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ABSTRACT

Data-driven control methods have demonstrated precise and agile control of Un-
manned Aerial Vehicles (UAVs) over turbulence environments. However, they are
relatively weak at taming the out-of-distribution (OoD) data, i.e., encountering
the generalization problem when faced with unknown environments with differ-
ent data distributions from the training set. Many studies have designed algorithms
to reduce the impact of the OoD problem, a common but tricky problem in ma-
chine learning. To tackle the OoD generalization problem in control, we propose
a theoretically guaranteed approach: OoD-Control. We provide proof that for
any perturbation within some range on the states, the control error can be upper
bounded by a constant. In this paper, we present our OoD-Control generalization
algorithm for online adaptive flight control and execute it in two instances. Experi-
ments show that systems trained by the proposed OoD-Control algorithm perform
better in quite different environments from training. And the control method is
extensible and pervasively applicable and can be applied to different dynamical
models. OoD-Control is validated on UAV dynamic models, and we find it per-
forms state-of-the-art in positioning stability and trajectory tracking problems.

1 INTRODUCTION

UAVs have gained considerable attention and are widely used for various purposes because of their
high manoeuvrability and flexibility. For example, quadrotors are widely deployed for inspection,
reconnaissance, and rescue. As control strategies evolve, novel scenarios for UAVs, such as aerial
grasping, transporting, and bridge inspection (Ruggiero et al., 2018), require more precise trajectory
tracking. Especially in the outdoor environment, unpredictable and changing wind field conditions
pose substantial challenges to the stability of UAVs. Rotor blades are affected by induced airflow
caused by the wind, which creates complex and non-stationary aerodynamic interactions (see Ap-
pendix B.6.3). From security and policy perspectives, demonstrating that UAVs can operate safely
and reliably in unpredictable environments with various distributions is an essential requirement. It
is also the premise for future medical robots, autonomous cars, and manned aerial vehicles to be
widely accepted.

Many areas have benefited from data-driven approaches. However, they are susceptible to perfor-
mance degradation after generalization. And the majority of deep learning algorithms heavily rely
on the I.I.D assumption for data, which is generally violated in practice due to domain generalization
(Zhou et al., 2022). Nevertheless, neural networks may lose their robustness when confronted with
OoD data. Many cases of failure in DNN originate from shortcut learning in the learning process
(Geirhos et al., 2020). The damage to the UAV is undoubtedly considerable if the UAV cannot adjust
to the changing environment, i.e., it is unstable or even crashes in an OoD situation. One significant
objective of this paper is to propose a control algorithm to enable UAVs to maintain accurate control
even in the case of environment domain shifts.

Our Contributions. UAVs interact with the changing environment, resulting in complex
environment-dependent uncertain aerodynamics, called unknown dynamics, that are tricky to model
and significantly impact precise control. Previous data-driven controllers attempt to solve the prob-
lem by estimating the unknown dynamics, while the estimation accuracy and the performance of the
controllers are limited by the environment domain shifts in tests. This paper presents a methodology
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for adaptive flight control problems, focusing on enabling UAVs to fly under unknown environ-
ments. Compared with previous works, our proposed OoD-Control algorithm can provide perfor-
mance guarantees under domain shifts of the environment distribution. Compared with previous
state-of-the-art work (Shi et al., 2021), the proposed OoD-Control method does not require strong
assumptions, for example, e-ISS stability and a fully actuated system. Additionally, our algorithm
has a greater capacity for generalization. For different distributions of the environment, we show
theoretically that the bound on the prediction error of the unknown dynamics remains constant over
a certain range of perturbations. Besides, simulated results under challenging aerodynamic condi-
tions indicate that the OoD-Control algorithm achieves better control performance than the SOTA
deep learning algorithms.

2 RELATED WORK

2.1 FLIGHT CONTROL ALGORITHMS

UAVs have found broad applicability in a variety of fields and have attracted the attention of several
researchers. Many published studies describe the significance and efficiency of flight control algo-
rithms, including PID Control (Szafranski & Czyba, 2011), LQR Control (Priyambodo et al., 2020),
Sliding Mode Control (Chen et al., 2016), Backstepping Control (Labbadi & Cherkaoui, 2019),
Robust Control (Hasseni & Abdou, 2021), etc. However, most of the previously mentioned con-
trol methods suffer from limitations. Imprecise system modelling and non-modelled environmental
disturbances may result in unacceptable performance or instability.

Today, artificial intelligence triggered a new wave of research in many fields (Jumper et al., 2021; Sil-
ver et al., 2017). The data-driven control methods can directly learn the corresponding control strat-
egy from the interaction process of the controlled system so that it can adapt to new environments.
Bansal et al. (2016) validates their proposed deep learning algorithm on a quadrotor testbed. On
the other hand, reinforcement learning is a model-free algorithm widely used for control problems.
Koch et al. (2019) present an intelligent high-precision flight control system using the reinforcement
learning algorithm for UAVs. Moreover, the performance and accuracy of the internal control loop
for quadrotor attitude control are analyzed and compared. Results indicate that the neural network
has good generalization abilities and can learn the quadrotor dynamics accurately and apply them
to the control system. Underwood & Husain (2010) propose an online parameter estimation, and
the experimental results validate the effectiveness of the adaptive control method. O’Connell et al.
(2022) have combined online adaptive learning with representation learning and adapted a DNN
to learn a nonlinear representation. However, the environment’s diversity is not considered in this
work. Adapting to an environment completely different from the training set is challenging. Inspired
by Shi et al. (2021), mechanical-based models with learnable dynamics and DNNs are constructed
in this study for their interpretability and stability. We further investigate in this paper whether the
robustness of the algorithm can be improved with OoD generalization methods.

2.2 OUT-OF-DISTRIBUTION GENERALIZATION

Out-of-Distribution (OoD) generalization, which involves generalizing under data distribution do-
main shifts, is an active research area in the community. Generalizing a prediction model under
distribution shifts is the process of generalizing its performance. Many algorithms have been pro-
posed to achieve the OoD generalization, including meta-learning (Li et al., 2019; Zhang et al.,
2020), prototypical learning (Dubey et al., 2021), gradient alignment (Rame et al., 2022), domain
adversarial learning (Akuzawa et al., 2019; Xu et al., 2020) and kernel methods (Li et al., 2018;
Ghifary et al., 2016) etc.

Literature has extensively discussed how to deal with domain shift, and the OoD generalization
problem is extensively studied in computer vision (Hsu et al., 2020), natural language processing
(Hendrycks et al., 2020), speech recognition (Shankar et al., 2018), and other fields, but seldom in
the context of online control. In Shi et al. (2021), a multi-task learning method for nonlinear systems
was presented that can withstand disturbances and unknown environments.

Previous studies have suffered from shortcomings in lacking a discussion about the misspecifica-
tion of dynamics systems and neglecting the gap between the simulation experiments and reality.
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Additionally, the generalization of flight control is plagued by system measurement errors and un-
known environmental parameters like wind modes and air density and resistance. In this work, we
demonstrate the average control error can be upper-bounded by a constant when the environmental
disturbances are within some range. Moreover, experimental results indicate that the OoD-Control
is robust to shifts in the environmental domain.

