply need to multiply the weights by each neighbour, and divide by the sum of the weights. Of
course, the weights should be positive.

F.2 PROOF FOR THEOREM 2.2 (DIRECTIONAL DERIVATIVE)

Suppose F̂ have rows of unit L1 norm. The operation y = Bdx(F̂)x is the centered directional
derivative of x in the direction of F , in the sense of equation 4, i.e.

y = DF̂x =
(
F̂ − diag

(∑
j

F̂:,j

))
x

Proof. Since F rows have unit L1 norm, F̂ = F . The i-th coordinate of the vector(
F − diag

(∑
j F:,j

))
x is

Fx− diag

∑
j

F

x

i

=
∑
j

Fi,jx(j)−

∑
j

Fi,j

x(i)

=
∑

j:(i,j)∈E

(x(j)− x(i))Fi,j

= DF x(i)

F.3 DEFINITION OF K-WALK DISTANCE

Definition 5 (K-walk distance). The K-walk distance dK(vi, vj) on a graph is the average number
of times vi is hit in a K step random walk starting from vj .

15

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

F.4 PROOF FOR THEOREM 2.3 (K-GRADIENT OF LOW FREQUENCY EIGENVECTORS)

Let λi and φi be the eigenvalues and eigenvectors of Lnorm of a connected graph and
a, b = arg max1≤i,j≤n{dK(vi, vj)} be the nodes that have highest K-walk distance. Let
m = arg min1≤i≤n(φ1)i and M = arg max1≤i≤n(φ1)i, then vm, vM appr. va, vb with order
O(λ2 − λ1).

Proof. First we need the following proposition:

Proposition 1 (K-walk distance matrix). The K-walk distance matrix P associated with a graph is
the matrix such that (P)i,j = dK(vi, vj) can be written as

∑K
p=1W

p, where W = D−1A is the
random walk matrix.

Let’s defineW = D−1A the random walk matrix of the graph.

First, we are going to show that W is jointly diagonalizable with Lnorm and we are going to relate
its eigenvectors φ′i and its eigenvalues λ′i with the ones ofW .

Indeed,Lsym is a symmetric real matrix which is semi-positive definite diagonalizable by the spectral
theorem. Since the matrix Lnorm is similar toD

1
2LnormD

− 1
2 = D−

1
2LD−

1
2 = Lsym and the matrix

of similarity isD
1
2 , a positive definite matrix, Lnorm is diagonalizable and semi-positive definite.

By

Lnorm = D−1L = D−1(L+D −D) = I +D−1(L−D) = I −D−1A = I −W

the random walk matrix is jointly diagonalizable with the random walk Laplacian. Also their eigen-
values and eigenvectors are related to each other by φi = φ′n−1−i and λ′i = 1− λn−1−i
Moreover, the constant eigenvector associated with eigenvalue 0 of the Random walk Laplacian,
is the eigenvector associated with the highest eigenvalue of the Random walk matrix and by the
formula obtained, λ′n−1 = 1− λ0 = 1

Now, we are going to approximate the K-walk distance matrix P using the 2 eigenvectors of the
Random walk matrix associated with the highest eigenvalues.

By Proposition 1 we have that P =
∑K
p=1W

p, which can be written as

K∑
p=1

(

n−1∑
i=0

φ′iφ
′T
i (λ′i))

p =

K∑
p=1

n−1∑
i=0

φ′iφ
′T
i (λ′i)

p

by eigen-decomposition.

Since λn−1−i = 1− λ′i and λ2 � λ1, we have that λ′n−2 � λ′n−3, hence we can approximate

P =

K∑
p=1

(

n−1∑
i=0

φ′iφ
′
i(λ
′
i)
p) ≈

K∑
p=1

(

n−1∑
i=n−2

φ′iφ
′T
i (λ′i)

p) +O(λ′n−2 − λ′n−3) =

=

K∑
p=1

(

1∑
i=0

φiφ
T
i (1−λi)p)+O(λ2−λ1) =

K∑
p=1

(φ0φ
T
0 +φ1φ

T
1 (1−λ1)p)+O(λ2−λ1) = Kφ0φ

T
0 +κφ1φ

T
1 +O(λ2−λ1)

where κ =
∑K
p=1(1− λ1)p is a positive constant.

Now we are going to show that the farthest nodes with respect to the K-walk distance are the ones
associated with the highest and lowest value of φ1.

