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ABSTRACT

Most neural networks for classification primarily learn features differentiated by
input-domain related information such as visual similarity of objects in an im-
age. This input-domain focused inductive bias, while natural, can unintentionally
conflict with unexpressed yet implicitly utilized relations over latent objects in
human labeling, referred to Undescribed world knowledge (UWK). Such conflicts
can limit generalization of models by potential dominance of the input-domain
focused bias in inference. To overcome this limitation without external resources,
we introduce Label-focused Latent-object Biasing (LLB) training method that con-
structs label-focused inductive bias over latent objects determined by only labels
as UWK. It has four steps: 1) it learns intermediate latent object features in an
unsupervised manner; 2) it decouples their visual dependencies by assigning new
independent embedding parameters; 3) it captures structured features optimized
for the original classification task; and 4) it integrates the structured features with
the original visual features for the final prediction. We implement the LLB on
a vision transformer architecture, and achieved significant improvements on im-
age classification benchmarks. This paper offers a straightforward and effective
method to obtain and utilize undescribed world knowledge in classification tasks.
The codes are available at https://github.com/GIST-IRR/LLB

1 INTRODUCTION

Figure 1: Visually similar but semanti-
cally different images when we see the re-
lations of all objects that are not explicitly
described in data

In many classification tasks, a neural network has a
role of learning latent features from an input to deter-
mine its accurate output labels. In case of image clas-
sification, the model learns the features based on vi-
sual similarity and differentiation depending on their
classes. This preference for the input-domain to han-
dle the similarity of features is a common property in
most well-known models such as convolutional neural
network (Krizhevsky et al., 2017; He et al., 2016) and
vision transformer (ViT) (Dosovitskiy et al., 2020) as
their high sensitivity to input specific information (Park
& Kim).

This behavior is naturally expected for neural networks,
but the relations on the latent objects may be different
in human labeling based on world knowledge. Figure 1
shows the clear example of the conflict in image classi-
fication. The figures on the left are visually very similar
to those on the right, but the semantics of the labels are
different in the real world. These samples may be regarded as just ambiguous and difficult samples
for visual classification, but in fact we can differentiate them correctly by using unobserved relations
in the data, such as the stick part of Mop or the ice ground for the Hockey puck.

∗: corresponding author
†: Gwangju Institute of Science and Technology
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This conflict between input-domain and potential knowledge on labels has been already discussed
in various practical tasks, including visual question answering, cross-modal learning, and domain
adaptation (Hendricks et al., 2018; Rohrbach et al., 2018; Zhou et al., 2019; Zhang et al., 2021; Ca-
dene et al., 2019; Lemesle et al., 2022; Min et al., 2020; Radford et al., 2021) in various perspectives.
However, these works have primarily focused on the inconsistency of rich information in observed
data of two explicitly different domains (i.e. linguistic and visual relations of observed entities in
each domain), while the conflict between input-domain information and undescribed relations over
internal objects for determining output labels referred to Undescribed World Knowledge (UWK) in
a single classification has been less investigated.

Such conflict in a single classification can limit generalization, because training and test data col-
lected in the same labeling environment share the same UWK. If a model fails to learn such UWK,
inference on test data can be dominated by input-domain focused inductive bias and lead to incorrect
prediction. This limit of generalization by the conflict has not been discussed as an important issue
to control so far. In visual classification, for example, the training data already contain a portion
of UWK, as labeling can inform the category of internal objects in an image that are sufficiently
abstract for the use as basic elements of the knowledge.

To this end, we propose Label-focused Latent-object Biasing (LLB) method for learning label-
focused inductive bias over latent object features determined solely by categorization of labels,
regarded as UWK. It has four sequential steps: 1) it learns intermediate latent object features in
an unsupervised manner; 2) it decouples their visual dependencies by assigning new independent
embedding parameters; 3) it captures structured features optimized for the original classification
task; and 4) it integrates the structured features with the original visual features for final predic-
tion. We empirically investigate the conflict and impact of LLB on latent feature distributions and
implement it on ViT architecture. Our experiments on an image classification task show that LLB
improves performance in both quantitative and qualitative analyses, demonstrating the benefits of
regularizing the model without external resources.

Our contribution points are:

• We first raise the dominance of input-domain focused inductive bias of neural networks on
inference that conflicts with undescribed world knowledge over latent objects by human
labeling.

• We propose a training strategy, Label-focused Latent-object Biasing (LLB), to obtain UWK
and utilize it as label-focused inductive bias, and implement it on vision transformer for
visual classification.

• We verify the proposed method in various image classification benchmarks with quantita-
tive and qualitative analysis.

