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ABSTRACT

Nervous systems learn representations of the world and policies to act within it.
We present a framework that uses reward-dependent noise to facilitate policy opti-
mization in representation learning networks. These networks balance extracting
normative features and task-relevant information to solve tasks. Moreover, their
representation changes reproduce several experimentally observed shifts in the
neural code during task learning. Our framework presents a biologically plausible
mechanism for emergent policy optimization amid evidence that representation
learning plays a vital role in governing neural dynamics. Code is available at:
NeuralThermalOptimization.

1 INTRODUCTION

Nervous systems learn representations of the world. They configure their weights to extract certain
information from the environment: for instance, the presence of objects or their temporal dynamics
(Li & DiCarlo (2008); de Vries & Wurm (2023)). This learning is driven by synaptic plasticity
(Markram et al. (1997); Bi & Poo (1998); Dan & Poo (2004)). Representation learning objectives
provide a normative framework for proposing plasticity rules (Lipshutz et al. (2023); van Hateren
(1992); Pehlevan et al. (2015)). Mounting evidence suggests that these objectives largely determine
synaptic plasticity. Rules derived from these objectives emulate experimentally observed spike-
rate dependent plasticity (Pehlevan & Chklovskii (2014); Pehlevan et al. (2017); Qin et al. (2023);
Sengupta et al. (2018); Halvagal & Zenke (2023); Tang et al. (2024); Millidge et al. (2024)). At the
same time, these rules reproduce population-level changes to the neural code seen under a variety of
experimental conditions (Raju et al. (2024); Qin et al. (2023); Halvagal & Zenke (2023)). However,
organisms do not only build representations of the environment; they also use them to optimize
goal-directed behavior. The mechanisms that underlie this behavioral learning remain unclear.

This article introduces NEural Thermal Optimization (NETO), a framework for how policy opti-
mization can emerge from noisy representation learning. NETO treats the brain’s intrinsic noise as
a feature rather than a bug. It hypothesizes that the noise in the nervous system is reward-dependent,
decreasing in magnitude when the nervous system’s weight configuration yields a rewarding policy.
This modulation, akin to thermal cooling, alters the attractive points in weight space, encouraging
the network to optimize its policy while learning a representation objective.

We illustrate the framework by considering an agent whose one-layer network operates under a
simple, linear representation learning objective. We analyze the agent’s learning process in two
tasks. In the first, the features defined by the agent’s objective capture all task-relevant information.
Through analytical arguments and simulations, we show that the agent is guaranteed to learn an
optimal policy by diffusively searching the space of equivalent representations. In the second task,
the agent needs to learn features not captured by its representation learning objective to perform
well. We show that NETO balances normative and task-relevant feature learning to solve the task.
These results suggest that NETO is a plausible theory for policy learning in nervous systems.

2 RELATED WORK

A key question in theoretical neuroscience is how organisms learn to interact in environments. Early
work showed that reward-modulated spike-timing dependent plasticity (STDP) rules can implement
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Figure 1: A schematic of the Neural Thermal Optimization framework. A representation learning network
(blue) receives observations from the environment and extracts features. A motor function (green) determines
an action given the network activities, defining the agent’s policy. A modulatory system (red) tunes the noise in
the representation learning network according to its estimate of the policy reward.

reinforcement learning (Florian (2007); Legenstein et al. (2008)). This model gained traction be-
cause its structure is consistent with experimental observations. Organisms with vastly different
nervous systems, from the Caenorhabditis elegans worm to humans, possess neuromodulatory sys-
tems (Shine et al. (2019); Qin & Wheeler (2007); Alcedo & Prahlad (2020)). Moreover, their STDP
rules are consistent with those measured across organisms. However, artificial networks operating
under this framework can only solve simple tasks like discriminating different spike trains.

Representation learning may offer a path forward. In artificial agents, representation learning objec-
tives greatly improve task-learning capabilities (Jaderberg et al. (2016); Ha & Schmidhuber (2018)).
For biological models, promising work showed that spiking neural networks that learn policies from
a world model solve simple Atari games (Capone & Paolucci (2024)). However, this work was based
on rules with little experimental validation and necessitated separate modules for representation and
policy learning.

We also use representation learning as a foundation but do not impose an additional module for
policy learning. Instead, we return to the idea that a neuromodulatory system acts on a network
operating under experimentally validated plasticity rules. However, we allow the modulation to tune
the nervous system’s intrinsic noise. The use of noise as a computational tool is not new (Kappel
et al. (2017); Maass (2014); Li et al. (2024)). But, to our knowledge, the key idea that noise can act
as an effective weight temperature, “cooling” the network in rewarding configurations, has not yet
been explored.

3 FRAMEWORK

3.1 THE MARKOV DECISION PROCESS

A natural framework for an organism interacting in an environment is the Markov Decision Process
(MDP). We define an MDP with the tuple (S,A, P, r, γ). The environment’s dynamics are defined
by the state space S, the agent’s action space A, and P (s′|s, a), the probability of transitioning from
a state s to a state s′ given an action a. Upon this transition, the agent receives a reward specified by
the function r(s, a).

The agent acts according to a policy π : S × A → [0, 1] which describes the distribution of actions
that it could take in a state s. We denote this distribution π(a|s). Its goal is to learn a policy that
maximizes its reward over a finite time horizon T . If we let the subscript t denote the timestep, the
reward is given by R(π) = E[

∑T
t=1 γ

tr(st, at)], where at ∼ π(a|st) per the definition of the policy,
and γ ∈ (0, 1] is the temporal discount factor.
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3.2 NEURAL THERMAL OPTIMIZATION

Here, we introduce Neural Thermal Optimization (NETO). In NETO agents, a single noisy neu-
ral network learns representations and controls actions, while a neuromodulatory system tunes the
noise. As such, NETO has three components: a representation learning network, a motor function
that defines the agent’s policy, and reward-dependent noise controlled by a neuromodulatory system.
We illustrate each in Figure 1, and introduce them below, along with the example that we consider
throughout this work.