Indeed if we want to choose i, j to be at the farthest distance we need to minimise

(P)i,j = (Kφ0φ
T
0 + κφ1φ

T
1)i,j =

K

n
+ κφ1(i)φ1(j)

which is minimum when φ1(i)φ1(j) is minimum.

16

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

The quantity φ1(i)φ1(j) is minimised when it has negative sign and highest absolute value, hence
when i, j are associated with the negative and positive values with the highest absolute value: the
lowest and the highest value of φ1.

F.5 INFORMAL ARGUMENT IN SUPPORT OF CONJECTURE F.1

Conjecture F.1. Define the hitting timeQ(x, y) defined as the expected number of steps in a random
walk starting from node x ending in node y with the probability transition P (x, y) = 1

dx
. Suppose

that x, y are uniformly distributed random nodes such that φi(x) < φi(y). Let z be the node ob-
tained from x by taking one step in the direction of∇φi, then the expected hitting time is decreased
proportionally to λ−1i and

Ex,y[Q(z, y)] ≤ Ex,y[Q(x, y)]

Define the hitting time Q(x, y) defined as the expected number of steps in a random walk starting
from node x ending in node y with the probability transition P (x, y) = 1

dx
. Suppose that x, y are

uniformly distributed random nodes such that φi(x) < φi(y). Let z be the node obtained from x by
taking one step in the direction of∇φi, then the expected hitting time is decreased proportionally to
λ−1i and

Ex,y[Q(z, y)] ≤ Ex,y[Q(x, y)]

In Chung & S.T.Yau (2000), it is shown the hitting time Q(x, y) is given by the equation

Q(x, y) = vol

(
G(y, y)

dy
− G(x, y)

dx

)
With λk and φk being the k-th eigenvalues and eigenvectors of the symmetric normalized Laplacian
Lsym, vol the sum of the degrees of all nodes, dx the degree of node x and G Green’s function for
the graph

G(x, y) = d
1
2
x d

−1
2
y

∑
k>0

1

λk
φk(x)φk(y)

Since the sign of the eigenvector is not deterministic, the choice φi(x) < φi(y) is used to simplify
the argument without having to consider the change in sign.

Supposing λ1 � λ2, the first term of the sum ofG has much more weight than the following terms.
With z obtained from x by taking a step in the direction of the gradient of φ1 we have

φ1(z)− φ1(x) > 0

We want to show that the following inequality holds

Ex,y(Q(z, y)) < Ex,y(Q(x, y))

this is equivalent to the following inequality

Ex,y[G(z, y)] > Ex,y[G(x, y)]

By the hypothesis λ1 � λ2, we can approximate G(x, y) ∼ d
1
2
x d

−1
2
y

1
λ1
φ1(x)φ1(y) so the last

inequality is equivalent to

Ex,y
[
d

1
2
z d

−1
2
y

1

λ1
φ1(z)φ1(y)

]
> Ex,y

[
d

1
2
x d

−1
2
y

1

λ1
φ1(x)φ1(y)

]
Removing all equal terms from both sides, the inequality is equivalent to

Ex,y
[
d

1
2
z φ1(z)

]
> Ex,y

[
d

1
2
xφ1(x)

]
But showing this last inequality is not easy. We know that φ1(z) > φ1(x) and from the choice of z
being a step in the direction of∇φ1, we know it is less likely to be on the border of the graph so we
believe E(dz) ≥ E(dx). Thus we also believe that the conjecture should hold in general.

We believe this should be true even without the assumption on λ1 and λ2 and for more eigenvectors
than φ1.

17

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

F.6 COROLLARY - REDUCES OVER-SQUASHING

Following the direction of∇φ1 is an efficient way of passing information between the farthest nodes
of the graph (in terms of the K-walk distance).

F.7 COROLLARY - REDUCES OVER-SMOOTHING

Following the direction of∇φ1 allows the influence distribution between node representations to be
decorrelated from random-walk hitting times (assuming the definition of influence introduced in Xu
et al. (2018b)).

F.8 PROOF FOR LEMMA F.2 (COSINE EIGENVECTORS)

Consider the lattice graph Γ of size N1 ×N2 × ...×Nn, that has vertices
∏
i=1,...,n{1, ..., Ni} and

the vertices (xi)i=1,...,n and (yi)i=1,...,n are connected by an edge iff |xi − yi| = 1 for one index i
and 0 for all other indices. Note that there are no diagonal edges in the lattice. The eigenvector of
the Laplacian of the grid L(Γ) are given by φj .