2 RELATED WORKS

Conflict of Input Domain Focused Inductive Bias The conflict between input-domain and po-
tential knowledge on labels has been discussed in various tasks. However, most works focus on
the inconsistency of two different domain resources rather than the conflict of input-domain with
undescribed world knowledge over latent objects in human labeling. In image captioning, (Hen-
dricks et al., 2018) addresses the conflict of bias on visual contextual cues with gender-specific
texts. (Rohrbach et al., 2018) raises over-reliance issue on language prior, leading to hallucination
problem. (Zhou et al., 2019; Zhang et al., 2021) also observes that semantic inconsistency in the
visual-text domain leads to hallucination, highlighting the issue of scarce aligned visual-text pairs.
In visual question answering, (Cadene et al., 2019) introduces the impact of reducing dependencies
on single-domain based statistical regularities when using both text and image input information. In
cross-modality representation learning, vision networks leverage broader supervision of texts and
adopts language bias in visual representation (Radford et al., 2021). However, cross-modal repre-
sentations suffer inconsistency of language and visual domains (Pan et al., 2022; Lemesle et al.,
2022). (Chen et al., 2019; Alberts et al., 2020; Li et al., 2020; Tan & Bansal, 2019) aim to make se-
mantic aligned object representation using image-text paired dataset. To adapt CLIP (Radford et al.,
2021) in a different domain, (Ma et al., 2022) made semantic alignments with large collection of
semantic entities paired with images. (Pan et al., 2022) suggests semantic connection between differ-
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ent modalities for semantic perceiving and addressed the limitation with external knowledge-graph
based networks.

Conflict Reduction via Knowledge Graph A traditional and direct solution of reducing the input-
domain focused bias is to use external resources defined on labels as knowledge graphs. In visual
understanding, (Marino et al., 2017) learns structured semantic representation over objects (Ren
et al., 2015) with structured prior knowledge graph (Krishna et al., 2017; Miller, 1995). (Wang et al.,
2018; Kampffmeyer et al., 2019) tried to inject knowledge graph and biases of language in the vision
classifier to make zero-shot predictions. For open-world detection, (Yao et al., 2022) proposed
large-scale unified concept dictionary with large-scaled image-text paired dataset to provide prior
knowledge on detection. (Zhu et al., 2021) also learns dynamic knowledge graph over object class
label from language domain bias to overcome the limitation of data scarcity in few-shot object
detection. However, all these works focus on the effective use of external knowledge while UWK of
the target training data has not been utilized and even recognized.

Disconnecting Latent Objects from Inputs In visual understanding, (Marino et al., 2017) learns
graph structures on internal objects, which are regarded as nodes, and integrates the features with
external prior knowledge. To initialize each node feature, the object class label is used, which
disconnects the visual dependency in the separate phase for graph neural networks. (Zhu et al.,
2021) also learns dynamic semantic knowledge graph on object class label, which disconnects the
visual dependency. However, visual disconnection in (Marino et al., 2017) are based on graph
extraction and analysis. And (Zhu et al., 2021) may have learn separate embedding to input-domain,
with the aim of representing language based semantic embedding over object class labels, rather
than label-focused inductive bias. (Min et al., 2020) highlights the need for managing input-domain
focused bias in regularizing representation for zero-shot classification, using decoupling effects by
contrastive learning. Differently, our method focuses on conflicts in standard classification and direct
extraction of UWK to induce decoupling and repositioning bias that is insensitive to input-domain
features.

3 METHOD

3.1 PRELIMINARIES

(a) Centroids of Class-wise Features (1000 classes) (b) Image Samples for Adjacent Classes

Figure 2: Input-domain focused inductive bias on features at the final layer, and its conflict with
semantic difference on labels.

Problem Confirmation in Class Distribution The problem to be addressed in this paper is the
dominance of the input-domain focused bias on latent object features that conflicts with UWK. In
Figure 2, the problem is clearly shown. The dots in the leftside figure represents the centroids of
all features in each class of ImageNet, extracted from a MAE He et al. (2022) trained on the data.
We zoomed in on an area where the centroids are closely located and selected almost adjacent five
classes. However, in the rightside figure, their class labels are semantically unrelated. Although
their visual similarity is sufficiently high, a human can correctly recognize the label. For example,
the pole in a mop image may be confused with a tightened harness of a Komondor, but their shape

3



Published as a conference paper at ICLR 2024

(a) Process of LLB

(b) LLB Module on Visual transformer
Figure 3: Overview of Label-focused Latent-object Biasing in image classification. (blue: visually
determined, red: non-visually determined)

and angles associated with the other hairy features are distinguish the two classes. This observation
shows an evidence for the dominance of the visual input-domain focused bias over the UWK. See
Appendix C for additional problem confirmation using CNN and comparison with LLB.