3 PROBLEM FORMULATION

Notations We use subscripts (e.g., t in x
(z)
t ) to denote the time index and superscripts (e.g., (z)

in x
(z)
t ) to denote the dynamics state under the environmental perturbation z ∼ π0, where π0 is the

environmental distribution, ∥ · ∥ denotes the 2-norm of a vector.

Note: Superscript (z) in x
(z)
t is used as a symbol to represent that the state is perturbed by the

environmental distribution z ∼ π0 and x
(z)
t = xt + z, where xt ∈ Rn is the state in the windless

environment.

In this paper, we consider a discrete nonlinear control system whose dynamics are described by the
following formula:

x
(z)
t+1 = f0(x

(z)
t ) +B(x

(z)
t )ut − f(x

(z)
t , c) + wt, 1 ≤ t ≤ T, (1)

where x
(z)
t ∈ Rn is the state variable. z ∈ Rn changes with the environmental distribution domain

shifts. B(x
(z)
t ) : Rn → Rn×m is the state-dependent actuation matrix; ut ∈ Rm is the control

input on the dynamic system; f0(x
(z)
t ) : Rn → Rn is the known nominal dynamic term that can

be modelled with well-defined differential equations; f(x(z)
t , c) : Rn × Rh → Rn are the unknown

environment-dependent dynamics that are hard to be modelled and c is the unknown environmental
parameter, we also use f(x

(z)
t ) for short in the following paragraphs; wt ∈ Rn is the random noise

vector.

We hypothesize that the environmental disturbance wt and the control ut are bounded. Due to the
structural restrictions of the actuators, there are certain limits to the output. For example, the control
output of the UAV is constrained by the maximum rotor blades’ revolutions per minute (RPM). Here
we give the boundedness Assumption.
Assumption 1 (Bounded controls and disturbances) Assume that the controller’s output has an
upper bound: ∀t, ∥ut∥ ≤ U . Moreover, the environmental noise vectors are also bounded with zero
expectations: ∀t, ∥wt∥ ≤W , E(wt) = 0.
Definition 1 (Average Control Error under disturbances) The control error of the system under
disturbance distribution π0 at t is calculated as ∥Ez∼π0(x

(z)
t ) − xd

t ∥. The average control error
ACEπ0 of T time steps is defined as the performance metric:

ACEπ0
=

1

T

T∑
t=1

∥Ez∼π0
(x

(z)
t )− xd

t ∥ (2)

where xd
t denotes the desired states at t.

Remark 1 In Definition 1, we focus on fixed-point hovering and trajectory tracking. A sequence
of perturbations matching π0 is obtained by sampling for N times: (z1, z2, · · · , zN ). And the
perturbed states sequence is also derived at time t: (x(z1)

t , x
(z2)
t , · · · , x(zN )

t ). ∥Ez∼π0(x
(z)
t )∥ can be

approximated with Monte Carlo method:
∑N

i=1 x
(zi)
t /N , where the subscripts i represent the index

of the ith sample. Compared with the average control error definition in Shi et al. (2021); Åström
& Murray (2008), ACEπ0

represents the expectation of the difference between the actual states and
the desired states of the dynamical system under environmental perturbations.

Interaction protocol. We set the study of the OoD adaptive flight control problem under the fol-
lowing interaction protocol:

1. Stochastically selects an environment for the controller to encounter every time step, which
depends on the unobserved variable c (e.g., wind condition and air density).
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2. The controller interacts with the environment and observes the state x
(z)
t to take action ut.

3. Optionally changes c after a short time and repeats from Step 1.

4 METHODOLOGY

We expect the UAV to learn the shared representation of the unknown dynamics between different
environments so that it can generalize well in unseen areas with few adaptations. This section will
introduce the methodology that provides the guaranteed upper bound for the prediction errors of the
unknown dynamics.

Notations and settings. For modelling unknown environment-dependent dynamics, we use
f̂(x

(z)
t , ĉ) = F(ϕ(x

(z)
t ;Θ), ĉ) inspired by (Shi et al., 2021). That means we consider the unknown

environment-dependent dynamics typically consist of two coupling parts: the irregular higher-order
aerodynamics of UAVs that are caused by the complex streamlined design, and the environment-
dependent variables which encode wind field information. ϕ(x(z)

t ;Θ) represents the former, which
is a deep neural network (DNN) with L layers parameterized by Θ. ĉ is the latter, which is par-
ticular for a certain environment. This model enables us to consider the joint higher-order effects
beyond nominal dynamics and enable agile control of UAVs. We use f̂(x(z)

t ) for brevity in following
paragraphs.

Assume an environmental distribution π0, the perturbed unknown dynamics and the predictable
value is denoted as the expectation of the states under environmental disturbances: fπ0

(x
(z)
t ) =

Ez∼π0
[f(x

(z)
t , c)] and f̂π0

(x
(z)
t ) = Ez∼π0

[F(ϕ(x
(z)
t ;Θ), ĉ)] = Ez∼π0

[f̂(x
(z)
t , ĉ)]. In OoD-control,

the objective is to minimize the unknown dynamics prediction loss for controller inputs: ℓf =

∥fπ0
(x

(z)
t )− f̂π0

(x
(z)
t )∥. The loss is mapped to [0, 1] by h̃(∥fπ0

(x
(z)
t )− f̂π0

(x
(z)
t )∥) and we also use

h̃(x
(z)
t ) for short in the following paragraphs. h̃(·) satisfies: 1) h̃(·) ∈ [0, 1]; 2) h̃(·) is monotonically

decreasing and the inverse h̃−1(·) exists. In the next section, we will propose a framework that
provides a guaranteed upper bound for the ACE under OoD-Control.

4.1 THE PROOF OF ACE’S UPPER BOUND

Next, we will introduce a methodology to tackle the problem of generalization and give proof of
ACE’s upper bound. We want to verify that for any perturbation in B = {δ ∈ Rn : ∥δ∥2 ≤ r} with
radius r, the lower bound of the prediction error maintains constant under unpredictable disturbance,
i.e., ∀∥δ∥ ≤ r, ∃p > 0, h̃π0(x

(z)
t ) > p, it still holds h̃π0

(x
(z)
t +δ) > p. This conclusion is significant

for the calculation of the upper bound for ACE. For a perturbation of radius r, the expectation of the
prediction of the unknown dynamics remains the same.

Assume H is a function class, which includes h̃π0
(·) and satisfies H = {h : h(x) ∈ [0, 1],∀x ∈

Rn}. Performing the following optimization will result in a guaranteed lower bound. If H includes
only h̃π0(·), the bound is exact:

min
δ∈B

h̃π0
(x

(z)
t + δ) ≥ min

h∈H
min
δ∈B

{
hπ0

(x
(z)
t + δ) s.t. hπ0

(x
(z)
t ) = h̃π0

(x
(z)
t )

}
. (3)

Theorem 1 (Lagrangian) Lπ0(H,B) is denoted as the lower bound in equation 3. Lagrangian
methods can be adapted to solve inequality:

Lπ0(H,B) = min
h∈H

min
δ∈B

max
λ∈R

L(h, δ, λ) ≜ min
h∈H

min
δ∈B

max
λ∈R

{
hπ0(x

(z)
t + δ)− λ[hπ0(x

(z)
t )− h̃π0

(x
(z)
t )]

}
.