3.2.1 A REPRESENTATION LEARNING OBJECTIVE GOVERNS THE NETWORK DYNAMICS

Consistent with biology, we consider an online agent, meaning that it learns through interacting
continuously with its environment. We begin by describing its representation learning network.
Let the neural network be parameterized by activities x ∈ RN and weights θ. This network can
have any architecture. The network’s goal is to extract features from the environment. It builds
representations of the MDP, in principle capturing aspects of the distribution of s or the dynamics of
the state transitions defined by P .

The network extracts features by optimizing a representation learning objective L(x, θ, s). We refer
to the features that it learns as “normative” because L specifies how the network weights should
change to extract them. Because the agent is online, its activities and weights respond together to
each state s. These responses are noisy, and are given by the stochastic differential equations

dx = −ηx
∂L
∂x

dt+ σxdB (1)

dθ = −ηθ
∂L
∂θ

dt+ σθdB (2)

where the dB are independent standard Wiener processes in the necessary number of dimensions,
ηx and ηθ are the weight and activity learning rates, and σx and σθ are the diffusion tensors of the
stochastic process. Typically, ηx >> ηθ such that the activity timescale is much faster than the
weight timescale. The activities respond to the state s, and then the weights change according to
these responses.

We can make this discussion more concrete by introducing our simple example agent. As we will
see, this agent exhibits many important features of NETO while remaining easily interpretable and
analytically tractable. We let our agent’s representation learning network optimize the Similarity
Matching (SM) objective, introduced in (Pehlevan et al. (2015))1. The SM objective encourages
the network to project its inputs onto their principal subspace. Nicely, this objective bestows the
network with Hebbian weight updates, which emphasizes that our model is biologically plausible.

Consider a one-layer network with activities x ∈ R2 and weights θ = (W0,W1). The first weight
matrix W0 is a feedforward matrix, and W1 is a matrix of lateral inhibitory connections2. Suppose
that the agent receives D-dimensional state vectors s ∈ RD from the environment. Then W0 ∈
RD×2 and W1 ∈ R2×2. Previous work (Pehlevan et al. (2017)) showed that the network satisfies
the SM objective if it optimizes

L(x,W0,W1, s) = Tr(W T
0 W0)−

1

2
Tr(W T

1 W1)− 2xTW0s+ xTW1x (3)

giving it the dynamics

dx = ηx(W0s−W1x)dt (4)

dW0 = ηθ(xs
T −W0)dt+

√
ηθσθdB (5)

1The original, offline SM objective is defined as ∥STS − XTX∥2, where S = [s1 s2 ...] is a matrix of
inputs and X = [x1 x2 ...] is a matrix of outputs. We will consider the online formulation (3).

2W1 must be symmetric and positive-definite.
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dW1 = ηθ(xx
T −W1)dt+

√
ηθσθdB (6)

For simplicity, we set the activity noise to zero to make the network’s activity dynamics determinis-
tic. We will see soon that this also makes the agent’s policy deterministic, which will simplify future
analysis. We also let σθ be a scalar rather than a tensor. At each timestep of the MDP, the activities
evolve under the differential equation (4) until they converge, followed by a discrete weight update.

3.2.2 A MOTOR FUNCTION DEFINES THE AGENT’S POLICY

Under NETO, the same neural network learns representations and controls actions. We now intro-
duce the motor function, which defines the agent’s policy. Let M : RN → A be a motor function
that maps the network activities to an action. We assume that M is independent of time3. Biologi-
cally, we can imagine that this motor function arises due to projections from the neural activities x
to a motor control system or from movements of the muscles directly controlled by x.

This motor function defines the agent’s policy, the distribution of possible actions a that it could
take in response to a state s. In the general case of noisy activity dynamics, a distribution fθ(x|s)
describes the possible network responses to a state s. The policy induced by the motor function is
given by the distribution of the actions associated with these network responses

πθ(a|s) =
∫

fθ(x|s) δ(a−M(x)) dx (7)

where δ(.) is the Dirac delta function. This relation holds in general for both discrete and continuous
actions.

Now we return to our example. For simplicity, our agent has the discrete action space A = {−1, 1}.
We define the motor function M(x) = sign(vTx), where vT = (−1, 1). This choice defines a
linear classifier in activity (representation) space. Notice that our agent’s policy is deterministic; we
set its activity noise to zero, so it maps a state s deterministically to an activity pattern, which in turn
defines an action through M .

3.2.3 REWARD-DEPENDENT NOISE FACILITATES POLICY OPTIMIZATION

The final and key component of NETO is the reward-dependent noise. We define the agent’s neu-
romodulatory system so that it shapes the representation learning network’s weight diffusion tensor
according to an estimate of the policy reward R

σθ = σθ(R) (8)

where the eigenvalues of σθ(R) are monotonically decreasing functions of R. Intuitively, this
reward-dependent noise “cools” the system when the agent’s policy is rewarding. More formally, it
balances optimization of L and R by changing the system’s stochastically attractive points in weight
space. In Appendix A.3, we explain how activity noise can also play this role. It is not unreasonable
to conceptualize R as a regularizer on L.

In our example agent, we define a modulatory system that estimates R and controls the noise through
ηθ = ηθ(R), as the noise is proportional to

√
ηθ

4. We discuss the biological plausibility of this
choice in Appendix A.4. In particular, we let

ηθ(R) = 0.01e−βR. (9)

for β > 0. This choice of monotonically decreasing function is arbitrary.

3Time independence is an approximation that is not necessary but will simplify the discussion.
4Since all weights have the same learning rate, we implicitly restrict the diffusion tensor to a multiple of the

identity here. This restriction likely hinders policy learning efficiency, as discussed in the Limitations section.
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While this work focuses on introducing NETO for policy optimization in representation learning
networks, we feel it is important to note that the framework is actually more general. We discuss
this generality in Appendix A.1.