Motivation for Method: Label-based Grouping of Latent Objects Determines Their Similarity
in UWK Our motivation is that categorizing latent object features provides their similarity on the
UWK without relying of external resources. A straightforward approach to utilize this label-focused
bias is to train a classification model that takes the latent features as input. But, input-domain fo-
cused inductive bias may dominate over the label-focused bias in determining the feature positions.
To address this issue, we propose training a separate plug-in classification model to capture the
label-focused bias. Additionally, we propose disconnecting the direct forward path from an input to
latent object features, which will then be fed into the model as new inputs.

Notations for ViT We start with brief recap of ViT (Dosovitskiy et al., 2020). ViT reshape input
image x ∈ RC×H×W to patches xp ∈ RN×(P 2·C), where (H,W ) is original image’s resolution
with channel size C. Patches have size of (P, P ), and the derived total number N of patches per
images is HW/P 2. Patches are then projected into hidden dimension of size D with additional
positional embedding. Function f(x), encodes patch representations with additional CLS token cv
by stacks of LV transformer (MHSA+FFNN) layers. We denote visual features as Vl = [vi

l ]
N
i=0,

where vi
l ∈ RD is hidden vector of ith-patch of lth-layer.

3.2 METHOD DESCRIPTION

Overview of Architecture on Vision Transformer We propose Label-focused Latent-object Bi-
asing (LLB) method for visual classification problems as shown in Figure 3. Our network is based on
a typical pre-trained ViT Dosovitskiy et al. (2020) that uses split image-patches as an input sequence,
and is implemented in four sequential steps: 1) latent object extraction, 2) visual dependency dis-
connection, 3) object feature structuring, and 4) integration of non-visual and visual features for the
final prediction. In the first step, the generated features from an intermediate l-th layer of the ViT
(visual features Vl) generates probability to select a latent object index among O objects. In the next
step for the disconnection, the most probable object index is mapped to separate learnable embed-
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ding non-visual features N = [ni]Oi=0 ∈ RO×D where D is the equal dimension to visual features
and i indicates the object index. In the third step, the following transformer stacks (LLB layers)
learn the structures of the non-visual embedding. At the end, the visual and non-visual features are
integrated as an ensemble for the final decision.

Latent Object Extraction from Visual Features The first step in visual object extraction involves
quantizing visual features into a set of latent objects. This process is essential in limiting the number
of non-visual features that may be associated with UWK, thereby ensuring that computational cost
constraints are met. To implement the quantization, we pass a visual feature of each image patch into
an MLP. This is then followed by a Softmax operation at a temperature of T (= 0.1). The resulting
vector, pi, determines the probability of selecting the latent object of index i. The following process
is applied to all patches generated from an image.

pi = Softmax(MLP(vi
l )) , pi ∈ RO (1)

The clarity of objects is influenced by their number, therefore we consider it a hyper-parameter. The
effective range for this parameter is detailed in Table 7a.

To effectively represent groups of visual features using a limited number of latent objects, we in-
corporated a loss function that promotes diversity of probabilities, as described in (Van Gansbeke
et al., 2020; Mustafa et al., 2022).

LDiversity = −H(p̃), where p̃ =
1

N

N∑
i=0

pi and H(p) = −
O∑
i=1

pi log(pi) (2)

where LDiversity makes the averaged probability vectors of all objects uniform, encoursing even
assignment across all objects. LDiversity is combined with downstream task loss (e.g., cross-entropy
loss) using the balancing parameter λ(=0.5).

Visual Dependency Disconnection The core idea of visual disconnection is to assign separate
embedding parameters to visually determined latent objects. This process interrupts the gradient
flow of the embedding parameters stemming from input-based differentiation, ensuring that subse-
quent training on the embedding is not overly influenced by this differentiation. To achieve this, we
employ a straightforward Disconnect network, as illustrated in Figure 3b.

N0 = Disconnect(A,N) = A×N (3)
A : A matrix of patch-wise probability vectors to select latent objects
N : A matrix of non-visual features in disconnected parameters from input

The Disconnect network straightforwardly assigns disconnected embedding parameters to latent
objects and subsequently produces patch-wise non-visual features, denoted as N0 = [ni

0]
N
i=0, used

as inputs of LLB module. It operates matrix multiplication of assign matrix A = [pi]Ni=0 ∈ RN×O,
composed of the generated probability vectors (pis in Equation( 1)) to select latent objects, and
the separate trainable non-visual feature N . Rather than using the argmax function, matrix mul-
tiplication with the assign matrix is employed. This makes it differentiable while interrupting the
input-based differentiation. It is worth noting that we utilize a separate CLS token, denoted as n0

0,
for downstream tasks.