Lemma F.2 (Cosine eigenvectors). The Laplacian of Γ has an eigenvalue 2− 2 cos
(
π
Ni

)
with the

associated eigenvector φj that depends only the variable in the i-th dimension and is constant in all
others, with φj = 1N1

⊗ 1N2
⊗ ...⊗ x1,Ni ⊗ ...⊗ 1Nn , and x1,Ni(j) = cos

(
πj
n −

π
2n

)
Proof. First, recall the well known result that the path graph on N vertices PN has eigenvalues

λk = 2− 2 cos

(
πk

n

)
with associated eigenvector xk with i-th coordinate

xk(i) = cos

(
πki

n
+
πk

2n

)
The Cartesian product of two graphs G = (VG, EG) and H = (VH , EH) is defined as G × H =
(VG×H , EG×H) with VG×H = VG × VH and ((u1, u2), ((v1, v2)) ∈ EG×H iff either u1 = v1 and
(u2, v2) ∈ EH or (u1, v1) ∈ VG and u2 = v2. It is shown in Fiedler (1973) that if (µi)i=1,...,m

and (λj)j=1,...,n are the eigenvalues of G and H respectively, then the eigenvalues of the Cartesian
product graphG×H are µi+λj for all possible eigenvalues µi and λj . Also, the eigenvectors asso-
ciated to the eigenvalue µi + λj are ui ⊗ vj with ui an eigenvector of the Laplacian of G associated
to the eigenvalue µi and vj an eigenvector of the Laplacian of H associated to the eigenvalue λj .

Finally, noticing that a lattice of shape N1 × N2 × ... × Nn is really the Cartesian product of path
graphs of length N1 up to Nn, we conclude that there are eigenvalues 2 − 2 cos

(
π
Ni

)
. Denoting

by 1Nj the vector in RNj with only ones as coordinates, then the eigenvector associated to the

eigenvalue 2− 2 cos
(
π
Ni

)
is

1N1 ⊗ 1N2 ⊗ ...⊗ x1,Ni ⊗ ...⊗ 1Nn

where x1,Ni is the eigenvector of the Laplacian of PNi associated to its first non-zero eigenvalue.

2− 2 cos
(
π
Ni

)
.

F.9 RADIUS 1 CONVOLUTION KERNELS IN A GRID

In this section we show any radius 1 convolution kernel can be obtained as a linear combination of
the Bdx(∇φi) and Bav(∇φi) matrices for the right choice of Laplacian eigenvectors φi. First we
show this can be done for 1-d convolution kernels.

Theorem F.3. On a path graph, any 1D convolution kernel of size 3 k is a linear combination of
the aggregatorsBav,Bdx and the identity I .

18

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Proof. Recall from the previous proof that the first non zero eigenvalue of the path graph PN has
associated eigenvector φ1(i) = cos(πiN −

π
2N). Since this is a monotone decreasing function in i,

the i-th row of ∇φ1 will be
(0, ..., 0, si−1, 0,−si+1, 0, ..., 0)

with si−1 and si+1 > 0. We are trying to solve

(aBav + bBdx + cId)i,: = (0, ..., 0, x, y, z, 0, ..., 0)

with x, y, z, in positions i− 1, i and i+ 1. This simplifies to solving

a
1

‖s‖L1

|s|+ b
1

‖s‖L2

s+ c(0, 1, 0) = (x, y, z)

with s = (si−1, 0,−si+1), which always has a solution because si−1, si+1 > 0.

Theorem F.4 (Generalization radius-1 convolutional kernel in a grid). Let Γ be the n-dimensional
lattice as above and let φj be the eigenvectors of the Laplacian of the lattice as in theorem F.2. Then
any radius 1 kernel k on Γ is a linear combination of the aggregatorsBav(φi),Bdx(φi) and I .

Proof. This is a direct consequence of F.3 obtained by adding n 1-dimensional kernels, with each
kernel being in a different axis of the grid as per Lemma F.2. See figure 7 for a visual example in
2D.