(4)

Exchanging the min and max yields the following dual form:

Lπ0
(H,B) ≥ max

λ≥0
min
h∈H

min
δ∈B

L(h, δ, λ) = max
λ≥0

{
λh̃π0

(x
(z)
t )−max

δ∈B
DH(λπ0

||πδ)

}
(5)

where πδ represents the distribution of z + δ when z ∼ π0 and DH(λπ0
||πδ) =

max
h∈H
{λEz∼π0

[h(x
(z)
t )] − Ez∼πδ

[h(x
(z)
t )]} =

∫
[λπ0(z)− πδ(z)]+dz.

4



Under review as a conference paper at ICLR 2023

Corollary 1 (Gaussian noise) With Gaussian noise π0 = N (0, σ2I) and bounded disturbance
B = {δ : ∥δ∥2 ≤ r}, the lower bound in equation 5 satisfies:

Lπ0
(H,B) = max

λ≥0

{
λh̃π0

(x
(z)
t )−max

δ∈B
DH(λπ0

||πδ)

}
≥ Φ(Φ−1(h̃π0

(x
(z)
t )− r

σ
) (6)

where Φ(·) represents the Gaussian Cumulative Density Function (CDF). For the case p=0.5, i.e.,
h̃π0(x

(z)
t ) > 0.5 , the radius satisfies r ≤ σΦ−1(h̃π0(x

(z)
t )). As a side note, the Monte Carlo method

for perturbation radius calculation is also given by Algorithm 2 in Appendix B.3.

4.2 AVERAGE CONTROL ERROR BOUND

The selection of h̃. Given a sequence of state variables at t under perturbation z ∼ π0 = N (0, σ2):
X = (x

(z1)
t , x

(z2)
t , . . . , x

(zN )
t ). Moreover, the predicted and unknown dynamics sequences are de-

fined as Fp = (f̂(x
(z1)
t ), f̂(x

(z2)
t ), . . . , f̂(x

(zN )
t )) and Fu = (f(x

(z1)
t ), f(x

(z2)
t ), . . . , f(x

(zN )
t )). Let

Dp be the discrepancy sequence between Fp and Fu. Dp = (∥f̂(x(z1)
t ) − f(x

(z1)
t )∥, ∥f̂(x(z2)

t ) −
f(x

(z2)
t )∥, . . . , ∥f̂(x(zN )

t ) − f(x
(zN )
t )∥). Denote by p̂ the successful rate for the prediction error

under a given threshold εt. By simulating with a large sample size N , p̂ is calculated as:

p̂ ≜ P(∥f̂(x(z)
t )− f(x

(z)
t )∥ < εt) =

na

N
(7)

where na is the number of elements in Dp less than εt. Recalling the h̃ function’s requirements, we
can instantiate h̃ as follows:

h̃(∥f̂(x(z)
t )− f(x

(z)
t )∥) ≜ p̂− k

√
p̂(1− p̂)

n
(8)

where k = Φ−1(1− α
2 ) is the 1− α

2 quantile of a standard normal distribution. Moreover, this equa-
tion represents the lower confidence bound estimation of the error under a given confidence level
α. As noise increases, the predicted value will deviate from the actual value by a more significant
amount. Therefore, the h̃ will decrease monotonically. Besides, the range of the lower confidence
bound lies in [0, 1], which satisfies both requirements for h̃ as discussed in the previous section.

Let b denote the lower confidence bound in equation 8. In section 4.1, a proof is given that h̃π0
(x

(z)
t )

and h̃π0
(x

(z)
t + δ) has the same lower bound under the disturbances ∥δ∥ ≤ r. The radius ensuring

an equal lower bound under the perturbation in this paper is:

r = σΦ−1(b) = σΦ−1(p̂− k

√
p̂(1− p̂)

n
). (9)

Controlling. The control term u consists of three parts: feedback, feedforward, and residual,
where the feedback part gets information from sensors and minimizes the gap between x

(z)
t and

xd
t , the feedforward part offsets the nominal term f0(x

(z)
t ), and the residual part counterweights

unknown environment-dependent term f(x
(z)
t ). B†(x

(z)
t ) is the pseudo-inverse B(x

(z)
t ).

The controller of model-based control is

ut = B†(x
(z)
t )(−f0(x(z)

t ) + f̂(x
(z)
t )). (10)

Thus, the equation 1 becomes:

xt+1 = f̂(x
(z)
t )− f(x

(z)
t ) + wt. (11)

Lemma 1 (ACE bound in ideal case) For any perturbation in B = {δ : ∥δ∥2 ≤ r}, the theoretical
average control error is bounded as:

ACEπδ
=

1

T

T∑
t=1

∥Ez∼πδ
[f̂(x

(z)
t )]− Ez∼πδ

[f(x
(z)
t )]∥ ≤ h̃−1(p). (12)
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Remark 2 Average control error is related to the prediction error of unknown dynamics and envi-
ronmental perturbations in the ideal case. Compared with the upper bound calculated in Shi et al.
(2021), the derived bound is more general. Our calculation method does not require the system to be
fully actuated and does not require the nominal dynamics to be exponentially input-to-state stable
(e-ISS). The assumption of e-ISS is too strong. And many dynamic systems are under-actuated in
the real world, such as quadrotors.

Corollary 2 (ACE bound under control actuation misspecification) ∆B(x
(z)
t ) is the parametric

misspecification in the actuation matrix, and the ACEπδ
satisfies:

ACEπδ
=

1

T

T∑
t=1

∥Ez∼πδ
(x

(z)
t )− xd

t ∥ ≤ h̃−1(p) +
1

T

T∑
t=1

∥Ez∼πδ
[∆B(x

(z)
t )B†(x

(z)
t )ef (x

(z)
t )]∥

where ef (x
(z)
t ) = f̂(x

(z)
t , c)− f0(x

(z)
t ).

Lemma 2 (Trajectory tracking ACE of quadrotor) In this paper, for environmental disturbances in
B = {δ : ∥δ∥2 ≤ r}, the quadrotors’ trajectory tracking error formula is given as:

ACEπδ
=

1

T

T∑
t=1

∥Ez∼πδ
(x

(z)
t )− xd

t ∥ =
1

T

T∑
t=1

∥Ez∼πδ
[C1e

r1x
(z)
t + C2e

r2x
(z)
t ]− h̃−1(p)/Kv∥

(13)

where C1 = −xd
t − C2 + ϵ/Kv , C2 = (ϵ + (Kvx

d
t − ϵ)er1x

d
t )/Kv(e

r2x
d
t − er1x

d
t ) and ϵ =

f(x
(z)
t , c)− f̂(x

(z)
t , ĉ), which is the prediction error of the unknown dynamics.

Remark 3 Note that Lemma 2 gives the trajectory tracking error that can be calculated. Based on
the previous description, it was demonstrated that the errors for unknown dynamics under perturba-
tion have the same bound. The detailed proof can be found in Appendix A.5.

4.3 OOD GENERALIZATION ALGORITHM

Based on the theoretical analysis above, we propose an algorithm—out-of-distribution generaliza-
tion for adaptive flight control named OoD-Control. We focus on minimizing the prediction loss
and learning Θ during the simulation. We intend to design an OoD-controller with lower ACEs
that converges the estimated unknown dynamics f̂(x

(z)
t ) faster to the true dynamics f(x

(z)
t ) under

environment distribution domain shifts.