Non-visual Feature Structuring Structuring non-visual features is the core step to redefining the
similarity of features built over latent objects via solely the categorization of labels. The structuring
method, referred to g(X,W ), processes non-visual features N0 using weights W from structuring
module to produce structured non-visual features NLN

. We implemented the function g by a stack-
ing LN layers of transformer (Vaswani et al., 2017) layer. We use transformer to extensively discern
semantic relations within sequential input, as evidenced by works like (Devlin et al., 2018; Radford
et al., 2018; Park & Kim), owing to their flexible and scalable architecture. Adhering to the original
method, we attached a CLS token to the head of non-visual feature sequence, denoted as cn, from
the structured non-visual features for the final decision.

NLN
= g([cn||N0],W ) (4)

where NLN
= [ni

LN
]Ni=0. Compared to the original transformer layer, we exclude the positional

embedding due to the weak dependence of clusters to specific positions in a sequence.
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(a) visual feature (internal) (b) non-visual feature (internal)

(c) visual feature (final) (d) non-visual feature (final)
Figure 4: Comparison of object (image patch) feature distribution of each sample for four example
classes at the end of training (Impact of visual disconnection: (a) and (b), Impact of structuring: (b)
and (d), Impact of label-focused bias: (c) and (d)).

Integration of Non-visual and Visual Feature The primary objective of learning structured non-
visual features is to achieve better generalization, as opposed to merely accurate prediction on ob-
served data, which is effectively achieved by the original visual features. To leverage the strengths
of both visual and non-visual features, LLB consolidates the output probabilities from both domains
as described below.

pV = SoftMax(MLPV (cv)) (5)
pN = SoftMax(MLPN (cn)) (6)
pO = α× pV + (1− α)× pN (7)

To safely preserve the pre-trained probability for the visual features, we employ a separate classifier
for predictions from non-visual features. Subsequently, we aggregate the output probability vectors,
pV and pN , from each classifier. A balancing parameter, α, is introduced to modulate their respec-
tive contributions, as elaborated in Equation ( 7). The integrated probability pO determines the final
cross-entropy.

3.3 EMPIRICAL ANALYSIS ON FEATURE DISTRIBUTION

Simple Settings In this section, we provide empirical analysis of visual disconnection and struc-
turing on feature representations. We extract them from a trained vanilla ViT (Dosovitskiy et al.,
2020) described at Section 4. In Figure 4, each dot represents a feature corresponding to an image
patch assigned to an latent object index, and the four figures illustrated via t-SNE (Van der Maaten
& Hinton, 2008) show visual or non-visual feature distributions for the internal or final layer. Check
Appendix Section B.1 for closer look at the figure.

Impact of Visual Dependency Disconnection Comparing Figure 4a with 4b, we observe that
visual features for objects tend to cluster by both sample and class. In contrast, non-visual features
exhibit a distribution closer to randomness. This disparity indicates the existence of the dominance
of visual input-domain focused inductive bias.

Impact of Non-Visual Feature Structuring Figure 4b and 4d and show the change in the final
features caused by the structuring non-visual features. The non-visual features are largely over-
lapped across samples and classes, showing their ambiguity for classification. However, the final
features are more concentrated and separated by their class and sample. This implies that sufficient
structuring is required for learning label-focused inductive bias useful in practical classification.
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Impact of Label-focused Bias In comparison of Figure 4c with 4d, we can observe the difference
of input-domain focused bias and label-focused bias. For most samples, the visual features are split
into two clusters, with exceptions of sample 2 and 6. Notably, samples of different classes overlap
in the cases of samples 2, 3, 4, 6, and 7. Furthermore, the sample area of two classes (0 and 1)
are overlapped. In contrast, the label-focused inductive bias does not show any of the negative
phenomena. This suggests that leveraging the feature concentration from the label-focused bias can
further enhance generalization that was not achieved by input-domain focused inductive bias.

4 EXPERIMENT SETTING

Our LLB can be applied to any networks based on Transformer architectures. We evaluate the
effectiveness of our non-visual feature by comparing it to vanilla networks in standard benchmarks.
With pre-trained transformer networks, we first train our LLB in supervised manner, and measure
its performance via an integration method (Section 3.2) that does not require any additional training.
We also provide series of analyses of the impact of each component.