CNN equivalent on
image 𝐼𝑁×𝑀 , with
𝑁 > 𝑀 ; 𝑁%𝑀 ≠ 0

Graph aggregation

11

𝒚 = 2𝑩𝑎𝑣
1 𝒙

1-1

𝒚 = 2𝑩𝑑𝑥
1 𝒙

1

1

𝒚 = 2𝑩𝑎𝑣
𝑚 𝒙

1

-1

𝒚 = 2𝑩𝑑𝑥
𝑚 𝒙

𝑤1
𝑤2

+ 𝑤3

𝑤4

+ 𝑤5

𝑤4

− 𝑤5

𝑤2

− 𝑤3

Figure 7: Realization of a radius-1 convolution using the proposed aggregators. Ix is the input
feature map, ∗ the convolutional operator, Iy the convolution result, andBi = B(∇φi).

F.10 PROOF FOR THEOREM 2.4 (GENERALIZATION RADIUS-R CONVOLUTIONAL KERNEL IN
A LATTICE)

For an n-dimensional lattice, any convolutional kernel of radius R can be realized by a linear com-
bination of directional aggregation matrices and their compositions.

Proof. For clarity, we first do the 2 dimensional case for a radius 2, then extended to the general
case. Let k be the radius 2 kernel on a grid represented by the matrix

a5×5 =

0 0 a−2,0 0 0
0 a−1,−1 a−1,0 a−1,1 0

a0,−2 a0,−1 a0,0 a0,1 a0,2
0 a1,−1 a1,0 a1,1 0
0 0 a2,0 0 0

since we supposed the N1 × N2 grid was such that N1 > N2, by theorem F.2, we have that φ1 is
depending only in the first variable x1 and is monotone in x1. Recall from F.2 that

φ1(i) = cos

(
πi

N1
+

π

2N1

)
The vector N1

π ∇ arccos(φ1) will be denoted by F1 in the rest. Notice all entries of F1 are 0 or ±1.
Denote by F2 the gradient vector N2

π ∇ arccos(φk) where φk is the eigenvector given by theorem
F.2 that is depending only in the second variable x2 and is monotone in x1 and recall

φk(i) = cos

(
πi

N2
+

π

2N2

)

19

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

For a matrix B, let B± the positive/negative parts of B, ie matrices with positive entries such that
B = B+ −B−. LetBr1 be a matrix representing the radius 1 kernel with weights

a3×3 =

(
0 a−1,0 0

a0,−1 a0,0 a0,1
0 a1,0 0

)

The matrix Br1 can be obtained by theorem F.4. Then the radius 2 kernel k is defined by all the
possible combinations of 2 positive/negative steps, plus the initial radius-1 kernel.

Br2 =
∑

−2≤i,j≤2
|i|+|j|=2

(
ai,j(F

sgn(i)
1)|i|(F

sgn(j)
2)|j|

)
︸ ︷︷ ︸

Any combination of 2 steps

+ Br1︸︷︷︸
all possible single-steps

with sgn the sign function sgn(i) = + if i ≥ 0 and − if i < 0. The matrix Br2 then realises the
kernel a5×5.

We can further extend the above construction to N dimension grids and radius R kernels k

∑
V={v1,v2,...,vN}∈Nn

||V ||L1≤R
−R≤vi≤R︸ ︷︷ ︸

Any choice of walk V with at mostR-steps

aV

N∏
j=1

(F
sgn(vj)
j)|vj |︸ ︷︷ ︸

Aggregator following the steps defined in V

with Fj =
Nj
π ∇ arccosφj ,φj the eigenvector with lowest eigenvalue only dependent on the j-th

variable and given in theorem F.2 and
∏

is the matrix multiplication. V represents all the choices of
walk {v1, v2, ..., vn} in the direction of the fields {F1,F2, ...,Fn}. For example, V = {3, 1, 0,−2}
has a radius R = 6, with 3 steps forward of F1, 1 step forward of F2, and 2 steps backward of F4.

F.11 PROOF FOR THEOREM 2.5 (COMPARISON WITH 1-WL TEST)

DGNs using the mean aggregator, any directional aggregator of the first Laplacian eigenvector and
injective degree-scalers are strictly more powerful than the 1-WL test.

Proof. We will show that (1) DGNs are at least as powerful as the 1-WL test and (2) there is a pair
of graphs which are not distinguishable by the 1-WL test which DGNs can discriminate.

Since the DGNs include the mean aggregator combined with at least an injective degree-scaler,
Corso et al. (2020) show that the resulting architecture is at least as powerful as the 1-WL test.