4 RESULTS

4.1 A DIFFUSIVE SEARCH FACILITATES POLICY OPTIMIZATION WHEN L CAPTURES THE
TASK-RELEVANT INFORMATION

An ideal representation learning objective captures enough information to solve a variety of tasks.
We begin by analyzing the agent’s learning process when this is this case. We construct a contextual
bandit task that the agent can solve with the features that L encourages it to extract. We then show
that the agent is guaranteed to maximize reward as time goes to infinity 5. In the process, we illustrate
that a diffusive search through the space of equivalent representations facilitates policy learning: The
network parameters converge to the solution space of L and explore it using reward-dependent noise.

4.1.1 THE CONTEXTUAL BANDIT TASK

The contextual bandit task is a special case of the Markov Decision Process where the state tran-
sitions are independent of the agent’s action. Let our contextual bandit task have states s ∈ R10.
The states are drawn from two Gaussian clusters in 10 dimensions. In particular, we define them as
s = ky, where y ∼ N (µ,C), and k is a random sign. The largest eigenvalue of the covariance
matrix C is 0.1, and the rest are 0.05. The mean vector µ is the second eigenvector of C and has
magnitude 2. We also define the agent’s action space as A = {1,−1}, and let r(s, a) = 1(a=k).
The agent must learn to take the action corresponding to the random sign. It is possible to learn this
task because the Gaussian clusters are linearly separable. Figure 2 illustrates the setup.

Figure 2: (Left) Schematic of the agent in the contextual bandit task. The agent receives a state s (light blue),
and its activities respond, resulting in an action. The neuromodulatory system receives the reward associated
with this action and adjusts the weight learning rate. The weights then update according to L, and the task
continues. The agent’s goal is to take the action corresponding to the random sign k. (Right) Illustration of all
relevant variables in the network’s representation space, where the axes denote the activity of its two neurons.
Royal blue points show the network representations of the states s, denoted x(s). The vector v defines a
classifier that maps these representations to the action 1 or −1. Finally, ϕ, the angle between v and x(µ),
tracks the rotational diffusion of the network responses through policy learning.

4.1.2 L CAPTURES THE TASK-RELEVANT FEATURE AND HAS A SOLUTION SPACE

We aim to show that the agent learns an optimal policy, even though the network that controls its
actions only explicitly optimizes L. We begin by demonstrating that (1) the network’s objective cap-
tures the information necessary to solve the task, and (2) that this objective has a solution space: the
network representations are free to rotate. We will use these properties to equate policy learning to

5In practice, this occurs much more quickly.
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a diffusive search through the solution space of L. Finally, we will compute the limiting distribution
of this search with reward-dependent noise. This process will show us that the agent preferentially
resides in rewarding orientations.

Recall that L encourages the network to project the states s onto their principal subspace. We chose
µ so that its only nonzero component is in the principal subspace of s. This means that the network
needs to extract the features defined by L to solve the task. After it does so, its activities contain
the information needed to pick the action associated with the random sign k. However, the agent
does not necessarily use this information correctly; the stimulus-to-action mapping defined by M is
arbitrary.

The agent learns a rewarding policy because its representation learning network’s weights diffuse
through the solution space of L. Representation learning objectives often have solution spaces be-
cause they are degenerate or the network is overparameterized. Here, the objective is degenerate.
We begin by finding its solution space. This was done in previous work (Qin et al. (2023)), but we
review it here because it is necessary for the rest of our discussion.

There are infinite ways to project the states s onto their principal subspace. In particular, any trans-
formation of the form

W0 → W ′
0 = UW0 (10)

W1 → W ′
1 = UW1U

T (11)

which yields

x → x′ = Ux (12)

where UTU = I leaves L invariant. In other words, any rotation of the network representations is
still a projection onto the principal subspace. Note that, to arrive at equation (12), we assumed that
the activity dynamics (4) converge before a weight update.

We can now describe the solution space of L in terms of the network activities. Suppose that the
network projects its inputs onto their principal subspace (such that its weights are in the solution
space of L). Let x(s) denote its response to the state s. Then the space of all responses to this state
that satisfy L are

Hs = {Ux(s) : U ∈ SO(2)} (13)

where SO(2) is the special orthogonal group in two dimensions6. This space is a circle.

4.1.3 WITH NOISE, THE AGENT EXPLORES THE SOLUTION SPACE OF L

When the weight noise is reward-independent, the network representations converge to and explore
their respective Hs. Random weight transformations of the form (10-11), with U as an infinitesimal
rotation, generate this noisy exploration. The representations undergo rotational diffusion. We can
describe the system’s configuration in the solution space by tracking the evolution of ϕ, the angle
between x(µ) and v. By analyzing noisy perturbations to this configuration, previous work showed
that the diffusion coefficient characterizing the process is linear in ηθ (Qin et al. (2023)). So, its
evolution is given by

dϕ ∝ √
ηθdB (14)

where we work up to proportionality because we are only interested in its limiting distribution. Since
all representations transform together, this single parameter ϕ describes the network configuration
during policy learning.

6Technically, U ∈ O(2), but this extension is not important to our discussion because we will not consider
reflections.
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4.1.4 REWARD-DEPENDENT NOISE BIASES THE NETWORK TOWARDS REWARDING POLICIES

Now that we understand the network’s solution space exploration, we can analyze it with reward-
dependent noise modulated by ηθ(R). In a general task with reward-dependent noise, we cannot
guarantee that the network responses converge to Hs. Reward-dependent noise can stabilize points
outside of the solution space. We will discuss this in greater detail later.

Figure 3: The principal subspace error over time,
quantified by ∥FTF−UUT ∥F

∥UUT ∥F
. The columns of U are

the top two eigenvectors of the covariance matrix C,
and F = W−1

1 W0 is the projection performed by the
network after the convergence of (4). The operation
∥.∥F denotes Frobenius norm.

However, Figure 3 shows that the principal sub-
space error rapidly decreases and remains near
optimal throughout this task. Here, all repre-
sentations x(s) are approximately contained to
their Hs. Intuitively, this occurs because these
representations contain the information needed
to solve the task. Reasonable policies exist
within the solution space of L. We can there-
fore analyze the reward-dependent rotational
diffusion of the representation x(s) through
Hs.