Training Details. Our LLB is built upon pre-trained classical visual feature backbones. We ex-
tract hidden vectors from backbone while keeping the backbone parameter freezed. For backbone,
we use ViT (Dosovitskiy et al., 2020) networks. We use lV -th layer and consider them as visual
features VlV = [v0

lV
;v1

lV
; · · ·;vi

lV
]. We found that, extraction from lV = LV − 1 layer showed

best performance (Figure 7a in Appendix). LLB takes VlV and cluster them into O latent objects.
Based on our experiments (Figure 7b in Appendix), we use O=2048. We report the results of differ-
ent α in Figure 7d in Appendix, and selected best one among them. Additional model settings are
summarized in Table 3. We train our model with CrossEntropy loss with additional object diversity
regularization term in Equation ( 2). Look at Table 4 in Appendix for detailed hyper-parameters we
used. Our experiments are on 8×A100 with additional 4×A6000 GPUs for both reproduce baselines
and training LLB.

Image Classification. We perform the evaluation on an image classification task. We show the
effectiveness of the non-visual feature through the performance gained by adding our LLB to base-
lines. We use standard ImageNet (IN1K)(Deng et al., 2009), which consist of 1.28M training images
with 1000 classes. We also use additional benchmarks including IN reassessed labels ImageNet-
Real (IN-Real) (Beyer et al., 2020), scene recognition dataset Places356-Standard (Places) (López-
Cifuentes et al., 2020), fine-grained and long-tailed iNaturalist2018 (iNat18) (Van Horn et al., 2018)
dataset. For baselines, we first followed (Dosovitskiy et al., 2020; Steiner et al., 2021) to get vanilla
ViT pre-trained using ImageNet21K (IN21K) (Ridnik et al., 2021). Also, to evaluate robustness of
our method, we evaluate our method with diverse pre-training schemes. SWAG (Singh et al., 2022)
is weakly-supervised ViT pre-trained via weakly supervision with hashtag labels (IG3.6B). Addi-
tionally, we use self-supervised method MAE (He et al., 2022) trained on IN1K. MAE is trained
to reconstruct masked portion of an image. For some models, we used parameter weights from
open source123. For others, we followed the training details described on (Singh et al., 2022; He
et al., 2022; Singh et al., 2023) with 5 runs. All reproduced and official performance are reported in
Table 1.

5 RESULT AND DISCUSSION

5.1 QUANTITATIVE ANALYSIS

Performance In Table 1, the performance before and after applying LLB is shown. Overall per-
formance is significantly improved compared to the pre-trained models. Additionally, LLB remains
effective even when applied to larger base models.

We also examine the robustness to different pre-training schemes. In these experiments, we replace
supervised pre-trained ViT with weakly (SWAG) and self (MAE) supervised ViT. The results in
Table 1 show that the different pre-training schemes benefit from label-focused inductive bias on

1ViT: https://github.com/huggingface/pytorch-image-models
2MAE: https://github.com/facebookresearch/mae
3SWAG: https://github.com/facebookresearch/SWAG
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Model Pre. Resolution Image Classification (Top1 acc.)
Pre. Fine. IN1K IN-Real Places365 iNat18

ViT B/16∗ IN1K 224 224 79.000.00 (77.91) 83.760.00 (83.57) - -
+ LLB (Ours) - 224 - 79.430.03 84.250.02 - -

ViT B/16∗ IN21K 224 224 84.400.00 (83.97) 88.550.00 (88.35) - -
+ LLB (Ours) - 224 - 84.800.01 88.900.02 - -

ViT L/16∗ IN21K 224 224 85.680.00 (85.15) 89.050.00 (88.40) - -
+ LLB (Ours) - 224 - 85.920.02 89.260.01 - -

MAE B/16† IN1K 224 224 83.630.00 (83.60) 88.290.00 ( - ) 57.840.07(57.90) 74.200.05 (75.40)
+ LLB (Ours) - 224 - 83.780.02 88.400.02 57.900.06 74.320.06

MAE L/16† IN1K 224 224 86.080.00 (85.90) 89.630.00 ( - ) 59.600.06 (59.40) 80.060.06 (80.10)
+ LLB (Ours) - 224 - 86.120.01 89.650.02 59.700.05 80.000.06

SWAG B/16‡ IB3.6B 224 384 85.280.00 (85.30) 89.000.00 (89.10) 58.900.13 (59.10) 79.78 (79.900.06)
+ LLB (Ours) - 224 - 85.350.04 89.100.09 59.170.02 79.860.03

Table 1: Top-1 accuracy(Accstd%) on four image classification benchmarks (red: positive, blue:
negative). We report the results from the paper in parentheses(*: the result of (Steiner et al., 2021),
†: the result of (He et al., 2022), ‡: the result of (Singh et al., 2022)). The baseline results for
IN1K and IN-Real are reproduced from the fixed open-source fine-trained models. For models that
reproduced our-self, we state standard deviation as well. For both reproduce and proposal, We report
the results of 5 runs.

most of the evaluation benchmarks. Note that LLB does not use additional pre-training with large
data and regularization such as (Zhang et al., 2017; Yun et al., 2019; Szegedy et al., 2016).