The proposed OoD-Control algorithm is shown in Algorithm 1 (see Appendix B.1). Given a set
of distribution functions X , χ ∈ X are picked for each iteration. The wind velocity is a series of
random variables sampled from χ. (Specifically, we use X for the training distribution set with each
member denoted as χ. For the testing set, we use Ω and ω instead.) Each time-series simulation
begins with random noise ϵ1 being introduced to the structural parameters of the system. At each
iteration, the predicted loss, which measures the error between the unknown dynamics and its predic-
tion is minimized. After the unknown dynamic predictor is trained, it can be used for model-based
control as discussed in Section 4.2.

5 EXPERIMENTS AND RESULTS

In this section, numerical experiments on the inverted pendulum and quadrotors will be conducted
to demonstrate the effectiveness of the proposed OoD-control algorithmic framework. To better
understand the proposed OoD-Control algorithm and environment setting, we choose an uncoupled
dynamics model, the inverted pendulum, as the introductory example before the quadrotor instance.

5.1 DYNAMICS MODELING

Inverted Pendulum. Consider an inverted pendulum, the dynamic model of the pendulum is:

ml2θ̈ −mlgsinθ = u+ f(θ, θ̇, c) (14)
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where θ represents the angle away from the center, l is the length of the arm, g is gravitational
acceleration, l is the length of the pendulum’s arm, and m is the mass. The state variable consists
of θ and θ̇, which could be measured by position and inertia sensors. f(·) represents the unknown
dynamic term, including air resistance, wind force and modelling misspecification, subject to θ, θ̇
and environment parameter c. u is the controlling term. Our goal is to keep the pendulum closer to
the center, i.e., minimize average control error.

Quadrotor. The quadrotor is a plane model where the four rotors are always on the same plane.
So the quadrotor adjusts its attitude by setting different rotation speeds for the four rotors. We define
the dynamic model of quadrotor as:

mv̇ = mg +R(θ)fT + f (15)

Jθ̈ = Jθ̇ × θ̇ + τ (16)

where θ represents the attitude angel of the quadrotor; R(θ) ∈ R3×3 is the attitude rotation matrix
subject to θ; J is the inertia matrix of the quadrotor, fT is the force imposed on the system; τ is the
total torque; m is the mass of quadrotor and g is the gravitational acceleration; fT and τ are subject
to the speeds of rotors nr ∈ R1×4. In the experiments, the goal is to maintain the quadrotor’s
position states or follow a given trajectory under turbulent environments.

5.2 COMPARISON METHOD

In the experiments, the proposed adaptive UAV flight control algorithm OoD-Control are compared
with OMAC (Shi et al., 2021) and no-adapt (PID) method. OMAC (online meta-learning adaptive
control) is the state-of-the-art data-driven UAV flight control method. In the OMAC paper, three
versions of OMAC are provided with different model specifications: convex, bi-convex, and deep
learning. We illustrate the results of deep learning because it is the best-performing version of
OMAC.

Meanwhile, the no-adapt method and the omniscient method are compared in this paper. No-adapt
indicates the controller cannot perceive the environmental domain shifts with f̂(x

(z)
t ) = 0 which is

just the conventional PID controller. omniscient is the controller which has access to the unknown
dynamics perfectly, i.e., f̂(x(z)

t ) = f(x
(z)
t ). Among all the controllers, no-adapt and omniscient

are the two extremes, with no-adapt being unable to predict while omniscient can do so with zero
error. We run each simulation ten times with different random seeds to obtain the mean and standard
deviation of ACE under perturbation for rigorousness.

5.3 WIND FIELD CONSTRUCTION AND FLIGHT TRAJECTORY DESIGN

Wind fields can be derived according to the Navier-Stokes (N-S) equations and the continuum
equation. However, in practice, the N-S equations are generally hard to be solved due to their
high computational cost. For turbulent wind field simulations, the Dryden model (Specification,
1980) is widely used. We refer to the Dryden model to simulate turbulent wind fields on quadrotors
by generating Gaussian wind disturbances (Beal, 1993).

To construct realistic situations in the inverted pendulum and quadrotor experiment, we simulated
two types of winds: turbulent wind and gust. For turbulent winds, the speed and direction change at
any time. In the case of gusts, the wind speed remains constant over a period of time. For further
study, we divided the two wind fields turbulent wind and gust into three categories respectively ac-
cording to their strength: breeze, strong breeze and gale. The direction and strength of the turbulent
winds change continuously and the wind forces are applied to the object. This requires higher ma-
noeuvrability to maintain stability. The wind environment setting in the experiment can be found in
Appendix B.6.1.

Quadrotors must also be capable of flying along the desired trajectory and hovering at a fixed point
for various applications, such as inspection, patrol, and delivery. In order to meet the requirements
of different application scenarios, we design a variety of trajectories to test the performance of the
proposed OoD-Control under different situations. The designed trajectory can correspond to a spe-
cific application scenario, hovering for fixed-point photography, figure-8 trajectories for scenarios
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requiring high manoeuvrability, the spiral trajectory for power lines detection, and sin-forward for
transporting items in the forests or area scanning. The mathematical forms of the trajectories are
shown in Appendix B.6.1.

5.4 RESULTS

Pendulum. Table 1 (see Appendix B.2) and Figure 1 illustrate the average and standard deviation
of the control errors in different testing environments. We mainly compare the OoD-Control algo-
rithm with the OMAC. And for the completeness of the experiments, we also set two control groups:
the no-adapt and the omniscient.

As shown in row 3 of Table 1, our OoD-Control algorithm performs significantly better than the
OMAC in the gale dataset. That means the former generalizes better than the latter when meeting a
large environmental distribution shift. When changing to the less difficult dataset such as the strong
breeze, we can see that the gap between the two algorithms decreases, but OoD-Control still achieves
nearly half the score of the OMAC. (The breeze dataset is not complicated enough to distinguish the
mentioned methods.

We also show the results of when ĉ is unchanged. In this setting, both OMAC and OoD-Control
perform terribly because the variable used to fit the ground truth of c is frozen.

Figure 1: Result of inverted pendulum experiment where the testing environment is Gale. The black
dashed line represents the desired states for the inverted pendulum. The objective of this task is to
maintain the angle θ and angular velocity θ̇ of the inverted pendulum to zero. f is the ground truth
of the torque, while f̂ is the predicted torque. ∗ is given for the best performance. As shown in the
amplified areas (the black rounded rectangles), our algorithm predicts much better than OMAC.

Quadrotor. We show the result of the quadrotor task in Figure 2 and Table 2 (see Appendix B.6.1).
As testing environments differ from training ones, the OoD-Control method maintains good stability
and tracking accuracy. In some cases, the performance of OoD-Control goes close to the omniscient
case where the rotor is provided with precise wind conditions, which shows that our algorithm is
able to predict the wind with acceptable error. Our algorithm achieves lower ACE than baseline
methods (60% than OMAC and over 70% than PID) in most difficult cases. Besides, we shorten
the training time to test its sample efficiency, and it turns out that our algorithm performs well in
few-shot learning. By adding noise during training DNN and fixing a learning rate of meta-learning
of ĉ, our algorithm gains robustness and adapts quicker in a different environment.

We tested our method under several different trajectories, and OoD-Control outperforms the baseline
and conventional no-adapt methods when the distribution domain shifts during the testing process.
Meanwhile, OoD-control can learn more from changes in the environment and apply it as prior
knowledge, thereby improving its adaptability.