Reward-dependent rotational diffusion is
equivalent to angle-dependent diffusion.
This equivalence arises from the fact that
R is a function of ϕ. One can see graph-
ically in Figure 2, but as an example, no-
tice that M [x(µ|ϕ = π

2 )] = 1, whereas
M [x(µ|ϕ = −π

2 )] = −1. Different angles
correspond to different policies.

If we find ηθ(ϕ), we can express the rotational
diffusion in a self-contained manner. We show
in Appendix A.5 that R(ϕ) is approximately

R(ϕ) ≈ Φ

(
± ∥µ∥√

λ1

tanϕ

)
(15)

where Φ is the standard normal CDF, and λ1 is the largest eigenvalue of C. We take the negative
sign when ϕ ∈ [π2 ,

3π
2 ] and the positive sign otherwise. We can therefore write ηθ(ϕ) = ηθ(R(ϕ)),

which is given by

ηθ(ϕ) ≈ exp

[
−βΦ

(
± ∥µ∥√

λ1

tanϕ

)]
(16)

Plugging (16) into (14) gives the equation describing the rotational diffusion of the network response
to µ through the agent’s learning process. The same expression holds for all network responses.
Under the Ito prescription, this is equivalent to the Fokker-Planck equation (up to proportionality)

∂p(ϕ, t)

∂t
∝ ∂2

∂ϕ2
[ηθ(ϕ)p(ϕ, t)] . (17)

where p(ϕ, t) is the distribution of ϕ. Its stationary distribution p(ϕ) is therefore

p(ϕ) ∝ 1

ηθ(ϕ)
(18)

Finally, we can use p(ϕ) to find the expected reward received by an agent. In this limit, it is given
by

E[R] =

∫ 2π

0

R(ϕ)p(ϕ) dϕ (19)

7
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which we compute numerically. In Figure 4, we see that as β increases, E[R] → 1. With strong
modulation, the agent is guaranteed to learn a policy that maximizes reward.

Figure 4: (Left) The limiting distribution of ϕ. The dashed lines denote our approximations for different β, and
the histograms show the simulation data. With β = 0 (no noise modulation), ϕ is uniformly distributed in the
solution space of L. With larger β, the agent becomes biased towards rewarding angles. Data generated from
100 seeds of 500,000 timesteps. (Right) The expected reward received by the agent in the limit that time goes
to infinity. The agent is guaranteed to maximize reward for large β (stronger modulation). Our approximation
agrees with simulations.

Notice that policy optimization emerges by modulating a noisy, reward-independent objective. The
agent first learns to extract normative features (the principal subspace projection). Then, it uses this
information to optimize its policy (by exploring the informatically equivalent rotational configura-
tions). In the next example, we will see that NETO is not restricted to this sequential learning: It can
balance normative feature extraction with policy optimization by performing both simultaneously.

4.2 NETO BALANCES NORMATIVE REPRESENTATION AND POLICY LEARNING TO SOLVE
TASKS

The contextual bandit task gives the impression that NETO agents learn representations and policies
in separate phases. However, in general, NETO couples representation and policy learning. This
coupling allows agents to balance normative and task-dependent representation learning, extracting
features that L does not capture to improve task performance.

The contextual bandit example illustrates that we can consider the R-dependent noise as θ-
dependent. This equivalence arises because the same network learns representations and controls
actions. Recent work in the context of stochastic gradient descent found that the weight diffusion
tensor σθ(θ) and the loss L(θ) jointly determine the attractive points in weight configuration space
(Chen et al. (2024)). This fact gives the network the freedom to extract information that is not
optimal with respect to L if it helps the agent perform well in the task.

We demonstrate this principle with Cart Pole. Cart Pole is a classical control problem with a four-
dimensional observation space. It is simple enough for our one-layer, linear network to solve. The
goal of Cart Pole is to keep a pole upright on a cart while preventing it from falling off a frictionless
track. The agent can push the cart right or left at each timestep. Importantly, the agent cannot
learn an optimal policy for Cart Pole if its weights project the state observations onto their two-
dimensional principal subspace, shown empirically in Appendix A.6. Therefore, the agent cannot
solve the task with only normative features; it must learn to adjust its representations so that they
contain information that is suboptimal with respect to L.

Indeed, we find that solving the task requires the agent’s weights to stabilize at representation learn-
ing losses that are orders of magnitude larger than in the contextual bandit task, as seen in Figure
5 (left). The agent learns to extract features not specified by L. Note that these features are not
arbitrary. They are still partially determined by L; the loss settles to be many orders of magnitude
lower than where it began.

8
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Figure 5: (Left) The principal subspace loss over time. The loss decreases rapidly through initial feature
learning but settles an order of magnitude larger than in the contextual bandit task. Reward-dependent noise
stabilized the weights in a suboptimal configuration to extract task-relevant features. (Right) The agent learns
to beat Cart Pole. Median and middle 50% percentile over 100 seeds plotted through 500,000 timesteps of
continuous interaction.

This simple example illustrates a general principle: NETO agents balance normative and task-
relevant representation learning to facilitate policy optimization. In general, the NETO framework is
most likely to extract task-relevant features if they exist near the solution space of L. Policy learning
acts as a regularizer on weights that are otherwise selected to extract normative features defined by
L. Representation and policy learning are interdependent, emerging together from the same system.

5 DISCUSSION

In this article, we present the hypothesis that policy optimization emerges from the noisy learning of
representation objectives in nervous systems. We explore the consequences of this idea in a linear,
one-layer network. Through simulations and analytical arguments, we show that this network learns
the optimal policy in tasks that it can reasonably be expected to solve. Each task serves to provide
intuition for its learning process. When L captures all task-relevant features, the network performs a
diffusive search through its solution space to discover an optimal policy. The agent can also modify
its representations to capture task-relevant features, even if the resulting representations are slightly
suboptimal with respect to L.