Ablation Study Table 2 reports ablation study results. We configure LLB with ViT B/16 trained
on IN1K as the main model, and assess performance by excluding each attribute. First, we study
the impact of the disconnecting visual dependency (Visual Disc.). We do not use the disconnection
method while remaining the structuring method. Results show that disconnecting visual depen-
dency significantly improves performance than maintaining it. Structuring visual features shows
worse results than the baseline, indicating that LLB does not benefit from simply adding additional
parameters. Then, we evaluate the impact of implementation component. We ablate the diversity
loss for latent object extraction (Diversity), and we also set the transformer to not use positional
encoding (w/o Pos.). The results show that each configuration is required to obtain the best perfor-
mance. Finally, the performance without our integration module with visual features (Integration)
shows the worst performance.

Model Visual Disc. Diversity w/o Pos. Integration IN1K (Top1-Accstd%)
LLB (Ours) ✓ ✓ ✓ ✓ 84.800.01

✓ ✓ ✓ 84.250.04
✓ ✓ ✓ 84.740.01
✓ ✓ ✓ 84.770.02
✓ ✓ ✓ 82.580.12

Baseline 84.400.00

Table 2: Ablation study results of 5 runs with random seeds. We study the impact of visual depen-
dency disconnection (Visual Disc.), diversity loss (Diversity), not using positional encoding (w/o
Pos.), and integration module with visual features (Integration).

5.2 QUALITATIVE ANALYSIS

In this section, we provide an in-depth qualitative analysis on visual examples where LLB success-
fully predicts.

Final Feature Distribution Figure 5 visualizes the final feature distribution generated from visual
features (left) and non-visual features (right). In the left figure, we can find some visually similar
features that are classified under semantically different labels. In the right figure, we trace the
location of the sample (e.g. the screwdriver, quill, dough images with circle marker), but these
samples are adjacent to the sample in the correct class. This outcome demonstrates that the label-
focused inductive bias can effectively refine features toward their correct classes and rectify incorrect
decisions made on visually ambiguous samples.

Object Map on All Patches Figure 6 shows the examples of latent object indices mapped to each
patch of an image via visual-feature based latent object extraction. We selected the examples that are
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Figure 5: Final visual (left) and non-visual (right) feature for each sample. (color: a pair of two
confused classes in visual feature based prediction, marker: one of the classes). Note that the circle
sample is confused in visual feature map, but not in non-visual feature map.

(a) Latent object map extracted from its overlapping image (b) latent object frequency for each class

Figure 6: An example of extracted latent object distribution in a sample and over samples in each
class. In (a), each tile shows an assigned latent object index of O(=2048) to an image patch. Red
and green patches are dominating latent objects (1173 and 1813) in each image. (b) shows patch
samples for the dominating objects and the frequency of the objects over all samples in each class.

visual-feature based models are confused. In Figure 6a, we observe the object 1173 over the feather
and some background in the quill image, while the image patches on the paper knife are assigned to
the different object 1813. As shown in Figure 6b, the two objects are distinct in the comparison of the
other assigned image patches, and they are also identified as the most frequently used objects across
all samples of the classes, serving as clear markers to distinguish between the classes. This finding
suggests that latent objects derived from visual features inherently possess the ability to differentiate
their respective classes. However, the input-domain focused inductive bias locates patches of the
objects close together, confounding the prediction. In contrast, LLB disconnects the bias, and can
leave the two objects as effective identifiers for correct classification. Additional object map results
are in Figure 9 in Appendix.

6 CONCLUSION AND FUTURE WORK

Conclusion In this paper, we highlighted the conflict of input-domain focused inductive bias and
undescribed world knowledge over latent objects in human labeling. To advance regularization
on this issue, we introduced Label-focused Latent-object Biasing (LLB) method that simply learns a
separate classification model from intermediate object features disconnected from an input, and then
integrates it with the original visual feature based classification model. Implementing the method on
Vision transformer architecture, we can confirm its positive impact to model generalization through
qualitative and quantitative analysis of its results in image classification tasks.