8
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Figure 2: 2D view of trajectories in different wind conditions and performance comparison of
OMAC and OoD-Control algorithms for trajectory tracking. The goal of the controller is to get
closer to the desired trajectory (black line). Different colors demonstrate the distance from the ac-
tual location to the desired location, corresponding to the color bar at the bottom. The shade of
color indicates the magnitude of the deviation in position. As compared to OMAC and no-adapt, the
proposed OoD-Control method provides more accurate results across a wide range of wind environ-
ments and trajectories. The average ACE of ten independent experiments is marked in the subplot
and ∗ is given for the best performance under the same environment.

The OMAC and OoD-Control algorithm were tested under hovering, figure-8, spiral upward and
sin-forward trajectory scenarios. Figure 2 and Table 2 (see Appendix B.6.1) show the trajectory
tracking experimental results. OoD-Control provides more accurate results across trajectories under
a wide range of wind environments and achieves state-of-the-art performance in all these situations
compared with the baseline.

Based on experiments, it has been demonstrated that systems trained by the proposed OoD-Control
algorithm perform state-of-the-art. In addition, the control method can be applied to different dy-
namical models and is extensible and universally applicable.

6 CONCLUSION

In this paper, we theoretically demonstrate that the average control error is upper-bounded by a con-
stant when the perturbation on the state variables is within a certain radius for UAV flight control.
Besides, we propose an algorithmic framework—OoD-Control that is evaluated under turbulent en-
vironmental conditions. Based on the results of our experiments, we can conclude that our algorithm
is scalable and pervasively applicable that can be applied to a variety of dynamic models. For future
work, we will explore extending our algorithmic framework to more UAV types, such as unmanned
helicopters, tilt-rotors, and unmanned fixed-wing aircraft. As far as we are aware, this is one of the
first papers that theoretically discusses out-of-distribution problems in the context of online adaptive
UAV flight control.
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A PROOF OF LEMMA AND COROLLARY

A.1 PROOF FOR THEOREM 1

Theorem 1 Lπ0(H,B) is denoted as the lower bound in equation 3. Lagrangian methods can be
adapted to solve inequality.

Lπ0(H,B) = min
h∈H

min
δ∈B

max
λ∈R

L(h, δ, λ) ≜ min
h∈H

min
δ∈B

max
λ∈R

{
hπ0(x

(z)
t + δ)− λ[hπ0(x

(z)
t )− h̃π0(x

(z)
t )]

}
(17)

Exchanging the min and max yields the following dual form:

Lπ0
(H,B) ≥ max

λ≥0
min
h∈H

min
δ∈B

L(h, δ, λ) = max
λ≥0

{
λh̃π0

(x
(z)
t )−max

δ∈B
DH(λπ0

||πδ)

}
(18)

where πδ represents the distribution of z + δ when z ∼ π0 and DH(λπ0
||πδ) =

max
h∈H
{λEz∼π0 [h(x

(z)
t )] − Ez∼πδ

[h(x
(z)
t )]} =

∫
[λπ0(z)− πδ(z)]+dz.

Proof.

(i)

Lπ0
(H,B) = min

h∈H
min
δ∈B

max
λ∈R

{
hπ0

(x
(z)
t + δ)− λ[hπ0

(x
(z)
t )− h̃π0

(x
(z)
t )]

}
≥ max

λ≥0
min
h∈H

min
δ∈B

{
hπ0(x

(z)
t + δ)− λ[hπ0(x

(z)
t )− h̃π0(x

(z)
t )]

}
= max

λ≥0

{
λh̃π0(x

(z)
t )−max

h∈H
(λhπ0(x

(z)
t )− hπδ

(x
(z)
t ))

}
= max

λ≥0

{
λh̃π0

(x
(z)
t )−max

δ∈B
DH(λπ0

||πδ)

}
(ii) We denote the sign function sgn(z) as:

sgn(δ) =

{
1, if [λπ0(z)− πδ(z)] ≥ 0

0, if [λπ0(z)− πδ(z)] < 0
(19)

Thus we can calculate DH(λπ0
||πδ) directly as:

DH(λπ0 ||πδ) = max
h∈H

(λhπ0(x
(z)
t )− hπ0(x

(z)
t + δ))

= max
h∈H

{
λEz∼π0

[h(x
(z)
t )]− Ez∼πδ

[h(x
(z)
t )]

}
=

∫
sgn(x

(z)
t )[λπ0(z)− πδ(z)]dz

=

∫
[λπ0(z)− πδ(z)]+dz

A.2 PROOF FOR COROLLARY 1

Corollary 1 (Gaussian noise) With Gaussian noise π0 = N (0, σ2I) and bounded disturbance
B = {δ :]∥δ∥2 ≤ r}, the lower bound in equation 5 satisfies:

Lπ0
(H,B) = max

λ≥0

{
λh̃π0

(x
(z)
t )−max

δ∈B
DH(λπ0

||πδ)

}
≥ Φ(Φ−1(h̃π0

(x
(z)
t ))− r

σ
) (20)

where Φ(·) represents the Gaussian Cumulative Density Function (CDF). For the case p=0.5, i.e.,
h̃π0

(x
(z)
t ) > 0.5 , the radius satisfies r ≤ σΦ−1(h̃π0

(x
(z)
t )).

Proof.
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L ≥ Φ(Φ−1(hπ0(x
(z)
t ))− r

σ
) >

1

2
(21)

L ≥ min
∥δ∥≤r

max
λ≥0

{
λh̃π0

(x
(z)
t )−

∫
[λπ0(z)− πδ(z)]+dz

}
(22)

We denote Cλ = {z : λπ0(z) ≥ πδ(z)}={z : δT z ≤ ∥δ∥2

2 + σ2 lnλ} and F (δ, λ) = λh̃π0
(x

(z)
t )−∫

[λπ0(z)− πδa(z)]+dz. Then we will get:

F (δ, λ) = λh̃π0
(x

(z)
t )−

∫
[λπ0(z)− πδ(z)]+dz

= λh̃π0(x
(z)
t )−

∫
Cλ

[λπ0(z)− πδ(z)]dz

= λh̃π0
(x

(z)
t )− λΦ

(
∥δ∥2
2σ

+
σ lnλ

∥δ∥2

)
+Φ

(
−∥δ∥2
2σ

+
σ lnλ

∥δ∥2

)
It is notable that F (δ, λ) is a concave function w.r.t λ, thus the maximum value occurs when
∂F (δ,λ)

∂λ

∣∣
λ=λδ

= 0. A direct calculation gives λδ = exp

(
2σ∥δ∥2Φ

−1(hπ0
(x

(z)
t ))−∥δ∥2

2

2σ2

)
. There is

L ≥ min
∥δ∥≤r

max
λ≥0

F (δ, λ)

= min
∥δ∥≤r

Φ

(
−∥δ∥2
2σ

+
σ lnλδ

∥δ∥2

)
= min

∥δ∥≤r
Φ

(
Φ−1(hπ0

(x
(z)
t ))− ∥δ∥2

σ

)
= Φ

(
Φ−1(hπ0

(x
(z)
t ))− r

σ

)
In case p=0.5, the perturbation radius r is calculated as 1:

min
∥δ∥≤r

max
λ≥0

F (δ, λ) >
1

2
⇔ Φ

(
Φ−1(hπ0

(x
(z)
t ))− r

σ

)
>

1

2
⇔ r < σΦ−1(hπ0

(x
(z)
t )) (23)