5.1 CONSISTENCY WITH EXPERIMENTAL OBSERVATIONS

While the NETO framework is more general, we focus on the case where L is a representation
learning objective and R denotes reward. This choice gives NETO the potential to explain several
recently observed phenomena describing neural representation changes during task learning. We
discuss three examples: representation drift, neural reassociation, and the orthogonalization of task-
relevant features.

Representation drift describes the slow change in the neural codes of stimuli over time. Crucially,
these changes maintain the information encoded in the neural population (Driscoll et al. (2017);
Rubin et al. (2015); Ziv et al. (2013)). Representation drift emerges naturally from the NETO
framework when L is a representation learning objective. We saw representation drift clearly in the
contextual bandit task: the network responses rotated while maintaining their population structure.
This result has been noted before in (Qin et al. (2023)). NETO suggests a potential feature of this
drift: It can aid task learning by sampling behavioral policies, even when behavioral performance
stabilizes.

In neural reassociation, the brain forms new stimulus-action associations by reassociating stimulus-
code pairs instead of generating new activity patterns. Researchers observed neural reassociation
in primate motor cortex during task learning (Golub et al. (2018)). NETO can reproduce neural
reassociation with the correct motor function. Consider a nonlinear motor function M(x) from
some unspecified brain region to motor cortex (instead of directly to an action). Let the function

9
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be nonlinear so that changing the distribution of inputs does not change the range of M(x), which
we can think of an as a manifold in activity space. Suppose NETO operates only at the neurons in
the domain of M . Then, task learning will occur by changing the structure of the neural activity in
its domain to re-map stimuli to different but already existing patterns in motor cortex. If we were
to record the neural activity in motor cortex during task learning, we would not observe significant
changes in the manifold of response patterns. Instead, we would see the associations between these
stimuli and the existing patterns shift. NETO can therefore explain neural reassociation.

Nervous systems have also been observed to orthogonalize task-relevent features to facilitate task
learning (Failor et al. (2021); Gurnani & Cayco Gajic (2023)). NETO can orthogonalize task-
relevant features by exploring the solution space of a nonlinear representation learning objective.
As a simple example, consider the non-negative similarity matching (NNSM) objective introduced
in (Pehlevan & Chklovskii (2014)). In (Sengupta et al. (2018)), the authors found that networks
operating under the NNSM objective learn localized receptive fields. Moreover, the locations of
these receptive fields drift under noisy weight updates (Qin et al. (2023)). Drifting receptive fields
is an example of feature orthogonalization: Two stimuli can go from sharing a receptive field (large
neural code overlap) to existing in different receptive fields (low overlap). This strongly suggests
that a NETO network with L as the NNSM objective would orthogonalize task-relevant features if
this improved its ability to seek reward. The observation that NETO may reproduce a number of
experimental observations supports it as a biologically plausible theory for emergent policy learning.

5.2 LIMITATIONS & FUTURE DIRECTIONS

NETO’s primary limitation is that it relies on diffusive searches, which are notoriously inefficient in
high dimensions. Consider scaling the agent’s representation space to N dimensions. Then suppose
that it interacts in a contextual bandit task, this time with N actions and N input clusters. The time
that it takes the network to orient these clusters with a diffusive search scales exponentially in N .

There are two potential solutions to this issue. The first is a biological argument that downplays it,
and the second presents an avenue to address the problem. Biological neural codes tend to be low
dimensional (Iyer et al. (2022); Shine et al. (2019); Ebitz & Hayden (2021)). If the diffusive search
is largely restricted to this low-dimensional subspace, then it avoids the exponential scaling that
comes with an increasingly high-dimensional representation space. This argument, while plausible,
avoids the issue. To solve it, we need to construct a more efficient modulatory system. In all our
experiments, we assume that the modulatory system acts uniformly on all neurons in the network.
This unnecessary assumption restricts the weight diffusion tensor to a multiple of the identity. Neu-
romodulation in natural systems is not uniform, which may allow it to shape more complex diffusion
tensors. It is possible that carefully shaping the diffusion tensor could make policy learning more
efficient. This becomes clear when we discretize time into larger episodes, and consider the policy
in each episode as a “sample” of the reward function R at a point in weight space. Under this pic-
ture, we see that a modulatory system following an evolutionary algorithm like Covariance Matrix
Adaptation may be more efficient.

Animals learn tasks quickly by applying previously acquired knowledge to new problems. They
achieve this rapid, generalizable learning by leveraging their world model: a powerful predictive
representation of the environment and how it evolves under their actions. Future work could also
explore whether agents with expressive representation learning objectives that build world models
can solve challenging tasks. It would also be interesting to explore other applications of the NETO
framework: for instance, online supervised learning.

5.3 CONCLUSION

Though we show that a one-layer network can solve basic tasks, the principal contribution of this
work is to introduce NETO as a theory for emergent policy learning in nervous systems. This result
suggests further exploration into reward-dependent noise in the nervous system.
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A APPENDIX

A.1 NEURAL THERMAL OPTIMIZATION AS A MORE GENERAL FRAMEWORK

While the focus of this work is to introduce NETO for policy optimization, we feel that it is impor-
tant to briefly introduce the framework in a more general setting. NETO is a framework for how
the nervous system can satisfy two distinct objectives when the primary network’s dynamics are
governed by only one. Fundamentally, NETO states that:

1. Nervous systems are noisy,
2. A self-supervised objective L determines the network’s deterministic weight dynamics,
3. A neuromodulatory system shapes the noise given the value of R.