20

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Aggregation matrix Graph 1 Graph 2

𝑨
1𝑎 + 1𝑏 → 𝑏
1𝑎 + 2𝑏 → 𝑎

1𝑎 + 1𝑏 → 𝑏
1𝑎 + 2𝑏 → 𝑎

𝑩𝒅𝒙
𝟏 1𝑎 − 1𝑏 → 𝑏

0 → 𝑎
1𝑎 − 1𝑏 → 𝑏

0.44𝑏 − 0.44𝑎 → 𝑎

𝑩𝒂𝒗
𝟏 1𝑎 → 𝑏

1𝑏 → 𝑎
1𝑎 → 𝑏

0.44𝑏 + 0.56𝑎 → 𝑎

b

b

a

a

b

b

b

b

a a

b

b

Graph 1 Graph 2

Figure 8: Illustration of an example pair of graphs which the 1-WL test cannot distinguish but
DGNs can. The table shows the node feature updates done at every layer. MPNN with mean/sum
aggregators and the 1-WL test only use the updates in the first row and therefore cannot distinguish
between the nodes in the two graphs. DGNs also use directional aggregators that, with the vector
field given by the first eigenvector of the Laplacian matrix, provides different updates to the nodes
in the two graphs.

Then, to show that the DGNs are strictly more powerful than the 1-WL test it suffices to provide an
example of a pair of graphs that DGNs can differentiate and 1-WL cannot. Such a pair of graphs is
illustrated in figure 8.

The 1-WL test (as any MPNN with, for example, sum aggregator) will always have the same features
for all the nodes labelled with a and for all the nodes labelled with b and, therefore, will classify
the graphs as isomorphic. DGNs, via the directional smoothing or directional derivative aggregators
based on the first eigenvector of the Laplacian matrix, will update the features of the a nodes dif-
ferently in the two graphs (figure 8 presents also the aggregation functions) and will, therefore, be
capable of distinguishing them.

G APPENDIX - BROADER IMPACT

This work will extend the usability of graph networks to all problems with physically defined di-
rections, thus making GNN a new laboratory for physics, material science and biology. In fact, the
anisotropy present in a wide variety of systems could be expressed as vector field (spinor, tensor)
compatible with the DGN framework, without the need of eigenvectors. One example is magnetic
anisotropicity in metals, alloys and also in molecules such as benzene ring, alkene, carbonyl, alkyne
that are easier or harder to magnetise depending on the directions or which way the object is ro-
tated. Other examples are the response of material to high electromagnetic fields (e.g. to study
material responses at terahertz frequency); all kind of field propagation in crystals lattices (vibra-
tions, heat, shear and frictional force, young modulus, light refraction, birefringence); multi-body
or liquid motion; traffic modeling; and design of novel materials and constrained structures. This
also enables GNNs to be used for virtual prototyping systems since the added directional constraints
could improve the analysis of a product’s functionality, manufacturing and behavior.

21

	Introduction
	Theoretical development
	Vector fields in a graph
	Directional smoothing and derivatives
	Gradient of the eigenvectors as interpretable vector fields
	Generalization of the convolution on a grid
	Comparison with Weisfeiler-Lehman (WL) test

	Results and discussion
	Conclusion
	Appendix - Intuitive overview
	Appendix - Choices of directional aggregators
	Retrieving the mean and Laplacian aggregations
	Global field normalization
	Center-balanced aggregators
	Hardening the aggregators
	Forward and backward copy
	Phantom zero-padding
	Extending the radius of the aggregation kernel

	Appendix - Implementation details
	Benchmarks and datasets
	Implementation and computational complexity
	Running time
	Eigenvector multiplicity

	Appendix - Results
	Directional aggregation

	Appendix - Data Augmentation
	Definition
	Results

	Appendix - Mathematical Proofs
	Proof for Theorem 2.1 (Directional smoothing)
	Proof for Theorem 2.2 (Directional derivative)
	Definition of K-walk distance
	Proof for Theorem 2.3 (K-Gradient of low frequency eigenvectors)
	Informal argument in support of Conjecture F.1
	Corollary - Reduces over-squashing
	Corollary - Reduces over-smoothing
	Proof for Lemma F.2 (Cosine eigenvectors)
	Radius 1 convolution kernels in a grid
	Proof for Theorem 2.4 (Generalization radius-R convolutional kernel in a lattice)
	Proof for theorem 2.5 (Comparison with 1-WL test)

	Appendix - Broader Impact