A.3 PROOF FOR LEMMA 1

Lemma 1 (ACE bound in ideal case) For any perturbation in B = {δ : ∥δ∥2 ≤ r}, the theoretical
average control error is bounded as:

ACEπδ
=

1

T

T∑
t=1

∥Ez∼πδ
[f̂(x

(z)
t )]− Ez∼πδ

[f(x
(z)
t )]∥ ≤ h̃−1(p) (24)

Proof.
From equation 1, we consider a discrete nonlinear control-affine system:

xt+1 = f0(xt) +B(xt)ut − f(xt, c) + wt, 1 ≤ t ≤ T, (25)

The controller of model-based control with the ideal model is

ut = B†(x
(z)
t )(−f0(x(z)

t ) + f̂(x
(z)
t )) (26)

thus, the equation 1 becomes:

xt+1 = f̂(x
(z)
t )− f(x

(z)
t , c) + wt (27)

1The calculation method of the radius r is given in Cohen et al. (2019) for the case p=0.5.
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Following a straightforward calculation, we will obtain the upper ACE bound under disturbance
z ∼ πδ

ACEπδ
=

1

T

T∑
t=1

∥Ez∼πδ
(x

(z)
t )− xd

t ∥ =
1

T

T∑
t=1

∥Ez∼πδ
[f̂(x

(z)
t )]− Ez∼πδ

[f(x
(z)
t , c)] + Ez∼πδ

(wt)∥

≤ 1

T

T∑
t=1

∥Ez∼πδ
[f̂(x

(z)
t )]− Ez∼πδ

[f(x
(z)
t , c)]∥+ ∥Ez∼πδ

(wt)∥

≤ ∥ĥ−1(p)∥ (28)

A.4 PROOF FOR COROLLARY 2

Corollary 2 (ACE bound under control actuation misspecification) ∆B(x
(z)
t ) is the parametric

misspecification in the actuation matrix, and the ACEπδ
satisfies:

ACEπδ
=

1

T

T∑
t=1

∥Ez∼πδ
(x

(z)
t )− xd

t ∥ ≤ h̃−1(p) +
1

T

T∑
t=1

(∥Ez∼πδ
[∆B(x

(z)
t )B†(x

(z)
t )ef (x

(z)
t )]∥)

where ef (x
(z)
t ) = f̂(x

(z)
t , c)− f0(x

(z)
t ).

Proof.

xt+1 = f0(x
(z)
t ) + (B(x

(z)
t ) + ∆B(x

(z)
t )u(t)− f(x

(z)
t , c) + wt

= f̂(x
(z)
t )− f(x

(z)
t , c) + wt +∆B(x

(z)
t )B†(x

(z)
t )[−f0(x(z)

t ) + f̂(x
(z)
t )]

= f̂(x
(z)
t )− f(x

(z)
t , c) + wt +∆B(x

(z)
t )B†(x

(z)
t )ef (x

(z)
t ) (29)

We use ef (x
(z)
t ) to denote f̂(x

(z)
t )− f0(x

(z)
t ), the ACE upper bound is calculated as follows:

ACEπδ
=

1

T

T∑
t=1

∥Ez∼πδ
(x

(z)
t )− xd

t ∥

=
1

T

T∑
t=1

∥Ez∼πδ
[f̂(x

(z)
t )− f(x

(z)
t , c) + wt +∆B(x

(z)
t )B†(x

(z)
t )ef (x

(z)
t )]∥

=
1

T

T∑
t=1

∥Ez∼πδ
[f̂(x

(z)
t )− f(x

(z)
t , c)] + Ez∼π0(wt) + Ez∼πδ

[∆B(x
(z)
t )B†(x

(z)
t )ef (x

(z)
t )]∥

=
1

T

T∑
t=1

∥Ez∼πδ
[f̂(x

(z)
t )]− Ez∼πδ

[f(x
(z)
t , c)] + Ez∼πδ

[∆B(x
(z)
t )B†(x

(z)
t )ef (x

(z)
t )]∥

≤ h̃−1(p) +
1

T

T∑
t=1

(∥Ez∼πδ
[∆B(x

(z)
t )B†(x

(z)
t )ef (x

(z)
t )]∥) (30)

A.5 PROOF FOR LEMMA 2

Lemma 2 (Trajectory tracking ACE of quadrotor) In this paper, for environmental disturbances in
B = {δ : ∥δ∥2 ≤ r}, the formula of quadrotors’ trajectory tracking error is given as:

ACEπδ
=

1

T

T∑
t=1

∥Ez∼πδ
(x

(z)
t )− xd

t ∥ =
1

T

T∑
t=1

∥Ez∼πδ
[C1e

r1x
(z)
t + C2e

r2x
(z)
t − ϵ/Kv]∥

=
1

T

T∑
t=1

∥Ez∼πδ
[C1e

r1x
(z)
t + C2e

r2x
(z)
t ]− h̃−1(p)/Kv∥

(31)
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where C1 = −xd
t − C2 + ϵ/Kv , C2 = (ϵ + (Kvx

d
t − ϵ)er1x

d
t )/Kv(e

r2x
d
t − er1x

d
t ) and ϵ =

f(x
(z)
t , c)− f̂(x

(z)
t , ĉ), which is the prediction error of the unknown dynamics.

Proof.

Recall the kinetic function in equation 15: mv̇ = mg + RfT + ft. The desired control force fd is
designed as:

{
fd = RfT = f̄d − f̂t
f̄d = mv̇r +Kvxe −mg

(32)

where xe = x
(z)
t − xd

t . xe is the error of trajectory tracking and vr is the desired velocity at t. By
substituting equation 32 into equation 15, the UAV dynamics becomes:

mv̇ = mg +RfT + ft

mv̇ −mg − f̄d = ft − f̂t

m(v̇ − v̇r)−Kvxe = ft − f̂t

mẍe −Kvxe − ϵ = 0

ẍe −
Kv

m
xe −

1

m
ϵ = 0 (33)

where ϵ = ft− f̂t = f(x
(z)
t , c)− f̂(x(z)

t , ĉ). Note that equation 33 is a second-order inhomogeneous
linear differential equation.

1) General solution: Making the substitution in the differential equation, r satisfies the auxiliary
equation:

r2 − Kv

m
= 0⇒ r1,2 = ±

√
Kv

m
(34)

then, we obtain the general solution of the differential function x̄e as:

x̄e = C1e
r1x + C2e

r2x (35)

2) Special solution: Consider the standard second order differential equation: ÿ + pẏ + qy =
P (x)eαx, the special solution x∗

e is obvious:

x∗
e = −ϵ/Kv (36)

Therefore, xe can be expressed as:

xe = x̄e + x∗
e = C1e

r1x + C2e
r2x − ϵ/Kv (37)

3) Calculation of C1 and C2: In the equation 37, there exist two fixed points:(xd,0) and (0,-xd). We
have: {

0 = C1e
r1x + C2e

r2x − ϵ/Kv

−xd = C1 + C2 − ϵ/Kv
(38)

By solving the simultaneous formulas, we will get the answer of C1 and C2.{
C1 = −xd − C2 + ϵ/Kv

C2 = (ϵ+ (Kvxd − ϵ)er1xd)/Kv(e
r2xd − er1xd)