They key insight behind NETO is that if the eigenvalues of the weight diffusion tensor are mono-
tonically decreasing functions of R, the attractive points of the system change to balance the opti-
mization of L and R. The only requirement is that L is differentiable with respect to the network
weights. Nicely, R does not have to satisfy this requirement. In a sense, NETO combines a gradient
descent algorithm to optimize L with an evolutionary algorithm to optimize R. The evolutionary
algorithm comes into play in the design of the weight diffusion tensor.

NETO’s generality allows future work to explore other choices of L or R. For instance, if L were
powerful enough to build an expressive world model, then the agent could likely solve challeng-
ing reinforcement learning problems. Moreover, if R were a supervised learning loss instead of
reward, the agent could learn a classification task online. There are a wealth of different objective
combinations that one could consider.

We also note that one could further generalize this framework to any model defined by the param-
eters θ that aims to satisfy two objectives L and R, though only L is differentiable with respect to
the model parameters. This framework may be useful if one believes that satisfying L will help
the model approach optimal solutions with respect to R, thereby increasing the efficiency of an
evolutionary algorithm.

A.2 NETO EXHIBITS EFFICIENT KNOWLEDGE TRANSFER ACROSS TASKS

Organisms do not relearn the dynamics of their environment each time they face a new task. Instead,
they transfer their knowledge from past experiences, using previously learned representations to
learn new sequences of actions. NETO agents demonstrate similar knowledge transfer across tasks
in online learning settings. Specifically, when a task switch occurs, NETO agents leverage the
information already encoded in their representation learning networks to adapt and optimize a new
policy.

We illustrate this idea with a modified version of the contextual bandit task considered in Section
4.1. Previously, the agent needed to learn to take the action a corresponding to the random sign

Figure 6: (Left) The principal subspace loss remains low as tasks change, facilitating efficient knowledge
transfer. (Right) The agent adjusts readily to changing tasks.
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k. In the modified task, the rewarding action-sign association changes from a = k to a = −k on
a timescale unknown to the agent. Each association represents a different task. Figure 6 (right)
illustrates that the agent adapts to the changing tasks. Importantly, the agent does need to relearn to
extract the principal subspace of the inputs (Figure 6, left). Instead, it only needs to relearn how to
use this information. Knowledge is transferred efficiently as the tasks evolve.

The NETO agents we focus on in this work quickly optimize their representation learning objective.
As a result, transferring learned features between tasks doesn’t significantly affect their efficiency.
However, for agents with more complex representation learning objectives, this transfer becomes
crucial. It allows agents to learn the dynamics of the environment just once, after which they can
use this understanding to solve a variety of tasks.

A.3 THE ROLE OF ACTIVITY NOISE IN NETO POLICY OPTIMIZATION

This work shows that reward-dependent weight noise facilitates policy optimization in networks oth-
erwise designed to learn representations. It is natural to ask: Can activity noise play the same role?
Or is its only effect to make the agent’s policy nondeterministic? Here, we answer this question by
showing that activity noise is an “effective” weight noise, and therefore, the network can harness
it for policy optimization. Intuitively, activity noise acts as an effective weight noise because the
weight updates depend on the activities. We show this in the case of the Similarity Matching objec-
tive for concreteness. We consider discrete timesteps throughout. However, it will be clear that the
argument applies to any representation learning objective and to continuous time.

Consider the two-neuron network presented in this work. Recall that it has activities x ∈ R2 and
weights θ = (W0,W1). Let x0(s) denote the network’s response to a stimulus s without the
presence of noise. Then the network’s response with noise x is given by

x = x0(s) + z (20)

where z ∈ R2 is a random variable with covariance matrix σxσ
T
x , following equation (1). Per

equations (5-6), considering discrete timesteps and setting the weight noise to zero, the weight
updates are given by

∆W0 = ηθ
[
(x0(s) + z)sT −W0

]
(21)

∆W1 = ηθ
[
(x0(s) + z)(x0(s) + z)T −W1

]
(22)

which can be expanded into

∆W0 = ηθ
[
x0(s)s

T −W0

]
+ ηθzs

T (23)

∆W1 = ηθ
[
x0(s)x0(s)

T −W1

]
+ ηθ

[
zx0(s)

T + x0(s)z
T + zzT

]
(24)

We recognize that the first term in each equation corresponds to the weight updates without activity
noise. The second terms are effective weight noise terms; they depend on z. As such, NETO policy
learning can also occur through activity noise (or some combination of activity and weight noise).
Nicely, note that ηθ modulates this effective weight noise as it does the pure weight noise. This
is particularly interesting given evidence that dopamine, a neuromodulator associated with reward
signals, has been observed to tune the weight learning rate and the activity signal-to-noise ratio
in certain regions of mammalian nervous systems (Coddington et al. (2023); Vander Weele et al.
(2018); Winterer & Weinberger (2004); Kroener et al. (2009)).

A.4 THE BIOLOGICAL PLAUSIBILITY OF THE NETO NOISE HYPOTHESIS

Here, we discuss the biological plausibility of the NETO reward-dependent noise hypothesis. Is
there any evidence that the brain uses reward-dependent noise? Directly measuring weight noise
is experimentally challenging because it is difficult to precisely track synaptic weight dynamics.
However, we can look for indirect evidence. For example, in this work, the neuromodulatory system
tunes the weight noise through the weight learning rate ηθ. This aligns with findings showing that
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dopamine, a neuromodulator associated with reward signals, adapts the weight learning rate in mice
during policy optimization (Coddington et al. (2023)). Additionally, in Appendix A.3, we find
that activity noise can serve as an effective weight noise. Research suggests that dopamine tunes
the activity signal-to-noise ratio in certain regions of mammalian nervous systems (Vander Weele
et al. (2018); Winterer & Weinberger (2004); Kroener et al. (2009)). Together, these examples
provide indirect evidence that dopamine could adapt the weight noise in response to reward signals,
supporting the NETO reward hypothesis. However, future research is needed to investigate this
claim in greater detail.