Future Work Beyond using the plug-in model, effectively harmonizing the undescribed world
knowledge with input-domain focused bias on a simple network still remains an open question.
Also, we hope that our approach will evoke further research on diverse visual domains.

9



Published as a conference paper at ICLR 2024

7 REPRODUCIBILITY STATEMENT

We demonstrate the reproducibility statement for this paper as follows.

• For reproducibility of our Label-focused Latent-object Biasing (LLB), we first demonstrate
our method in Section 3. Also we provide details of our implementation in Section 4 and
Appendix A.1.

• To reproduce our implementation, we provide codes for training our LLB using various
backbone models. Implemented codes are included in the supplementary material. We also
provide README.md file for detailed description in the supplementary material.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

ViT architecture Our LLB is built upon pre-trained ViT backbones. We use ViT-Base and it’s
scaled version ViT-Large for LLB. Table 3 demonstrates detailed information about model variants.
We follow the settings from (Dosovitskiy et al., 2020) for ViT parameters.

LLB stacks LN layers of transformer layers to structure non-visual features. We report the impact
of the number of layers on the LLB in Figure 7c, and selected values for LN based on the results.
Our LLB adds additional MLP layers for latent feature extraction and stacks transformer layers for
non-visual feature structuring.

ViT LLB
Size LV D FF H LN D FF H lV O

ViT-Base 12 768 3072 12 6 768 3072 12 11 2048
ViT-Large 24 1024 4096 16 6 1024 4096 16 23 2048

Table 3: Details of model variants

Hyper-parameter selection Depending on the input-domain and UWK in a task, the conflict may
be caused by different numbers of objects in different layers. So we set the layer to extract the
objects and their number as hyper-parameter for tuning by tasks. We also set the number of layers
to structure non-visual and the value of α for integration as a hyper-parameter, and measured their
influence on the IN1K classification task. The effective range of the hyper-parameters are shown in
Figure 7a.

(a) Visual Feature Extraction Layer (b) Latent Object Number

(c) Number of Structure Layer (d) Integration Alpha

Figure 7: Impact of each hyper-parameter on IN1K image classification.

Training details We report our default training settings for IN1K image classification task in
Table 4. For other evaluation benchmarks, only normalization values are changed. Table 5 reports
the image classification performance on IN1K.

B ADDITIONAL QUALITATIVE ANALYSIS RESULTS

Object Clusters Figure 8 shows successful examples of our latent object extraction. Each grid
represents individual object cluster. We randomly sample clusters and clustered patches, and map
them to the original image. For example, the second image in the first row has patterns like animal
prints, and the second image in the second row has parts of fruit.
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Setting Value
Epochs 70
Batch size 1024
Optimizer Adam (Kingma & Ba, 2014)
Optimizer Momentum β1 = 0.9, β2 = 0.999

Learning rate:
Schedule Cosine
Peak 1e-4

Weight decay 5e-4
Loss CrossEntropy
Augmentations:

Size 224px or 384px
RandAugment (Cubuk et al., 2020)

Magnitude 9
Normalize

mean [0.485, 0.456, 0.406]
std [0.229, 0.224, 0.225]

Table 4: LLB training setting

Model Pre. Params Resolution Top1 (acc.)
(M) Pre. Fine. IN1K

ViT B/16 IN1K 86.57 224 224 79.00 (77.91)
+ LLB (Ours) - +46.45 224 - 79.43±.03

ViT B/16 IN21K 86.57 224 224 84.40 (83.97)
+ LLB (Ours) - +46.45 224 - 84.78±.01

ViT L/16 IN21K 304.33 224 224 85.68 (85.15)
+ LLB (Ours) - +80.80 224 - 85.92±.02

MAE B/16 IN1K 86.37 224 224 83.63 (83.60)
+ LLB (Ours) - +45.92 224 - 83.78±.02

MAE L/16 IN1K 304.33 224 224 86.08 (85.90)
+ LLB (Ours) - +80.80 224 - 86.12±.01

SWAG B/16 IB3.6B 86.37 224 384 85.28 (85.30)
+ LLB (Ours) - +45.92 224 - 85.35±.04

Table 5: Detailed top-1 accuracy on IN1K (accuracy in parenthesis: reference performance, red:
positive, blue: negative).

Object Map on All Patches with Other Images Figure 9 shows additional examples of object
indices mapped to each patch of an image. In the mapped image in the top row, we found that the
patches of the screwdriver are mapped to object 391 and the patches of the metal body are mapped
to object 1736. From the frequency results on the right side, we can see that both features are
distinctive features for each class.

B.1 EMPIRICAL ANALYSIS RESULTS

We provide larger version of the visualization in Section 3.3.