(39)

Thus the solution of the original derivative function is:

xe = x
(z)
t − xd

t = C1e
r1x + C2e

r2x − ϵ/Kv
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and we have the average error bound in equation 2:

ACEπδ
=

1

T

T∑
t=1

∥Ez∼πδ
(x

(z)
t − xd

t )∥

=
1

T

T∑
t=1

∥Ez∼πδ
[C1e

r1x
(z)
t + C2e

r2x
(z)
t − ϵ/Kv]∥

=
1

T

T∑
t=1

∥Ez∼πδ
[C1e

r1x
(z)
t + C2e

r2x
(z)
t ]− Ez∼πδ

(ϵ/Kv)∥

=
1

T

T∑
t=1

∥Ez∼πδ
[C1e

r1x
(z)
t + C2e

r2x
(z)
t ]− Ez∼πδ

[f(x
(z)
t , c)− f̂(x

(z)
t , ĉ)]/Kv∥

=
1

T

T∑
t=1

∥Ez∼πδ
[C1e

r1x
(z)
t + C2e

r2x
(z)
t ]− h̃−1(p)/Kv∥ (40)

B EXPERIMENTAL SETTINGS AND DETAILS

B.1 OOD-CONTROL PSEUDO CODE AND ALGORITHM SETTINGS

Out-of-Distribution comes from the misspecification of systems’ components and the systematic
error of sensors and environment models. Our algorithm is able to extrapolate unknown wind dis-
turbances after learning a model from previous data containing generalized information.

To eliminate the influence caused by other factors, the two models share the same initial state and
environmental conditions. Furthermore, in order to make the training process fair for both models,
we simulate them for the same number of iterations and sustain each iteration for the same period of
time.

Algorithm 1 OoD-Control (Out-of-Distribution Generalization control for Adaptive Nonlinear Con-
trol)
Input: Set of distribution functions X , DNN ϕ with parameter Θ, environment estimation vector ĉ
Parameter: Parameters of mechanical system and aerodynamics.
Output: The estimation of unknown force f̂

1: while picking χ from X do
2: Sample a series of independent random variables w subject to χ as external wind force.
3: Apply external force to the simulation according to equation 43
4: Calculate loss with noise in the state: L = ||ϕ(x+∆x)T ĉ− f ||2
5: Update Θ : Θ = Θ− η1∇θL
6: Update ĉ : ĉ = ĉ− η2∇ĉL

7: return f̂= ϕ(x; Θ)T ĉ
8: end while

B.2 UPDATE OF PARAMETERS ϕ AND ĉ

Based on equation 1, we design a discrete-time simulation process to calculate state variables and
estimate the unknown term at each time interval and by this way, collect data for training ϕ. In
algorithm 1, we update Θ during simulation: Θ = Θ−∇Lθ.

Keeping a constant ĉ in the inverted pendulum experiment results in the inability to update environ-
mental parameters. This can result in higher ACE or even failure to control the system (see Table 2).
For the quadrotor, when the wind is severe, it cannot maintain its position, as illustrated in Figure
3. It should be noted, however, that our algorithm exhibits better control even when position drift
occurs. Generally, updates to ϕ would be more energy intensive, whereas updating only ĉ would be
closer to the actual embedded device.
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Table 1: ACE results in pendulum experiments with the changed or unchanged ĉ

ĉ Test Env. No-Adapt OMAC OoD-Control Omniscient

Changed Breeze 0.538(0.325) 0.054(0.022) 0.050(0.024) 0.046(0.024)
Changed Strong Breeze 1.566(0.257) 0.134(0.032) 0.078(0.029) 0.046(0.024)
Changed Gale 2.277(0.427) 0.592(0.196) 0.163(0.055) 0.045(0.021)
Unchanged Strong Breeze 1.566(0.257) 1.553(0.262) 1.548(0.265) 0.046(0.024)
Unchanged Gale 2.277(0.427) 2.276(0.425) 2.275(0.425) 0.045(0.021)

Figure 3: Results when both ĉ and ϕ keep unchanged in testing

B.3 PSEUDO CODE OF THE PERTURBATION RADIUS CALCULATION ALGORITHM

Algorithm 2 Monte Carlo algorithm for calculation of perturbation radius
Input: x, number of Monte Carlo samples: N, the variance of Gaussian noise: σ
Parameter: threshold of error: ϵ
Output: radius

1: for i in range(N) do
2: Add Gaussian noise x = x+N (0, σ) and append to x set
3: end for
4: for x sample in x set do
5: Obtain the prediction value and calculate prediction error
6: if error < ϵ then
7: nA = nA+1 // nA is the number of successful predictions
8: end if
9: end for

10: pABar← calculate the lower confidence bound
11: if pABar < 0.5 then
12: return 0 // 0 means abstention
13: else
14: radius = σ · fppa(pABar) // fppa is the percent point function of Gaussian distribution.
15: end if
16: return radius

B.4 DIFFERENTIAL EQUATION SOLVER

The fourth-order Runge-Kutta method is a common iterative method to calculate differential equa-
tions and approach continuous functions. In this paper, we use this method to calculate equation 1
and simulate the process of the mechanical system. We do the simulation by moving tiny ∆t each
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time, which corresponds to the step size of the Runge-Kutta method. And the right-hand side of
equation 1 is the derivative of the state x.

B.5 THE COMPARISON OF VARIOUS TRAJECTORY TRACKING MODES

OoD generalized model adapts better and gives inputs forces closer to the desired ones as illustrated
in Figure 4 to Figure 7 which shows the traces under OMAC (Deep Learning), OoD-Control and
omniscient models and the desired trajectory, the OoD-Control algorithm clearly goes closer to the
desired curve.

(a) (b)

Figure 4: Traces when the quadrotor tries to keep still.

(a) (b)

Figure 5: Traces when the trajectory is a spiral curve.
.

B.6 WIND CONDITIONS IN EXPERIMENTS

B.6.1 WIND FIELD SETTINGS

Protocol Two sets of distribution functions X and Ω with X ∩ Ω = ∅ are defined for training
and testing. The training distribution χ ∈ X and the testing distribution ω ∈ Ω are specified for
different experiment tasks. The wind velocity is a series of independent random variables sampled
subject to the distributions (χ or ω) picked out. The wind brings induced airflow to the rotor blades,
creating complex and nonstationary aerodynamic interactions2. All models are simulated with the
same wind series and the simulating duration is also the same.

2More detailed information related to the aerodynamics under wind is shown in Appendix B.6.3
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(a) (b)

Figure 6: Traces of OMAC, OoD-Control and omniscient quadrotor models with figure-8 trajectory

(a) (b)

Figure 7: Traces of OMAC, OoD-Control and omniscient quadrotor models with sin-forward trajec-
tory.