A.5 APPROXIMATION OF R(ϕ)

In this section, we approximate R(ϕ) as a function of the contextual bandit state distribution. This
calculation is necessary to formulate the agent’s learning process as angle-dependent rotational dif-
fusion. Our strategy will be as follows:

1. We will write aϕ(s), the agent’s action under an observation s as a function of the angle ϕ.
2. We will write R(ϕ) as an expectation value and eventually an integral.
3. We will see that evaluating this expression requires finding the distribution of the network

responses x(s). To find this distribution, we compute the principal subspace of s.
4. We then use this information to write the distribution of x as a function of ϕ.
5. Finally, we approximate the integral in step (2).

A.5.1 STEP 1: FINDING aϕ(s)

We begin by finding aϕ(s). As in the main text, we assume that the agent’s parameters are in the
solution space of L. It follows that its activity dynamics (4) that its parameters θ define a mapping
from the observation space to the network’s representation space given by

x(s|ϕ) = U(ϕ)Ps (25)

where the operator P projects s into its 2-dimensional principal subspace, and U(ϕ) ∈ R2×2 rotates
the result by ϕ radians. By convention, we choose P such that x(kµ|ϕ = 0) = ckv for some c > 0.

Since M(x) = sign(vTx), with vT = 1√
2
(−1, 1), this corresponds to the action

aϕ(s) = sign(vTU(ϕ)Ps) (26)

A.5.2 STEP 2: WRITE R(ϕ) AS AN INTEGRAL.

Recall that the goal of the agent is to pick the action k, the random sign. Then the reward at a single
step, r(s, a), is given by

r(s, aϕ(s)) = I [aϕ(s) = k] (27)

Since the distribution of s is stationary and the agent’s policy is fixed, the expected reward R(ϕ) =

E
[∑T

t=1 r(st, aϕ(st))
]
= E [r(s, aϕ(s))]. So, we can write R(ϕ) as

R(ϕ) = E
(
I
[
sign

(
vTU(ϕ)Ps

)
= k

])
(28)

= P
[
sign

(
vTU(ϕ)Ps

)
= k

]
(29)

Let fx(x1,x2|k, ϕ) be the distribution of the network representations x conditional on the random
sign k and given ϕ. Then, considering the meaning of (24) geometrically, we see that is it equivalent
to

R(ϕ) =

∫ ∞

x1

∫ ∞

−∞
fx(x1,x2|k = 1, ϕ) dx1 dx2 (30)

We aim to evaluate this integral.
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A.5.3 STEP 3: FINDING THE PRINCIPAL SUBSPACE OF s

To evaluate the integral (25), we must find the distribution of x = U(ϕ)Ps. Of course, to find
this distribution we must first determine P . So, we need to find the principal subspace of s. Recall
that we can decompose s = k(

√
Cz + µ), where z is a standard normal random variable in 10

dimensions, C is the covariance matrix, µ is the mean, and k is a random sign. Since s is centered
(due to the random sign), its covariance matrix is given by

E
[
ssT

]
= E

[
k2(

√
Cz+ µ)(

√
Cz+ µ)T

]
(31)

= µµT + E
[√

CzzT
√
C

T
]

(32)

where we used the fact that E [z] = 0. Then, using E
[
zzT

]
= I , and since C is symmetric,

√
C
√
C

T
=

√
C
√
CT =

√
C2 = C, we find

E
[
ssT

]
= µµT +C (33)

In the contextual bandit task, we defined C such that µ is an eigenvector. Let λµ be the eigen-
value associated with µ, and {λi}9i=1 denote the other nine eigenvalues with associated eigenvectors
{u(i)}9i=1. Then the eigenvalues of E

[
ssT

]
are given by {∥µ∥2 + λµ, λ1, ..., λ9}.

The mean vector µ allows the agent to identify the random sign k. So, to ensure that there exists a
weight configuration in the solution space of L that solves the task, we needed the projection of µ
onto the principal subspace of s to be nonzero. We therefore chose ∥µ∥2 + λµ > λ1 > ... ≥ λ9.

We see that the principal subspace of s is given by span(µ,u(1)). We can therefore define P as the
projection onto this subspace with Pµ = ∥µ∥v and Pu(1) = 1√

2
(−1,−1)T .

A.5.4 STEP 4: FINDING THE DISTRIBUTION fx(x1,x2|k = 1, ϕ)

Now that we have determined the projection operator P , we can find the distribution of x given the
random sign k = 1. Notice that, conditioned on k, the distribution of s is Multivariate Normal. Any
projection or rotation of a Multivariate Normal is still Multivariate Normal. Nicely, this means that
the distribution of x(s) = U(ϕ)Ps is defined by its mean and covariance matrix. We need only
compute these.

Recall that s = k(
√
Cz+ µ), so

E [x|k = 1] = E
[
kU(ϕ)P (

√
Cz+ µ)|k = 1

]
(34)

= E
[
U(ϕ)P

√
Cz|k = 1

]
+ E [U(ϕ)Pµ|k = 1] (35)

= U(ϕ)∥µ∥v (36)

where, in the last line, we used Pµ = ∥µ∥v and E [z] = 0. Before we evaluate the covariance
matrix, we make the following simplification. Let µ′ := ∥µ∥v. Notice that

x|(k = 1)− E[x|k = 1] = U(ϕ)P (
√
Cz+ µ)−U(ϕ)µ′ (37)

= U(ϕ)P
√
Cz+U(ϕ)Pµ−U(ϕ)µ′ (38)

= U(ϕ)P
√
Cz (39)
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We can now evaluate the covariance matrix, which we denote C ′.

C ′ = E
[
(U(ϕ)P

√
Cz)(U(ϕ)P

√
Cz)T

]
(40)

= U(ϕ)P
√
C E

[
zzT

]√
C

T
P TU(ϕ)T (41)

= U(ϕ)P
√
C
√
C

T
P TU(ϕ)T (42)

= U(ϕ)PCP TU(ϕ)T (43)

= U(ϕ)DU(ϕ)T (44)

where D = diag(λµ, λ1). We made the last step by the definition of the projection operator P .