C ADDITIONAL PROBLEM CONFIRMATION AND COMPARISON WITH LLB

Figure 11a from clearly shows the problem of the dominance of the visual-domain focused bias
over the undescribed world knowledge over latent object in human labeling. The dots in the leftside
figure represent the centroids of all features in each class of ImageNet, extracted from the ViT
network trained on the data. When we zoomed in on a region of closed centroids, we found five
adjacent but semantically unrelated class labels, shown on the rightside.

We also confirm this problem with the Convolutional Neural Network (CNN). We follow the same
procedure that is described in Section 3.1, but replace ViT with the well-known CNN network
ResNet50 (Krizhevsky et al., 2017). We used two versions of ResNet50 pre-trained with ImageNet
training data. First, we used the pre-trained ResNet50 (Krizhevsky et al., 2017) in a supervised
manner. For supervised pre-trained ResNet50, we followed the details of (Krizhevsky et al., 2017)
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Figure 8: Positive examples of object latent clusters.

Figure 9: Additional example of object map on patches. In left, each tile shows an assigned object
index to an image patch. right shows patch samples for the dominating objects and the frequency of
the objects over all samples in each class.

and used parameters from open source4 to reproduce a top-1 accuracy of 75.86% for IN1K (the
reported performance from the open source is 76.13%). We also use ResNet50 pre-trained with
self-supervised contrastive learning framework (Hadsell et al., 2006; Oord et al., 2018). Momentum
Contrast (MoCo) (He et al., 2020) interpreted contrastive learning as dictionary look-up and built dy-
namic dictionaries with momentum-based moving average updates. MoCo v2 (Chen et al., 2020b)
improved MoCo with the successes in (Chen et al., 2020a). We collected pre-trained ResNet50
weights using MoCo v2 from open source5. We then fine-tuned it using IN1K with the details
described in (Chen et al., 2020b), and reproduced 77.01% top-1 accuracy in IN1K

C.1 INPUT-DOMAIN FOCUSED BIAS IN CNN

Figure 11c shows the results of CNN in the classification benchmarks. In comparison with the
bias in ViT 11a, semantically distinct classes (’840: Mop’, ’462: Broom’, ’764: Puck’, and ’523:
Crutch’) are still closely located, which is the common input-focused inductive bias of the dataset.
This observation is an evidence for the conflict of the input-domain focused bias even in CNN.

4ResNet50: https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html
5MoCo v2: https://github.com/facebookresearch/moco/tree/main
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(a) Visual feature (Internal) (b) Non-visual feature (Internal)

(c) Visual feature (Final) (d) Non-visual feature (Final)

Figure 10: Feature distribution results.

C.2 INPUT-DOMAIN FOCUSED BIAS IN CNN WITH CONTRASTIVE LEARNING

Figure 11d shows the results of the CNN trained with contrastive learning. Using contrastive learn-
ing, the centroids of some classes (e.g. ’523:Crutch’ against ’840: Mop’, ’462: Broom’, ’764:
Puck’) are slightly decoupled compared to supervised learning. However, this approach still fails
to widen the gap between ’462: Broom’ and ’746: Puck’, where two class labels are visually sim-
ilar in stick parts, but semantically distinguished by other objects. This observation shows that the
input-domain focused bias is still strongly used in determining the features.

C.3 COMPARISON WITH LABEL-FOCUSED LATENT-OBJECT BIASING

Figure 11b shows the results of LLB using the same classes in Figure 11e. Compared to ViT (Fig-
ure 11a), where the centroids of all features of five classes are closed located, LLB shows distant
gaps between classes. Also, while other networks fail to widen the gap between ’462: Broom’ and
’746: Puck’, LLB placed them in a distant location.
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Additionally, we can see that ’840: Mop’ and ’462: Broom’ are closed located in LLB. We hypoth-
esize that, the way of structuring over components of mop and broom are similar, making LLB to
generate their features in a close location. In contrast, the other methods placed ’840: Mop’ and
’462: Broom’ in relatively more distant locations. This observation implies that LLB can diminish
the dominance of the visual input-domain focused bias, and introduce a distinct bias, considered as
the label-focused inductive bias.

(a) ViT (b) LLB (Ours)

(c) CNN with supervised pre-training (d) CNN with contrastive learning

(e) Image Samples for Adjacent Classes

Figure 11: Comparison of the distribution of centroids of all features in each class of ImageNet.
Centroids of all output features from ViT: (a), LLB (Ours): (b), CNN with supervised pre-training:
(c), CNN with contrastive learning: (d). We highlighted the dots of five classes in (e) with sky-blue
color.
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