Table 2: ACE in quadrotor experiment with different trajectories and environment

Trajectory Test Env. No-adapt OMAC OoD-Control Omniscient

hover Breeze 0.279(0.056) 0.202(0.035) 0.048(0.007) 0.029(0.003)
hover Strong Breeze 0.410(0.085) 0.257(0.049) 0.060(0.011) 0.035(0.003)
hover Gale 0.478(0.100) 0.297(0.079) 0.074(0.026) 0.040(0.004)

sin-forward Breeze 0.319(0.058) 0.277(0.047) 0.098(0.011) 0.079(0.010)
sin-forward Strong Breeze 0.439(0.086) 0.334(0.053) 0.110(0.017) 0.085(0.016)
sin-forward Gale 0.504(0.101) 0.379(0.067) 0.133(0.045) 0.092(0.021)

figure-8 Breeze 0.334(0.060) 0.268(0.032) 0.094(0.005) 0.079(0.005)
figure-8 Strong Breeze 0.455(0.085) 0.318(0.055) 0.100(0.006) 0.082(0.005)
figure-8 Gale 0.520(0.100) 0.403(0.216) 0.169(0.195) 0.085(0.006)
spiral-up Breeze 0.295(0.060) 0.214(0.044) 0.084(0.012) 0.067(0.004)
spiral-up Strong Breeze 0.422(0.088) 0.265(0.057) 0.095(0.016) 0.071(0.006)
spiral-up Gale 0.490(0.103) 0.309(0.090) 0.120(0.055) 0.075(0.008)
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Pendulum In this task, we use 5 different normal distributions as the training set, i.e. X =
{χk|χk = N(0, 0.2k), k = 1, 2, . . . , 5}. When testing, we set 3 different levels of the wind based
on the difficulty, that is the breeze, strong breeze, and gale. And each level has 6 or 8 different
uniform distributions. We show the details of the testing set Ω as follows:

• Breeze: Ω1 = {ωk
1 | ωk

1 = U(−0.5k, 0.5k), k = 1, 2, . . . , 5, 6}
• Strong Breeze: Ω2 = {ωk

2 | ωk
2 = U(−3.0− 0.5k, 3.0 + 0.5k), k = 1, 2, . . . , 5, 6}

• Gale: Ω3 = {ωk
3 | ωk

3 = U(−6.0− 0.5k, 6.0 + 0.5k), k = 1, 2, . . . , 7, 8}

Quadrotor In this instantiation, we only use one training distribution, the three-dimensional stan-
dard normal distribution, to train the models. Meanwhile, we transform the initial wind data sam-
pled from the normal distribution to their absolute values, i.e. χ = |N(µ,Σ)|, µ = [0, 0, 0],Σ =
diag(1, 1, 1). The reason for this operation is that we want to make the wind come from only one
octant, then it differs from the test environment in distribution and direction. Similarly, the test
set Ω also has 3 different levels, but the exact distributions are different from the pendulum task.
Following are the details:

• Breeze: ω1 = U(D1), D1 = {(x, y, z) | x, y, z ∈ (−3, 3)}
• Strong Breeze: ω2 = U(D2), D2 = {(x, y, z) | x, y, z ∈ (−6, 6)}
• Gale: ω3 = U(D3), D3 = {(x, y, z) | x, y, z ∈ (−8, 8)}

Trajectory illustration The three trajectories we used in the quadrotor experiment (see Table 2)
are mathematically described as:

• sin-forward: (x, y, z) = (2sin(πt3 ), 0.2t, 0.5t)

• figure-8: (x, y, z) = (2sin(πt5 ), 2sin(πt5 ), sin( 2πt5 ))

• spiral-up: (x, y, z) = (sin( 2πt5 ), cos( 2πt5 )− 1, 0.2t)

B.6.2 DISCUSSION

Q1: What’s the main problem addressed in this paper and what’s the innovation compared with
other online adaptive control?

A1: We study the online adaptive flight control problem when testing and training environment
domain shifts and give a methodology that the upper bound of the predicted error of the unknown
dynamics maintains constant under a radius of perturbation.

Q2: How does the OoD-Control algorithm perform in the i.i.d. environment, where the train and
test environment follow the same distribution?

A2: We run OMAC and OoD-Control algorithm on i.i.d. environment and put the results in Table
3 (see Appendix B.7). In the i.i.d. environment, the ACE of all algorithms drop naturally, but
OoD-Control still performs much better than OMAC.

Q3: How does the size of noise add to the state vectors when training affects the performance of our
algorithm?

A3: We run OoD-Control algorithm with different noises in i.i.d. and o.o.d. environment respec-
tively. Results (see Table 4) show that the algorithm performs worse in the i.i.d. environment as the
scale of noise increases. And performance in the OoD environment gets a little better in a certain
range when noise size increases, but becomes worse when noise is too large.

B.6.3 AERODYNAMICS OF THE ROTORS IN WIND

Wind conditions affect the quadrotor mainly in two ways. The first is that it alters the aerodynamics
of the rotors. The second is to change the air resistance of each windward side. The aerodynamics
of the rotor in windy conditions is illustrated in Figure 8. This paper defines several types of winds,
namely Breeze, Strong Breeze, and Gale.
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Table 3: ACE in quadrotor experiment in i.i.d. environment

Trajectory No-adapt OMAC OoD-Control Omniscient

hover 0.378(0.052) 0.138(0.030) 0.036(0.012) 0.027(0.003)
figure-8 0.436(0.043) 0.230(0.030) 0.087(0.008) 0.075(0.005)
spiral-up 0.403(0.050) 0.158(0.031) 0.076(0.008) 0.065(0.003)

sin-forward 0.432(0.048) 0.209(0.022) 0.092(0.017) 0.076(0.004)

^

VwFw

T

Vt

Vw

V

ni

Figure 8: Sketch of the aerodynamics of the propeller in wind conditions

1) Aerodynamics caused by wind gust disturbances. According to the rotor slipstream theory (Con-
lisk, 2001), the induced velocity is calculated by:

∥Vt∥ =

√
kfn2

2πρr2
(41)

where kf is the lift coefficient, ρ is the air density, r is the rotor radius. A wind field results in a
total aerodynamic force on the rotor equal to the sum of the lift force T and the additional wind
disturbance force Fw. The total lift can be calculated as:

∥T + Fw∥ = 2πρr2∥Vt∥Vw + Vt∥ (42)

Therefore, the wind disturbance forceHwi and momentMwi on ith rotor is:
Hwi = kfn

2
i − 2πρr2∥(0, 0,

√
kfn2

i /2πρr
2)T + V B

w ∥

Mwi
=

{
kmHwi

/kf ,when the rotor turns clockwise
−kmHwi

/kf , otherwise
(43)

where km is the anti-torque coefficient related to the shape of the rotors and local air density.

2) The air drag. Air drag can be ignored in hovering or low-speed flights without wind. However,
in the presence of a wind field, the following equation can be used to calculate air drag.

Dg =
1

2
cρSairV

2
air (44)

where c represents the air drag coefficient, Sair is the windward area, and Vair is the relative speed
of the wind to the quadrotor.

B.7 PERFORMANCE IN I.I.D. ENVIRONMENT AND DIFFERENT NOISE SETTING

Noisex and Noisea mean the noise scale added to the state vector and the environment representa-
tion vector respectively. In this experiment, We double the test duration (compared to the results in
Table 2) to enlarge the differences.

21



Under review as a conference paper at ICLR 2023

Table 4: ACE in quadrotor experiment with different noise

Trajectory OoD Env. Noisex Noisea i.i.d. o.o.d.

figure-8 Gale 0.01 0.01 0.0628 0.5897
figure-8 Gale 0.02 0.02 0.0635 0.5897
figure-8 Gale 0.05 0.02 0.0652 0.5767
figure-8 Gale 0.05 0.05 0.0651 0.5877
figure-8 Gale 0.1 0.1 0.0729 0.5908
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