This means that

x|(k = 1) ∼ N (U(ϕ)µ′,U(ϕ)DU(ϕ)T ) (45)

We can now attempt to evaluate the integral (25).

A.5.5 STEP 5: APPROXIMATING THE INTEGRAL FOR R(ϕ)

We now see that

R(ϕ) =

∫ ∞

x1

∫ ∞

−∞
N (x; U(ϕ)µ′,U(ϕ)DU(ϕ)T ) dx1dx2 (46)

This integral is not analytically tractable because the Gaussian is not centered and has a potentially
non-diagonal covariance matrix. However, we can make an approximation that will be valid for our
contextual bandit task.

Notice that we defined the contextual bandit state distribution such that λµ << ∥µ∥2, λ1. We did
this so that the agent can learn to solve the task consistently (the two Gaussian clusters need to be
linearly distinguishable). We therefore approximate the expression with the limit that λµ → 0.

Figure 7: A visualization of the R(ϕ) approximation. R(ϕ) is equivalent to the probability that x(s|ϕ, k = 1)
corresponds to a = 1. Visually, this corresponds to the probability that the rightmost cluster is in the upper
region of activity space. In the limit that λµ → 0, all variance perpendicular to the orange line disappears. So
this quantity becomes the integral of the distribution N (0, λ1) from −∞ to |µ∥ tan(ϕ).
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For geometric intuition, refer to Figure 6. We see that, in this limit, the integral would be exactly
given by

R(ϕ) =

∫ ∥µ′∥ tan(ϕ)

−∞
N (x; 0, λ1) dx (47)

= Φ

(
± ∥µ∥√

λ1

tan(ϕ)

)
(48)

since ∥µ′∥ = ∥µ∥, where we take the negative sign when ϕ ∈ [π2 ,
3π
2 ] and the positive sign other-

wise.

A.5.6 OUR APPROXIMATION AGREES WITH SIMULATIONS

In Figure 7, we verify our approximation by comparing it to simulations. We find good agreement
when our assumption that λµ << ∥µ∥2, λ1 holds. To get simulation values of R(ϕ), we define the
mapping aϕ(s). We then draw the states s according to the process defined in the main text and
compute the expected value of the indicator that aϕ(s) = k, where k is the random sign.

Figure 8: The R(ϕ) approximation is reasonable across a range of examples where our assumption λµ <<
∥µ∥2, λ1 holds. Solid lines indicate simulation values, and dashed lines denote the analytical approximation.
In these simulations, ∥µ∥2 ∈ {0.25, 1}, λ1 ∈ {0.1, 2}, and λµ = 0.05.

A.6 OPTIMAL CART POLE POLICIES DO NOT EXIST IN THE SOLUTION SPACE OF L

Here, we show that optimal Cart Pole policies cannot be found within the solution space of L. We
begin with an intuitive argument. Suppose, for the sake of contradiction, that the agent can maintain
a successful policy while satisfying L. A successful Cart Pole policy minimizes the angular devia-
tion of the pole from its center. However, because the agent satisfies L, it projects its observations
onto their two-dimensional principal subspace. The pole’s angular deviation does not lie in this
subspace, as its variance is too small. Without access to this critical information, the agent cannot
determine which action to take, and thus cannot have an optimal policy. This leads to a contradiction.

It is necessary to validate this intuition because the other observations (cart position, velocity, etc.)
should have small variances in an optimal policy as well. We test the claim that an agent with
an optimal policy cannot project its observations onto their 2D principal subspace and maintain
an optimal policy. We record the observations of an agent with a policy that beats Cart Pole and
compute this subspace. We then define a new agent with a motor function M(x) = sign(vTx) that
acts directly on these principal subspace projections. We explore all rotational configurations of the
principle subspace projections but find that none result in a policy that beats Cart Pole (Figure 9).
An agent cannot project its observations onto their principal subspace if it intends to maintain its
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optimal policy7. We conclude that agents cannot simultaneously exist in the solution space of L and
have an optimal policy. This result empirically confirms the claim that optimal policies do not exist
within the solution space of L.

Figure 9: No rotational orientation of the network activities can solve Cart Pole if the observations are pro-
jected onto their principal subspace. Points give the median reward return for an agent with a given rotational
orientation. ϕ is the same angle depicted in Figure 2.

A.7 AGENT PARAMETERS IN THE TWO TASKS

Table 1 provides the parameters that we used to run the agent simulations in the contextual bandit
and Cart Pole tasks. The agent requires greater noise variance to learn features that its representation
learning objective does not capture, as seen in the Cart Pole task. However, due to the large variance,
we did not add noise to W1. We made this choice because the SM objective requires that W1 remain
symmetric. Alternatively, we could have chosen to symmetrize this weight noise.

Table 1: Agent Parameters

Task β σ2
θ γ

Contextual Bandit {0, 1, 2, 3, 5} 0.001 1
Cart Pole 1

30 1 1

A.8 IMPLEMENTATION OF THE MODULATORY SYSTEM R ESTIMATES

In this article, we often referred to a modulatory system that estimates R. However, we did not
mention how this system implements this policy reward estimation.

A.8.1 THE CONTEXTUAL BANDIT

In the contextual bandit task, the modulatory system estimates the reward R with an exponential
filter of length T = 100 timesteps. It updates its reward estimate at time t, R̂t, with the equation

R̂t+1 = (1− 1

T
)R̂t +

1

T
r(st, at) (49)

where r(st, at) gives the reward received in that timestep.

7We assumed here that the result in Figure 9 hold for all successful policies, not just the ones tested. This
assumption is reasonable because Cart Pole is a simple task; there are not successful policies that lead to
drastically different input distributions.
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A.8.2 CART POLE

In Cart Pole, the network uses the last trial result as the R estimate. This is equivalent to the
contextual bandit implementation if we consider the exponential filter to be over trials instead of
timesteps, and we set T = 1.
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